// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // IntervalSet is a data structure used to represent a sorted set of // non-empty, non-adjacent, and mutually disjoint intervals. Mutations to an // interval set preserve these properties, altering the set as needed. For // example, adding [2, 3) to a set containing only [1, 2) would result in the // set containing the single interval [1, 3). // // Supported operations include testing whether an Interval is contained in the // IntervalSet, comparing two IntervalSets, and performing IntervalSet union, // intersection, and difference. // // IntervalSet maintains the minimum number of entries needed to represent the // set of underlying intervals. When the IntervalSet is modified (e.g. due to an // Add operation), other interval entries may be coalesced, removed, or // otherwise modified in order to maintain this invariant. The intervals are // maintained in sorted order, by ascending min() value. // // The reader is cautioned to beware of the terminology used here: this library // uses the terms "min" and "max" rather than "begin" and "end" as is // conventional for the STL. The terminology [min, max) refers to the half-open // interval which (if the interval is not empty) contains min but does not // contain max. An interval is considered empty if min >= max. // // T is required to be default- and copy-constructible, to have an assignment // operator, a difference operator (operator-()), and the full complement of // comparison operators (<, <=, ==, !=, >=, >). These requirements are inherited // from Interval. // // IntervalSet has constant-time move operations. // // This class is thread-compatible if T is thread-compatible. (See // go/thread-compatible). // // Examples: // IntervalSet intervals; // intervals.Add(Interval(10, 20)); // intervals.Add(Interval(30, 40)); // // intervals contains [10,20) and [30,40). // intervals.Add(Interval(15, 35)); // // intervals has been coalesced. It now contains the single range [10,40). // EXPECT_EQ(1, intervals.Size()); // EXPECT_TRUE(intervals.Contains(Interval(10, 40))); // // intervals.Difference(Interval(10, 20)); // // intervals should now contain the single range [20, 40). // EXPECT_EQ(1, intervals.Size()); // EXPECT_TRUE(intervals.Contains(Interval(20, 40))); #ifndef NET_BASE_INTERVAL_SET_H_ #define NET_BASE_INTERVAL_SET_H_ #include #include #include #include #include #include #include #include "base/logging.h" #include "net/base/interval.h" namespace net { template class IntervalSet { private: struct IntervalComparator { bool operator()(const Interval& a, const Interval& b) const; }; typedef std::set, IntervalComparator> Set; public: typedef typename Set::value_type value_type; typedef typename Set::const_iterator const_iterator; typedef typename Set::const_reverse_iterator const_reverse_iterator; // Instantiates an empty IntervalSet. IntervalSet() {} // Instantiates an IntervalSet containing exactly one initial half-open // interval [min, max), unless the given interval is empty, in which case the // IntervalSet will be empty. explicit IntervalSet(const Interval& interval) { Add(interval); } // Instantiates an IntervalSet containing the half-open interval [min, max). IntervalSet(const T& min, const T& max) { Add(min, max); } // TODO(rtenneti): Implement after suupport for std::initializer_list. #if 0 IntervalSet(std::initializer_list il) { assign(il); } #endif // Clears this IntervalSet. void Clear() { intervals_.clear(); } // Returns the number of disjoint intervals contained in this IntervalSet. size_t Size() const { return intervals_.size(); } // Returns the smallest interval that contains all intervals in this // IntervalSet, or the empty interval if the set is empty. Interval SpanningInterval() const; // Adds "interval" to this IntervalSet. Adding the empty interval has no // effect. void Add(const Interval& interval); // Adds the interval [min, max) to this IntervalSet. Adding the empty interval // has no effect. void Add(const T& min, const T& max) { Add(Interval(min, max)); } // DEPRECATED(kosak). Use Union() instead. This method merges all of the // values contained in "other" into this IntervalSet. void Add(const IntervalSet& other); // Returns true if this IntervalSet represents exactly the same set of // intervals as the ones represented by "other". bool Equals(const IntervalSet& other) const; // Returns true if this IntervalSet is empty. bool Empty() const { return