// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/nqe/network_quality_estimator.h" #include #include #include #include #include "base/bind_helpers.h" #include "base/location.h" #include "base/logging.h" #include "base/metrics/histogram.h" #include "base/metrics/histogram_base.h" #include "base/metrics/histogram_functions.h" #include "base/metrics/histogram_macros.h" #include "base/single_thread_task_runner.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_piece.h" #include "base/strings/stringprintf.h" #include "base/task/lazy_task_runner.h" #include "base/threading/thread_task_runner_handle.h" #include "base/time/default_tick_clock.h" #include "base/trace_event/trace_event.h" #include "build/build_config.h" #include "net/base/host_port_pair.h" #include "net/base/load_flags.h" #include "net/base/load_timing_info.h" #include "net/base/network_interfaces.h" #include "net/base/trace_constants.h" #include "net/http/http_response_headers.h" #include "net/http/http_response_info.h" #include "net/http/http_status_code.h" #include "net/nqe/network_quality_estimator_util.h" #include "net/nqe/throughput_analyzer.h" #include "net/nqe/weighted_observation.h" #include "net/url_request/url_request.h" #include "net/url_request/url_request_context.h" #include "net/url_request/url_request_status.h" #include "url/gurl.h" #if defined(OS_ANDROID) #include "net/android/cellular_signal_strength.h" #include "net/android/network_library.h" #endif // OS_ANDROID namespace net { class HostResolver; namespace { #if defined(OS_CHROMEOS) // SequencedTaskRunner to get the network id. A SequencedTaskRunner is used // rather than parallel tasks to avoid having many threads getting the network // id concurrently. base::LazySequencedTaskRunner g_get_network_id_task_runner = LAZY_SEQUENCED_TASK_RUNNER_INITIALIZER( base::TaskTraits(base::MayBlock(), base::TaskPriority::BEST_EFFORT, base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN)); #endif NetworkQualityObservationSource ProtocolSourceToObservationSource( SocketPerformanceWatcherFactory::Protocol protocol) { switch (protocol) { case SocketPerformanceWatcherFactory::PROTOCOL_TCP: return NETWORK_QUALITY_OBSERVATION_SOURCE_TCP; case SocketPerformanceWatcherFactory::PROTOCOL_QUIC: return NETWORK_QUALITY_OBSERVATION_SOURCE_QUIC; } NOTREACHED(); return NETWORK_QUALITY_OBSERVATION_SOURCE_TCP; } // Returns true if the scheme of the |request| is either HTTP or HTTPS. bool RequestSchemeIsHTTPOrHTTPS(const URLRequest& request) { return request.url().is_valid() && request.url().SchemeIsHTTPOrHTTPS(); } // Returns the suffix of the histogram that should be used for recording the // accuracy when the observed RTT is |observed_rtt|. The width of the intervals // are in exponentially increasing order. const char* GetHistogramSuffixObservedRTT(const base::TimeDelta& observed_rtt) { const int32_t rtt_milliseconds = observed_rtt.InMilliseconds(); DCHECK_GE(rtt_milliseconds, 0); // The values here should remain synchronized with the suffixes specified in // histograms.xml. static const char* const kSuffixes[] = { "0_20", "20_60", "60_140", "140_300", "300_620", "620_1260", "1260_2540", "2540_5100", "5100_Infinity"}; for (size_t i = 0; i < arraysize(kSuffixes) - 1; ++i) { if (rtt_milliseconds <= (20 * (2 << i) - 20)) return kSuffixes[i]; } return kSuffixes[arraysize(kSuffixes) - 1]; } // Returns the suffix of the histogram that should be used for recording the // accuracy when the observed throughput in kilobits per second is // |observed_throughput_kbps|. The width of the intervals are in exponentially // increasing order. const char* GetHistogramSuffixObservedThroughput( const int32_t& observed_throughput_kbps) { DCHECK_GE(observed_throughput_kbps, 0); // The values here should remain synchronized with the suffixes specified in // histograms.xml. static const char* const kSuffixes[] = { "0_20", "20_60", "60_140", "140_300", "300_620", "620_1260", "1260_2540", "2540_5100", "5100_Infinity"}; for (size_t i = 0; i < arraysize(kSuffixes) - 1; ++i) { if (observed_throughput_kbps <= (20 * (2 << i) - 20)) return kSuffixes[i]; } return kSuffixes[arraysize(kSuffixes) - 1]; } void RecordRTTAccuracy(base::StringPiece prefix, int32_t metric, base::TimeDelta measuring_duration, base::TimeDelta observed_rtt) { const std::string histogram_name = base::StringPrintf("%s.EstimatedObservedDiff.