// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/core/quic_framer.h" #include #include #include "base/compiler_specific.h" #include "net/quic/core/crypto/crypto_framer.h" #include "net/quic/core/crypto/crypto_handshake_message.h" #include "net/quic/core/crypto/crypto_protocol.h" #include "net/quic/core/crypto/null_decrypter.h" #include "net/quic/core/crypto/null_encrypter.h" #include "net/quic/core/crypto/quic_decrypter.h" #include "net/quic/core/crypto/quic_encrypter.h" #include "net/quic/core/quic_data_reader.h" #include "net/quic/core/quic_data_writer.h" #include "net/quic/core/quic_socket_address_coder.h" #include "net/quic/core/quic_stream_frame_data_producer.h" #include "net/quic/core/quic_utils.h" #include "net/quic/platform/api/quic_aligned.h" #include "net/quic/platform/api/quic_bug_tracker.h" #include "net/quic/platform/api/quic_flag_utils.h" #include "net/quic/platform/api/quic_flags.h" #include "net/quic/platform/api/quic_logging.h" #include "net/quic/platform/api/quic_map_util.h" #include "net/quic/platform/api/quic_ptr_util.h" #include "net/quic/platform/api/quic_str_cat.h" using std::string; namespace net { namespace { #define ENDPOINT \ (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") // Number of bits the packet number length bits are shifted from the right // edge of the header. const uint8_t kPublicHeaderSequenceNumberShift = 4; // New Frame Types, QUIC v. >= 10: // There are two interpretations for the Frame Type byte in the QUIC protocol, // resulting in two Frame Types: Special Frame Types and Regular Frame Types. // // Regular Frame Types use the Frame Type byte simply. Currently defined // Regular Frame Types are: // Padding : 0b 00000000 (0x00) // ResetStream : 0b 00000001 (0x01) // ConnectionClose : 0b 00000010 (0x02) // GoAway : 0b 00000011 (0x03) // WindowUpdate : 0b 00000100 (0x04) // Blocked : 0b 00000101 (0x05) // // Special Frame Types encode both a Frame Type and corresponding flags // all in the Frame Type byte. Currently defined Special Frame Types are: // Stream : 0b 11xxxxxx // Ack : 0b 101xxxxx // // Semantics of the flag bits above (the x bits) depends on the frame type. // Masks to determine if the frame type is a special use // and for specific special frame types. const uint8_t kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000 const uint8_t kQuicFrameTypeStreamMask_Pre40 = 0x80; const uint8_t kQuicFrameTypeStreamMask = 0xC0; const uint8_t kQuicFrameTypeAckMask_Pre40 = 0x40; const uint8_t kQuicFrameTypeAckMask = 0xA0; // Stream type format is 11FSSOOD. // Stream frame relative shifts and masks for interpreting the stream flags. // StreamID may be 1, 2, 3, or 4 bytes. const uint8_t kQuicStreamIdShift_Pre40 = 2; const uint8_t kQuicStreamIDLengthMask_Pre40 = 0x03; const uint8_t kQuicStreamIDLengthShift = 3; const uint8_t kQuicStreamIDLengthNumBits = 2; // Offset may be 0, 2, 4, or 8 bytes. const uint8_t kQuicStreamShift_Pre40 = 3; const uint8_t kQuicStreamOffsetMask_Pre40 = 0x07; const uint8_t kQuicStreamOffsetNumBits = 2; const uint8_t kQuicStreamOffsetShift = 1; // Data length may be 0 or 2 bytes. const uint8_t kQuicStreamDataLengthShift_Pre40 = 1; const uint8_t kQuicStreamDataLengthMask_Pre40 = 0x01; const uint8_t kQuicStreamDataLengthShift = 0; // Fin bit may be set or not. const uint8_t kQuicStreamFinShift_Pre40 = 1; const uint8_t kQuicStreamFinMask_Pre40 = 0x01; const uint8_t kQuicStreamFinShift = 5; // packet number size shift used in AckFrames. const uint8_t kQuicSequenceNumberLengthNumBits = 2; const uint8_t kActBlockLengthOffset = 0; const uint8_t kLargestAckedOffset = 2; // Acks may have only one ack block. const uint8_t kQuicHasMultipleAckBlocksOffset_Pre40 = 5; const uint8_t kQuicHasMultipleAckBlocksOffset = 4; // Maximum length of encoded error strings. const int kMaxErrorStringLength = 256; // Returns the absolute value of the difference between |a| and |b|. QuicPacketNumber Delta(QuicPacketNumber a, QuicPacketNumber b) { // Since these are unsigned numbers, we can't just return abs(a - b) if (a < b) { return b - a; } return a - b; } QuicPacketNumber ClosestTo(QuicPacketNumber target, QuicPacketNumber a, QuicPacketNumber b) { return (Delta(target, a) < Delta(target, b)) ? a : b; } QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) { switch (flags & PACKET_FLAGS_8BYTE_PACKET) { case PACKET_FLAGS_8BYTE_PACKET: return PACKET_6BYTE_PACKET_NUMBER; case PACKET_FLAGS_4BYTE_PACKET: return PACKET_4BYTE_PACKET_NUMBER; case PACKET_FLAGS_2BYTE_PACKET: return PACKET_2BYTE_PACKET_NUMBER; case PACKET_FLAGS_1BYTE_PACKET: return PACKET_1BYTE_PACKET_NUMBER; default: QUIC_BUG << "Unreachable case statement."; return PACKET_6BYTE_PACKET_NUMBER; } } QuicPacketNumberLength ReadAckPacketNumberLength(QuicTransportVersion version, uint8_t flags) { switch (flags & PACKET_FLAGS_8BYTE_PACKET) { case PACKET_FLAGS_8BYTE_PACKET: return version <= QUIC_VERSION_39 ? PACKET_6BYTE_PACKET_NUMBER : PACKET_8BYTE_PACKET_NUMBER; case PACKET_FLAGS_4BYTE_PACKET: return PACKET_4BYTE_PACKET_NUMBER; case PACKET_FLAGS_2BYTE_PACKET: return PACKET_2BYTE_PACKET_NUMBER; case PACKET_FLAGS_1BYTE_PACKET: return PACKET_1BYTE_PACKET_NUMBER; default: QUIC_BUG << "Unreachable case statement."; return PACKET_6BYTE_PACKET_NUMBER; } } } // namespace QuicFramer::QuicFramer(const QuicTransportVersionVector& supported_versions, QuicTime creation_time, Perspective perspective) : visitor_(nullptr), error_(QUIC_NO_ERROR), largest_packet_number_(0), last_serialized_connection_id_(0), last_version_label_(0), supported_versions_(supported_versions), decrypter_level_(ENCRYPTION_NONE), alternative_decrypter_level_(ENCRYPTION_NONE), alternative_decrypter_latch_(false), perspective_(perspective), validate_flags_(true), creation_time_(creation_time), last_timestamp_(QuicTime::Delta::Zero()), data_producer_(nullptr) { DCHECK(!supported_versions.empty()); transport_version_ = supported_versions_[0]; decrypter_ = QuicMakeUnique(perspective); encrypter_[ENCRYPTION_NONE] = QuicMakeUnique(perspective); } QuicFramer::~QuicFramer() {} // static size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version, QuicStreamId stream_id, QuicStreamOffset offset, bool last_frame_in_packet) { return kQuicFrameTypeSize + GetStreamIdSize(stream_id) + GetStreamOffsetSize(version, offset) + (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize); } // static size_t QuicFramer::GetMinAckFrameSize( QuicTransportVersion version, QuicPacketNumberLength largest_observed_length) { size_t min_size = kQuicFrameTypeSize + largest_observed_length + kQuicDeltaTimeLargestObservedSize; return min_size + kQuicNumTimestampsSize; } // static size_t QuicFramer::GetStopWaitingFrameSize( QuicTransportVersion version, QuicPacketNumberLength packet_number_length) { size_t min_size = kQuicFrameTypeSize + packet_number_length; return min_size; } // static size_t QuicFramer::GetRstStreamFrameSize() { return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize + kQuicErrorCodeSize; } // static size_t QuicFramer::GetMinConnectionCloseFrameSize() { return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize; } // static size_t QuicFramer::GetMinGoAwayFrameSize() { return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize + kQuicMaxStreamIdSize; } // static size_t QuicFramer::GetWindowUpdateFrameSize() { return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize; } // static size_t QuicFramer::GetBlockedFrameSize() { return kQuicFrameTypeSize + kQuicMaxStreamIdSize; } // static size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) { // Sizes are 1 through 4 bytes. for (int i = 1; i <= 4; ++i) { stream_id >>= 8; if (stream_id == 0) { return i; } } QUIC_BUG << "Failed to determine StreamIDSize."; return 4; } // static size_t QuicFramer::GetStreamOffsetSize(QuicTransportVersion version, QuicStreamOffset offset) { if (version < QUIC_VERSION_41) { // 0 is a special case. if (offset == 0) { return 0; } // 2 through 8 are the remaining sizes. offset >>= 8; for (int i = 2; i <= 8; ++i) { offset >>= 8; if (offset == 0) { return i; } } QUIC_BUG << "Failed to determine StreamOffsetSize."; return 8; } // try 0, 2 and 4. for (int i = 0; i <= 4; i += 2) { if ((offset >> (8 * i)) == 0) { return i; } } // 8 is the only remaining valid value and will contain any 64bit offset. return 8; } // static size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) { return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + number_versions * kQuicVersionSize; } bool QuicFramer::IsSupportedVersion(const QuicTransportVersion version) const { for (size_t i = 0; i < supported_versions_.size(); ++i) { if (version == supported_versions_[i]) { return true; } } return false; } size_t QuicFramer::GetSerializedFrameLength( const QuicFrame& frame, size_t free_bytes, bool first_frame, bool