intervals_.empty(); } // Returns true if any interval in this IntervalSet contains the indicated // value. bool Contains(const T& value) const; // Returns true if there is some interval in this IntervalSet that wholly // contains the given interval. An interval O "wholly contains" a non-empty // interval I if O.Contains(p) is true for every p in I. This is the same // definition used by Interval::Contains(). This method returns false on // the empty interval, due to a (perhaps unintuitive) convention inherited // from Interval. // Example: // Assume an IntervalSet containing the entries { [10,20), [30,40) }. // Contains(Interval(15, 16)) returns true, because [10,20) contains // [15,16). However, Contains(Interval(15, 35)) returns false. bool Contains(const Interval& interval) const; // Returns true if for each interval in "other", there is some (possibly // different) interval in this IntervalSet which wholly contains it. See // Contains(const Interval& interval) for the meaning of "wholly contains". // Perhaps unintuitively, this method returns false if "other" is the empty // set. The algorithmic complexity of this method is O(other.Size() * // log(this->Size())), which is not efficient. The method could be rewritten // to run in O(other.Size() + this->Size()). bool Contains(const IntervalSet& other) const; // Returns true if there is some interval in this IntervalSet that wholly // contains the interval [min, max). See Contains(const Interval&). bool Contains(const T& min, const T& max) const { return Contains(Interval(min, max)); } // Returns true if for some interval in "other", there is some interval in // this IntervalSet that intersects with it. See Interval::Intersects() // for the definition of interval intersection. bool Intersects(const IntervalSet& other) const; // Returns an iterator to the Interval in the IntervalSet that contains the // given value. In other words, returns an iterator to the unique interval // [min, max) in the IntervalSet that has the property min <= value < max. If // there is no such interval, this method returns end(). const_iterator Find(const T& value) const; // Returns an iterator to the Interval in the IntervalSet that wholly // contains the given interval. In other words, returns an iterator to the // unique interval outer in the IntervalSet that has the property that // outer.Contains(interval). If there is no such interval, or if interval is // empty, returns end(). const_iterator Find(const Interval& interval) const; // Returns an iterator to the Interval in the IntervalSet that wholly // contains [min, max). In other words, returns an iterator to the unique // interval outer in the IntervalSet that has the property that // outer.Contains(Interval(min, max)). If there is no such interval, or if // interval is empty, returns end(). const_iterator Find(const T& min, const T& max) const { return Find(Interval(min, max)); } // Returns true if every value within the passed interval is not Contained // within the IntervalSet. bool IsDisjoint(const Interval& interval) const; // Merges all the values contained in "other" into this IntervalSet. void Union(const IntervalSet& other); // Modifies this IntervalSet so that it contains only those values that are // currently present both in *this and in the IntervalSet "other". void Intersection(const IntervalSet& other); // Mutates this IntervalSet so that it contains only those values that are // currently in *this but not in "interval". void Difference(const Interval& interval); // Mutates this IntervalSet so that it contains only those values that are // currently in *this but not in the interval [min, max). void Difference(const T& min, const T& max); // Mutates this IntervalSet so that it contains only those values that are // currently in *this but not in the IntervalSet "other". void Difference(const IntervalSet& other); // Mutates this IntervalSet so that it contains only those values that are // in [min, max) but not currently in *this. void Complement(const T& min, const T& max); // IntervalSet's begin() iterator. The invariants of IntervalSet guarantee // that for each entry e in the set, e.min() < e.max() (because the entries // are non-empty) and for each entry f that appears later in the set, // e.max() < f.min() (because the entries are ordered, pairwise-disjoint, and // non-adjacent). Modifications to this IntervalSet invalidate these // iterators. const_iterator begin() const { return