%s.%d.%s", prefix.data(), metric >= 0 ? "Positive" : "Negative", static_cast(measuring_duration.InSeconds()), GetHistogramSuffixObservedRTT(observed_rtt)); base::HistogramBase* histogram = base::Histogram::FactoryGet( histogram_name, 1, 10 * 1000 /* 10 seconds */, 50 /* Number of buckets */, base::HistogramBase::kUmaTargetedHistogramFlag); histogram->Add(std::abs(metric)); } void RecordThroughputAccuracy(const char* prefix, int32_t metric, base::TimeDelta measuring_duration, int32_t observed_throughput_kbps) { const std::string histogram_name = base::StringPrintf( "%s.EstimatedObservedDiff.%s.%d.%s", prefix, metric >= 0 ? "Positive" : "Negative", static_cast(measuring_duration.InSeconds()), GetHistogramSuffixObservedThroughput(observed_throughput_kbps)); base::HistogramBase* histogram = base::Histogram::FactoryGet( histogram_name, 1, 1000 * 1000 /* 1 Gbps */, 50 /* Number of buckets */, base::HistogramBase::kUmaTargetedHistogramFlag); histogram->Add(std::abs(metric)); } void RecordEffectiveConnectionTypeAccuracy( const char* prefix, int32_t metric, base::TimeDelta measuring_duration, EffectiveConnectionType observed_effective_connection_type) { const std::string histogram_name = base::StringPrintf("%s.EstimatedObservedDiff.%s.%d.%s", prefix, metric >= 0 ? "Positive" : "Negative", static_cast(measuring_duration.InSeconds()), DeprecatedGetNameForEffectiveConnectionType( observed_effective_connection_type)); base::HistogramBase* histogram = base::Histogram::FactoryGet( histogram_name, 0, EFFECTIVE_CONNECTION_TYPE_LAST, EFFECTIVE_CONNECTION_TYPE_LAST /* Number of buckets */, base::HistogramBase::kUmaTargetedHistogramFlag); histogram->Add(std::abs(metric)); } nqe::internal::NetworkID DoGetCurrentNetworkID() { // It is possible that the connection type changed between when // GetConnectionType() was called and when the API to determine the // network name was called. Check if that happened and retry until the // connection type stabilizes. This is an imperfect solution but should // capture majority of cases, and should not significantly affect estimates // (that are approximate to begin with). while (true) { nqe::internal::NetworkID network_id( NetworkChangeNotifier::GetConnectionType(), std::string(), INT32_MIN); switch (network_id.type) { case NetworkChangeNotifier::ConnectionType::CONNECTION_UNKNOWN: case NetworkChangeNotifier::ConnectionType::CONNECTION_NONE: case NetworkChangeNotifier::ConnectionType::CONNECTION_BLUETOOTH: case NetworkChangeNotifier::ConnectionType::CONNECTION_ETHERNET: break; case NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI: #if defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_WIN) network_id.id = GetWifiSSID(); #endif break; case NetworkChangeNotifier::ConnectionType::CONNECTION_2G: case NetworkChangeNotifier::ConnectionType::CONNECTION_3G: case NetworkChangeNotifier::ConnectionType::CONNECTION_4G: #if defined(OS_ANDROID) network_id.id = android::GetTelephonyNetworkOperator(); #endif break; default: NOTREACHED() << "Unexpected connection type = " << network_id.type; break; } if (network_id.type == NetworkChangeNotifier::GetConnectionType()) return network_id; } NOTREACHED(); } } // namespace NetworkQualityEstimator::NetworkQualityEstimator( std::unique_ptr params, NetLog* net_log) : params_(std::move(params)), end_to_end_rtt_observation_count_at_last_ect_computation_(0), use_localhost_requests_(false), disable_offline_check_(false), tick_clock_(base::DefaultTickClock::GetInstance()), last_connection_change_(tick_clock_->NowTicks()), current_network_id_(nqe::internal::NetworkID( NetworkChangeNotifier::ConnectionType::CONNECTION_UNKNOWN, std::string(), INT32_MIN)), http_downstream_throughput_kbps_observations_( params_.get(), tick_clock_, params_->weight_multiplier_per_second(), params_->weight_multiplier_per_signal_strength_level()), effective_connection_type_at_last_main_frame_( EFFECTIVE_CONNECTION_TYPE_UNKNOWN), effective_connection_type_recomputation_interval_( base::TimeDelta::FromSeconds(10)), rtt_observations_size_at_last_ect_computation_(0), throughput_observations_size_at_last_ect_computation_(0), transport_rtt_observation_count_last_ect_computation_(0), new_rtt_observations_since_last_ect_computation_(0), new_throughput_observations_since_last_ect_computation_(0), increase_in_transport_rtt_updater_posted_(false), effective_connection_type_(EFFECTIVE_CONNECTION_TYPE_UNKNOWN), cached_estimate_applied_(false), net_log_(NetLogWithSource::Make( net_log, net::NetLogSourceType::NETWORK_QUALITY_ESTIMATOR)), event_creator_(net_log_), weak_ptr_factory_(this) { rtt_ms_observations_.reserve(nqe::internal::OBSERVATION_CATEGORY_COUNT); for (int i = 0; i < nqe::internal::OBSERVATION_CATEGORY_COUNT; ++i) { rtt_ms_observations_.push_back(ObservationBuffer( params_.get(), tick_clock_, params_->weight_multiplier_per_second(), params_->weight_multiplier_per_signal_strength_level())); } network_quality_store_.reset(new nqe::internal::NetworkQualityStore()); NetworkChangeNotifier::AddConnectionTypeObserver(this); throughput_analyzer_.reset(new nqe::internal::ThroughputAnalyzer( this, params_.get(), base::ThreadTaskRunnerHandle::Get(), base::Bind(&NetworkQualityEstimator::OnNewThroughputObservationAvailable, // It is safe to use base::Unretained here since // |throughput_analyzer_| is owned by |this|. This ensures that // |throughput_analyzer_| will be destroyed before |this|. base::Unretained(this)), tick_clock_, net_log_)); watcher_factory_.reset(new nqe::internal::SocketWatcherFactory( base::ThreadTaskRunnerHandle::Get(), params_->min_socket_watcher_notification_interval(), // OnUpdatedTransportRTTAvailable() may be called via PostTask() by // socket watchers that live on a different thread than the current thread // (i.e., base::ThreadTaskRunnerHandle::Get()). // Use WeakPtr() to avoid crashes where the socket watcher is destroyed // after |this| is destroyed. base::Bind(&NetworkQualityEstimator::OnUpdatedTransportRTTAvailable, weak_ptr_factory_.GetWeakPtr()), // ShouldSocketWatcherNotifyRTT() below is called by only the socket // watchers that live on the same thread as the current thread // (i.e., base::ThreadTaskRunnerHandle::Get()). Also, network quality // estimator is destroyed after network contexts and URLRequestContexts. // It's safe to use base::Unretained() below since the socket watcher // (owned by sockets) would be destroyed before |this|. base::Bind(&NetworkQualityEstimator::ShouldSocketWatcherNotifyRTT, base::Unretained(this)), tick_clock_)); // Record accuracy after a 15 second interval. The values used here must // remain in sync with the suffixes specified in // tools/metrics/histograms/histograms.xml. accuracy_recording_intervals_.push_back(base::TimeDelta::FromSeconds(15)); GatherEstimatesForNextConnectionType(); } void NetworkQualityEstimator::AddDefaultEstimates() { DCHECK(thread_checker_.CalledOnValidThread()); if (!params_->add_default_platform_observations()) return; if (params_->DefaultObservation(current_network_id_.type).http_rtt() != nqe::internal::InvalidRTT()) { Observation rtt_observation( params_->DefaultObservation(current_network_id_.type) .http_rtt() .InMilliseconds(), tick_clock_->NowTicks(), INT32_MIN, NETWORK_QUALITY_OBSERVATION_SOURCE_DEFAULT_HTTP_FROM_PLATFORM); AddAndNotifyObserversOfRTT(rtt_observation); } if (params_->DefaultObservation(current_network_id_.type).transport_rtt() != nqe::internal::InvalidRTT()) { Observation rtt_observation( params_->DefaultObservation(current_network_id_.type) .transport_rtt() .InMilliseconds(), tick_clock_->NowTicks(), INT32_MIN, NETWORK_QUALITY_OBSERVATION_SOURCE_DEFAULT_TRANSPORT_FROM_PLATFORM); AddAndNotifyObserversOfRTT(rtt_observation); } if (params_->DefaultObservation(current_network_id_.type) .downstream_throughput_kbps() != nqe::internal::INVALID_RTT_THROUGHPUT) { Observation throughput_observation( params_->DefaultObservation(current_network_id_.type) .downstream_throughput_kbps(), tick_clock_->NowTicks(), INT32_MIN, NETWORK_QUALITY_OBSERVATION_SOURCE_DEFAULT_HTTP_FROM_PLATFORM); AddAndNotifyObserversOfThroughput(throughput_observation); } } NetworkQualityEstimator::~NetworkQualityEstimator() { DCHECK(thread_checker_.CalledOnValidThread()); NetworkChangeNotifier::RemoveConnectionTypeObserver(this); } const