// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_loop.h" #include #include #include "base/bind.h" #include "base/callback_helpers.h" #include "base/compiler_specific.h" #include "base/debug/task_annotator.h" #include "base/logging.h" #include "base/memory/ptr_util.h" #include "base/message_loop/message_loop_task_runner.h" #include "base/message_loop/message_pump_default.h" #include "base/message_loop/message_pump_for_io.h" #include "base/message_loop/message_pump_for_ui.h" #include "base/message_loop/sequenced_task_source.h" #include "base/run_loop.h" #include "base/threading/thread_id_name_manager.h" #include "base/threading/thread_task_runner_handle.h" #include "base/trace_event/trace_event.h" #if defined(OS_MACOSX) #include "base/message_loop/message_pump_mac.h" #endif namespace base { namespace { MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = nullptr; std::unique_ptr ReturnPump(std::unique_ptr pump) { return pump; } } // namespace class MessageLoop::Controller : public SequencedTaskSource::Observer { public: // Constructs a MessageLoopController which controls |message_loop|, notifying // |task_annotator_| when tasks are queued scheduling work on |message_loop| // as fits. |message_loop| and |task_annotator_| will not be used after // DisconnectFromParent() returns. Controller(MessageLoop* message_loop); ~Controller() override; // SequencedTaskSource::Observer: void WillQueueTask(PendingTask* task) final; void DidQueueTask(bool was_empty) final; void StartScheduling(); // Disconnects |message_loop_| from this Controller instance (DidQueueTask() // will no-op from this point forward). void DisconnectFromParent(); // Shares this Controller's TaskAnnotator with MessageLoop as TaskAnnotator // requires DidQueueTask(x)/RunTask(x) to be invoked on the same TaskAnnotator // instance. debug::TaskAnnotator& task_annotator() { return task_annotator_; } private: // A TaskAnnotator which is owned by this Controller to be able to use it // without locking |message_loop_lock_|. It cannot be owned by MessageLoop // because this Controller cannot access |message_loop_| safely without the // lock. Note: the TaskAnnotator API itself is thread-safe. debug::TaskAnnotator task_annotator_; // Lock that serializes |message_loop_->ScheduleWork()| and access to all // members below. base::Lock message_loop_lock_; // Points to this Controller's outer MessageLoop instance. Null after // DisconnectFromParent(). MessageLoop* message_loop_; // False until StartScheduling() is called. bool is_ready_for_scheduling_ = false; // True if DidQueueTask() has been called before StartScheduling(); letting it // know whether it needs to ScheduleWork() right away or not. bool pending_schedule_work_ = false; DISALLOW_COPY_AND_ASSIGN(Controller); }; MessageLoop::Controller::Controller(MessageLoop* message_loop) : message_loop_(message_loop) {} MessageLoop::Controller::~Controller() { DCHECK(!message_loop_) << "DisconnectFromParent() needs to be invoked before destruction."; } void MessageLoop::Controller::WillQueueTask(PendingTask* task) { task_annotator_.WillQueueTask("MessageLoop::PostTask", task); } void MessageLoop::Controller::DidQueueTask(bool was_empty) { // Avoid locking if we don't need to schedule. if (!was_empty) return; AutoLock auto_lock(message_loop_lock_); if (message_loop_ && is_ready_for_scheduling_) message_loop_->ScheduleWork(); else pending_schedule_work_ = true; } void MessageLoop::Controller::StartScheduling() { AutoLock lock(message_loop_lock_); DCHECK(message_loop_); DCHECK(!is_ready_for_scheduling_); is_ready_for_scheduling_ = true; if (pending_schedule_work_) message_loop_->ScheduleWork(); } void MessageLoop::Controller::DisconnectFromParent() { AutoLock lock(message_loop_lock_); message_loop_ = nullptr; } //------------------------------------------------------------------------------ MessageLoop::MessageLoop(Type type) : MessageLoop(type, MessagePumpFactoryCallback()) { BindToCurrentThread(); } MessageLoop::MessageLoop(std::unique_ptr pump) : MessageLoop(TYPE_CUSTOM, BindOnce(&ReturnPump, std::move(pump))) { BindToCurrentThread(); } MessageLoop::~MessageLoop() { // If |pump_| is