intervals_.begin(); } // IntervalSet's end() iterator. const_iterator end() const { return intervals_.end(); } // IntervalSet's rbegin() and rend() iterators. Iterator invalidation // semantics are the same as those for begin() / end(). const_reverse_iterator rbegin() const { return intervals_.rbegin(); } const_reverse_iterator rend() const { return intervals_.rend(); } // Appends the intervals in this IntervalSet to the end of *out. void Get(std::vector>* out) const { out->insert(out->end(), begin(), end()); } // Copies the intervals in this IntervalSet to the given output iterator. template Iter Get(Iter out_iter) const { return std::copy(begin(), end(), out_iter); } template void assign(Iter first, Iter last) { Clear(); for (; first != last; ++first) Add(*first); } // TODO(rtenneti): Implement after suupport for std::initializer_list. #if 0 void assign(std::initializer_list il) { assign(il.begin(), il.end()); } #endif // Returns a human-readable representation of this set. This will typically be // (though is not guaranteed to be) of the form // "[a1, b1) [a2, b2) ... [an, bn)" // where the intervals are in the same order as given by traversal from // begin() to end(). This representation is intended for human consumption; // computer programs should not rely on the output being in exactly this form. std::string ToString() const; // Equality for IntervalSet. Delegates to Equals(). bool operator==(const IntervalSet& other) const { return Equals(other); } // Inequality for IntervalSet. Delegates to Equals() (and returns its // negation). bool operator!=(const IntervalSet& other) const { return !Equals(other); } // TODO(rtenneti): Implement after suupport for std::initializer_list. #if 0 IntervalSet& operator=(std::initializer_list il) { assign(il.begin(), il.end()); return *this; } #endif // Swap this IntervalSet with *other. This is a constant-time operation. void Swap(IntervalSet* other) { intervals_.swap(other->intervals_); } private: // Removes overlapping ranges and coalesces adjacent intervals as needed. void Compact(const typename Set::iterator& begin, const typename Set::iterator& end); // Returns true if this set is valid (i.e. all intervals in it are non-empty, // non-adjacent, and mutually disjoint). Currently this is used as an // integrity check by the Intersection() and Difference() methods, but is only // invoked for debug builds (via DCHECK). bool Valid() const; // Finds the first interval that potentially intersects 'other'. const_iterator FindIntersectionCandidate(const IntervalSet& other) const; // Finds the first interval that potentially intersects 'interval'. const_iterator FindIntersectionCandidate(const Interval& interval) const; // Helper for Intersection() and Difference(): Finds the next pair of // intervals from 'x' and 'y' that intersect. 'mine' is an iterator // over x->intervals_. 'theirs' is an iterator over y.intervals_. 'mine' // and 'theirs' are advanced until an intersecting pair is found. // Non-intersecting intervals (aka "holes") from x->intervals_ can be // optionally erased by "on_hole". template static bool FindNextIntersectingPairImpl(X* x, const IntervalSet& y, const_iterator* mine, const_iterator* theirs, Func on_hole); // The variant of the above method that doesn't mutate this IntervalSet. bool FindNextIntersectingPair(const IntervalSet& other, const_iterator* mine, const_iterator* theirs) const { return FindNextIntersectingPairImpl( this, other, mine, theirs, [](const IntervalSet*, const_iterator, const_iterator) {}); } // The variant of the above method that mutates this IntervalSet by erasing // holes. bool FindNextIntersectingPairAndEraseHoles(const IntervalSet& other, const_iterator* mine, const_iterator* theirs) { return FindNextIntersectingPairImpl( this, other, mine, theirs, [](IntervalSet* x, const_iterator from, const_iterator to) { x->intervals_.erase(from, to); }); } // The representation for the intervals. The intervals in this set are // non-empty, pairwise-disjoint, non-adjacent and ordered in ascending order // by min(). Set intervals_; }; template std::ostream& operator<<(std::ostream& out, const IntervalSet& seq); template void swap(IntervalSet& x, IntervalSet& y); //============================================================================== // Implementation details: Clients can stop reading here. template Interval IntervalSet::SpanningInterval() const { Interval result; if (!intervals_.empty()) { result.SetMin(intervals_.begin()->min()); result.SetMax(intervals_.rbegin()->max()); } return result; } template void IntervalSet::Add(const Interval& interval) { if (interval.Empty()) return; std::pair ins = intervals_.insert(interval); if (!ins.second) { // This interval already exists. return; } // Determine the minimal range that will have to be compacted. We know that // the IntervalSet was valid before the addition of the interval, so only // need to start with the interval itself (although Compact takes an open // range so begin needs to be the interval to the left). We don't know how // many ranges this interval may cover, so we need to find the appropriate // interval to end with on the right. typename Set::iterator begin = ins.first; if (begin != intervals_.begin()) --begin; const Interval target_end(interval.max(), interval.max()); const typename Set::iterator end = intervals_.upper_bound(target_end); Compact(begin, end); } template void IntervalSet::Add(const IntervalSet& other) { for (const_iterator it = other.begin(); it != other.end(); ++it) { Add(*it); } } template bool IntervalSet::Equals(const IntervalSet& other) const { if (intervals_.size() != other.intervals_.size()) return false; for (typename Set::iterator i = intervals_.begin(), j = other.intervals_.begin(); i != intervals_.end(); ++i, ++j) { // Simple member-wise equality, since all intervals are non-empty. if (i->min() != j->min() || i->max() != j->max()) return false; } return true; } template bool IntervalSet::Contains(const T& value) const { Interval tmp(value, value); // Find the first interval with min() > value, then move back one step const_iterator it = intervals_.upper_bound(tmp); if (it == intervals_.begin()) return false; --it; return it->Contains(value); } template bool IntervalSet::Contains(const Interval& interval) const { // Find the first interval with min() > value, then move back one step. const_iterator it = intervals_.upper_bound(interval); if (it == intervals_.begin()) return false; --it; return it->Contains(interval); } template bool IntervalSet::Contains(const IntervalSet& other) const { if (!SpanningInterval().Contains(other.SpanningInterval())) { return false; } for (const_iterator i = other.begin(); i != other.end(); ++i) { // If we don't contain the interval, can return false now. if (!Contains(*i)) { return false; } } return true; } // This method finds the interval that Contains() "value", if such an interval // exists in the IntervalSet. The way this is done is to locate the "candidate // interval", the only interval that could *possibly* contain value, and test it // using Contains(). The candidate interval is the interval with the largest // min() having min() <= value. // // Determining the candidate interval takes a couple of steps. First, since the // underlying std::set stores intervals, not values, we need to create a "probe // interval" suitable for use as a search key. The probe interval used is // [value, value). Now we can restate the problem as finding the largest // interval in the IntervalSet that is <= the probe interval. // // This restatement only works if the set's comparator behaves in a certain way. // In particular it needs to order first by ascending min(), and then by // descending max(). The comparator used by this library is defined in exactly // this way. To see why descending max() is required, consider the following // example. Assume an IntervalSet containing these intervals: // // [0, 5) [10, 20) [50, 60) // // Consider searching for the value 15. The probe interval [15, 15) is created, // and [10, 20) is identified as the largest interval in the set <= the probe // interval. This is the correct interval needed for the Contains() test, which // will then return true. // // Now consider searching for the value 30. The probe interval [30, 30) is // created, and again [10, 20] is identified as the largest interval <= the // probe interval. This is again the correct interval needed for the Contains() // test, which in this case returns false. // // Finally, consider searching for the value 10. The probe interval [10, 10) is // created. Here the ordering relationship between [10, 10) and [10, 20) becomes // vitally important. If [10, 10) were to come before [10, 20), then [0, 5) // would be the largest interval <= the probe, leading to the wrong choice of // interval for the Contains() test. Therefore [10, 10) needs to come after // [10, 20). The simplest way to make