std::vector& NetworkQualityEstimator::GetAccuracyRecordingIntervals() const { DCHECK(thread_checker_.CalledOnValidThread()); return accuracy_recording_intervals_; } void NetworkQualityEstimator::NotifyStartTransaction( const URLRequest& request) { DCHECK(thread_checker_.CalledOnValidThread()); if (!RequestSchemeIsHTTPOrHTTPS(request)) return; // Update |estimated_quality_at_last_main_frame_| if this is a main frame // request. // TODO(tbansal): Refactor this to a separate method. if (request.load_flags() & LOAD_MAIN_FRAME_DEPRECATED) { base::TimeTicks now = tick_clock_->NowTicks(); last_main_frame_request_ = now; ComputeEffectiveConnectionType(); effective_connection_type_at_last_main_frame_ = effective_connection_type_; estimated_quality_at_last_main_frame_ = network_quality_; // Post the tasks which will run in the future and record the estimation // accuracy based on the observations received between now and the time of // task execution. Posting the task at different intervals makes it // possible to measure the accuracy by comparing the estimate with the // observations received over intervals of varying durations. for (const base::TimeDelta& measuring_delay : GetAccuracyRecordingIntervals()) { base::ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, base::Bind(&NetworkQualityEstimator::RecordAccuracyAfterMainFrame, weak_ptr_factory_.GetWeakPtr(), measuring_delay), measuring_delay); } } else { MaybeComputeEffectiveConnectionType(); } throughput_analyzer_->NotifyStartTransaction(request); } bool NetworkQualityEstimator::IsHangingRequest( base::TimeDelta observed_http_rtt) const { DCHECK(thread_checker_.CalledOnValidThread()); // If there are sufficient number of end to end RTT samples available, use // the end to end RTT estimate to determine if the request is hanging. // If |observed_http_rtt| is within a fixed multiplier of |end_to_end_rtt_|, // then |observed_http_rtt| is determined to be not a hanging-request RTT. if (params_->use_end_to_end_rtt() && end_to_end_rtt_.has_value() && end_to_end_rtt_observation_count_at_last_ect_computation_ >= params_->http_rtt_transport_rtt_min_count() && params_->hanging_request_http_rtt_upper_bound_transport_rtt_multiplier() > 0 && observed_http_rtt < params_->hanging_request_http_rtt_upper_bound_transport_rtt_multiplier() * end_to_end_rtt_.value()) { UMA_HISTOGRAM_TIMES("NQE.RTT.NotAHangingRequest.EndToEndRTT", observed_http_rtt); return false; } if (transport_rtt_observation_count_last_ect_computation_ >= params_->http_rtt_transport_rtt_min_count() && (params_->hanging_request_http_rtt_upper_bound_transport_rtt_multiplier() <= 0 || observed_http_rtt < params_->hanging_request_http_rtt_upper_bound_transport_rtt_multiplier() * GetTransportRTT().value_or(base::TimeDelta::FromSeconds(10)))) { // If there are sufficient number of transport RTT samples available, use // the transport RTT estimate to determine if the request is hanging. UMA_HISTOGRAM_TIMES("NQE.RTT.NotAHangingRequest.TransportRTT", observed_http_rtt); return false; } if (params_->hanging_request_http_rtt_upper_bound_http_rtt_multiplier() <= 0 || observed_http_rtt < params_->hanging_request_http_rtt_upper_bound_http_rtt_multiplier() * GetHttpRTT().value_or(base::TimeDelta::FromSeconds(10))) { // Use the HTTP RTT estimate to determine if the request is hanging. UMA_HISTOGRAM_TIMES("NQE.RTT.NotAHangingRequest.HttpRTT", observed_http_rtt); return false; } if (observed_http_rtt <= params_->hanging_request_upper_bound_min_http_rtt()) { UMA_HISTOGRAM_TIMES("NQE.RTT.NotAHangingRequest.MinHttpBound", observed_http_rtt); return false; } UMA_HISTOGRAM_TIMES("NQE.RTT.HangingRequest", observed_http_rtt); return true; } void NetworkQualityEstimator::NotifyHeadersReceived(const URLRequest& request) { TRACE_EVENT0(kNetTracingCategory, "NetworkQualityEstimator::NotifyHeadersReceived"); DCHECK(thread_checker_.CalledOnValidThread()); if (!RequestSchemeIsHTTPOrHTTPS(request) || !RequestProvidesRTTObservation(request)) { return; } if (request.load_flags() & LOAD_MAIN_FRAME_DEPRECATED) { ComputeEffectiveConnectionType(); RecordMetricsOnMainFrameRequest(); } LoadTimingInfo load_timing_info; request.GetLoadTimingInfo(&load_timing_info); // If the load timing info is unavailable, it probably means that the request // did not go over the network. if (load_timing_info.send_start.is_null() || load_timing_info.receive_headers_end.is_null()) { return; } DCHECK(!request.response_info().was_cached); // Duration between when the resource was requested and when the response // headers were received. const base::TimeDelta observed_http_rtt = load_timing_info.receive_headers_end - load_timing_info.send_start; if (observed_http_rtt <= base::TimeDelta()) return; DCHECK_GE(observed_http_rtt, base::TimeDelta()); if (IsHangingRequest(observed_http_rtt)) return; Observation http_rtt_observation(observed_http_rtt.InMilliseconds(), tick_clock_->NowTicks(), current_network_id_.signal_strength, NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP); AddAndNotifyObserversOfRTT(http_rtt_observation); throughput_analyzer_->NotifyBytesRead(request); } void NetworkQualityEstimator::NotifyBytesRead(const URLRequest& request) { DCHECK(thread_checker_.CalledOnValidThread()); throughput_analyzer_->NotifyBytesRead(request); } void NetworkQualityEstimator::RecordAccuracyAfterMainFrame( base::TimeDelta measuring_duration) const { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK_EQ(0, measuring_duration.InMilliseconds() % 1000); DCHECK(ContainsValue(GetAccuracyRecordingIntervals(), measuring_duration)); const base::TimeTicks now = tick_clock_->NowTicks(); // Return if the time since |last_main_frame_request_| is less than // |measuring_duration|. This may happen if another main frame request started // during last |measuring_duration|. Returning here ensures that we do not // take inaccurate readings. if (now - last_main_frame_request_ < measuring_duration) return; // Return if the time since |last_main_frame_request_| is off by a factor of // 2. This can happen if the task is executed much later than its scheduled // time. Returning here ensures that we do not take inaccurate readings. if (now - last_main_frame_request_ > 2 * measuring_duration) return; // Do not record accuracy if there was a connection change since the last main // frame request. if (last_main_frame_request_ <= last_connection_change_) return; base::TimeDelta recent_http_rtt; if (!GetRecentRTT(nqe::internal::OBSERVATION_CATEGORY_HTTP, last_main_frame_request_, &recent_http_rtt, nullptr)) { recent_http_rtt = nqe::internal::InvalidRTT(); } if (estimated_quality_at_last_main_frame_.http_rtt() != nqe::internal::InvalidRTT() && recent_http_rtt != nqe::internal::InvalidRTT()) { const int estimated_observed_diff_milliseconds = estimated_quality_at_last_main_frame_.http_rtt().InMilliseconds() - recent_http_rtt.InMilliseconds(); RecordRTTAccuracy("NQE.Accuracy.HttpRTT", estimated_observed_diff_milliseconds, measuring_duration, recent_http_rtt); } base::TimeDelta recent_transport_rtt; if (estimated_quality_at_last_main_frame_.transport_rtt() != nqe::internal::InvalidRTT() && GetRecentRTT(nqe::internal::OBSERVATION_CATEGORY_TRANSPORT, last_main_frame_request_, &recent_transport_rtt, nullptr)) { const int estimated_observed_diff_milliseconds = estimated_quality_at_last_main_frame_.transport_rtt().InMilliseconds() - recent_transport_rtt.InMilliseconds(); RecordRTTAccuracy("NQE.Accuracy.TransportRTT", estimated_observed_diff_milliseconds, measuring_duration, recent_transport_rtt); } int32_t recent_downstream_throughput_kbps; if (estimated_quality_at_last_main_frame_.downstream_throughput_kbps() != nqe::internal::INVALID_RTT_THROUGHPUT && GetRecentDownlinkThroughputKbps(last_main_frame_request_, &recent_downstream_throughput_kbps)) { const int estimated_observed_diff = estimated_quality_at_last_main_frame_.downstream_throughput_kbps() - recent_downstream_throughput_kbps; RecordThroughputAccuracy("NQE.Accuracy.DownstreamThroughputKbps", estimated_observed_diff, measuring_duration, recent_downstream_throughput_kbps); } EffectiveConnectionType recent_effective_connection_type = GetRecentEffectiveConnectionType(last_main_frame_request_); if (effective_connection_type_at_last_main_frame_ != EFFECTIVE_CONNECTION_TYPE_UNKNOWN && recent_effective_connection_type != EFFECTIVE_CONNECTION_TYPE_UNKNOWN) { const int estimated_observed_diff = static_cast(effective_connection_type_at_last_main_frame_) - static_cast(recent_effective_connection_type); RecordEffectiveConnectionTypeAccuracy( "NQE.Accuracy.EffectiveConnectionType", estimated_observed_diff, measuring_duration, recent_effective_connection_type); } } void NetworkQualityEstimator::NotifyRequestCompleted(const URLRequest& request, int net_error) { TRACE_EVENT0(kNetTracingCategory, "NetworkQualityEstimator::NotifyRequestCompleted"); DCHECK(thread_checker_.CalledOnValidThread()); if (!RequestSchemeIsHTTPOrHTTPS(request)) return; throughput_analyzer_->NotifyRequestCompleted(request); } void NetworkQualityEstimator::NotifyURLRequestDestroyed( const URLRequest& request) { DCHECK(thread_checker_.CalledOnValidThread()); if (!RequestSchemeIsHTTPOrHTTPS(request)) return; throughput_analyzer_->NotifyRequestCompleted(request); } void NetworkQualityEstimator::AddRTTObserver(RTTObserver* rtt_observer) { DCHECK(thread_checker_.CalledOnValidThread()); rtt_observer_list_.AddObserver(rtt_observer); } void NetworkQualityEstimator::RemoveRTTObserver(RTTObserver* rtt_observer) { DCHECK(thread_checker_.CalledOnValidThread()); rtt_observer_list_.RemoveObserver(rtt_observer); } void NetworkQualityEstimator::AddThroughputObserver( ThroughputObserver* throughput_observer) { DCHECK(thread_checker_.CalledOnValidThread()); throughput_observer_list_.AddObserver(throughput_observer); } void NetworkQualityEstimator::RemoveThroughputObserver( ThroughputObserver* throughput_observer) { DCHECK(thread_checker_.CalledOnValidThread()); throughput_observer_list_.RemoveObserver(throughput_observer); } SocketPerformanceWatcherFactory* NetworkQualityEstimator::GetSocketPerformanceWatcherFactory() { DCHECK(thread_checker_.CalledOnValidThread()); return watcher_factory_.get(); } void NetworkQualityEstimator::SetUseLocalHostRequestsForTesting( bool use_localhost_requests) { DCHECK(thread_checker_.CalledOnValidThread()); use_localhost_requests_ = use_localhost_requests; watcher_factory_->SetUseLocalHostRequestsForTesting(use_localhost_requests_); throughput_analyzer_->SetUseLocalHostRequestsForTesting( use_localhost_requests_); } void NetworkQualityEstimator::SetUseSmallResponsesForTesting( bool use_small_responses) { DCHECK(thread_checker_.CalledOnValidThread()); params_->SetUseSmallResponsesForTesting(use_small_responses); } void NetworkQualityEstimator::DisableOfflineCheckForTesting( bool disable_offline_check) { DCHECK(thread_checker_.CalledOnValidThread()); disable_offline_check_ = disable_offline_check; } void NetworkQualityEstimator::ReportEffectiveConnectionTypeForTesting( EffectiveConnectionType effective_connection_type) { DCHECK(thread_checker_.CalledOnValidThread()); event_creator_.MaybeAddNetworkQualityChangedEventToNetLog( effective_connection_type_, params_->TypicalNetworkQuality(effective_connection_type)); for (auto& observer : effective_connection_type_observer_list_) observer.OnEffectiveConnectionTypeChanged(effective_connection_type); network_quality_store_->Add(current_network_id_, nqe::internal::CachedNetworkQuality( tick_clock_->NowTicks(), network_quality_, effective_connection_type)); } void NetworkQualityEstimator::ReportRTTsAndThroughputForTesting( base::TimeDelta http_rtt, base::TimeDelta transport_rtt, int32_t downstream_throughput_kbps) { DCHECK(thread_checker_.CalledOnValidThread()); for (auto& observer : rtt_and_throughput_estimates_observer_list_) observer.OnRTTOrThroughputEstimatesComputed(http_rtt, transport_rtt, downstream_throughput_kbps); } bool NetworkQualityEstimator::RequestProvidesRTTObservation( const URLRequest& request) const { DCHECK(thread_checker_.CalledOnValidThread()); bool private_network_request = nqe::internal::IsPrivateHost( request.context()->host_resolver(), HostPortPair::FromURL(request.url())); return (use_localhost_requests_ || !private_network_request) && // Verify that response headers are received, so it can be ensured that // response is not cached. !request.response_info().response_time.is_null() && !request.was_cached() && request.creation_time() >= last_connection_change_ && request.method() == "GET"; } void NetworkQualityEstimator::OnConnectionTypeChanged( NetworkChangeNotifier::ConnectionType type) { DCHECK(thread_checker_.CalledOnValidThread()); // Write the estimates of the previous network to the cache. network_quality_store_->Add( current_network_id_, nqe::internal::CachedNetworkQuality( last_effective_connection_type_computation_, network_quality_, effective_connection_type_)); // Clear the local state. last_connection_change_ = tick_clock_->NowTicks(); http_downstream_throughput_kbps_observations_.Clear(); for (int i = 0; i < nqe::internal::OBSERVATION_CATEGORY_COUNT; ++i) rtt_ms_observations_[i].Clear(); #if defined(OS_ANDROID) if (params_->weight_multiplier_per_signal_strength_level() < 1.0 && NetworkChangeNotifier::IsConnectionCellular(current_network_id_.type)) { bool signal_strength_available = min_signal_strength_since_connection_change_ && max_signal_strength_since_connection_change_; UMA_HISTOGRAM_BOOLEAN("NQE.CellularSignalStrength.LevelAvailable", signal_strength_available); if (signal_strength_available) { UMA_HISTOGRAM_COUNTS_100( "NQE.CellularSignalStrength.LevelDifference", max_signal_strength_since_connection_change_.value() - min_signal_strength_since_connection_change_.value()); } } #endif // OS_ANDROID current_network_id_.signal_strength = INT32_MIN; min_signal_strength_since_connection_change_.reset(); max_signal_strength_since_connection_change_.reset(); network_quality_ = nqe::internal::NetworkQuality(); end_to_end_rtt_ = base::nullopt; effective_connection_type_ = EFFECTIVE_CONNECTION_TYPE_UNKNOWN; effective_connection_type_at_last_main_frame_ = EFFECTIVE_CONNECTION_TYPE_UNKNOWN; rtt_observations_size_at_last_ect_computation_ = 0; throughput_observations_size_at_last_ect_computation_ = 0; new_rtt_observations_since_last_ect_computation_ = 0; new_throughput_observations_since_last_ect_computation_ = 0; transport_rtt_observation_count_last_ect_computation_ = 0; end_to_end_rtt_observation_count_at_last_ect_computation_ = 0; last_socket_watcher_rtt_notification_ = base::TimeTicks(); estimated_quality_at_last_main_frame_ = nqe::internal::NetworkQuality(); cached_estimate_applied_ = false; GatherEstimatesForNextConnectionType(); throughput_analyzer_->OnConnectionTypeChanged(); } void NetworkQualityEstimator::GatherEstimatesForNextConnectionType() { DCHECK(thread_checker_.CalledOnValidThread()); #if defined(OS_CHROMEOS) if (get_network_id_asynchronously_) { // Doing PostTaskAndReplyWithResult by handle because it requires the result // type have a default constructor and nqe::internal::NetworkID does not // have that. g_get_network_id_task_runner.Get()->PostTask( FROM_HERE, base::BindOnce( [](scoped_refptr reply_task_runner, base::OnceCallback reply_callback) { reply_task_runner->PostTask( FROM_HERE, base::BindOnce(std::move(reply_callback), DoGetCurrentNetworkID())); }, base::ThreadTaskRunnerHandle::Get(), base::BindOnce(&NetworkQualityEstimator:: ContinueGatherEstimatesForNextConnectionType, weak_ptr_factory_.GetWeakPtr()))); return; } #endif // defined(OS_CHROMEOS) ContinueGatherEstimatesForNextConnectionType(GetCurrentNetworkID()); } void NetworkQualityEstimator::ContinueGatherEstimatesForNextConnectionType( const nqe::internal::NetworkID& network_id) { DCHECK(thread_checker_.CalledOnValidThread()); // Update the local state as part of preparation for the new connection. current_network_id_ = network_id; RecordNetworkIDAvailability(); // Read any cached estimates for the new network. If cached estimates are // unavailable, add the default estimates. if (!ReadCachedNetworkQualityEstimate()) AddDefaultEstimates(); ComputeEffectiveConnectionType(); } int32_t NetworkQualityEstimator::GetCurrentSignalStrength() const { DCHECK(thread_checker_.CalledOnValidThread()); #if defined(OS_ANDROID) if (params_->weight_multiplier_per_signal_strength_level() >= 1.0) return INT32_MIN; if (!NetworkChangeNotifier::IsConnectionCellular(current_network_id_.type)) return INT32_MIN; return