// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/internal/verify_signed_data.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/numerics/safe_math.h" #include "crypto/openssl_util.h" #include "net/cert/internal/cert_errors.h" #include "net/cert/internal/signature_algorithm.h" #include "net/der/input.h" #include "net/der/parse_values.h" #include "net/der/parser.h" #include "third_party/boringssl/src/include/openssl/bytestring.h" #include "third_party/boringssl/src/include/openssl/digest.h" #include "third_party/boringssl/src/include/openssl/evp.h" #include "third_party/boringssl/src/include/openssl/rsa.h" namespace net { namespace { // Converts a DigestAlgorithm to an equivalent EVP_MD*. WARN_UNUSED_RESULT bool GetDigest(DigestAlgorithm digest, const EVP_MD** out) { *out = nullptr; switch (digest) { case DigestAlgorithm::Md2: case DigestAlgorithm::Md4: case DigestAlgorithm::Md5: // Unsupported. break; case DigestAlgorithm::Sha1: *out = EVP_sha1(); break; case DigestAlgorithm::Sha256: *out = EVP_sha256(); break; case DigestAlgorithm::Sha384: *out = EVP_sha384(); break; case DigestAlgorithm::Sha512: *out = EVP_sha512(); break; } return *out != nullptr; } // Sets the RSASSA-PSS parameters on |pctx|. Returns true on success. WARN_UNUSED_RESULT bool ApplyRsaPssOptions(const RsaPssParameters* params, EVP_PKEY_CTX* pctx) { // BoringSSL takes a signed int for the salt length, and interprets // negative values in a special manner. Make sure not to silently underflow. base::CheckedNumeric salt_length_bytes_int(params->salt_length()); if (!salt_length_bytes_int.IsValid()) return false; const EVP_MD* mgf1_hash; if (!GetDigest(params->mgf1_hash(), &mgf1_hash)) return false; return EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) && EVP_PKEY_CTX_set_rsa_mgf1_md(pctx, mgf1_hash) && EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, salt_length_bytes_int.ValueOrDie()); } } // namespace // Parses an RSA public key or EC public key from SPKI to an EVP_PKEY. Returns // true on success. // // There are two flavors of RSA public key that this function should recognize // from RFC 5912 (however note that pk-rsaSSA-PSS is not supported in the // current implementation). // TODO(eroman): Support id-RSASSA-PSS and its associated parameters. See // https://crbug.com/522232 // // pk-rsa PUBLIC-KEY ::= { // IDENTIFIER rsaEncryption // KEY RSAPublicKey // PARAMS TYPE NULL ARE absent // -- Private key format not in this module -- // CERT-KEY-USAGE {digitalSignature, nonRepudiation, // keyEncipherment, dataEncipherment, keyCertSign, cRLSign} // } // // ... // // pk-rsaSSA-PSS PUBLIC-KEY ::= { // IDENTIFIER id-RSASSA-PSS // KEY RSAPublicKey // PARAMS TYPE RSASSA-PSS-params ARE optional // -- Private key format not in this module -- // CERT-KEY-USAGE { nonRepudiation, digitalSignature, // keyCertSign, cRLSign } // } // // Any RSA signature algorithm can accept a "pk-rsa" (rsaEncryption). However a // "pk-rsaSSA-PSS" key is only accepted if the signature algorithm was for PSS // mode: // // sa-rsaSSA-PSS SIGNATURE-ALGORITHM ::= { // IDENTIFIER id-RSASSA-PSS // PARAMS TYPE RSASSA-PSS-params ARE required // HASHES { mda-sha1 | mda-sha224 | mda-sha256 | mda-sha384 // | mda-sha512 } // PUBLIC-KEYS { pk-rsa | pk-rsaSSA-PSS } // SMIME-CAPS { IDENTIFIED BY id-RSASSA-PSS } // } // // Moreover, if a "pk-rsaSSA-PSS" key was used and it optionally provided // parameters for the algorithm, they must match those of the signature // algorithm. // // COMPATIBILITY NOTE: RFC 5912 and RFC 3279 are in disagreement on the value // of parameters for rsaEncryption. Whereas RFC 5912 says they must be absent, // RFC 3279 says they must be NULL: // // The rsaEncryption OID is intended to be used in the algorithm field // of a value of type AlgorithmIdentifier. The parameters field MUST // have ASN.1 type NULL for this algorithm identifier. // // Following RFC 3279 in this case. // // In the case of parsing EC keys, RFC 5912 describes all the ECDSA // signature algorithms as requiring a public key of type "pk-ec": // // pk-ec PUBLIC-KEY ::= { // IDENTIFIER id-ecPublicKey // KEY ECPoint // PARAMS TYPE ECParameters ARE required // -- Private key format not in this module -- // CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyAgreement, // keyCertSign, cRLSign } // } // // Moreover RFC 5912 stipulates what curves are allowed. The ECParameters // MUST NOT use an implicitCurve or specificCurve for PKIX: // // ECParameters ::= CHOICE { // namedCurve CURVE.