this work in the general case is to order // by ascending min() but descending max(). In this ordering, the empty interval // is larger than any non-empty interval with the same min(). The comparator // used by this library is careful to induce this ordering. // // Another detail involves the choice of which std::set method to use to try to // find the candidate interval. The most appropriate entry point is // set::upper_bound(), which finds the smallest interval which is > the probe // interval. The semantics of upper_bound() are slightly different from what we // want (namely, to find the largest interval which is <= the probe interval) // but they are close enough; the interval found by upper_bound() will always be // one step past the interval we are looking for (if it exists) or at begin() // (if it does not). Getting to the proper interval is a simple matter of // decrementing the iterator. template typename IntervalSet::const_iterator IntervalSet::Find( const T& value) const { Interval tmp(value, value); const_iterator it = intervals_.upper_bound(tmp); if (it == intervals_.begin()) return intervals_.end(); --it; if (it->Contains(value)) return it; else return intervals_.end(); } // This method finds the interval that Contains() the interval "probe", if such // an interval exists in the IntervalSet. The way this is done is to locate the // "candidate interval", the only interval that could *possibly* contain // "probe", and test it using Contains(). The candidate interval is the largest // interval that is <= the probe interval. // // The search for the candidate interval only works if the comparator used // behaves in a certain way. In particular it needs to order first by ascending // min(), and then by descending max(). The comparator used by this library is // defined in exactly this way. To see why descending max() is required, // consider the following example. Assume an IntervalSet containing these // intervals: // // [0, 5) [10, 20) [50, 60) // // Consider searching for the probe [15, 17). [10, 20) is the largest interval // in the set which is <= the probe interval. This is the correct interval // needed for the Contains() test, which will then return true, because [10, 20) // contains [15, 17). // // Now consider searching for the probe [30, 32). Again [10, 20] is the largest // interval <= the probe interval. This is again the correct interval needed for // the Contains() test, which in this case returns false, because [10, 20) does // not contain [30, 32). // // Finally, consider searching for the probe [10, 12). Here the ordering // relationship between [10, 12) and [10, 20) becomes vitally important. If // [10, 12) were to come before [10, 20), then [0, 5) would be the largest // interval <= the probe, leading to the wrong choice of interval for the // Contains() test. Therefore [10, 12) needs to come after [10, 20). The // simplest way to make this work in the general case is to order by ascending // min() but descending max(). In this ordering, given two intervals with the // same min(), the wider one goes before the narrower one. The comparator used // by this library is careful to induce this ordering. // // Another detail involves the choice of which std::set method to use to try to // find the candidate interval. The most appropriate entry point is // set::upper_bound(), which finds the smallest interval which is > the probe // interval. The semantics of upper_bound() are slightly different from what we // want (namely, to find the largest interval which is <= the probe interval) // but they are close enough; the interval found by upper_bound() will always be // one step past the interval we are looking for (if it exists) or at begin() // (if it does not). Getting to the proper interval is a simple matter of // decrementing the iterator. template typename IntervalSet::const_iterator IntervalSet::Find( const Interval& probe) const { const_iterator it = intervals_.upper_bound(probe); if (it == intervals_.begin()) return intervals_.end(); --it; if (it->Contains(probe)) return it; else return intervals_.end(); } template bool IntervalSet::IsDisjoint(const Interval& interval) const { Interval tmp(interval.min(), interval.min()); // Find the first interval with min() > interval.min() const_iterator it = intervals_.upper_bound(tmp); if (it != intervals_.end() && interval.max() > it->min()) return false; if (it == intervals_.begin()) return true; --it; return