// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_pump_android.h" #include #include #include #include #include #include #include #include #include #include "base/android/jni_android.h" #include "base/android/scoped_java_ref.h" #include "base/callback_helpers.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/run_loop.h" // Android stripped sys/timerfd.h out of their platform headers, so we have to // use syscall to make use of timerfd. Once the min API level is 20, we can // directly use timerfd.h. #ifndef __NR_timerfd_create #error "Unable to find syscall for __NR_timerfd_create" #endif #ifndef TFD_TIMER_ABSTIME #define TFD_TIMER_ABSTIME (1 << 0) #endif using base::android::JavaParamRef; using base::android::ScopedJavaLocalRef; namespace base { namespace { // See sys/timerfd.h int timerfd_create(int clockid, int flags) { return syscall(__NR_timerfd_create, clockid, flags); } // See sys/timerfd.h int timerfd_settime(int ufc, int flags, const struct itimerspec* utmr, struct itimerspec* otmr) { return syscall(__NR_timerfd_settime, ufc, flags, utmr, otmr); } int NonDelayedLooperCallback(int fd, int events, void* data) { if (events & ALOOPER_EVENT_HANGUP) return 0; DCHECK(events & ALOOPER_EVENT_INPUT); MessagePumpForUI* pump = reinterpret_cast(data); pump->OnNonDelayedLooperCallback(); return 1; // continue listening for events } int DelayedLooperCallback(int fd, int events, void* data) { if (events & ALOOPER_EVENT_HANGUP) return 0; DCHECK(events & ALOOPER_EVENT_INPUT); MessagePumpForUI* pump = reinterpret_cast(data); pump->OnDelayedLooperCallback(); return 1; // continue listening for events } } // namespace MessagePumpForUI::MessagePumpForUI() { // The Android native ALooper uses epoll to poll our file descriptors and wake // us up. We use a simple level-triggered eventfd to signal that non-delayed // work is available, and a timerfd to signal when delayed work is ready to // be run. non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); CHECK_NE(non_delayed_fd_, -1); DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC); // We can't create the timerfd with TFD_NONBLOCK | TFD_CLOEXEC as we can't // include timerfd.h. See comments above on __NR_timerfd_create. It looks like // they're just aliases to O_NONBLOCK and O_CLOEXEC anyways, so this should be // fine. delayed_fd_ = timerfd_create(CLOCK_MONOTONIC, O_NONBLOCK | O_CLOEXEC); CHECK_NE(delayed_fd_, -1); looper_ = ALooper_prepare(0); DCHECK(looper_); // Add a reference to the looper so it isn't deleted on us. ALooper_acquire(looper_); ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT, &NonDelayedLooperCallback, reinterpret_cast(this)); ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT, &DelayedLooperCallback, reinterpret_cast(this)); } MessagePumpForUI::~MessagePumpForUI() { DCHECK_EQ(ALooper_forThread(), looper_); ALooper_removeFd(looper_, non_delayed_fd_); ALooper_removeFd(looper_, delayed_fd_); ALooper_release(looper_); looper_ = nullptr; close(non_delayed_fd_); close(delayed_fd_); } void MessagePumpForUI::OnDelayedLooperCallback() { if (ShouldQuit()) return; // Clear the fd. uint64_t value; int ret = read(delayed_fd_, &value, sizeof(value)); // TODO(mthiesse): Figure out how it's possible to hit EAGAIN here. // According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html // EAGAIN only happens if no timer has expired. Also according to the man page // poll only returns readable when a timer has expired. So this function will // only be called when a timer has expired, but reading reveals no timer has // expired... // Quit() and ScheduleDelayedWork() are the only other functions that touch // the timerfd, and they both run on the same thread as this callback, so // there are no obvious timing or multi-threading related issues. DPCHECK(ret >= 0 || errno == EAGAIN); delayed_scheduled_time_ = base::TimeTicks(); base::TimeTicks next_delayed_work_time; delegate_->DoDelayedWork(&next_delayed_work_time); if (!next_delayed_work_time.is_null()) { ScheduleDelayedWork(next_delayed_work_time); } if (ShouldQuit()) return; // We may be idle now, so pump the loop to find out. ScheduleWork(); } void MessagePumpForUI::OnNonDelayedLooperCallback() { base::TimeTicks next_delayed_work_time; bool did_any_work = false; // Runs all native tasks scheduled to run, scheduling delayed work if // necessary. while (true) { bool did_work_this_loop = false; if (ShouldQuit()) return; did_work_this_loop = delegate_->DoWork(); if (ShouldQuit()) return; did_work_this_loop |= delegate_->DoDelayedWork(&next_delayed_work_time); did_any_work |= did_work_this_loop; // If we didn't do any work, we're out of native tasks to run, and we should // return control to the looper to run Java tasks. if (!did_work_this_loop) break; } // If we did any