// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This is a simple application that stress-tests the crash recovery of the disk // cache. The main application starts a copy of itself on a loop, checking the // exit code of the child process. When the child dies in an unexpected way, // the main application quits. // The child application has two threads: one to exercise the cache in an // infinite loop, and another one to asynchronously kill the process. // A regular build should never crash. // To test that the disk cache doesn't generate critical errors with regular // application level crashes, edit stress_support.h. #include #include #include "base/at_exit.h" #include "base/bind.h" #include "base/bind_helpers.h" #include "base/command_line.h" #include "base/debug/debugger.h" #include "base/files/file_path.h" #include "base/location.h" #include "base/logging.h" #include "base/message_loop/message_loop.h" #include "base/path_service.h" #include "base/process/launch.h" #include "base/process/process.h" #include "base/run_loop.h" #include "base/single_thread_task_runner.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_util.h" #include "base/strings/utf_string_conversions.h" #include "base/threading/platform_thread.h" #include "base/threading/thread.h" #include "base/threading/thread_task_runner_handle.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/base/test_completion_callback.h" #include "net/disk_cache/blockfile/backend_impl.h" #include "net/disk_cache/blockfile/stress_support.h" #include "net/disk_cache/blockfile/trace.h" #include "net/disk_cache/disk_cache.h" #include "net/disk_cache/disk_cache_test_util.h" #if defined(OS_WIN) #include "base/logging_win.h" #endif using base::Time; const int kError = -1; const int kExpectedCrash = 100; // Starts a new process. int RunSlave(int iteration) { base::FilePath exe; base::PathService::Get(base::FILE_EXE, &exe); base::CommandLine cmdline(exe); cmdline.AppendArg(base::IntToString(iteration)); base::Process process = base::LaunchProcess(cmdline, base::LaunchOptions()); if (!process.IsValid()) { printf("Unable to run test\n"); return kError; } int exit_code; if (!process.WaitForExit(&exit_code)) { printf("Unable to get return code\n"); return kError; } return exit_code; } // Main loop for the master process. int MasterCode() { for (int i = 0; i < 100000; i++) { int ret = RunSlave(i); if (kExpectedCrash != ret) return ret; } printf("More than enough...\n"); return 0; } // ----------------------------------------------------------------------- std::string GenerateStressKey() { char key[20 * 1024]; size_t size = 50 + rand() % 20000; CacheTestFillBuffer(key, size, true); key[size - 1] = '\0'; return std::string(key); } // kNumKeys is meant to be enough to have about 3x or 4x iterations before // the process crashes. #ifdef NDEBUG const int kNumKeys = 4000; #else const int kNumKeys = 1200; #endif const int kNumEntries = 30; const int kBufferSize = 2000; const int kReadSize = 20; // Things that an entry can be doing. enum Operation { NONE, OPEN, CREATE, READ, WRITE, DOOM }; // This class encapsulates a cache entry and the operations performed on that // entry. An entry is opened or created as needed, the current content is then // verified and then something is written to the entry. At that point, the // |state_| becomes NONE again, waiting for another write, unless the entry is // closed or deleted. class EntryWrapper { public: EntryWrapper() : entry_(nullptr), state_(NONE) { buffer_ = new net::IOBuffer(kBufferSize); memset(buffer_->data(), 'k', kBufferSize); } Operation state() const { return state_; } void DoOpen(int key); private: void OnOpenDone(int key, int result); void DoRead(); void OnReadDone(int result); void DoWrite(); void OnWriteDone(int size, int result); void DoDelete(const std::string& key); void OnDeleteDone(int result); void DoIdle(); disk_cache::Entry* entry_; Operation state_; scoped_refptr