it->max() <= interval.min(); } template void IntervalSet::Union(const IntervalSet& other) { intervals_.insert(other.begin(), other.end()); Compact(intervals_.begin(), intervals_.end()); } template typename IntervalSet::const_iterator IntervalSet::FindIntersectionCandidate(const IntervalSet& other) const { return FindIntersectionCandidate(*other.intervals_.begin()); } template typename IntervalSet::const_iterator IntervalSet::FindIntersectionCandidate(const Interval& interval) const { // Use upper_bound to efficiently find the first interval in intervals_ // where min() is greater than interval.min(). If the result // isn't the beginning of intervals_ then move backwards one interval since // the interval before it is the first candidate where max() may be // greater than interval.min(). // In other words, no interval before that can possibly intersect with any // of other.intervals_. const_iterator mine = intervals_.upper_bound(interval); if (mine != intervals_.begin()) { --mine; } return mine; } template template bool IntervalSet::FindNextIntersectingPairImpl(X* x, const IntervalSet& y, const_iterator* mine, const_iterator* theirs, Func on_hole) { CHECK(x != nullptr); if ((*mine == x->intervals_.end()) || (*theirs == y.intervals_.end())) { return false; } while (!(**mine).Intersects(**theirs)) { const_iterator erase_first = *mine; // Skip over intervals in 'mine' that don't reach 'theirs'. while (*mine != x->intervals_.end() && (**mine).max() <= (**theirs).min()) { ++(*mine); } on_hole(x, erase_first, *mine); // We're done if the end of intervals_ is reached. if (*mine == x->intervals_.end()) { return false; } // Skip over intervals 'theirs' that don't reach 'mine'. while (*theirs != y.intervals_.end() && (**theirs).max() <= (**mine).min()) { ++(*theirs); } // If the end of other.intervals_ is reached, we're done. if (*theirs == y.intervals_.end()) { on_hole(x, *mine, x->intervals_.end()); return false; } } return true; } template void IntervalSet::Intersection(const IntervalSet& other) { if (!SpanningInterval().Intersects(other.SpanningInterval())) { intervals_.clear(); return; } const_iterator mine = FindIntersectionCandidate(other); // Remove any intervals that cannot possibly intersect with other.intervals_. intervals_.erase(intervals_.begin(), mine); const_iterator theirs = other.FindIntersectionCandidate(*this); while (FindNextIntersectingPairAndEraseHoles(other, &mine, &theirs)) { // OK, *mine and *theirs intersect. Now, we find the largest // span of intervals in other (starting at theirs) - say [a..b] // - that intersect *mine, and we replace *mine with (*mine // intersect x) for all x in [a..b] Note that subsequent // intervals in this can't intersect any intervals in [a..b) -- // they may only intersect b or subsequent intervals in other. Interval i(*mine); intervals_.erase(mine); mine = intervals_.end(); Interval intersection; while (theirs != other.intervals_.end() && i.Intersects(*theirs, &intersection)) { std::pair ins = intervals_.insert(intersection); DCHECK(ins.second); mine = ins.first; ++theirs; } DCHECK(mine != intervals_.end()); --theirs; ++mine; } DCHECK(Valid()); } template bool IntervalSet::Intersects(const IntervalSet& other) const { if (!SpanningInterval().Intersects(other.SpanningInterval())) { return false; } const_iterator mine = FindIntersectionCandidate(other); if (mine == intervals_.end()) { return false; } const_iterator theirs = other.FindIntersectionCandidate(*mine); return FindNextIntersectingPair(other, &mine, &theirs); } template void IntervalSet::Difference(const Interval& interval) { if (!SpanningInterval().Intersects(interval)) { return; } Difference(IntervalSet(interval)); } template void IntervalSet::Difference(const T& min, const T& max) { Difference(Interval(min, max)); } template void IntervalSet::Difference(const IntervalSet& other) { if (!SpanningInterval().Intersects(other.SpanningInterval())) { return; } const_iterator mine = FindIntersectionCandidate(other); // If no interval in mine reaches the first interval of theirs then we're // done. if (mine == intervals_.end()) { return; } const_iterator theirs = other.FindIntersectionCandidate(*this); while (FindNextIntersectingPair(other, &mine, &theirs)) { // At this point *mine and *theirs overlap. Remove mine from // intervals_ and replace it with the possibly two intervals that are // the difference between mine and theirs. Interval i(*mine); intervals_.erase(mine++); Interval lo; Interval