non-null, this message loop has been bound and should be the // current one on this thread. Otherwise, this loop is being destructed before // it was bound to a thread, so a different message loop (or no loop at all) // may be current. DCHECK((pump_ && MessageLoopCurrent::IsBoundToCurrentThreadInternal(this)) || (!pump_ && !MessageLoopCurrent::IsBoundToCurrentThreadInternal(this))); // iOS just attaches to the loop, it doesn't Run it. // TODO(stuartmorgan): Consider wiring up a Detach(). #if !defined(OS_IOS) // There should be no active RunLoops on this thread, unless this MessageLoop // isn't bound to the current thread (see other condition at the top of this // method). DCHECK( (!pump_ && !MessageLoopCurrent::IsBoundToCurrentThreadInternal(this)) || !RunLoop::IsRunningOnCurrentThread()); #endif // !defined(OS_IOS) #if defined(OS_WIN) if (in_high_res_mode_) Time::ActivateHighResolutionTimer(false); #endif // Clean up any unprocessed tasks, but take care: deleting a task could // result in the addition of more tasks (e.g., via DeleteSoon). We set a // limit on the number of times we will allow a deleted task to generate more // tasks. Normally, we should only pass through this loop once or twice. If // we end up hitting the loop limit, then it is probably due to one task that // is being stubborn. Inspect the queues to see who is left. bool tasks_remain; for (int i = 0; i < 100; ++i) { DeletePendingTasks(); // If we end up with empty queues, then break out of the loop. tasks_remain = sequenced_task_source_->HasTasks(); if (!tasks_remain) break; } DCHECK(!tasks_remain); // Let interested parties have one last shot at accessing this. for (auto& observer : destruction_observers_) observer.WillDestroyCurrentMessageLoop(); thread_task_runner_handle_.reset(); // Detach this instance's Controller from |this|. After this point, // |underlying_task_runner_| may still receive tasks and notify the controller // but the controller will no-op (and not use this MessageLoop after free). // |underlying_task_runner_| being ref-counted and potentially kept alive by // many SingleThreadTaskRunner refs, the best we can do is tell it to shutdown // after which it will start returning false to PostTasks that happen-after // this point (note that invoking Shutdown() first would not remove the need // to DisconnectFromParent() since the controller is invoked *after* a task is // enqueued and the incoming queue's lock is released (see // MessageLoopTaskRunner::AddToIncomingQueue()). // Details : while an "in-progress post tasks" refcount in Controller in lieu // of |message_loop_lock_| would be an option to handle the "pending post // tasks on shutdown" case, |message_loop_lock_| would still be required to // serialize ScheduleWork() call and as such that optimization isn't worth it. message_loop_controller_->DisconnectFromParent(); underlying_task_runner_->Shutdown(); // OK, now make it so that no one can find us. if (MessageLoopCurrent::IsBoundToCurrentThreadInternal(this)) MessageLoopCurrent::UnbindFromCurrentThreadInternal(this); } // static MessageLoopCurrent MessageLoop::current() { return MessageLoopCurrent::Get(); } // static bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) { if (message_pump_for_ui_factory_) return false; message_pump_for_ui_factory_ = factory; return true; } // static std::unique_ptr MessageLoop::CreateMessagePumpForType(Type type) { if (type == MessageLoop::TYPE_UI) { if (message_pump_for_ui_factory_) return message_pump_for_ui_factory_(); #if defined(OS_IOS) || defined(OS_MACOSX) return MessagePumpMac::Create(); #elif defined(OS_NACL) || defined(OS_AIX) // Currently NaCl and AIX don't have a UI MessageLoop. // TODO(abarth): Figure out if we need this. NOTREACHED(); return nullptr; #else return std::make_unique(); #endif } if (type == MessageLoop::TYPE_IO) return std::unique_ptr(new MessagePumpForIO()); #if defined(OS_ANDROID) if (type == MessageLoop::TYPE_JAVA) return std::unique_ptr(new MessagePumpForUI()); #endif DCHECK_EQ(MessageLoop::TYPE_DEFAULT, type); #if defined(OS_IOS) // On iOS, a native runloop is always required to pump system work. return std::make_unique(); #else return