buffer_; }; // The data that the main thread is working on. struct Data { Data() : pendig_operations(0), writes(0), iteration(0), cache(nullptr) {} int pendig_operations; // Counter of simultaneous operations. int writes; // How many writes since this iteration started. int iteration; // The iteration (number of crashes). disk_cache::BackendImpl* cache; std::string keys[kNumKeys]; EntryWrapper entries[kNumEntries]; }; Data* g_data = nullptr; void EntryWrapper::DoOpen(int key) { DCHECK_EQ(state_, NONE); if (entry_) return DoRead(); state_ = OPEN; int rv = g_data->cache->OpenEntry( g_data->keys[key], net::HIGHEST, &entry_, base::Bind(&EntryWrapper::OnOpenDone, base::Unretained(this), key)); if (rv != net::ERR_IO_PENDING) OnOpenDone(key, rv); } void EntryWrapper::OnOpenDone(int key, int result) { if (result == net::OK) return DoRead(); CHECK_EQ(state_, OPEN); state_ = CREATE; result = g_data->cache->CreateEntry( g_data->keys[key], net::HIGHEST, &entry_, base::Bind(&EntryWrapper::OnOpenDone, base::Unretained(this), key)); if (result != net::ERR_IO_PENDING) OnOpenDone(key, result); } void EntryWrapper::DoRead() { int current_size = entry_->GetDataSize(0); if (!current_size) return DoWrite(); state_ = READ; memset(buffer_->data(), 'k', kReadSize); int rv = entry_->ReadData( 0, 0, buffer_.get(), kReadSize, base::Bind(&EntryWrapper::OnReadDone, base::Unretained(this))); if (rv != net::ERR_IO_PENDING) OnReadDone(rv); } void EntryWrapper::OnReadDone(int result) { DCHECK_EQ(state_, READ); CHECK_EQ(result, kReadSize); CHECK_EQ(0, memcmp(buffer_->data(), "Write: ", 7)); DoWrite(); } void EntryWrapper::DoWrite() { bool truncate = (rand() % 2 == 0); int size = kBufferSize - (rand() % 20) * kBufferSize / 20; state_ = WRITE; base::snprintf(buffer_->data(), kBufferSize, "Write: %d iter: %d, size: %d, truncate: %d ", g_data->writes, g_data->iteration, size, truncate ? 1 : 0); int rv = entry_->WriteData( 0, 0, buffer_.get(), size, base::Bind(&EntryWrapper::OnWriteDone, base::Unretained(this), size), truncate); if (rv != net::ERR_IO_PENDING) OnWriteDone(size, rv); } void EntryWrapper::OnWriteDone(int size, int result) { DCHECK_EQ(state_, WRITE); CHECK_EQ(size, result); if (!(g_data->writes++ % 100)) printf("Entries: %d \r", g_data->writes); int random = rand() % 100; std::string key = entry_->GetKey(); if (random > 90) return DoDelete(key); // 10% delete then close. if (random > 60) { // 20% close. entry_->Close(); entry_ = nullptr; } if (random > 80) return DoDelete(key); // 10% close then delete. DoIdle(); // 60% do another write later. } void EntryWrapper::DoDelete(const std::string& key) { state_ = DOOM; int rv = g_data->cache->DoomEntry( key, net::HIGHEST, base::Bind(&EntryWrapper::OnDeleteDone, base::Unretained(this))); if (rv != net::ERR_IO_PENDING) OnDeleteDone(rv); } void EntryWrapper::OnDeleteDone(int result) { DCHECK_EQ(state_, DOOM); if (entry_) { entry_->Close(); entry_ = nullptr; } DoIdle(); } void LoopTask(); void EntryWrapper::DoIdle() { state_ = NONE; g_data->pendig_operations--; DCHECK(g_data->pendig_operations); base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, base::Bind(&LoopTask)); } // The task that keeps the main thread busy. Whenever an entry becomes idle this // task is executed again. void LoopTask() { if (g_data->pendig_operations >= kNumEntries) return; int slot = rand() % kNumEntries; if (g_data->entries[slot].state() == NONE) { // Each slot will have some keys assigned to it so that the same entry will // not be open by two slots, which means that the state is well known at // all times. int keys_per_entry = kNumKeys / kNumEntries; int key = rand() % keys_per_entry + keys_per_entry * slot; g_data->pendig_operations++; g_data->entries[slot].DoOpen(key); } base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, base::Bind(&LoopTask)); } // This thread will loop forever, adding and removing entries from the cache. // iteration is the current