work, return control to the looper to run java tasks before // we call DoIdleWork(). We haven't cleared the fd yet, so we'll get woken up // again soon to check for idle-ness. if (did_any_work) return; if (ShouldQuit()) return; // Read the file descriptor, resetting its contents to 0 and reading back the // stored value. // See http://man7.org/linux/man-pages/man2/eventfd.2.html uint64_t value = 0; int ret = read(non_delayed_fd_, &value, sizeof(value)); DPCHECK(ret >= 0); // If we read a value > 1, it means we lost the race to clear the fd before a // new task was posted. This is okay, we can just re-schedule work. if (value > 1) { ScheduleWork(); } else { // At this point, the java looper might not be idle - it's impossible to // know pre-Android-M, so we may end up doing Idle work while java tasks are // still queued up. Note that this won't cause us to fail to run java tasks // using QuitWhenIdle, as the JavaHandlerThread will finish running all // currently scheduled tasks before it quits. Also note that we can't just // add an idle callback to the java looper, as that will fire even if native // tasks are still queued up. DoIdleWork(); if (!next_delayed_work_time.is_null()) { ScheduleDelayedWork(next_delayed_work_time); } } } void MessagePumpForUI::DoIdleWork() { if (delegate_->DoIdleWork()) { // If DoIdleWork() resulted in any work, we're not idle yet. We need to pump // the loop here because we may in fact be idle after doing idle work // without any new tasks being queued. ScheduleWork(); } } void MessagePumpForUI::Run(Delegate* delegate) { DCHECK(IsTestImplementation()); // This function is only called in tests. We manually pump the native looper // which won't run any java tasks. quit_ = false; SetDelegate(delegate); // Pump the loop once in case we're starting off idle as ALooper_pollOnce will // never return in that case. ScheduleWork(); while (true) { // Waits for either the delayed, or non-delayed fds to be signalled, calling // either OnDelayedLooperCallback, or OnNonDelayedLooperCallback, // respectively. This uses Android's Looper implementation, which is based // off of epoll. ALooper_pollOnce(-1, nullptr, nullptr, nullptr); if (quit_) break; } } void MessagePumpForUI::Attach(Delegate* delegate) { DCHECK(!quit_); // Since the Looper is controlled by the UI thread or JavaHandlerThread, we // can't use Run() like we do on other platforms or we would prevent Java // tasks from running. Instead we create and initialize a run loop here, then // return control back to the Looper. SetDelegate(delegate); run_loop_ = std::make_unique(); // Since the RunLoop was just created above, BeforeRun should be guaranteed to // return true (it only returns false if the RunLoop has been Quit already). if (!run_loop_->BeforeRun()) NOTREACHED(); } void MessagePumpForUI::Quit() { if (quit_) return; quit_ = true; int64_t value; // Clear any pending timer. read(delayed_fd_, &value, sizeof(value)); // Clear the eventfd. read(non_delayed_fd_, &value, sizeof(value)); if (run_loop_) { run_loop_->AfterRun(); run_loop_ = nullptr; } if (on_quit_callback_) { std::move(on_quit_callback_).Run(); } } void MessagePumpForUI::ScheduleWork() { if (ShouldQuit()) return; // Write (add) 1 to the eventfd. This tells the Looper to wake up and call our // callback, allowing us to run tasks. This also allows us to detect, when we // clear the fd, whether additional work was scheduled after we finished // performing work, but before we cleared the fd, as we'll read back >=2 // instead of 1 in that case. // See the eventfd man pages // (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how // the read and write APIs for this file descriptor work, specifically without // EFD_SEMAPHORE. uint64_t value = 1; int ret = write(non_delayed_fd_, &value, sizeof(value)); DPCHECK(ret >= 0); } void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { if (ShouldQuit()) return; if (!delayed_scheduled_time_.is_null() && delayed_work_time >= delayed_scheduled_time_) { return; } DCHECK(!delayed_work_time.is_null()); delayed_scheduled_time_ = delayed_work_time; int64_t nanos = delayed_work_time.since_origin().InNanoseconds(); struct itimerspec ts; ts.it_interval.tv_sec = 0; // Don't repeat. ts.it_interval.tv_nsec = 0; ts.it_value.tv_sec = nanos / TimeTicks::kNanosecondsPerSecond; ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond; int ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr); DPCHECK(ret >= 0); } void MessagePumpForUI::QuitWhenIdle(base::OnceClosure callback) { DCHECK(!on_quit_callback_); DCHECK(run_loop_); on_quit_callback_ = std::move(callback); run_loop_->QuitWhenIdle(); // Pump the loop in case we're already idle. ScheduleWork(); } bool MessagePumpForUI::IsTestImplementation() const { return false; } } // namespace base