# Copyright (c) 2014 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import("//build/config/sysroot.gni") import("//build/config/nacl/config.gni") import("//build/toolchain/nacl_toolchain.gni") # Add the toolchain revision as a preprocessor define so that sources are # rebuilt when a toolchain is updated. # Idea we could use the toolchain deps feature, but currently that feature is # bugged and does not trigger a rebuild. # https://code.google.com/p/chromium/issues/detail?id=431880 # Calls to get the toolchain revision are relatively slow, so do them all in a # single batch to amortize python startup, etc. revisions = exec_script("//native_client/build/get_toolchain_revision.py", [ "nacl_x86_glibc", "nacl_arm_glibc", "pnacl_newlib", ], "trim list lines") nacl_x86_glibc_rev = revisions[0] nacl_arm_glibc_rev = revisions[1] pnacl_newlib_rev = revisions[2] if (host_os == "win") { toolsuffix = ".exe" } else { toolsuffix = "" } # The PNaCl toolchain tools are all wrapper scripts rather than binary # executables. On POSIX systems, nobody cares what kind of executable # file you are. But on Windows, scripts (.bat files) cannot be run # directly and need the Windows shell (cmd.exe) specified explicily. if (host_os == "win") { # NOTE! The //build/toolchain/gcc_*_wrapper.py scripts recognize # this exact prefix string, so they must be updated if this string # is changed in any way. scriptprefix = "cmd /c call " scriptsuffix = ".bat" } else { scriptprefix = "" scriptsuffix = "" } # When the compilers are run via goma or ccache rather than directly by # GN/Ninja, the goma/ccache wrapper handles .bat files but gets confused # by being given the scriptprefix. if (host_os == "win" && !use_goma && cc_wrapper == "") { compiler_scriptprefix = scriptprefix } else { compiler_scriptprefix = "" } template("pnacl_toolchain") { assert(defined(invoker.executable_extension), "Must define executable_extension") nacl_toolchain(target_name) { toolchain_package = "pnacl_newlib" toolchain_revision = pnacl_newlib_rev toolprefix = rebase_path("${nacl_toolchain_dir}/${toolchain_package}/bin/pnacl-", root_build_dir) cc = compiler_scriptprefix + toolprefix + "clang" + scriptsuffix cxx = compiler_scriptprefix + toolprefix + "clang++" + scriptsuffix ar = scriptprefix + toolprefix + "ar" + scriptsuffix readelf = scriptprefix + toolprefix + "readelf" + scriptsuffix nm = scriptprefix + toolprefix + "nm" + scriptsuffix if (defined(invoker.strip)) { strip = scriptprefix + toolprefix + invoker.strip + scriptsuffix } forward_variables_from(invoker, [ "executable_extension", "is_clang_analysis_supported", ]) # Note this is not the usual "ld = cxx" because "ld" uses are # never run via goma, so this needs scriptprefix. ld = scriptprefix + toolprefix + "clang++" + scriptsuffix toolchain_args = { is_clang = true current_cpu = "pnacl" use_lld = false } } } pnacl_toolchain("newlib_pnacl") { executable_extension = ".pexe" # The pnacl-finalize tool turns a .pexe.debug file into a .pexe file. # It's very similar in purpose to the traditional "strip" utility: it # turns what comes out of the linker into what you actually want to # distribute and run. PNaCl doesn't have a "strip"-like utility that # you ever actually want to use other than pnacl-finalize, so just # make pnacl-finalize the strip tool rather than adding an additional # step like "postlink" to run pnacl-finalize. strip = "finalize" } pnacl_toolchain("newlib_pnacl_nonsfi") { executable_extension = "" strip = "strip" if (use_clang_static_analyzer) { is_clang_analysis_supported = false } } template("nacl_glibc_toolchain") { toolchain_cpu = target_name assert(defined(invoker.toolchain_tuple), "Must define toolchain_tuple") assert(defined(invoker.toolchain_package), "Must define toolchain_package") assert(defined(invoker.toolchain_revision), "Must define toolchain_revision") forward_variables_from(invoker, [ "toolchain_package", "toolchain_revision", ]) toolprefix = rebase_path("${nacl_toolchain_dir}/${toolchain_package}/bin/" + invoker.toolchain_tuple + "-", root_build_dir) nacl_toolchain("glibc_" + toolchain_cpu) { cc = toolprefix + "gcc" + toolsuffix cxx = toolprefix + "g++" + toolsuffix ar = toolprefix + "ar" + toolsuffix ld = cxx readelf = toolprefix + "readelf" + toolsuffix nm = toolprefix + "nm" + toolsuffix strip = toolprefix + "strip" + toolsuffix toolchain_args = { current_cpu = toolchain_cpu is_clang = false is_nacl_glibc = true use_lld = false } } } nacl_glibc_toolchain("x86") { toolchain_package = "nacl_x86_glibc" toolchain_revision = nacl_x86_glibc_rev # Rely on the :compiler_cpu_abi config adding the -m32 flag here rather # than using the i686-nacl binary directly. This is a because i686-nacl-gcc # is a shell script wrapper around x86_64-nacl-gcc and goma has trouble with # compiler executables that are shell scripts (so the i686 'compiler' is not # currently in goma). toolchain_tuple = "x86_64-nacl" } nacl_glibc_toolchain("x64") { toolchain_package = "nacl_x86_glibc" toolchain_revision = nacl_x86_glibc_rev toolchain_tuple = "x86_64-nacl" } nacl_glibc_toolchain("arm") { toolchain_package = "nacl_arm_glibc" toolchain_revision = nacl_arm_glibc_rev toolchain_tuple = "arm-nacl" } template("nacl_clang_toolchain") { toolchain_cpu = target_name assert(defined(invoker.toolchain_tuple), "Must define toolchain_tuple") toolchain_package = "pnacl_newlib" toolchain_revision = pnacl_newlib_rev toolprefix = rebase_path("${nacl_toolchain_dir}/${toolchain_package}/bin/" + invoker.toolchain_tuple + "-", root_build_dir) nacl_toolchain("clang_newlib_" + toolchain_cpu) { cc = toolprefix + "clang" + toolsuffix cxx = toolprefix + "clang++" + toolsuffix ar = toolprefix + "ar" + toolsuffix ld = cxx readelf = toolprefix + "readelf" + toolsuffix nm = toolprefix + "nm" + toolsuffix strip = toolprefix + "strip" + toolsuffix toolchain_args = { current_cpu = toolchain_cpu is_clang = true use_lld = false } } } template("nacl_irt_toolchain") { toolchain_cpu = target_name assert(defined(invoker.toolchain_tuple), "Must define toolchain_tuple") toolchain_package = "pnacl_newlib" toolchain_revision = pnacl_newlib_rev toolprefix = rebase_path("${nacl_toolchain_dir}/${toolchain_package}/bin/" + invoker.toolchain_tuple + "-", root_build_dir) link_irt = rebase_path("//native_client/build/link_irt.py", root_build_dir) tls_edit_label = "//native_client/src/tools/tls_edit:tls_edit($host_toolchain)" host_toolchain_out_dir = rebase_path(get_label_info(tls_edit_label, "root_out_dir"), root_build_dir) tls_edit = "${host_toolchain_out_dir}/tls_edit" nacl_toolchain("irt_" + toolchain_cpu) { cc = toolprefix + "clang" + toolsuffix cxx = toolprefix + "clang++" + toolsuffix ar = toolprefix + "ar" + toolsuffix readelf = toolprefix + "readelf" + toolsuffix nm = toolprefix + "nm" + toolsuffix strip = toolprefix + "strip" + toolsuffix # Some IRT implementations (notably, Chromium's) contain C++ code, # so we need to link w/ the C++ linker. ld = "${python_path} ${link_irt} --tls-edit=${tls_edit} --link-cmd=${cxx} --readelf-cmd=${readelf}" toolchain_args = { current_cpu = toolchain_cpu is_clang = true use_lld = false } # TODO(ncbray): depend on link script deps = [ tls_edit_label, ] } } template("nacl_clang_toolchains") { assert(defined(invoker.toolchain_tuple), "Must define toolchain_tuple") nacl_clang_toolchain(target_name) { toolchain_tuple = invoker.toolchain_tuple } nacl_irt_toolchain(target_name) { toolchain_tuple = invoker.toolchain_tuple } } nacl_clang_toolchains("x86") { # Rely on :compiler_cpu_abi adding -m32. See nacl_x86_glibc above. toolchain_tuple = "x86_64-nacl" } nacl_clang_toolchains("x64") { toolchain_tuple = "x86_64-nacl" } nacl_clang_toolchains("arm") { toolchain_tuple = "arm-nacl" } nacl_clang_toolchains("mipsel") { toolchain_tuple = "mipsel-nacl" }