std::make_unique(); #endif } bool MessageLoop::IsType(Type type) const { return type_ == type; } // TODO(gab): Migrate TaskObservers to RunLoop as part of separating concerns // between MessageLoop and RunLoop and making MessageLoop a swappable // implementation detail. http://crbug.com/703346 void MessageLoop::AddTaskObserver(TaskObserver* task_observer) { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); task_observers_.AddObserver(task_observer); } void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); task_observers_.RemoveObserver(task_observer); } void MessageLoop::SetAddQueueTimeToTasks(bool enable) { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); underlying_task_runner_->SetAddQueueTimeToTasks(enable); } bool MessageLoop::IsIdleForTesting() { // Have unprocessed tasks? (this reloads the work queue if necessary) if (sequenced_task_source_->HasTasks()) return false; // Have unprocessed deferred tasks which can be processed at this run-level? if (pending_task_queue_.deferred_tasks().HasTasks() && !RunLoop::IsNestedOnCurrentThread()) { return false; } return true; } //------------------------------------------------------------------------------ // static std::unique_ptr MessageLoop::CreateUnbound( Type type, MessagePumpFactoryCallback pump_factory) { return WrapUnique(new MessageLoop(type, std::move(pump_factory))); } MessageLoop::MessageLoop(Type type, MessagePumpFactoryCallback pump_factory) : MessageLoopCurrent(this), type_(type), pump_factory_(std::move(pump_factory)), message_loop_controller_( new Controller(this)), // Ownership transferred on the next line. underlying_task_runner_(MakeRefCounted( WrapUnique(message_loop_controller_))), sequenced_task_source_(underlying_task_runner_.get()), task_runner_(underlying_task_runner_) { // If type is TYPE_CUSTOM non-null pump_factory must be given. DCHECK(type_ != TYPE_CUSTOM || !pump_factory_.is_null()); // Bound in BindToCurrentThread(); DETACH_FROM_THREAD(bound_thread_checker_); } void MessageLoop::BindToCurrentThread() { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); DCHECK(!pump_); if (!pump_factory_.is_null()) pump_ = std::move(pump_factory_).Run(); else pump_ = CreateMessagePumpForType(type_); DCHECK(!MessageLoopCurrent::IsSet()) << "should only have one message loop per thread"; MessageLoopCurrent::BindToCurrentThreadInternal(this); underlying_task_runner_->BindToCurrentThread(); message_loop_controller_->StartScheduling(); SetThreadTaskRunnerHandle(); thread_id_ = PlatformThread::CurrentId(); scoped_set_sequence_local_storage_map_for_current_thread_ = std::make_unique< internal::ScopedSetSequenceLocalStorageMapForCurrentThread>( &sequence_local_storage_map_); RunLoop::RegisterDelegateForCurrentThread(this); #if defined(OS_ANDROID) // On Android, attach to the native loop when there is one. if (type_ == TYPE_UI || type_ == TYPE_JAVA) static_cast(pump_.get())->Attach(this); #endif } std::string MessageLoop::GetThreadName() const { DCHECK_NE(kInvalidThreadId, thread_id_) << "GetThreadName() must only be called after BindToCurrentThread()'s " << "side-effects have been synchronized with this thread."; return ThreadIdNameManager::GetInstance()->GetName(thread_id_); } void MessageLoop::SetTaskRunner( scoped_refptr task_runner) { DCHECK(task_runner); if (thread_id_ == kInvalidThreadId) { // ThreadTaskRunnerHandle will be set during BindToCurrentThread(). task_runner_ = std::move(task_runner); } else { // Once MessageLoop is bound, |task_runner_| may only be altered on the // bound thread. DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); DCHECK(task_runner->BelongsToCurrentThread()); task_runner_ = std::move(task_runner); SetThreadTaskRunnerHandle(); } } void MessageLoop::Run(bool application_tasks_allowed) { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); if (application_tasks_allowed && !task_execution_allowed_) { // Allow nested task execution as explicitly requested. DCHECK(RunLoop::IsNestedOnCurrentThread()); task_execution_allowed_ = true; pump_->Run(this); task_execution_allowed_ = false; } else { pump_->Run(this); } } void MessageLoop::Quit() { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); pump_->Quit(); } void