last_frame, QuicPacketNumberLength packet_number_length) { // Prevent a rare crash reported in b/19458523. if ((frame.type == STREAM_FRAME || frame.type == ACK_FRAME) && frame.stream_frame == nullptr) { QUIC_BUG << "Cannot compute the length of a null frame. " << "type:" << frame.type << "free_bytes:" << free_bytes << " first_frame:" << first_frame << " last_frame:" << last_frame << " seq num length:" << packet_number_length; set_error(QUIC_INTERNAL_ERROR); visitor_->OnError(this); return 0; } if (frame.type == PADDING_FRAME) { if (frame.padding_frame.num_padding_bytes == -1) { // Full padding to the end of the packet. return free_bytes; } else { // Lite padding. return free_bytes < static_cast(frame.padding_frame.num_padding_bytes) ? free_bytes : frame.padding_frame.num_padding_bytes; } } size_t frame_len = ComputeFrameLength(frame, last_frame, packet_number_length); if (frame_len <= free_bytes) { // Frame fits within packet. Note that acks may be truncated. return frame_len; } // Only truncate the first frame in a packet, so if subsequent ones go // over, stop including more frames. if (!first_frame) { return 0; } bool can_truncate = frame.type == ACK_FRAME && free_bytes >= GetMinAckFrameSize(transport_version_, PACKET_6BYTE_PACKET_NUMBER); if (can_truncate) { // Truncate the frame so the packet will not exceed kMaxPacketSize. // Note that we may not use every byte of the writer in this case. QUIC_DLOG(INFO) << ENDPOINT << "Truncating large frame, free bytes: " << free_bytes; return free_bytes; } return 0; } QuicFramer::AckFrameInfo::AckFrameInfo() : max_block_length(0), first_block_length(0), num_ack_blocks(0) {} QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default; QuicFramer::AckFrameInfo::~AckFrameInfo() {} size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header, const QuicFrames& frames, char* buffer, size_t packet_length) { QuicDataWriter writer(packet_length, buffer, endianness()); if (!AppendPacketHeader(header, &writer)) { QUIC_BUG << "AppendPacketHeader failed"; return 0; } size_t i = 0; for (const QuicFrame& frame : frames) { // Determine if we should write stream frame length in header. const bool no_stream_frame_length = i == frames.size() - 1; if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) { QUIC_BUG << "AppendTypeByte failed"; return 0; } switch (frame.type) { case PADDING_FRAME: if (!AppendPaddingFrame(frame.padding_frame, &writer)) { QUIC_BUG << "AppendPaddingFrame of " << frame.padding_frame.num_padding_bytes << " failed"; return 0; } break; case STREAM_FRAME: if (!AppendStreamFrame(*frame.stream_frame, no_stream_frame_length, &writer)) { QUIC_BUG << "AppendStreamFrame failed"; return 0; } break; case ACK_FRAME: if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) { QUIC_BUG << "AppendAckFrameAndTypeByte failed"; return 0; } break; case STOP_WAITING_FRAME: if (!AppendStopWaitingFrame(header, *frame.stop_waiting_frame, &writer)) { QUIC_BUG << "AppendStopWaitingFrame failed"; return 0; } break; case MTU_DISCOVERY_FRAME: // MTU discovery frames are serialized as ping frames. case PING_FRAME: // Ping has no payload. break; case RST_STREAM_FRAME: if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) { QUIC_BUG << "AppendRstStreamFrame failed"; return 0; } break; case CONNECTION_CLOSE_FRAME: if (!AppendConnectionCloseFrame(*frame.connection_close_frame, &writer)) { QUIC_BUG << "AppendConnectionCloseFrame failed"; return 0; } break; case GOAWAY_FRAME: if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) { QUIC_BUG << "AppendGoAwayFrame failed"; return 0; } break; case WINDOW_UPDATE_FRAME: if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) { QUIC_BUG << "AppendWindowUpdateFrame failed"; return 0; } break; case BLOCKED_FRAME: if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) { QUIC_BUG << "AppendBlockedFrame failed"; return 0; } break; default: RaiseError(QUIC_INVALID_FRAME_DATA); QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; return 0; } ++i; } return writer.length(); } size_t QuicFramer::BuildConnectivityProbingPacket( const QuicPacketHeader& header, char* buffer, size_t packet_length) { QuicDataWriter writer(packet_length, buffer, endianness()); if (!AppendPacketHeader(header, &writer)) { QUIC_BUG << "AppendPacketHeader failed"; return 0; } // Write a PING frame, which has no data payload. QuicPingFrame ping_frame; if (!AppendTypeByte(QuicFrame(ping_frame), false, &writer)) { QUIC_BUG << "AppendTypeByte failed for ping frame in probing packet"; return 0; } // Add padding to the rest of the packet. QuicPaddingFrame padding_frame; if (!AppendTypeByte(QuicFrame(padding_frame), true, &writer)) { QUIC_BUG << "AppendTypeByte failed for padding frame in probing packet"; return 0; } if (!AppendPaddingFrame(padding_frame, &writer)) { QUIC_BUG << "AppendPaddingFrame of " << padding_frame.num_padding_bytes << " failed"; return 0; } return writer.length(); } // static std::unique_ptr QuicFramer::BuildPublicResetPacket( const QuicPublicResetPacket& packet) { CryptoHandshakeMessage reset; reset.set_tag(kPRST); reset.SetValue(kRNON, packet.nonce_proof); if (packet.client_address.host().address_family() != IpAddressFamily::IP_UNSPEC) { // packet.client_address is non-empty. QuicSocketAddressCoder address_coder(packet.client_address); string serialized_address = address_coder.Encode(); if (serialized_address.empty()) { return nullptr; } reset.SetStringPiece(kCADR, serialized_address); } const QuicData& reset_serialized = reset.GetSerialized(Perspective::IS_SERVER); size_t len = kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length(); std::unique_ptr buffer(new char[len]); // Endianness is not a concern here, as writer is not going to write integers // or floating numbers. QuicDataWriter writer(len, buffer.get(), NETWORK_BYTE_ORDER); uint8_t flags = static_cast(PACKET_PUBLIC_FLAGS_RST | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID); // This hack makes post-v33 public reset packet look like pre-v33 packets. flags |= static_cast(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); if (!writer.WriteUInt8(flags)) { return nullptr; } if (!writer.WriteConnectionId(packet.connection_id)) { return nullptr; } if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) { return nullptr; } return QuicMakeUnique(buffer.release(), len, true); } // static std::unique_ptr QuicFramer::BuildVersionNegotiationPacket( QuicConnectionId connection_id, const QuicTransportVersionVector& versions) { DCHECK(!versions.empty()); size_t len = GetVersionNegotiationPacketSize(versions.size()); std::unique_ptr buffer(new char[len]); // Endianness is not a concern here, version negotiation packet does not have // integers or floating numbers. QuicDataWriter writer(len, buffer.get(), NETWORK_BYTE_ORDER); uint8_t flags = static_cast( PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID | // TODO(rch): Remove this QUIC_VERSION_32 is retired. PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); if (!writer.WriteUInt8(flags)) { return nullptr; } if (!writer.WriteConnectionId(connection_id)) { return nullptr; } for (QuicTransportVersion version : versions) { if (FLAGS_quic_reloadable_flag_quic_use_net_byte_order_version_label) { QUIC_FLAG_COUNT_N( quic_reloadable_flag_quic_use_net_byte_order_version_label, 3, 10); // TODO(rch): Use WriteUInt32() once QUIC_VERSION_38 and earlier // are removed. if (!writer.WriteTag(QuicEndian::HostToNet32( QuicVersionToQuicVersionLabel(version)))) { return nullptr; } } else { if (!writer.WriteTag(QuicVersionToQuicVersionLabel(version))) { return nullptr; } } } return QuicMakeUnique(buffer.release(), len, true); } bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) { QuicDataReader reader(packet.data(), packet.length(), endianness()); visitor_->OnPacket(); QuicPacketHeader header; if (!ProcessPublicHeader(&reader, &header)) { DCHECK_NE("", detailed_error_); QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: " << detailed_error_; DCHECK_NE("", detailed_error_); return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (!visitor_->OnUnauthenticatedPublicHeader(header)) { // The visitor suppresses further processing of the packet. return true; } if (perspective_ == Perspective::IS_SERVER && header.version_flag && header.version != transport_version_) { if (!visitor_->OnProtocolVersionMismatch(header.version)) { return true; } } // framer's version may change, reset reader's endianness. reader.set_endianness(endianness()); bool rv; if (perspective_ == Perspective::IS_CLIENT && header.version_flag) { rv = ProcessVersionNegotiationPacket(&reader, header); } else if (header.reset_flag) { rv = ProcessPublicResetPacket(&reader, header); } else if (packet.length() <= kMaxPacketSize) { // The optimized decryption algorithm implementations run faster when // operating on