crash cycle, so the entries on the cache are marked // to know which instance of the application wrote them. void StressTheCache(int iteration) { int cache_size = 0x2000000; // 32MB. uint32_t mask = 0xfff; // 4096 entries. base::FilePath path; base::PathService::Get(base::DIR_TEMP, &path); path = path.AppendASCII("cache_test_stress"); base::Thread cache_thread("CacheThread"); if (!cache_thread.StartWithOptions( base::Thread::Options(base::MessageLoop::TYPE_IO, 0))) return; g_data = new Data(); g_data->iteration = iteration; g_data->cache = new disk_cache::BackendImpl( path, mask, cache_thread.task_runner().get(), NULL); g_data->cache->SetMaxSize(cache_size); g_data->cache->SetFlags(disk_cache::kNoLoadProtection); net::TestCompletionCallback cb; int rv = g_data->cache->Init(cb.callback()); if (cb.GetResult(rv) != net::OK) { printf("Unable to initialize cache.\n"); return; } printf("Iteration %d, initial entries: %d\n", iteration, g_data->cache->GetEntryCount()); int seed = static_cast(Time::Now().ToInternalValue()); srand(seed); for (int i = 0; i < kNumKeys; i++) g_data->keys[i] = GenerateStressKey(); base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, base::Bind(&LoopTask)); base::RunLoop().Run(); } // We want to prevent the timer thread from killing the process while we are // waiting for the debugger to attach. bool g_crashing = false; // RunSoon() and CrashCallback() reference each other, unfortunately. void RunSoon(scoped_refptr task_runner); void CrashCallback() { // Keep trying to run. RunSoon(base::ThreadTaskRunnerHandle::Get()); if (g_crashing) return; if (rand() % 100 > 30) { printf("sweet death...\n"); // Terminate the current process without doing normal process-exit cleanup. base::Process::TerminateCurrentProcessImmediately(kExpectedCrash); } } void RunSoon(scoped_refptr task_runner) { const base::TimeDelta kTaskDelay = base::TimeDelta::FromSeconds(10); task_runner->PostDelayedTask(FROM_HERE, base::Bind(&CrashCallback), kTaskDelay); } // We leak everything here :) bool StartCrashThread() { base::Thread* thread = new base::Thread("party_crasher"); if (!thread->Start()) return false; RunSoon(thread->task_runner()); return true; } void CrashHandler(const char* file, int line, const base::StringPiece str, const base::StringPiece stack_trace) { g_crashing = true; base::debug::BreakDebugger(); } bool MessageHandler(int severity, const char* file, int line, size_t message_start, const std::string& str) { const size_t kMaxMessageLen = 48; char message[kMaxMessageLen]; size_t len = std::min(str.length() - message_start, kMaxMessageLen - 1); memcpy(message, str.c_str() + message_start, len); message[len] = '\0'; #if !defined(DISK_CACHE_TRACE_TO_LOG) disk_cache::Trace("%s", message); #endif return false; } // ----------------------------------------------------------------------- #if defined(OS_WIN) // {B9A153D4-31C3-48e4-9ABF-D54383F14A0D} const GUID kStressCacheTraceProviderName = { 0xb9a153d4, 0x31c3, 0x48e4, { 0x9a, 0xbf, 0xd5, 0x43, 0x83, 0xf1, 0x4a, 0xd } }; #endif int main(int argc, const char* argv[]) { // Setup an AtExitManager so Singleton objects will be destructed. base::AtExitManager at_exit_manager; if (argc < 2) return MasterCode(); logging::ScopedLogAssertHandler scoped_assert_handler( base::Bind(CrashHandler)); logging::SetLogMessageHandler(MessageHandler); #if defined(OS_WIN) logging::LogEventProvider::Initialize(kStressCacheTraceProviderName); #else base::CommandLine::Init(argc, argv); logging::LoggingSettings settings; settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG; logging::InitLogging(settings); #endif // Some time for the memory manager to flush stuff. base::PlatformThread::Sleep(base::TimeDelta::FromSeconds(3)); base::MessageLoopForIO message_loop; char* end; long int iteration = strtol(argv[1], &end, 0); if (!StartCrashThread()) { printf("failed to start thread\n"); return kError; } StressTheCache(iteration); return 0; }