// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/memory/mem_entry_impl.h" #include #include #include "base/bind.h" #include "base/logging.h" #include "base/metrics/histogram_macros.h" #include "base/strings/stringprintf.h" #include "base/values.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/disk_cache/memory/mem_backend_impl.h" #include "net/disk_cache/net_log_parameters.h" #include "net/log/net_log_event_type.h" #include "net/log/net_log_source_type.h" using base::Time; namespace disk_cache { namespace { const int kSparseData = 1; // Maximum size of a sparse entry is 2 to the power of this number. const int kMaxSparseEntryBits = 12; // Sparse entry has maximum size of 4KB. const int kMaxSparseEntrySize = 1 << kMaxSparseEntryBits; // This enum is used for histograms, so only append to the end. enum WriteResult { WRITE_RESULT_SUCCESS = 0, WRITE_RESULT_INVALID_ARGUMENT = 1, WRITE_RESULT_OVER_MAX_ENTRY_SIZE = 2, WRITE_RESULT_EXCEEDED_CACHE_STORAGE_SIZE = 3, WRITE_RESULT_MAX = 4, }; void RecordWriteResult(WriteResult result) { UMA_HISTOGRAM_ENUMERATION("MemCache.WriteResult", result, WRITE_RESULT_MAX); } // Convert global offset to child index. int ToChildIndex(int64_t offset) { return static_cast(offset >> kMaxSparseEntryBits); } // Convert global offset to offset in child entry. int ToChildOffset(int64_t offset) { return static_cast(offset & (kMaxSparseEntrySize - 1)); } // Returns a name for a child entry given the base_name of the parent and the // child_id. This name is only used for logging purposes. // If the entry is called entry_name, child entries will be named something // like Range_entry_name:YYY where YYY is the number of the particular child. std::string GenerateChildName(const std::string& base_name, int child_id) { return base::StringPrintf("Range_%s:%i", base_name.c_str(), child_id); } // Returns NetLog parameters for the creation of a MemEntryImpl. A separate // function is needed because child entries don't store their key(). std::unique_ptr NetLogEntryCreationCallback( const MemEntryImpl* entry, net::NetLogCaptureMode /* capture_mode */) { std::unique_ptr dict(new base::DictionaryValue()); std::string key; switch (entry->type()) { case MemEntryImpl::PARENT_ENTRY: key = entry->key(); break; case MemEntryImpl::CHILD_ENTRY: key = GenerateChildName(entry->parent()->key(), entry->child_id()); break; } dict->SetString("key", key); dict->SetBoolean("created", true); return std::move(dict); } } // namespace MemEntryImpl::MemEntryImpl(MemBackendImpl* backend, const std::string& key, net::NetLog* net_log) : MemEntryImpl(backend, key, 0, // child_id nullptr, // parent net_log) { Open(); // Just creating the entry (without any data) could cause the storage to // grow beyond capacity, but we allow such infractions. backend_->ModifyStorageSize(GetStorageSize()); } MemEntryImpl::MemEntryImpl(MemBackendImpl* backend, int child_id, MemEntryImpl* parent, net::NetLog* net_log) : MemEntryImpl(backend, std::string(), // key child_id, parent, net_log) { (*parent_->children_)[child_id] = this; } void MemEntryImpl::Open() { // Only a parent entry can be opened. DCHECK_EQ(PARENT_ENTRY, type()); ++ref_count_; DCHECK_GE(ref_count_, 1); DCHECK(!doomed_); } bool MemEntryImpl::InUse() const { if (type() == CHILD_ENTRY) return parent_->InUse(); return ref_count_ > 0; } int MemEntryImpl::GetStorageSize() const { int storage_size = static_cast(key_.size()); for (const auto& i : data_) storage_size += i.size(); return storage_size; } void MemEntryImpl::UpdateStateOnUse(EntryModified modified_enum) { if (!doomed_) backend_->OnEntryUpdated(this); last_used_ = Time::Now(); if (modified_enum == ENTRY_WAS_MODIFIED) last_modified_ = last_used_; } void MemEntryImpl::Doom() { if (!doomed_) { doomed_ = true; backend_->OnEntryDoomed(this); net_log_.AddEvent(net::NetLogEventType::ENTRY_DOOM); } if (!ref_count_) delete this; } void MemEntryImpl::Close() { DCHECK_EQ(PARENT_ENTRY, type()); --ref_count_; DCHECK_GE(ref_count_, 0); if (!ref_count_ && doomed_) delete this; } std::string MemEntryImpl::GetKey() const { // A child entry doesn't have key so this method should not be called. DCHECK_EQ(PARENT_ENTRY, type()); return key_; } Time MemEntryImpl::GetLastUsed() const { return last_used_; } Time