aligned memory. QUIC_CACHELINE_ALIGNED char buffer[kMaxPacketSize]; rv = ProcessDataPacket(&reader, &header, packet, buffer, kMaxPacketSize); } else { std::unique_ptr large_buffer(new char[packet.length()]); rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(), packet.length()); QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger" << "than kMaxPacketSize. packet size:" << packet.length(); } return rv; } bool QuicFramer::ProcessVersionNegotiationPacket( QuicDataReader* reader, const QuicPacketHeader& header) { DCHECK_EQ(Perspective::IS_CLIENT, perspective_); QuicVersionNegotiationPacket packet(header.connection_id); // Try reading at least once to raise error if the packet is invalid. do { QuicVersionLabel version_label; if (!reader->ReadTag(&version_label)) { set_detailed_error("Unable to read supported version in negotiation."); return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); } if (FLAGS_quic_reloadable_flag_quic_use_net_byte_order_version_label) { QUIC_FLAG_COUNT_N( quic_reloadable_flag_quic_use_net_byte_order_version_label, 4, 10); // TODO(rch): Use ReadUInt32() once QUIC_VERSION_38 and earlier // are removed. version_label = QuicEndian::NetToHost32(version_label); } packet.versions.push_back(QuicVersionLabelToQuicVersion(version_label)); } while (!reader->IsDoneReading()); visitor_->OnVersionNegotiationPacket(packet); return true; } bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader, QuicPacketHeader* header, const QuicEncryptedPacket& packet, char* decrypted_buffer, size_t buffer_length) { if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) { DCHECK_NE("", detailed_error_); QUIC_DVLOG(1) << ENDPOINT << "Unable to process packet header. Stopping parsing. Error: " << detailed_error_; return false; } size_t decrypted_length = 0; if (!DecryptPayload(encrypted_reader, *header, packet, decrypted_buffer, buffer_length, &decrypted_length)) { set_detailed_error("Unable to decrypt payload."); return RaiseError(QUIC_DECRYPTION_FAILURE); } QuicDataReader reader(decrypted_buffer, decrypted_length, endianness()); // Update the largest packet number after we have decrypted the packet // so we are confident is not attacker controlled. largest_packet_number_ = std::max(header->packet_number, largest_packet_number_); if (!visitor_->OnPacketHeader(*header)) { // The visitor suppresses further processing of the packet. return true; } if (packet.length() > kMaxPacketSize) { // If the packet has gotten this far, it should not be too large. QUIC_BUG << "Packet too large:" << packet.length(); return RaiseError(QUIC_PACKET_TOO_LARGE); } // Handle the payload. if (!ProcessFrameData(&reader, *header)) { DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. DCHECK_NE("", detailed_error_); QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " << detailed_error_; return false; } visitor_->OnPacketComplete(); return true; } bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader, const QuicPacketHeader& header) { QuicPublicResetPacket packet(header.connection_id); std::unique_ptr reset( CryptoFramer::ParseMessage(reader->ReadRemainingPayload(), perspective_)); if (!reset.get()) { set_detailed_error("Unable to read reset message."); return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); } if (reset->tag() != kPRST) { set_detailed_error("Incorrect message tag."); return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); } if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) { set_detailed_error("Unable to read nonce proof."); return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); } // TODO(satyamshekhar): validate nonce to protect against DoS. QuicStringPiece address; if (reset->GetStringPiece(kCADR, &address)) { QuicSocketAddressCoder address_coder; if (address_coder.Decode(address.data(), address.length())) { packet.client_address = QuicSocketAddress(address_coder.ip(), address_coder.port()); } } visitor_->OnPublicResetPacket(packet); return true; } bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header, QuicDataWriter* writer) { QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header; uint8_t public_flags = 0; if (header.reset_flag) { public_flags |= PACKET_PUBLIC_FLAGS_RST; } if (header.version_flag) { public_flags |= PACKET_PUBLIC_FLAGS_VERSION; } public_flags |= GetPacketNumberFlags(header.packet_number_length) << kPublicHeaderSequenceNumberShift; if (header.nonce != nullptr) { DCHECK_EQ(Perspective::IS_SERVER, perspective_); public_flags |= PACKET_PUBLIC_FLAGS_NONCE; } switch (header.connection_id_length) { case PACKET_0BYTE_CONNECTION_ID: if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) { return false; } break; case PACKET_8BYTE_CONNECTION_ID: public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; if (perspective_ == Perspective::IS_CLIENT) { public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD; } if (!writer->WriteUInt8(public_flags) || !writer->WriteConnectionId(header.connection_id)) { return false; } break; } last_serialized_connection_id_ = header.connection_id; if (header.version_flag) { DCHECK_EQ(Perspective::IS_CLIENT, perspective_); QuicVersionLabel version_label = QuicVersionToQuicVersionLabel(transport_version_); if (FLAGS_quic_reloadable_flag_quic_use_net_byte_order_version_label) { QUIC_FLAG_COUNT_N( quic_reloadable_flag_quic_use_net_byte_order_version_label, 5, 10); // TODO(rch): Use WriteUInt32() once QUIC_VERSION_38 and earlier // are removed. if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) { return false; } } else { if (!writer->WriteTag(version_label)) { return false; } } QUIC_DVLOG(1) << ENDPOINT << "version = " << transport_version_ << ", label = '" << QuicVersionLabelToString(version_label) << "'"; } if (header.nonce != nullptr && !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { return false; } if (!AppendPacketNumber(header.packet_number_length, header.packet_number, writer)) { return false; } return true; } const QuicTime::Delta QuicFramer::CalculateTimestampFromWire( uint32_t time_delta_us) { // The new time_delta might have wrapped to the next epoch, or it // might have reverse wrapped to the previous epoch, or it might // remain in the same epoch. Select the time closest to the previous // time. // // epoch_delta is the delta between epochs. A delta is 4 bytes of // microseconds. const uint64_t epoch_delta = UINT64_C(1) << 32; uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1); // Wrapping is safe here because a wrapped value will not be ClosestTo below. uint64_t prev_epoch = epoch - epoch_delta; uint64_t next_epoch = epoch + epoch_delta; uint64_t time = ClosestTo( last_timestamp_.ToMicroseconds(), epoch + time_delta_us, ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us, next_epoch + time_delta_us)); return QuicTime::Delta::FromMicroseconds(time); } QuicPacketNumber QuicFramer::CalculatePacketNumberFromWire( QuicPacketNumberLength packet_number_length, QuicPacketNumber base_packet_number, QuicPacketNumber packet_number) const { // The new packet number might have wrapped to the next epoch, or // it might have reverse wrapped to the previous epoch, or it might // remain in the same epoch. Select the packet number closest to the // next expected packet number, the previous packet number plus 1. // epoch_delta is the delta between epochs the packet number was serialized // with, so the correct value is likely the same epoch as the last sequence // number or an adjacent epoch. const QuicPacketNumber epoch_delta = UINT64_C(1) << (8 * packet_number_length); QuicPacketNumber next_packet_number = base_packet_number + 1; QuicPacketNumber epoch = base_packet_number & ~(epoch_delta - 1); QuicPacketNumber prev_epoch = epoch - epoch_delta; QuicPacketNumber next_epoch = epoch + epoch_delta; return ClosestTo(next_packet_number, epoch + packet_number, ClosestTo(next_packet_number, prev_epoch + packet_number, next_epoch + packet_number)); } bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader, QuicPacketHeader* header) { uint8_t public_flags; if (!reader->ReadBytes(&public_flags, 1)) { set_detailed_error("Unable to read public flags."); return false; } header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0; header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0; if (validate_flags_ && !header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) { set_detailed_error("Illegal public flags value."); return false; } if (header->reset_flag && header->version_flag) { set_detailed_error("Got version flag in reset packet"); return false; } switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) { case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID: if (!reader->ReadConnectionId(&header->connection_id)) { set_detailed_error("Unable to read ConnectionId."); return false; } header->connection_id_length = PACKET_8BYTE_CONNECTION_ID; break; case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID: header->connection_id_length = PACKET_0BYTE_CONNECTION_ID; header->connection_id = last_serialized_connection_id_; break; } header->packet_number_length = ReadSequenceNumberLength( public_flags >> kPublicHeaderSequenceNumberShift); // Read the version only if the packet is from the client. // version flag from the server means version negotiation packet. if (header->version_flag && perspective_ == Perspective::IS_SERVER) { QuicVersionLabel version_label; if (!reader->ReadTag(&version_label)) { set_detailed_error("Unable to read protocol version."); return false; } if (FLAGS_quic_reloadable_flag_quic_use_net_byte_order_version_label) { QUIC_FLAG_COUNT_N( quic_reloadable_flag_quic_use_net_byte_order_version_label, 6, 10); // TODO(rch): Use ReadUInt32() once QUIC_VERSION_38 and earlier // are removed. version_label = QuicEndian::NetToHost32(version_label); } // If the version from the new packet is the same as the version of this // framer, then the public flags should be set to something we understand. // If not, this raises an error. last_version_label_ = version_label; QuicTransportVersion version = QuicVersionLabelToQuicVersion(version_label); if (version == transport_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) { set_detailed_error("Illegal public flags value."); return false; } header->version = version; } // A nonce should only be present in packets from the server to the client, // which are neither version negotiation nor public reset packets. if (public_flags & PACKET_PUBLIC_FLAGS_NONCE && !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) && !(public_flags & PACKET_PUBLIC_FLAGS_RST) && // The nonce flag from a client is ignored and is assumed to be an older // client indicating an eight-byte connection ID. perspective_ == Perspective::IS_CLIENT) { if (!reader->ReadBytes(reinterpret_cast(last_nonce_.data()), last_nonce_.size())) { set_detailed_error("Unable to read nonce."); return false; } header->nonce = &last_nonce_; } else { header->nonce = nullptr; } return true; } // static QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength( QuicTransportVersion version, QuicPacketNumber packet_number) { if (packet_number < 1 << (PACKET_1BYTE_PACKET_NUMBER * 8)) { return PACKET_1BYTE_PACKET_NUMBER; } else if (packet_number < 1 << (PACKET_2BYTE_PACKET_NUMBER * 8)) { return PACKET_2BYTE_PACKET_NUMBER; } else if (packet_number < UINT64_C(1) << (PACKET_4BYTE_PACKET_NUMBER * 8)) { return PACKET_4BYTE_PACKET_NUMBER; } else { return version <= QUIC_VERSION_39 ? PACKET_6BYTE_PACKET_NUMBER : PACKET_8BYTE_PACKET_NUMBER; } } // static uint8_t QuicFramer::GetPacketNumberFlags( QuicPacketNumberLength packet_number_length) { switch (packet_number_length) { case PACKET_1BYTE_PACKET_NUMBER: return PACKET_FLAGS_1BYTE_PACKET; case PACKET_2BYTE_PACKET_NUMBER: return PACKET_FLAGS_2BYTE_PACKET; case PACKET_4BYTE_PACKET_NUMBER: return PACKET_FLAGS_4BYTE_PACKET; case PACKET_6BYTE_PACKET_NUMBER: case PACKET_8BYTE_PACKET_NUMBER: return PACKET_FLAGS_8BYTE_PACKET; default: QUIC_BUG << "Unreachable case statement."; return PACKET_FLAGS_8BYTE_PACKET; } } // static QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo( const QuicAckFrame& frame) { AckFrameInfo new_ack_info; if (frame.packets.Empty()) { return new_ack_info; } // The first block is the last interval. It isn't encoded with the gap-length // encoding, so skip it. new_ack_info.first_block_length = frame.packets.LastIntervalLength(); auto itr = frame.packets.rbegin(); QuicPacketNumber previous_start = itr->min(); new_ack_info.max_block_length = itr->Length(); ++itr; // Don't do any more work after getting information for 256 ACK blocks; any // more can't be encoded anyway. for (; itr != frame.packets.rend() && new_ack_info.num_ack_blocks < std::numeric_limits::max(); previous_start = itr->min(), ++itr) { const auto& interval = *itr; const QuicPacketNumber total_gap = previous_start - interval.max(); new_ack_info.num_ack_blocks += (total_gap + std::numeric_limits::max() - 1) / std::numeric_limits::max(); new_ack_info.max_block_length = std::max(new_ack_info.max_block_length, interval.Length()); } return new_ack_info; } bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader, QuicPacketHeader* header) { QuicPacketNumber base_packet_number = largest_packet_number_; if (!ProcessAndCalculatePacketNumber( encrypted_reader, header->packet_number_length, base_packet_number, &header->packet_number)) { set_detailed_error("Unable to read packet number."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (header->packet_number == 0u) { set_detailed_error("packet numbers cannot be 0."); return RaiseError(QUIC_INVALID_PACKET_HEADER); } if (!visitor_->OnUnauthenticatedHeader(*header)) { set_detailed_error( "Visitor asked to stop processing of unauthenticated header."); return false; } return true; } bool QuicFramer::ProcessAndCalculatePacketNumber( QuicDataReader* reader, QuicPacketNumberLength packet_number_length, QuicPacketNumber base_packet_number, QuicPacketNumber* packet_number) { QuicPacketNumber wire_packet_number; if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) { return false; } // TODO(ianswett): Explore the usefulness of trying multiple packet numbers // in case the first guess is incorrect. *packet_number = CalculatePacketNumberFromWire( packet_number_length, base_packet_number, wire_packet_number); return true; } bool QuicFramer::ProcessFrameData(QuicDataReader* reader, const QuicPacketHeader& header) { if (reader->IsDoneReading()) { set_detailed_error("Packet has no frames."); return RaiseError(QUIC_MISSING_PAYLOAD); } while (!reader->IsDoneReading()) { uint8_t frame_type; if (!reader->ReadBytes(&frame_type, 1)) { set_detailed_error("Unable to read frame type."); return RaiseError(QUIC_INVALID_FRAME_DATA); } if (frame_type & kQuicFrameTypeSpecialMask) { // Stream Frame if ((transport_version_ < QUIC_VERSION_41 && (frame_type & kQuicFrameTypeStreamMask_Pre40)) || (transport_version_ >= QUIC_VERSION_41 && ((frame_type & kQuicFrameTypeStreamMask) == kQuicFrameTypeStreamMask))) { QuicStreamFrame frame; if (!ProcessStreamFrame(reader, frame_type, &frame)) { return RaiseError(QUIC_INVALID_STREAM_DATA); } if (!visitor_->OnStreamFrame(frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } // Ack Frame if ((transport_version_ < QUIC_VERSION_41 && (frame_type & kQuicFrameTypeAckMask_Pre40)) || (transport_version_ >= QUIC_VERSION_41 && ((frame_type & kQuicFrameTypeSpecialMask) == kQuicFrameTypeAckMask))) { QuicAckFrame frame; if (!ProcessAckFrame(reader, frame_type, &frame)) { return RaiseError(QUIC_INVALID_ACK_DATA); } if (!visitor_->OnAckFrame(frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } // This was a special frame type that did not match any // of the known ones. Error. set_detailed_error("Illegal frame type."); QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " << static_cast(frame_type); return RaiseError(QUIC_INVALID_FRAME_DATA); } switch (frame_type) { case PADDING_FRAME: { QuicPaddingFrame frame; ProcessPaddingFrame(reader, &frame); if (!visitor_->OnPaddingFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case RST_STREAM_FRAME: { QuicRstStreamFrame frame; if (!ProcessRstStreamFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_RST_STREAM_DATA); } if (!visitor_->OnRstStreamFrame(frame)) { QUIC_DVLOG(1) << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case CONNECTION_CLOSE_FRAME: { QuicConnectionCloseFrame frame; if (!ProcessConnectionCloseFrame(reader, &frame)) { return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); } if (!visitor_->OnConnectionCloseFrame(frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case GOAWAY_FRAME: { QuicGoAwayFrame goaway_frame; if (!ProcessGoAwayFrame(reader, &goaway_frame)) { return RaiseError(QUIC_INVALID_GOAWAY_DATA); } if (!visitor_->OnGoAwayFrame(goaway_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case WINDOW_UPDATE_FRAME: { QuicWindowUpdateFrame window_update_frame; if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) { return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA); } if (!visitor_->OnWindowUpdateFrame(window_update_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case BLOCKED_FRAME: { QuicBlockedFrame blocked_frame; if (!ProcessBlockedFrame(reader, &blocked_frame)) { return RaiseError(QUIC_INVALID_BLOCKED_DATA); } if (!visitor_->OnBlockedFrame(blocked_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case STOP_WAITING_FRAME: { QuicStopWaitingFrame stop_waiting_frame; if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) { return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); } if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } case PING_FRAME: { // Ping has no payload. QuicPingFrame ping_frame; if (!visitor_->OnPingFrame(ping_frame)) { QUIC_DVLOG(1) << ENDPOINT << "Visitor asked to stop further processing."; // Returning true since there was no parsing error. return true; } continue; } default: set_detailed_error("Illegal frame type."); QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " << static_cast(frame_type); return RaiseError(QUIC_INVALID_FRAME_DATA); } } return true; } namespace { // Create a mask that sets the last |num_bits| to 1 and the rest to 0. inline uint8_t GetMaskFromNumBits(uint8_t num_bits) { return (1u << num_bits) - 1; } // Extract |num_bits| from |flags| offset by |offset|. uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) { return (flags >> offset) & GetMaskFromNumBits(num_bits); } // Extract the bit at position |offset| from |flags| as a bool. bool ExtractBit(uint8_t flags, uint8_t offset) { return ((flags >> offset) & GetMaskFromNumBits(1)) != 0; } // Set |num_bits|, offset by |offset| to |val| in |flags|. void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) { DCHECK_LE(val, GetMaskFromNumBits(num_bits)); *flags |= val << offset; } // Set the bit at position |offset| to |val| in |flags|. void SetBit(uint8_t* flags, bool val, uint8_t offset) { SetBits(flags, val ? 