// Copyright 2018 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/sampling_heap_profiler/sampling_heap_profiler.h" #include #include #include #include "base/allocator/allocator_shim.h" #include "base/allocator/buildflags.h" #include "base/allocator/partition_allocator/partition_alloc.h" #include "base/atomicops.h" #include "base/macros.h" #include "base/no_destructor.h" #include "base/partition_alloc_buildflags.h" #include "base/rand_util.h" #include "base/sampling_heap_profiler/lock_free_address_hash_set.h" #include "base/threading/thread_local_storage.h" #include "build/build_config.h" #if defined(OS_MACOSX) #include #endif namespace base { using allocator::AllocatorDispatch; using subtle::Atomic32; using subtle::AtomicWord; namespace { #if defined(OS_MACOSX) // On MacOS the implementation of libmalloc sometimes calls malloc recursively, // delegating allocations between zones. That causes our hooks being called // twice. The scoped guard allows us to detect that. class ReentryGuard { public: ReentryGuard() : allowed_(!pthread_getspecific(entered_key_)) { pthread_setspecific(entered_key_, reinterpret_cast(1)); } ~ReentryGuard() { if (LIKELY(allowed_)) pthread_setspecific(entered_key_, reinterpret_cast(0)); } operator bool() { return allowed_; } static void Init() { int result = pthread_key_create(&entered_key_, nullptr); DCHECK(!result); } private: bool allowed_; static pthread_key_t entered_key_; }; pthread_key_t ReentryGuard::entered_key_; #else class ReentryGuard { public: operator bool() { return true; } static void Init() {} }; #endif const size_t kDefaultSamplingIntervalBytes = 128 * 1024; // Controls if sample intervals should not be randomized. Used for testing. bool g_deterministic; // A positive value if profiling is running, otherwise it's zero. Atomic32 g_running; // Pointer to the current |LockFreeAddressHashSet|. AtomicWord g_sampled_addresses_set; // Sampling interval parameter, the mean value for intervals between samples. AtomicWord g_sampling_interval = kDefaultSamplingIntervalBytes; void (*g_hooks_install_callback)(); Atomic32 g_hooks_installed; void* AllocFn(const AllocatorDispatch* self, size_t size, void* context) { ReentryGuard guard; void* address = self->next->alloc_function(self->next, size, context); if (LIKELY(guard)) { PoissonAllocationSampler::RecordAlloc( address, size, PoissonAllocationSampler::kMalloc, nullptr); } return address; } void* AllocZeroInitializedFn(const AllocatorDispatch* self, size_t n, size_t size, void* context) { ReentryGuard guard; void* address = self->next->alloc_zero_initialized_function(self->next, n, size, context); if (LIKELY(guard)) { PoissonAllocationSampler::RecordAlloc( address, n * size, PoissonAllocationSampler::kMalloc, nullptr); } return address; } void* AllocAlignedFn(const AllocatorDispatch* self, size_t alignment, size_t size, void* context) { ReentryGuard guard; void* address = self->next->alloc_aligned_function(self->next, alignment, size, context); if (LIKELY(guard)) { PoissonAllocationSampler::RecordAlloc( address, size, PoissonAllocationSampler::kMalloc, nullptr); } return address; } void* ReallocFn(const AllocatorDispatch* self, void* address, size_t size, void* context) { ReentryGuard guard; // Note: size == 0 actually performs free. PoissonAllocationSampler::RecordFree(address); address = self->next->realloc_function(self->next, address, size, context); if (LIKELY(guard)) { PoissonAllocationSampler::RecordAlloc( address, size, PoissonAllocationSampler::kMalloc, nullptr); } return address; } void FreeFn(const AllocatorDispatch* self, void* address, void* context) { // Note: The RecordFree should be called before free_function // (here and in other places). // That is because we need to remove the recorded allocation sample before // free_function, as once the latter is executed the address becomes available // and can be allocated by another thread. That would be racy otherwise. PoissonAllocationSampler::RecordFree(address); self->next->free_function(self->next, address, context); } size_t GetSizeEstimateFn(const AllocatorDispatch* self, void* address, void* context) { return self->next->get_size_estimate_function(self->next, address, context); } unsigned BatchMallocFn(const AllocatorDispatch* self, size_t size, void** results, unsigned num_requested, void* context) { ReentryGuard guard; unsigned num_allocated = self->next->batch_malloc_function( self->next, size, results, num_requested, context); if (LIKELY(guard)) { for (unsigned i = 0; i < num_allocated; ++i) { PoissonAllocationSampler::RecordAlloc( results[i], size, PoissonAllocationSampler::kMalloc, nullptr); } } return num_allocated; } void BatchFreeFn(const AllocatorDispatch* self, void** to_be_freed, unsigned num_to_be_freed, void* context) { for (unsigned i = 0; i < num_to_be_freed; ++i) PoissonAllocationSampler::RecordFree(to_be_freed[i]); self->next->batch_free_function(self->next, to_be_freed, num_to_be_freed, context); } void FreeDefiniteSizeFn(const AllocatorDispatch* self, void* address, size_t size, void* context) { PoissonAllocationSampler::RecordFree(address); self->next->free_definite_size_function(self->next, address, size, context); } AllocatorDispatch g_allocator_dispatch = {&AllocFn, &AllocZeroInitializedFn, &AllocAlignedFn, &ReallocFn, &FreeFn, &GetSizeEstimateFn, &BatchMallocFn, &BatchFreeFn, &FreeDefiniteSizeFn, nullptr}; #if BUILDFLAG(USE_PARTITION_ALLOC) && !defined(OS_NACL) void PartitionAllocHook(void* address, size_t size, const char* type) { PoissonAllocationSampler::RecordAlloc( address, size, PoissonAllocationSampler::kPartitionAlloc, type); } void PartitionFreeHook(void* address) { PoissonAllocationSampler::RecordFree(address); } #endif // BUILDFLAG(USE_PARTITION_ALLOC) && !defined(OS_NACL) ThreadLocalStorage::Slot& AccumulatedBytesTLS() { static NoDestructor accumulated_bytes_tls; return *accumulated_bytes_tls; } } // namespace PoissonAllocationSampler::MuteThreadSamplesScope::MuteThreadSamplesScope() { CHECK(!Get()->entered_.Get()); Get()->entered_.Set(true); } PoissonAllocationSampler::MuteThreadSamplesScope::~MuteThreadSamplesScope() { CHECK(Get()->entered_.Get()); Get()->entered_.Set(false); } PoissonAllocationSampler* PoissonAllocationSampler::instance_; PoissonAllocationSampler::PoissonAllocationSampler() { instance_ = this; auto sampled_addresses = std::make_unique(64); subtle::NoBarrier_Store( &g_sampled_addresses_set, reinterpret_cast(sampled_addresses.get())); sampled_addresses_stack_.push_back(std::move(sampled_addresses)); } // static void PoissonAllocationSampler::Init() { // Preallocate the TLS slot early, so it can't cause reentracy issues // when sampling is started. ignore_result(AccumulatedBytesTLS().Get()); ReentryGuard::Init(); } // static void PoissonAllocationSampler::InstallAllocatorHooksOnce() { static bool hook_installed = InstallAllocatorHooks(); ignore_result(hook_installed); } // static bool PoissonAllocationSampler::InstallAllocatorHooks() { #if BUILDFLAG(USE_ALLOCATOR_SHIM) allocator::InsertAllocatorDispatch(&g_allocator_dispatch); #else ignore_result(g_allocator_dispatch); DLOG(WARNING) << "base::allocator shims are not available for memory sampling."; #endif // BUILDFLAG(USE_ALLOCATOR_SHIM) #if BUILDFLAG(USE_PARTITION_ALLOC) && !defined(OS_NACL) PartitionAllocHooks::SetAllocationHook(&PartitionAllocHook); PartitionAllocHooks::SetFreeHook(&PartitionFreeHook); #endif // BUILDFLAG(USE_PARTITION_ALLOC) && !defined(OS_NACL) int32_t hooks_install_callback_has_been_set = subtle::Acquire_CompareAndSwap(&g_hooks_installed, 0, 1); if (hooks_install_callback_has_been_set) g_hooks_install_callback(); return true; } // static void PoissonAllocationSampler::SetHooksInstallCallback( void (*hooks_install_callback)()) { CHECK(!g_hooks_install_callback && hooks_install_callback); g_hooks_install_callback = hooks_install_callback; int32_t profiler_has_already_been_initialized = subtle::Release_CompareAndSwap(&g_hooks_installed, 0, 1); if (profiler_has_already_been_initialized) g_hooks_install_callback(); } void PoissonAllocationSampler::Start() { InstallAllocatorHooksOnce(); subtle::Barrier_AtomicIncrement(&g_running, 1); } void PoissonAllocationSampler::Stop() { AtomicWord count = subtle::Barrier_AtomicIncrement(&g_running, -1); CHECK_GE(count, 0); } void PoissonAllocationSampler::SetSamplingInterval(size_t sampling_interval) { // TODO(alph): Reset the sample being collected if running. subtle::Release_Store(&g_sampling_interval, static_cast(sampling_interval)); } // static size_t PoissonAllocationSampler::GetNextSampleInterval(size_t interval) { if (UNLIKELY(g_deterministic)) return interval; // We sample with a Poisson process, with constant average sampling // interval. This follows the exponential probability distribution with // parameter λ = 1/interval where |interval| is the average number of bytes // between samples. // Let