MemEntryImpl::GetLastModified() const { return last_modified_; } int32_t MemEntryImpl::GetDataSize(int index) const { if (index < 0 || index >= kNumStreams) return 0; return data_[index].size(); } int MemEntryImpl::ReadData(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (net_log_.IsCapturing()) { net_log_.BeginEvent( net::NetLogEventType::ENTRY_READ_DATA, CreateNetLogReadWriteDataCallback(index, offset, buf_len, false)); } int result = InternalReadData(index, offset, buf, buf_len); if (net_log_.IsCapturing()) { net_log_.EndEvent(net::NetLogEventType::ENTRY_READ_DATA, CreateNetLogReadWriteCompleteCallback(result)); } return result; } int MemEntryImpl::WriteData(int index, int offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback, bool truncate) { if (net_log_.IsCapturing()) { net_log_.BeginEvent( net::NetLogEventType::ENTRY_WRITE_DATA, CreateNetLogReadWriteDataCallback(index, offset, buf_len, truncate)); } int result = InternalWriteData(index, offset, buf, buf_len, truncate); if (net_log_.IsCapturing()) { net_log_.EndEvent(net::NetLogEventType::ENTRY_WRITE_DATA, CreateNetLogReadWriteCompleteCallback(result)); } return result; } int MemEntryImpl::ReadSparseData(int64_t offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (net_log_.IsCapturing()) { net_log_.BeginEvent(net::NetLogEventType::SPARSE_READ, CreateNetLogSparseOperationCallback(offset, buf_len)); } int result = InternalReadSparseData(offset, buf, buf_len); if (net_log_.IsCapturing()) net_log_.EndEvent(net::NetLogEventType::SPARSE_READ); return result; } int MemEntryImpl::WriteSparseData(int64_t offset, IOBuffer* buf, int buf_len, const CompletionCallback& callback) { if (net_log_.IsCapturing()) { net_log_.BeginEvent(net::NetLogEventType::SPARSE_WRITE, CreateNetLogSparseOperationCallback(offset, buf_len)); } int result = InternalWriteSparseData(offset, buf, buf_len); if (net_log_.IsCapturing()) net_log_.EndEvent(net::NetLogEventType::SPARSE_WRITE); return result; } int MemEntryImpl::GetAvailableRange(int64_t offset, int len, int64_t* start, const CompletionCallback& callback) { if (net_log_.IsCapturing()) { net_log_.BeginEvent(net::NetLogEventType::SPARSE_GET_RANGE, CreateNetLogSparseOperationCallback(offset, len)); } int result = InternalGetAvailableRange(offset, len, start); if (net_log_.IsCapturing()) { net_log_.EndEvent( net::NetLogEventType::SPARSE_GET_RANGE, CreateNetLogGetAvailableRangeResultCallback(*start, result)); } return result; } bool MemEntryImpl::CouldBeSparse() const { DCHECK_EQ(PARENT_ENTRY, type()); return (children_.get() != nullptr); } int MemEntryImpl::ReadyForSparseIO(const CompletionCallback& callback) { return net::OK; } size_t MemEntryImpl::EstimateMemoryUsage() const { // Subtlety: the entries in children_ are not double counted, as the entry // pointers won't be followed by EstimateMemoryUsage. return base::trace_event::EstimateMemoryUsage(data_) + base::trace_event::EstimateMemoryUsage(key_) + base::trace_event::EstimateMemoryUsage(children_); } // ------------------------------------------------------------------------ MemEntryImpl::MemEntryImpl(MemBackendImpl* backend, const ::std::string& key, int child_id, MemEntryImpl* parent, net::NetLog* net_log) : key_(key), ref_count_(0), child_id_(child_id), child_first_pos_(0), parent_(parent), last_modified_(Time::Now()), last_used_(last_modified_), backend_(backend), doomed_(false) { backend_->OnEntryInserted(this); net_log_ = net::NetLogWithSource::Make( net_log, net::NetLogSourceType::MEMORY_CACHE_ENTRY); net_log_.BeginEvent(net::NetLogEventType::DISK_CACHE_MEM_ENTRY_IMPL, base::Bind(&NetLogEntryCreationCallback, this)); } MemEntryImpl::~MemEntryImpl() { backend_->ModifyStorageSize(-GetStorageSize()); if (type() == PARENT_ENTRY) { if (children_) { EntryMap children; children_->swap(children); for (auto& it : children) { // Since |this| is stored in the map, it should be guarded against // double dooming, which will result in double destruction. if (it.second != this) it.second->Doom(); } } } else { parent_->children_->erase(child_id_); } net_log_.EndEvent(net::NetLogEventType::DISK_CACHE_MEM_ENTRY_IMPL); } int MemEntryImpl::InternalReadData(int index, int offset, IOBuffer* buf, int buf_len) { DCHECK(type() == PARENT_ENTRY || index == kSparseData); if (index < 0 || index >= kNumStreams || buf_len < 0) return net::ERR_INVALID_ARGUMENT; int entry_size = data_[index].size(); if (offset >= entry_size || offset < 0 || !buf_len) return 0; if (offset + buf_len > entry_size) buf_len = entry_size - offset; UpdateStateOnUse(ENTRY_WAS_NOT_MODIFIED); std::copy(data_[index].begin() + offset, data_[index].begin() + offset + buf_len, buf->data()); return buf_len; } int MemEntryImpl::InternalWriteData(int index, int offset, IOBuffer* buf, int buf_len, bool truncate) { DCHECK(type() == PARENT_ENTRY || index == kSparseData); if (index < 0 || index >= kNumStreams) { RecordWriteResult(WRITE_RESULT_INVALID_ARGUMENT); return net::ERR_INVALID_ARGUMENT; } if (offset < 0 || buf_len < 0) { RecordWriteResult(WRITE_RESULT_INVALID_ARGUMENT); return net::ERR_INVALID_ARGUMENT; } int max_file_size = backend_->MaxFileSize(); // offset of buf_len could be negative numbers. if (offset > max_file_size || buf_len > max_file_size || offset + buf_len > max_file_size) { RecordWriteResult(WRITE_RESULT_OVER_MAX_ENTRY_SIZE); return net::ERR_FAILED; } int old_data_size = data_[index].size(); if (truncate || old_data_size < offset + buf_len) { int delta = offset + buf_len - old_data_size; backend_->ModifyStorageSize(delta); if (backend_->HasExceededStorageSize()) { backend_->ModifyStorageSize(-delta); RecordWriteResult(WRITE_RESULT_EXCEEDED_CACHE_STORAGE_SIZE); return net::ERR_INSUFFICIENT_RESOURCES; } data_[index].resize(offset + buf_len); // Zero fill any hole. if (old_data_size < offset) { std::fill(data_[index].begin() + old_data_size, data_[index].begin() + offset, 0); } } UpdateStateOnUse(ENTRY_WAS_MODIFIED); RecordWriteResult(WRITE_RESULT_SUCCESS); if (!buf_len) return 0; std::copy(buf->data(), buf->data() + buf_len, data_[index].begin() + offset); return buf_len; } int MemEntryImpl::InternalReadSparseData(int64_t offset, IOBuffer* buf, int buf_len) { DCHECK_EQ(PARENT_ENTRY, type()); if (!InitSparseInfo()) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; if (offset < 0 || buf_len < 0) return net::ERR_INVALID_ARGUMENT; // We will keep using this buffer and adjust the offset in this buffer. scoped_refptr io_buf( new net::DrainableIOBuffer(buf, buf_len)); // Iterate until we have read enough. while (io_buf->BytesRemaining()) { MemEntryImpl* child = GetChild(offset + io_buf->BytesConsumed(), false); // No child present for that offset. if (!child) break; // We then need to prepare the child offset and len. int child_offset = ToChildOffset(offset + io_buf->BytesConsumed()); // If we are trying to read from a position that the child entry has no data // we should stop. if (child_offset < child->child_first_pos_) break; if (net_log_.IsCapturing()) { net_log_.BeginEvent( net::NetLogEventType::SPARSE_READ_CHILD_DATA, CreateNetLogSparseReadWriteCallback(child->net_log_.source(), io_buf->BytesRemaining())); } int ret = child->ReadData(kSparseData, child_offset, io_buf.get(), io_buf->BytesRemaining(), CompletionCallback()); if (net_log_.IsCapturing()) { net_log_.EndEventWithNetErrorCode( net::NetLogEventType::SPARSE_READ_CHILD_DATA, ret); } // If we encounter an error in one entry, return immediately. if (ret < 0) return ret; else if (ret == 0) break; // Increment the counter by number of bytes read in the child entry. io_buf->DidConsume(ret); } UpdateStateOnUse(ENTRY_WAS_NOT_MODIFIED); return io_buf->BytesConsumed(); } int MemEntryImpl::InternalWriteSparseData(int64_t offset, IOBuffer* buf, int buf_len) { DCHECK_EQ(PARENT_ENTRY, type()); if (!InitSparseInfo()) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; if (offset < 0 || buf_len < 0) return net::ERR_INVALID_ARGUMENT; scoped_refptr io_buf( new net::DrainableIOBuffer(buf, buf_len)); // This loop walks through child entries continuously starting from |offset| // and writes blocks of data (of maximum size kMaxSparseEntrySize) into each // child entry until all |buf_len| bytes are written. The write operation can // start in the middle of an entry. while (io_buf->BytesRemaining()) { MemEntryImpl* child = GetChild(offset + io_buf->BytesConsumed(), true); int child_offset = ToChildOffset(offset + io_buf->BytesConsumed()); // Find the right amount to write, this evaluates the remaining bytes to // write and remaining capacity of this child entry. int