1 : 0, 1, offset); } } // namespace bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader, uint8_t frame_type, QuicStreamFrame* frame) { uint8_t stream_flags = frame_type; uint8_t stream_id_length = 0; uint8_t offset_length = 4; bool has_data_length = true; if (transport_version_ < QUIC_VERSION_41) { stream_flags &= ~kQuicFrameTypeStreamMask_Pre40; // Read from right to left: StreamID, Offset, Data Length, Fin. stream_id_length = (stream_flags & kQuicStreamIDLengthMask_Pre40) + 1; stream_flags >>= kQuicStreamIdShift_Pre40; offset_length = (stream_flags & kQuicStreamOffsetMask_Pre40); // There is no encoding for 1 byte, only 0 and 2 through 8. if (offset_length > 0) { offset_length += 1; } stream_flags >>= kQuicStreamShift_Pre40; has_data_length = (stream_flags & kQuicStreamDataLengthMask_Pre40) == kQuicStreamDataLengthMask_Pre40; stream_flags >>= kQuicStreamDataLengthShift_Pre40; frame->fin = (stream_flags & kQuicStreamFinMask_Pre40) == kQuicStreamFinShift_Pre40; } else { stream_flags &= ~kQuicFrameTypeStreamMask; stream_id_length = 1 + ExtractBits(stream_flags, kQuicStreamIDLengthNumBits, kQuicStreamIDLengthShift); offset_length = 1 << ExtractBits(stream_flags, kQuicStreamOffsetNumBits, kQuicStreamOffsetShift); if (offset_length == 1) { offset_length = 0; } has_data_length = ExtractBit(stream_flags, kQuicStreamDataLengthShift); frame->fin = ExtractBit(stream_flags, kQuicStreamFinShift); } uint64_t stream_id; if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } frame->stream_id = static_cast(stream_id); if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) { set_detailed_error("Unable to read offset."); return false; } // TODO(ianswett): Don't use QuicStringPiece as an intermediary. QuicStringPiece data; if (has_data_length) { if (!reader->ReadStringPiece16(&data)) { set_detailed_error("Unable to read frame data."); return false; } } else { if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) { set_detailed_error("Unable to read frame data."); return false; } } frame->data_buffer = data.data(); frame->data_length = static_cast(data.length()); return true; } bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, uint8_t frame_type, QuicAckFrame* ack_frame) { bool has_ack_blocks = ExtractBit(frame_type, transport_version_ < QUIC_VERSION_41 ? kQuicHasMultipleAckBlocksOffset_Pre40 : kQuicHasMultipleAckBlocksOffset); uint8_t num_ack_blocks = 0; uint8_t num_received_packets = 0; if (transport_version_ > QUIC_VERSION_39) { if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) { set_detailed_error("Unable to read num of ack blocks."); return false; } if (!reader->ReadUInt8(&num_received_packets)) { set_detailed_error("Unable to read num received packets."); return false; } } // Determine the two lengths from the frame type: largest acked length, // ack block length. const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength( transport_version_, ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset)); const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength( transport_version_, ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, kLargestAckedOffset)); QuicPacketNumber largest_acked; if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) { set_detailed_error("Unable to read largest acked."); return false; } uint64_t ack_delay_time_us; if (!reader->ReadUFloat16(&ack_delay_time_us)) { set_detailed_error("Unable to read ack delay time."); return false; } if (ack_delay_time_us == kUFloat16MaxValue) { ack_frame->ack_delay_time = QuicTime::Delta::Infinite(); } else { ack_frame->ack_delay_time = QuicTime::Delta::FromMicroseconds(ack_delay_time_us); } if (has_ack_blocks) { if (transport_version_ <= QUIC_VERSION_39 && !reader->ReadUInt8(&num_ack_blocks)) { set_detailed_error("Unable to read num of ack blocks."); return false; } } uint64_t first_block_length; if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) { set_detailed_error("Unable to read first ack block length."); return false; } if (first_block_length > largest_acked + 1) { set_detailed_error(QuicStrCat("Underflow with first ack block length ", first_block_length, " largest acked is ", largest_acked + 1, ".") .c_str()); return false; } QuicPacketNumber first_received = largest_acked + 1 - first_block_length; ack_frame->deprecated_largest_observed = largest_acked; ack_frame->packets.AddRange(first_received, largest_acked + 1); if (num_ack_blocks > 0) { for (size_t i = 0; i < num_ack_blocks; ++i) { uint8_t gap = 0; if (!reader->ReadUInt8(&gap)) { set_detailed_error("Unable to read gap to next ack block."); return false; } uint64_t current_block_length; if (!reader->ReadBytesToUInt64(ack_block_length, ¤t_block_length)) { set_detailed_error("Unable to ack block length."); return false; } if (first_received < gap + current_block_length) { set_detailed_error( QuicStrCat("Underflow with ack block length ", current_block_length, ", end of block is ", first_received - gap, ".") .c_str()); return false; } first_received -= (gap + current_block_length); if (current_block_length > 0) { ack_frame->packets.AddRange(first_received, first_received + current_block_length); } } } if (transport_version_ <= QUIC_VERSION_39 && !reader->ReadUInt8(&num_received_packets)) { set_detailed_error("Unable to read num received packets."); return false; } if (!ProcessTimestampsInAckFrame(num_received_packets, reader, ack_frame)) { return false; } return true; } bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets, QuicDataReader* reader, QuicAckFrame* ack_frame) { if (num_received_packets > 0) { uint8_t delta_from_largest_observed; if (!reader->ReadUInt8(&delta_from_largest_observed)) { set_detailed_error("Unable to read sequence delta in received packets."); return false; } QuicPacketNumber seq_num = LargestAcked(*ack_frame) - delta_from_largest_observed; // Time delta from the framer creation. uint32_t time_delta_us; if (!reader->ReadUInt32(&time_delta_us)) { set_detailed_error("Unable to read time delta in received packets."); return false; } last_timestamp_ = CalculateTimestampFromWire(time_delta_us); ack_frame->received_packet_times.reserve(num_received_packets); ack_frame->received_packet_times.push_back( std::make_pair(seq_num, creation_time_ + last_timestamp_)); for (uint8_t i = 1; i < num_received_packets; ++i) { if (!reader->ReadUInt8(&delta_from_largest_observed)) { set_detailed_error( "Unable to read sequence delta in received packets."); return false; } seq_num = LargestAcked(*ack_frame) - delta_from_largest_observed; // Time delta from the previous timestamp. uint64_t incremental_time_delta_us; if (!reader->ReadUFloat16(&incremental_time_delta_us)) { set_detailed_error( "Unable to read incremental time delta in received packets."); return false; } last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds( incremental_time_delta_us); ack_frame->received_packet_times.push_back( std::make_pair(seq_num, creation_time_ + last_timestamp_)); } } return true; } bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader, const QuicPacketHeader& header, QuicStopWaitingFrame* stop_waiting) { QuicPacketNumber least_unacked_delta; if (!reader->ReadBytesToUInt64(header.packet_number_length, &least_unacked_delta)) { set_detailed_error("Unable to read least unacked delta."); return false; } if (header.packet_number < least_unacked_delta) { set_detailed_error("Invalid unacked delta."); return false; } stop_waiting->least_unacked = header.packet_number - least_unacked_delta; return true; } bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader, QuicRstStreamFrame* frame) { if (!reader->ReadUInt32(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } if (transport_version_ <= QUIC_VERSION_39) { if (!reader->ReadUInt64(&frame->byte_offset)) { set_detailed_error("Unable to read rst stream sent byte offset."); return false; } } uint32_t error_code; if (!reader->ReadUInt32(&error_code)) { set_detailed_error("Unable to read rst stream error code."); return false; } if (error_code >= QUIC_STREAM_LAST_ERROR) { // Ignore invalid stream error code if any. error_code = QUIC_STREAM_LAST_ERROR; } frame->error_code = static_cast(error_code); if (transport_version_ > QUIC_VERSION_39) { if (!reader->ReadUInt64(&frame->byte_offset)) { set_detailed_error("Unable to read rst stream sent byte offset."); return false; } } return true; } bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader, QuicConnectionCloseFrame* frame) { uint32_t error_code; if (!reader->ReadUInt32(&error_code)) { set_detailed_error("Unable to read connection close error code."); return false; } if (error_code >= QUIC_LAST_ERROR) { // Ignore invalid QUIC error code if any. error_code = QUIC_LAST_ERROR; } frame->error_code = static_cast(error_code); QuicStringPiece error_details; if (!reader->ReadStringPiece16(&error_details)) { set_detailed_error("Unable to read connection close error details."); return false; } frame->error_details = error_details.as_string(); return true; } bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader, QuicGoAwayFrame* frame) { uint32_t error_code; if (!reader->ReadUInt32(&error_code)) { set_detailed_error("Unable to read go away error code."); return false; } if (error_code >= QUIC_LAST_ERROR) { // Ignore invalid QUIC error code if any. error_code = QUIC_LAST_ERROR; } frame->error_code = static_cast(error_code); uint32_t stream_id; if (!reader->ReadUInt32(&stream_id)) { set_detailed_error("Unable to read last good stream id."); return false; } frame->last_good_stream_id = static_cast(stream_id); QuicStringPiece reason_phrase; if (!reader->ReadStringPiece16(&reason_phrase)) { set_detailed_error("Unable to read goaway reason."); return false; } frame->reason_phrase = reason_phrase.as_string(); return true; } bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader, QuicWindowUpdateFrame* frame) { if (!reader->ReadUInt32(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } if (!reader->ReadUInt64(&frame->byte_offset)) { set_detailed_error("Unable to read window byte_offset."); return false; } return true; } bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader, QuicBlockedFrame* frame) { if (!reader->ReadUInt32(&frame->stream_id)) { set_detailed_error("Unable to read stream_id."); return false; } return true; } void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader, QuicPaddingFrame* frame) { if (transport_version_ <= QUIC_VERSION_37) { frame->num_padding_bytes = reader->BytesRemaining() + 1; reader->ReadRemainingPayload(); return; } // Type byte has been read. frame->num_padding_bytes = 1; uint8_t next_byte; while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) { reader->ReadBytes(&next_byte, 1); DCHECK_EQ(0x00, next_byte); ++frame->num_padding_bytes; } } // static QuicStringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket( QuicTransportVersion version, const QuicEncryptedPacket& encrypted, QuicConnectionIdLength connection_id_length, bool includes_version, bool includes_diversification_nonce, QuicPacketNumberLength packet_number_length) { // TODO(ianswett): This is identical to QuicData::AssociatedData. return QuicStringPiece( encrypted.data(), GetStartOfEncryptedData(version, connection_id_length, includes_version, includes_diversification_nonce, packet_number_length)); } void QuicFramer::SetDecrypter(EncryptionLevel level, QuicDecrypter* decrypter) { DCHECK(alternative_decrypter_ == nullptr); DCHECK_GE(level, decrypter_level_); decrypter_.reset(decrypter); decrypter_level_ = level; } void QuicFramer::SetAlternativeDecrypter(EncryptionLevel level, QuicDecrypter* decrypter, bool latch_once_used) { alternative_decrypter_.reset(decrypter); alternative_decrypter_level_ = level; alternative_decrypter_latch_ = latch_once_used; } const QuicDecrypter* QuicFramer::decrypter() const { return decrypter_.get(); } const QuicDecrypter* QuicFramer::alternative_decrypter() const { return alternative_decrypter_.get(); } void QuicFramer::SetEncrypter(EncryptionLevel level, QuicEncrypter* encrypter) { DCHECK_GE(level, 0); DCHECK_LT(level, NUM_ENCRYPTION_LEVELS); encrypter_[level].reset(encrypter); } size_t QuicFramer::EncryptInPlace(EncryptionLevel level, QuicPacketNumber packet_number, size_t ad_len, size_t total_len, size_t buffer_len, char* buffer) { size_t output_length = 0; if (!encrypter_[level]->EncryptPacket( transport_version_, packet_number, QuicStringPiece(buffer, ad_len), // Associated data QuicStringPiece(buffer + ad_len, total_len - ad_len), // Plaintext buffer + ad_len, // Destination buffer &output_length, buffer_len - ad_len)) { RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } return ad_len + output_length; } size_t QuicFramer::EncryptPayload(EncryptionLevel level, QuicPacketNumber packet_number, const QuicPacket& packet, char* buffer, size_t buffer_len) { DCHECK(encrypter_[level] != nullptr); QuicStringPiece associated_data = packet.AssociatedData(transport_version_); // Copy in the header, because the encrypter only populates the encrypted // plaintext content. const size_t ad_len = associated_data.length(); memmove(buffer, associated_data.data(), ad_len); // Encrypt the plaintext into the buffer. size_t output_length = 0; if (!encrypter_[level]->EncryptPacket( transport_version_, packet_number, associated_data, packet.Plaintext(transport_version_), buffer + ad_len, &output_length, buffer_len - ad_len)) { RaiseError(QUIC_ENCRYPTION_FAILURE); return 0; } return ad_len + output_length; } size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { // In order to keep the code simple, we don't have the current encryption // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12. size_t min_plaintext_size = ciphertext_size; for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) { if (encrypter_[i] != nullptr) { size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size); if (size < min_plaintext_size) { min_plaintext_size = size; } } } return min_plaintext_size; } bool QuicFramer::DecryptPayload(QuicDataReader* encrypted_reader, const QuicPacketHeader& header, const QuicEncryptedPacket& packet, char* decrypted_buffer, size_t buffer_length, size_t* decrypted_length) { QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload(); DCHECK(decrypter_ != nullptr); QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket( transport_version_, packet, header.connection_id_length, header.version_flag, header.nonce != nullptr, header.packet_number_length); bool success = decrypter_->DecryptPacket( transport_version_, header.packet_number, associated_data, encrypted, decrypted_buffer, decrypted_length, buffer_length); if (success) { visitor_->OnDecryptedPacket(decrypter_level_); } else if (alternative_decrypter_ != nullptr) { if (header.nonce != nullptr) { DCHECK_EQ(perspective_, Perspective::IS_CLIENT); alternative_decrypter_->SetDiversificationNonce(*header.nonce); } bool try_alternative_decryption = true; if (alternative_decrypter_level_ == ENCRYPTION_INITIAL) { if (perspective_ == Perspective::IS_CLIENT) { if (header.nonce == nullptr) { // Can not use INITIAL decryption without a diversification nonce. try_alternative_decryption = false; } } else { DCHECK(header.nonce == nullptr); } } if (try_alternative_decryption) { success = alternative_decrypter_->DecryptPacket( transport_version_, header.packet_number, associated_data, encrypted, decrypted_buffer, decrypted_length, buffer_length); } if (success) { visitor_->OnDecryptedPacket(alternative_decrypter_level_); if (alternative_decrypter_latch_) { // Switch to the alternative decrypter and latch so that we cannot // switch back. decrypter_ = std::move(alternative_decrypter_); decrypter_level_ = alternative_decrypter_level_; alternative_decrypter_level_ = ENCRYPTION_NONE; } else { // Switch the alternative decrypter so that we use it first next time. decrypter_.swap(alternative_decrypter_); EncryptionLevel level = alternative_decrypter_level_; alternative_decrypter_level_ = decrypter_level_; decrypter_level_ = level; } } } if (!success) { QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for packet_number:" << header.packet_number; return false; } return true; } size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) { if (ack.received_packet_times.empty()) { return 0; } return 5 + 3 * (ack.received_packet_times.size() - 1); } size_t QuicFramer::GetAckFrameSize( const QuicAckFrame& ack, QuicPacketNumberLength