hi; i.Difference(*theirs, &lo, &hi); if (!lo.Empty()) { // We have a low end. This can't intersect anything else. std::pair ins = intervals_.insert(lo); DCHECK(ins.second); } if (!hi.Empty()) { std::pair ins = intervals_.insert(hi); DCHECK(ins.second); mine = ins.first; } } DCHECK(Valid()); } template void IntervalSet::Complement(const T& min, const T& max) { IntervalSet span(min, max); span.Difference(*this); intervals_.swap(span.intervals_); } template std::string IntervalSet::ToString() const { std::ostringstream os; os << *this; return os.str(); } // This method compacts the IntervalSet, merging pairs of overlapping intervals // into a single interval. In the steady state, the IntervalSet does not contain // any such pairs. However, the way the Union() and Add() methods work is to // temporarily put the IntervalSet into such a state and then to call Compact() // to "fix it up" so that it is no longer in that state. // // Compact() needs the interval set to allow two intervals [a,b) and [a,c) // (having the same min() but different max()) to briefly coexist in the set at // the same time, and be adjacent to each other, so that they can be efficiently // located and merged into a single interval. This state would be impossible // with a comparator which only looked at min(), as such a comparator would // consider such pairs equal. Fortunately, the comparator used by IntervalSet // does exactly what is needed, ordering first by ascending min(), then by // descending max(). template void IntervalSet::Compact(const typename Set::iterator& begin, const typename Set::iterator& end) { if (begin == end) return; typename Set::iterator next = begin; typename Set::iterator prev = begin; typename Set::iterator it = begin; ++it; ++next; while (it != end) { ++next; if (prev->max() >= it->min()) { // Overlapping / coalesced range; merge the two intervals. T min = prev->min(); T max = std::max(prev->max(), it->max()); Interval i(min, max); intervals_.erase(prev); intervals_.erase(it); std::pair ins = intervals_.insert(i); DCHECK(ins.second); prev = ins.first; } else { prev = it; } it = next; } } template bool IntervalSet::Valid() const { const_iterator prev = end(); for (const_iterator it = begin(); it != end(); ++it) { // invalid or empty interval. if (it->min() >= it->max()) return false; // Not sorted, not disjoint, or adjacent. if (prev != end() && prev->max() >= it->min()) return false; prev = it; } return true; } template inline std::ostream& operator<<(std::ostream& out, const IntervalSet& seq) { // TODO(rtenneti): Implement << method of IntervalSet. #if 0 util::gtl::LogRangeToStream(out, seq.begin(), seq.end(), util::gtl::LogLegacy()); #endif // 0 return out; } template void swap(IntervalSet& x, IntervalSet& y) { x.Swap(&y); } // This comparator orders intervals first by ascending min() and then by // descending max(). Readers who are satisified with that explanation can stop // reading here. The remainder of this comment is for the benefit of future // maintainers of this library. // // The reason for this ordering is that this comparator has to serve two // masters. First, it has to maintain the intervals in its internal set in the // order that clients expect to see them. Clients see these intervals via the // iterators provided by begin()/end() or as a result of invoking Get(). For // this reason, the comparator orders intervals by ascending min(). // // If client iteration were the only consideration, then ordering by ascending // min() would be good enough. This is because the intervals in the IntervalSet // are non-empty, non-adjacent, and mutually disjoint; such intervals happen to // always have disjoint min() values, so such a comparator would never even have // to look at max() in order to work correctly for this class. // // However, in addition to ordering by ascending min(), this comparator also has // a second responsibility: satisfying the special needs of this library's // peculiar internal implementation. These needs require the comparator to order // first by ascending min() and then by descending max(). The best way to // understand why this is so is to check out the comments associated with the // Find() and Compact() methods. template inline bool IntervalSet::IntervalComparator::operator()( const Interval& a, const Interval& b) const { return (a.min() < b.min() || (a.min() == b.min() && a.max() > b.max())); } } // namespace net #endif // NET_BASE_INTERVAL_SET_H_