write_len = std::min(static_cast(io_buf->BytesRemaining()), kMaxSparseEntrySize - child_offset); // Keep a record of the last byte position (exclusive) in the child. int data_size = child->GetDataSize(kSparseData); if (net_log_.IsCapturing()) { net_log_.BeginEvent(net::NetLogEventType::SPARSE_WRITE_CHILD_DATA, CreateNetLogSparseReadWriteCallback( child->net_log_.source(), write_len)); } // Always writes to the child entry. This operation may overwrite data // previously written. // TODO(hclam): if there is data in the entry and this write is not // continuous we may want to discard this write. int ret = child->WriteData(kSparseData, child_offset, io_buf.get(), write_len, CompletionCallback(), true); if (net_log_.IsCapturing()) { net_log_.EndEventWithNetErrorCode( net::NetLogEventType::SPARSE_WRITE_CHILD_DATA, ret); } if (ret < 0) return ret; else if (ret == 0) break; // Keep a record of the first byte position in the child if the write was // not aligned nor continuous. This is to enable witting to the middle // of an entry and still keep track of data off the aligned edge. if (data_size != child_offset) child->child_first_pos_ = child_offset; // Adjust the offset in the IO buffer. io_buf->DidConsume(ret); } UpdateStateOnUse(ENTRY_WAS_MODIFIED); return io_buf->BytesConsumed(); } int MemEntryImpl::InternalGetAvailableRange(int64_t offset, int len, int64_t* start) { DCHECK_EQ(PARENT_ENTRY, type()); DCHECK(start); if (!InitSparseInfo()) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; if (offset < 0 || len < 0 || !start) return net::ERR_INVALID_ARGUMENT; MemEntryImpl* current_child = nullptr; // Find the first child and record the number of empty bytes. int empty = FindNextChild(offset, len, ¤t_child); if (current_child && empty < len) { *start = offset + empty; len -= empty; // Counts the number of continuous bytes. int continuous = 0; // This loop scan for continuous bytes. while (len && current_child) { // Number of bytes available in this child. int data_size = current_child->GetDataSize(kSparseData) - ToChildOffset(*start + continuous); if (data_size > len) data_size = len; // We have found more continuous bytes so increment the count. Also // decrement the length we should scan. continuous += data_size; len -= data_size; // If the next child is discontinuous, break the loop. if (FindNextChild(*start + continuous, len, ¤t_child)) break; } return continuous; } *start = offset; return 0; } bool MemEntryImpl::InitSparseInfo() { DCHECK_EQ(PARENT_ENTRY, type()); if (!children_) { // If we already have some data in sparse stream but we are being // initialized as a sparse entry, we should fail. if (GetDataSize(kSparseData)) return false; children_.reset(new EntryMap()); // The parent entry stores data for the first block, so save this object to // index 0. (*children_)[0] = this; } return true; } MemEntryImpl* MemEntryImpl::GetChild(int64_t offset, bool create) { DCHECK_EQ(PARENT_ENTRY, type()); int index = ToChildIndex(offset); EntryMap::iterator i = children_->find(index); if (i != children_->end()) return i->second; if (create) return new MemEntryImpl(backend_, index, this, net_log_.net_log()); return nullptr; } int MemEntryImpl::FindNextChild(int64_t offset, int len, MemEntryImpl** child) { DCHECK(child); *child = nullptr; int scanned_len = 0; // This loop tries to find the first existing child. while (scanned_len < len) { // This points to the current offset in the child. int current_child_offset = ToChildOffset(offset + scanned_len); MemEntryImpl* current_child = GetChild(offset + scanned_len, false); if (current_child) { int child_first_pos = current_child->child_first_pos_; // This points to the first byte that we should be reading from, we need // to take care of the filled region and the current offset in the child. int first_pos = std::max(current_child_offset, child_first_pos); // If the first byte position we should read from doesn't exceed the // filled region, we have found the first child. if (first_pos < current_child->GetDataSize(kSparseData)) { *child = current_child; // We need to advance the scanned length. scanned_len += first_pos - current_child_offset; break; } } scanned_len += kMaxSparseEntrySize - current_child_offset; } return scanned_len; } } // namespace disk_cache