packet_number_length) { size_t ack_size = 0; AckFrameInfo ack_info = GetAckFrameInfo(ack); QuicPacketNumberLength largest_acked_length = GetMinPacketNumberLength(transport_version_, LargestAcked(ack)); QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength(transport_version_, ack_info.max_block_length); ack_size = GetMinAckFrameSize(transport_version_, largest_acked_length); // First ack block length. ack_size += ack_block_length; if (ack_info.num_ack_blocks != 0) { ack_size += kNumberOfAckBlocksSize; ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) * (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); } // Include timestamps. ack_size += GetAckFrameTimeStampSize(ack); return ack_size; } size_t QuicFramer::ComputeFrameLength( const QuicFrame& frame, bool last_frame_in_packet, QuicPacketNumberLength packet_number_length) { switch (frame.type) { case STREAM_FRAME: return GetMinStreamFrameSize( transport_version_, frame.stream_frame->stream_id, frame.stream_frame->offset, last_frame_in_packet) + frame.stream_frame->data_length; case ACK_FRAME: { return GetAckFrameSize(*frame.ack_frame, packet_number_length); } case STOP_WAITING_FRAME: return GetStopWaitingFrameSize(transport_version_, packet_number_length); case MTU_DISCOVERY_FRAME: // MTU discovery frames are serialized as ping frames. case PING_FRAME: // Ping has no payload. return kQuicFrameTypeSize; case RST_STREAM_FRAME: return GetRstStreamFrameSize(); case CONNECTION_CLOSE_FRAME: return GetMinConnectionCloseFrameSize() + TruncateErrorString(frame.connection_close_frame->error_details) .size(); case GOAWAY_FRAME: return GetMinGoAwayFrameSize() + TruncateErrorString(frame.goaway_frame->reason_phrase).size(); case WINDOW_UPDATE_FRAME: return GetWindowUpdateFrameSize(); case BLOCKED_FRAME: return GetBlockedFrameSize(); case PADDING_FRAME: DCHECK(false); return 0; case NUM_FRAME_TYPES: DCHECK(false); return 0; } // Not reachable, but some Chrome compilers can't figure that out. *sigh* DCHECK(false); return 0; } bool QuicFramer::AppendTypeByte(const QuicFrame& frame, bool no_stream_frame_length, QuicDataWriter* writer) { uint8_t type_byte = 0; switch (frame.type) { case STREAM_FRAME: { if (frame.stream_frame == nullptr) { QUIC_BUG << "Failed to append STREAM frame with no stream_frame."; } if (transport_version_ < QUIC_VERSION_41) { // Fin bit. type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask_Pre40 : 0; // Data Length bit. type_byte <<= kQuicStreamDataLengthShift_Pre40; type_byte |= no_stream_frame_length ? 0 : kQuicStreamDataLengthMask_Pre40; // Offset 3 bits. type_byte <<= kQuicStreamShift_Pre40; const size_t offset_len = GetStreamOffsetSize(transport_version_, frame.stream_frame->offset); if (offset_len > 0) { type_byte |= offset_len - 1; } // stream id 2 bits. type_byte <<= kQuicStreamIdShift_Pre40; type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1; type_byte |= kQuicFrameTypeStreamMask_Pre40; // Set Stream Frame Type to 1. } else { // Fin bit. SetBit(&type_byte, frame.stream_frame->fin, kQuicStreamFinShift); // Data Length bit. SetBit(&type_byte, !no_stream_frame_length, kQuicStreamDataLengthShift); // Offset 2 bits. uint8_t offset_len_encode = 3; switch (GetStreamOffsetSize(transport_version_, frame.stream_frame->offset)) { case 0: offset_len_encode = 0; break; case 2: offset_len_encode = 1; break; case 4: offset_len_encode = 2; break; case 8: offset_len_encode = 3; break; default: QUIC_BUG << "Invalid offset_length."; } SetBits(&type_byte, offset_len_encode, kQuicStreamOffsetNumBits, kQuicStreamOffsetShift); // stream id 2 bits. SetBits(&type_byte, GetStreamIdSize(frame.stream_frame->stream_id) - 1, kQuicStreamIDLengthNumBits, kQuicStreamIDLengthShift); type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1. } break; } case ACK_FRAME: return true; case MTU_DISCOVERY_FRAME: type_byte = static_cast(PING_FRAME); break; default: type_byte = static_cast(frame.type); break; } return writer->WriteUInt8(type_byte); } // static bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length, QuicPacketNumber packet_number, QuicDataWriter* writer) { size_t length = packet_number_length; if (length != 1 && length != 2 && length != 4 && length != 6 && length != 8) { QUIC_BUG << "Invalid packet_number_length: " << length; return false; } return writer->WriteBytesToUInt64(packet_number_length, packet_number); } // static bool QuicFramer::AppendStreamId(size_t stream_id_length, QuicStreamId stream_id, QuicDataWriter* writer) { if (stream_id_length == 0 || stream_id_length > 4) { QUIC_BUG << "Invalid stream_id_length: " << stream_id_length; return false; } return writer->WriteBytesToUInt64(stream_id_length, stream_id); } // static bool QuicFramer::AppendStreamOffset(size_t offset_length, QuicStreamOffset offset, QuicDataWriter* writer) { if (offset_length == 1 || offset_length > 8) { QUIC_BUG << "Invalid stream_offset_length: " << offset_length; return false; } return writer->WriteBytesToUInt64(offset_length, offset); } // static bool QuicFramer::AppendAckBlock(uint8_t gap, QuicPacketNumberLength length_length, QuicPacketNumber length, QuicDataWriter* writer) { return writer->WriteUInt8(gap) && AppendPacketNumber(length_length, length, writer); } bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame, bool no_stream_frame_length, QuicDataWriter* writer) { if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id, writer)) { QUIC_BUG << "Writing stream id size failed."; return false; } if (!AppendStreamOffset(GetStreamOffsetSize(transport_version_, frame.offset), frame.offset, writer)) { QUIC_BUG << "Writing offset size failed."; return false; } if (!no_stream_frame_length) { if ((frame.data_length > std::numeric_limits::max()) || !writer->WriteUInt16(static_cast(frame.data_length))) { QUIC_BUG << "Writing stream frame length failed"; return false; } } if (data_producer_ != nullptr) { DCHECK_EQ(nullptr, frame.data_buffer); if (frame.data_length == 0) { return true; } if (!data_producer_->WriteStreamData(frame.stream_id, frame.offset, frame.data_length, writer)) { QUIC_BUG << "Writing frame data failed."; return false; } return true; } if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { QUIC_BUG << "Writing frame data failed."; return false; } return true; } void QuicFramer::set_version(const QuicTransportVersion version) { DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version); transport_version_ = version; } bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame, QuicDataWriter* writer) { const AckFrameInfo new_ack_info = GetAckFrameInfo(frame); QuicPacketNumber largest_acked = LargestAcked(frame); QuicPacketNumberLength largest_acked_length = GetMinPacketNumberLength(transport_version_, largest_acked); QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength( transport_version_, new_ack_info.max_block_length); // Calculate available bytes for timestamps and ack blocks. int32_t available_timestamp_and_ack_block_bytes = writer->capacity() - writer->length() - ack_block_length - GetMinAckFrameSize(transport_version_, largest_acked_length) - (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0); DCHECK_LE(0, available_timestamp_and_ack_block_bytes); // Write out the type byte by setting the low order bits and doing shifts // to make room for the next bit flags to be set. // Whether there are multiple ack blocks. uint8_t type_byte = 0; SetBit(&type_byte, new_ack_info.num_ack_blocks != 0, transport_version_ < QUIC_VERSION_41 ? kQuicHasMultipleAckBlocksOffset_Pre40 : kQuicHasMultipleAckBlocksOffset); SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length), kQuicSequenceNumberLengthNumBits, kLargestAckedOffset); SetBits(&type_byte, GetPacketNumberFlags(ack_block_length), kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset); if (transport_version_ < QUIC_VERSION_41) { type_byte |= kQuicFrameTypeAckMask_Pre40; } else { type_byte |= kQuicFrameTypeAckMask; } if (!writer->WriteUInt8(type_byte)) { return false; } size_t num_timestamps_offset = 0; size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes / (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); // Number of ack blocks. size_t num_ack_blocks = std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks); if (num_ack_blocks > std::numeric_limits::max()) { num_ack_blocks = std::numeric_limits::max(); } if (transport_version_ > QUIC_VERSION_39) { if (num_ack_blocks > 0 && !writer->WriteBytes(&num_ack_blocks, 1)) { return false; } // Write a placeholder for the number of timestamps which will be // overwritten after the ack blocks have been written. num_timestamps_offset = writer->length(); uint8_t num_timestamps = 0; if (!writer->WriteUInt8(num_timestamps)) { return false; } } // Largest acked. if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) { return