u be a uniformly distributed random number between 0 and 1, then // next_sample = -ln(u) / λ double uniform = RandDouble(); double value = -log(uniform) * interval; size_t min_value = sizeof(intptr_t); // We limit the upper bound of a sample interval to make sure we don't have // huge gaps in the sampling stream. Probability of the upper bound gets hit // is exp(-20) ~ 2e-9, so it should not skew the distribution. size_t max_value = interval * 20; if (UNLIKELY(value < min_value)) return min_value; if (UNLIKELY(value > max_value)) return max_value; return static_cast(value); } // static void PoissonAllocationSampler::RecordAlloc(void* address, size_t size, AllocatorType type, const char* context) { if (UNLIKELY(!subtle::NoBarrier_Load(&g_running))) return; if (UNLIKELY(ThreadLocalStorage::HasBeenDestroyed())) return; intptr_t accumulated_bytes = reinterpret_cast(AccumulatedBytesTLS().Get()); accumulated_bytes += size; if (LIKELY(accumulated_bytes < 0)) { AccumulatedBytesTLS().Set(reinterpret_cast(accumulated_bytes)); return; } size_t mean_interval = subtle::NoBarrier_Load(&g_sampling_interval); size_t samples = accumulated_bytes / mean_interval; accumulated_bytes %= mean_interval; do { accumulated_bytes -= GetNextSampleInterval(mean_interval); ++samples; } while (accumulated_bytes >= 0); AccumulatedBytesTLS().Set(reinterpret_cast(accumulated_bytes)); instance_->DoRecordAlloc(samples * mean_interval, size, address, type, context); } void PoissonAllocationSampler::DoRecordAlloc(size_t total_allocated, size_t size, void* address, AllocatorType type, const char* context) { if (entered_.Get()) return; MuteThreadSamplesScope no_reentrancy_scope; AutoLock lock(mutex_); // TODO(alph): Sometimes RecordAlloc is called twice in a row without // a RecordFree in between. Investigate it. if (!sampled_addresses_set().Contains(address)) { sampled_addresses_set().Insert(address); BalanceAddressesHashSet(); for (auto* observer : observers_) observer->SampleAdded(address, size, total_allocated, type, context); } } // static void PoissonAllocationSampler::RecordFree(void* address) { if (UNLIKELY(address == nullptr)) return; if (UNLIKELY(sampled_addresses_set().Contains(address))) instance_->DoRecordFree(address); } void PoissonAllocationSampler::DoRecordFree(void* address) { if (UNLIKELY(ThreadLocalStorage::HasBeenDestroyed())) return; if (entered_.Get()) return; MuteThreadSamplesScope no_reentrancy_scope; AutoLock lock(mutex_); for (auto* observer : observers_) observer->SampleRemoved(address); sampled_addresses_set().Remove(address); } void PoissonAllocationSampler::BalanceAddressesHashSet() { // Check if the load_factor of the current addresses hash set becomes higher // than 1, allocate a new twice larger one, copy all the data, // and switch to using it. // During the copy process no other writes are made to both sets // as it's behind the lock. // All the readers continue to use the old one until the atomic switch // process takes place. LockFreeAddressHashSet& current_set = sampled_addresses_set(); if (current_set.load_factor() < 1) return; auto new_set = std::make_unique(current_set.buckets_count() * 2); new_set->Copy(current_set); // Atomically switch all the new readers to the new set. subtle::Release_Store(&g_sampled_addresses_set, reinterpret_cast(new_set.get())); // We still have to keep all the old maps alive to resolve the theoretical // race with readers in |RecordFree| that have already obtained the map, // but haven't yet managed to access it. sampled_addresses_stack_.push_back(std::move(new_set)); } // static LockFreeAddressHashSet& PoissonAllocationSampler::sampled_addresses_set() { return *reinterpret_cast( subtle::NoBarrier_Load(&g_sampled_addresses_set)); } // static PoissonAllocationSampler* PoissonAllocationSampler::Get() { static NoDestructor instance; return instance.get(); } // static void PoissonAllocationSampler::SuppressRandomnessForTest(bool suppress) { g_deterministic = suppress; } void PoissonAllocationSampler::AddSamplesObserver(SamplesObserver* observer) { MuteThreadSamplesScope no_reentrancy_scope; AutoLock lock(mutex_); observers_.push_back(observer); } void PoissonAllocationSampler::RemoveSamplesObserver( SamplesObserver* observer) { MuteThreadSamplesScope no_reentrancy_scope; AutoLock lock(mutex_); auto it = std::find(observers_.begin(), observers_.end(), observer); CHECK(it != observers_.end()); observers_.erase(it); } } // namespace base