&id({NamedCurve}) // -- implicitCurve NULL // -- implicitCurve MUST NOT be used in PKIX // -- specifiedCurve SpecifiedCurve // -- specifiedCurve MUST NOT be used in PKIX // -- Details for specifiedCurve can be found in [X9.62] // -- Any future additions to this CHOICE should be coordinated // -- with ANSI X.9. // } // -- If you need to be able to decode ANSI X.9 parameter structures, // -- uncomment the implicitCurve and specifiedCurve above, and also // -- uncomment the following: // --(WITH COMPONENTS {namedCurve PRESENT}) // // The namedCurves are extensible. The ones described by RFC 5912 are: // // NamedCurve CURVE ::= { // { ID secp192r1 } | { ID sect163k1 } | { ID sect163r2 } | // { ID secp224r1 } | { ID sect233k1 } | { ID sect233r1 } | // { ID secp256r1 } | { ID sect283k1 } | { ID sect283r1 } | // { ID secp384r1 } | { ID sect409k1 } | { ID sect409r1 } | // { ID secp521r1 } | { ID sect571k1 } | { ID sect571r1 }, // ... -- Extensible // } bool ParsePublicKey(const der::Input& public_key_spki, bssl::UniquePtr* public_key) { // Parse the SPKI to an EVP_PKEY. crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); // TODO(eroman): This is not strict enough. It accepts BER, other RSA // OIDs, and does not check id-rsaEncryption parameters. // See https://crbug.com/522228 and https://crbug.com/522232 CBS cbs; CBS_init(&cbs, public_key_spki.UnsafeData(), public_key_spki.Length()); public_key->reset(EVP_parse_public_key(&cbs)); if (!*public_key || CBS_len(&cbs) != 0) { public_key->reset(); return false; } return true; } bool VerifySignedData(const SignatureAlgorithm& algorithm, const der::Input& signed_data, const der::BitString& signature_value, EVP_PKEY* public_key) { // Check that the key type matches the signature algorithm. int expected_pkey_id = -1; switch (algorithm.algorithm()) { case SignatureAlgorithmId::Dsa: // DSA is not supported. return false; case SignatureAlgorithmId::RsaPkcs1: case SignatureAlgorithmId::RsaPss: expected_pkey_id = EVP_PKEY_RSA; break; case SignatureAlgorithmId::Ecdsa: expected_pkey_id = EVP_PKEY_EC; break; } if (expected_pkey_id != EVP_PKEY_id(public_key)) return false; // For the supported algorithms the signature value must be a whole // number of bytes. if (signature_value.unused_bits() != 0) return false; const der::Input& signature_value_bytes = signature_value.bytes(); crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); bssl::ScopedEVP_MD_CTX ctx; EVP_PKEY_CTX* pctx = nullptr; // Owned by |ctx|. const EVP_MD* digest; if (!GetDigest(algorithm.digest(), &digest)) return false; if (!EVP_DigestVerifyInit(ctx.get(), &pctx, digest, nullptr, public_key)) return false; // Set the RSASSA-PSS specific options. if (algorithm.algorithm() == SignatureAlgorithmId::RsaPss && !ApplyRsaPssOptions(algorithm.ParamsForRsaPss(), pctx)) { return false; } if (!EVP_DigestVerifyUpdate(ctx.get(), signed_data.UnsafeData(), signed_data.Length())) { return false; } return 1 == EVP_DigestVerifyFinal(ctx.get(), signature_value_bytes.UnsafeData(), signature_value_bytes.Length()); } bool VerifySignedData(const SignatureAlgorithm& algorithm, const der::Input& signed_data, const der::BitString& signature_value, const der::Input& public_key_spki) { bssl::UniquePtr public_key; if (!ParsePublicKey(public_key_spki, &public_key)) return false; return VerifySignedData(algorithm, signed_data, signature_value, public_key.get()); } } // namespace net