MessageLoop::EnsureWorkScheduled() { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); if (sequenced_task_source_->HasTasks()) pump_->ScheduleWork(); } void MessageLoop::SetThreadTaskRunnerHandle() { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); // Clear the previous thread task runner first, because only one can exist at // a time. thread_task_runner_handle_.reset(); thread_task_runner_handle_.reset(new ThreadTaskRunnerHandle(task_runner_)); } bool MessageLoop::ProcessNextDelayedNonNestableTask() { if (RunLoop::IsNestedOnCurrentThread()) return false; while (pending_task_queue_.deferred_tasks().HasTasks()) { PendingTask pending_task = pending_task_queue_.deferred_tasks().Pop(); if (!pending_task.task.IsCancelled()) { RunTask(&pending_task); return true; } } return false; } void MessageLoop::RunTask(PendingTask* pending_task) { DCHECK(task_execution_allowed_); // Execute the task and assume the worst: It is probably not reentrant. task_execution_allowed_ = false; TRACE_TASK_EXECUTION("MessageLoop::RunTask", *pending_task); for (auto& observer : task_observers_) observer.WillProcessTask(*pending_task); message_loop_controller_->task_annotator().RunTask("MessageLoop::PostTask", pending_task); for (auto& observer : task_observers_) observer.DidProcessTask(*pending_task); task_execution_allowed_ = true; } bool MessageLoop::DeferOrRunPendingTask(PendingTask pending_task) { if (pending_task.nestable == Nestable::kNestable || !RunLoop::IsNestedOnCurrentThread()) { RunTask(&pending_task); // Show that we ran a task (Note: a new one might arrive as a // consequence!). return true; } // We couldn't run the task now because we're in a nested run loop // and the task isn't nestable. pending_task_queue_.deferred_tasks().Push(std::move(pending_task)); return false; } void MessageLoop::DeletePendingTasks() { // Delete all currently pending tasks but not tasks potentially posted from // their destructors. See ~MessageLoop() for the full logic mitigating against // infite loops when clearing pending tasks. The ScopedClosureRunner below // will be bound to a task posted at the end of the queue. After it is posted, // tasks will be deleted one by one, when the bound ScopedClosureRunner is // deleted and sets |deleted_all_originally_pending|, we know we've deleted // all originally pending tasks. bool deleted_all_originally_pending = false; ScopedClosureRunner capture_deleted_all_originally_pending(BindOnce( [](bool* deleted_all_originally_pending) { *deleted_all_originally_pending = true; }, Unretained(&deleted_all_originally_pending))); sequenced_task_source_->InjectTask( BindOnce([](ScopedClosureRunner) {}, std::move(capture_deleted_all_originally_pending))); while (!deleted_all_originally_pending) { PendingTask pending_task = sequenced_task_source_->TakeTask(); // New delayed tasks should be deleted after older ones. if (!pending_task.delayed_run_time.is_null()) pending_task_queue_.delayed_tasks().Push(std::move(pending_task)); } pending_task_queue_.deferred_tasks().Clear(); // TODO(robliao): Determine if we can move delayed task destruction before // deferred tasks to maintain the MessagePump DoWork, DoDelayedWork, and // DoIdleWork processing order. pending_task_queue_.delayed_tasks().Clear(); } void MessageLoop::ScheduleWork() { pump_->ScheduleWork(); } TimeTicks MessageLoop::CapAtOneDay(TimeTicks next_run_time) { return std::min(next_run_time, recent_time_ + TimeDelta::FromDays(1)); } bool MessageLoop::DoWork() { if (!task_execution_allowed_) return false; // Execute oldest task. while (sequenced_task_source_->HasTasks()) { PendingTask pending_task = sequenced_task_source_->TakeTask(); if (pending_task.task.IsCancelled()) continue; if (!pending_task.delayed_run_time.is_null()) { int sequence_num = pending_task.sequence_num; TimeTicks delayed_run_time = pending_task.delayed_run_time; pending_task_queue_.delayed_tasks().Push(std::move(pending_task)); // If we changed the topmost task, then it is time to reschedule. if (pending_task_queue_.delayed_tasks().Peek().sequence_num == sequence_num) { pump_->ScheduleDelayedWork(delayed_run_time); } } else if (DeferOrRunPendingTask(std::move(pending_task))) { return true; } } // Nothing happened. return false; } bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) { if (!task_execution_allowed_ || !pending_task_queue_.delayed_tasks().HasTasks()) { *next_delayed_work_time = TimeTicks(); return false; } // When we "fall behind", there will be a lot of tasks in the delayed work // queue that are ready to run. To increase efficiency when we fall behind, // we will only call Time::Now() intermittently, and then process all tasks // that are ready to run before calling it again. As a result, the more we // fall behind (and have a lot of ready-to-run delayed tasks), the more // efficient we'll be at handling the tasks. TimeTicks next_run_time = pending_task_queue_.delayed_tasks().Peek().delayed_run_time; if (next_run_time > recent_time_) { recent_time_ = TimeTicks::Now(); // Get a better view of Now(); if (next_run_time > recent_time_) { *next_delayed_work_time = CapAtOneDay(next_run_time); return false; } } PendingTask pending_task = pending_task_queue_.delayed_tasks().Pop(); if (pending_task_queue_.delayed_tasks().HasTasks()) { *next_delayed_work_time = CapAtOneDay( pending_task_queue_.delayed_tasks().Peek().delayed_run_time); } return DeferOrRunPendingTask(std::move(pending_task)); } bool MessageLoop::DoIdleWork() { if (ProcessNextDelayedNonNestableTask()) return true; #if defined(OS_WIN) bool need_high_res_timers = false; #endif // Do not report idle metrics if about to quit the loop and/or in a nested // loop where |!task_execution_allowed_|. In the former case, the loop isn't // going to sleep and in the latter case DoDelayedWork() will not actually do // the work this is prepping for. if (ShouldQuitWhenIdle()) { pump_->Quit(); } else if (task_execution_allowed_) { // Only track idle metrics in MessageLoopForUI to avoid too much contention // logging the histogram (https://crbug.com/860801) -- there's typically // only one UI thread per process and, for practical purposes, restricting // the MessageLoop diagnostic metrics to it yields similar information. if (type_ == TYPE_UI) pending_task_queue_.ReportMetricsOnIdle(); #if defined(OS_WIN) // On Windows we activate the high resolution timer so that the wait // _if_ triggered by the timer happens with good resolution. If we don't // do this the default resolution is 15ms which might not be acceptable // for some tasks. need_high_res_timers = pending_task_queue_.HasPendingHighResolutionTasks(); #endif } #if defined(OS_WIN) if (in_high_res_mode_ != need_high_res_timers) { in_high_res_mode_ = need_high_res_timers; Time::ActivateHighResolutionTimer(in_high_res_mode_); } #endif // When we return we will do a kernel wait for more tasks. return false; } #if !defined(OS_NACL) //------------------------------------------------------------------------------ // MessageLoopForUI MessageLoopForUI::MessageLoopForUI(Type type) : MessageLoop(type) { #if defined(OS_ANDROID) DCHECK(type == TYPE_UI || type == TYPE_JAVA); #else DCHECK_EQ(type, TYPE_UI); #endif } // static MessageLoopCurrentForUI MessageLoopForUI::current() { return MessageLoopCurrentForUI::Get(); } // static bool MessageLoopForUI::IsCurrent() { return MessageLoopCurrentForUI::IsSet(); } #if defined(OS_IOS) void MessageLoopForUI::Attach() { static_cast(pump_.get())->Attach(this); } #endif // defined(OS_IOS) #if defined(OS_ANDROID) void MessageLoopForUI::Abort() { static_cast(pump_.get())->Abort(); } bool MessageLoopForUI::IsAborted() { return static_cast(pump_.get())->IsAborted(); } void MessageLoopForUI::QuitWhenIdle(base::OnceClosure callback) { static_cast(pump_.get()) ->QuitWhenIdle(std::move(callback)); } #endif // defined(OS_ANDROID) #if defined(OS_WIN) void MessageLoopForUI::EnableWmQuit() { static_cast(pump_.get())->EnableWmQuit(); } #endif // defined(OS_WIN) #endif // !defined(OS_NACL) //------------------------------------------------------------------------------ // MessageLoopForIO // static MessageLoopCurrentForIO MessageLoopForIO::current() { return MessageLoopCurrentForIO::Get(); } // static bool MessageLoopForIO::IsCurrent() { return MessageLoopCurrentForIO::IsSet(); } } // namespace base