false; } // Largest acked delta time. uint64_t ack_delay_time_us = kUFloat16MaxValue; if (!frame.ack_delay_time.IsInfinite()) { DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); } if (!writer->WriteUFloat16(ack_delay_time_us)) { return false; } if (transport_version_ <= QUIC_VERSION_39) { if (num_ack_blocks > 0) { if (!writer->WriteBytes(&num_ack_blocks, 1)) { return false; } } } // First ack block length. if (!AppendPacketNumber(ack_block_length, new_ack_info.first_block_length, writer)) { return false; } // Ack blocks. if (num_ack_blocks > 0) { size_t num_ack_blocks_written = 0; // Append, in descending order from the largest ACKed packet, a series of // ACK blocks that represents the successfully acknoweldged packets. Each // appended gap/block length represents a descending delta from the previous // block. i.e.: // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---| // For gaps larger than can be represented by a single encoded gap, a 0 // length gap of the maximum is used, i.e.: // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---| auto itr = frame.packets.rbegin(); QuicPacketNumber previous_start = itr->min(); ++itr; for (; itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks; previous_start = itr->min(), ++itr) { const auto& interval = *itr; const QuicPacketNumber total_gap = previous_start - interval.max(); const size_t num_encoded_gaps = (total_gap + std::numeric_limits::max() - 1) / std::numeric_limits::max(); DCHECK_LE(0u, num_encoded_gaps); // Append empty ACK blocks because the gap is longer than a single gap. for (size_t i = 1; i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks; ++i) { if (!AppendAckBlock(std::numeric_limits::max(), ack_block_length, 0, writer)) { return false; } ++num_ack_blocks_written; } if (num_ack_blocks_written >= num_ack_blocks) { if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) { QUIC_BUG << "Wrote " << num_ack_blocks_written << ", expected to write " << num_ack_blocks; } break; } const uint8_t last_gap = total_gap - (num_encoded_gaps - 1) * std::numeric_limits::max(); // Append the final ACK block with a non-empty size. if (!AppendAckBlock(last_gap, ack_block_length, interval.Length(), writer)) { return false; } ++num_ack_blocks_written; } DCHECK_EQ(num_ack_blocks, num_ack_blocks_written); } // Timestamps. // If we don't have enough available space to append all the timestamps, don't // append any of them. if (writer->capacity() - writer->length() >= GetAckFrameTimeStampSize(frame)) { if (!AppendTimestampsToAckFrame(frame, num_timestamps_offset, writer)) { return false; } } else { uint8_t num_received_packets = 0; if (!writer->WriteBytes(&num_received_packets, 1)) { return false; } } return true; } bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame, size_t num_timestamps_offset, QuicDataWriter* writer) { DCHECK_GE(std::numeric_limits::max(), frame.received_packet_times.size()); // num_received_packets is only 1 byte. if (frame.received_packet_times.size() > std::numeric_limits::max()) { return false; } uint8_t num_received_packets = frame.received_packet_times.size(); if (transport_version_ <= QUIC_VERSION_39) { if (!writer->WriteBytes(&num_received_packets, 1)) { return false; } } else { if (!writer->WriteUInt8AtOffset(num_received_packets, num_timestamps_offset)) { return false; } } if (num_received_packets == 0) { return true; } PacketTimeVector::const_iterator it = frame.received_packet_times.begin(); QuicPacketNumber packet_number = it->first; QuicPacketNumber delta_from_largest_observed = LargestAcked(frame) - packet_number; DCHECK_GE(std::numeric_limits::max(), delta_from_largest_observed); if (delta_from_largest_observed > std::numeric_limits::max()) { return false; } if (!writer->WriteUInt8(delta_from_largest_observed)) { return false; } // Use the lowest 4 bytes of the time delta from the creation_time_. const uint64_t time_epoch_delta_us = UINT64_C(1) << 32; uint32_t time_delta_us = static_cast((it->second - creation_time_).ToMicroseconds() & (time_epoch_delta_us - 1)); if (!writer->WriteUInt32(time_delta_us)) { return false; } QuicTime prev_time = it->second; for (++it; it != frame.received_packet_times.end(); ++it) { packet_number = it->first; delta_from_largest_observed = LargestAcked(frame) - packet_number; if (delta_from_largest_observed > std::numeric_limits::max()) { return false; } if (!writer->WriteUInt8(delta_from_largest_observed)) { return false; } uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds(); prev_time = it->second; if (!writer->WriteUFloat16(frame_time_delta_us)) { return false; } } return true; } bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header, const QuicStopWaitingFrame& frame, QuicDataWriter* writer) { DCHECK_GE(header.packet_number, frame.least_unacked); const QuicPacketNumber least_unacked_delta = header.packet_number - frame.least_unacked; const QuicPacketNumber length_shift = header.packet_number_length * 8; if (least_unacked_delta >> length_shift > 0) { QUIC_BUG << "packet_number_length " << header.packet_number_length << " is too small for least_unacked_delta: " << least_unacked_delta << " packet_number:" << header.packet_number << " least_unacked:" << frame.least_unacked << " version:" << transport_version_; return false; } if (!AppendPacketNumber(header.packet_number_length, least_unacked_delta, writer)) { QUIC_BUG << " seq failed: " << header.packet_number_length; return false; } return true; } bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame, QuicDataWriter* writer) { if (!writer->WriteUInt32(frame.stream_id)) { return false; } if (transport_version_ <= QUIC_VERSION_39) { if (!writer->WriteUInt64(frame.byte_offset)) { return false; } } uint32_t error_code = static_cast(frame.error_code); if (!writer->WriteUInt32(error_code)) { return false; } if (transport_version_ > QUIC_VERSION_39) { if (!writer->WriteUInt64(frame.byte_offset)) { return false; } } return true; } bool QuicFramer::AppendConnectionCloseFrame( const QuicConnectionCloseFrame& frame, QuicDataWriter* writer) { uint32_t error_code = static_cast(frame.error_code); if (!writer->WriteUInt32(error_code)) { return false; } if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) { return false; } return true; } bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame, QuicDataWriter* writer) { uint32_t error_code = static_cast(frame.error_code); if (!writer->WriteUInt32(error_code)) { return false; } uint32_t stream_id = static_cast(frame.last_good_stream_id); if (!writer->WriteUInt32(stream_id)) { return false; } if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) { return false; } return true; } bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame, QuicDataWriter* writer) { uint32_t stream_id = static_cast(frame.stream_id); if (!writer->WriteUInt32(stream_id)) { return false; } if (!writer->WriteUInt64(frame.byte_offset)) { return false; } return true; } bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame, QuicDataWriter* writer) { uint32_t stream_id = static_cast(frame.stream_id); if (!writer->WriteUInt32(stream_id)) { return false; } return true; } bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame, QuicDataWriter* writer) { if (transport_version_ <= QUIC_VERSION_37) { writer->WritePadding(); return true; } if (frame.num_padding_bytes == 0) { return false; } if (frame.num_padding_bytes < 0) { QUIC_BUG_IF(frame.num_padding_bytes != -1); writer->WritePadding(); return true; } // Please note, num_padding_bytes includes type byte which has been written. return writer->WritePaddingBytes(frame.num_padding_bytes - 1); } bool QuicFramer::RaiseError(QuicErrorCode error) { QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error) << " detail: " << detailed_error_; set_error(error); visitor_->OnError(this); return false; } Endianness QuicFramer::endianness() const { return transport_version_ > QUIC_VERSION_38 ? NETWORK_BYTE_ORDER : HOST_BYTE_ORDER; } bool QuicFramer::StartsWithChlo(QuicStreamId id, QuicStreamOffset offset) const { if (data_producer_ == nullptr) { QUIC_BUG << "Does not have data producer."; return false; } char buf[sizeof(kCHLO)]; QuicDataWriter writer(sizeof(kCHLO), buf, endianness()); if (!data_producer_->WriteStreamData(id, offset, sizeof(kCHLO), &writer)) { QUIC_BUG << "Failed to write data for stream " << id << " with offset " << offset << " data_length = " << sizeof(kCHLO); return false; } return strncmp(buf, reinterpret_cast(&kCHLO), sizeof(kCHLO)) == 0; } QuicStringPiece QuicFramer::TruncateErrorString(QuicStringPiece error) { if (error.length() <= kMaxErrorStringLength || !FLAGS_quic_reloadable_flag_quic_truncate_long_details) { return error; } QUIC_FLAG_COUNT(quic_reloadable_flag_quic_truncate_long_details); return QuicStringPiece(error.data(), kMaxErrorStringLength); } } // namespace net