android::cellular_signal_strength::GetSignalStrengthLevel().value_or( INT32_MIN); #endif // OS_ANDROID return INT32_MIN; } void NetworkQualityEstimator::UpdateSignalStrength() { DCHECK(thread_checker_.CalledOnValidThread()); int32_t past_signal_strength = current_network_id_.signal_strength; int32_t new_signal_strength = GetCurrentSignalStrength(); // Check if there is no change in the signal strength. if (past_signal_strength == new_signal_strength) return; // Check if the signal strength is unavailable. if (new_signal_strength == INT32_MIN) return; DCHECK(new_signal_strength >= 0 && new_signal_strength <= 4); // Record the network quality we experienced for the previous signal strength // (for when we return to that signal strength). network_quality_store_->Add(current_network_id_, nqe::internal::CachedNetworkQuality( tick_clock_->NowTicks(), network_quality_, effective_connection_type_)); current_network_id_.signal_strength = new_signal_strength; // Update network quality from cached value for new signal strength. ReadCachedNetworkQualityEstimate(); min_signal_strength_since_connection_change_ = std::min(min_signal_strength_since_connection_change_.value_or(INT32_MAX), current_network_id_.signal_strength); max_signal_strength_since_connection_change_ = std::max(max_signal_strength_since_connection_change_.value_or(INT32_MIN), current_network_id_.signal_strength); } void NetworkQualityEstimator::RecordNetworkIDAvailability() const { DCHECK(thread_checker_.CalledOnValidThread()); if (current_network_id_.type == NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI || NetworkChangeNotifier::IsConnectionCellular(current_network_id_.type)) { UMA_HISTOGRAM_BOOLEAN("NQE.NetworkIdAvailable", !current_network_id_.id.empty()); } } void NetworkQualityEstimator::RecordMetricsOnMainFrameRequest() const { DCHECK(thread_checker_.CalledOnValidThread()); if (estimated_quality_at_last_main_frame_.http_rtt() != nqe::internal::InvalidRTT()) { // Add the 50th percentile value. UMA_HISTOGRAM_TIMES("NQE.MainFrame.RTT.Percentile50", estimated_quality_at_last_main_frame_.http_rtt()); } UMA_HISTOGRAM_BOOLEAN("NQE.EstimateAvailable.MainFrame.RTT", estimated_quality_at_last_main_frame_.http_rtt() != nqe::internal::InvalidRTT()); if (estimated_quality_at_last_main_frame_.transport_rtt() != nqe::internal::InvalidRTT()) { // Add the 50th percentile value. UMA_HISTOGRAM_TIMES("NQE.MainFrame.TransportRTT.Percentile50", estimated_quality_at_last_main_frame_.transport_rtt()); } UMA_HISTOGRAM_BOOLEAN("NQE.EstimateAvailable.MainFrame.TransportRTT", estimated_quality_at_last_main_frame_.transport_rtt() != nqe::internal::InvalidRTT()); if (estimated_quality_at_last_main_frame_.downstream_throughput_kbps() != nqe::internal::INVALID_RTT_THROUGHPUT) { // Add the 50th percentile value. UMA_HISTOGRAM_COUNTS_1M( "NQE.MainFrame.Kbps.Percentile50", estimated_quality_at_last_main_frame_.downstream_throughput_kbps()); } UMA_HISTOGRAM_BOOLEAN( "NQE.EstimateAvailable.MainFrame.Kbps", estimated_quality_at_last_main_frame_.downstream_throughput_kbps() != nqe::internal::INVALID_RTT_THROUGHPUT); UMA_HISTOGRAM_ENUMERATION("NQE.MainFrame.EffectiveConnectionType", effective_connection_type_at_last_main_frame_, EFFECTIVE_CONNECTION_TYPE_LAST); } void NetworkQualityEstimator::ComputeBandwidthDelayProduct() { DCHECK(thread_checker_.CalledOnValidThread()); // Reset the bandwidth delay product to prevent stale values being returned. bandwidth_delay_product_kbits_.reset(); // Record the bandwidth delay product (BDP) from the 80 percentile throughput // and the 20 percentile transport RTT. Percentiles are reversed for // throughput. The reason for using the 20 percentile transport RTT is to get // an estimate of the true RTT sans the queueing delay. The minimum value of // transport RTT was not used because it is likely to be noisy. For // throughput, the 80 percentile value is considered to get an estimate of the // maximum bandwidth when there is no congestion. The maximum value of // observed throughput was not used because it is likely to be noisy. base::TimeDelta transport_rtt = GetRTTEstimateInternal( base::TimeTicks(), nqe::internal::OBSERVATION_CATEGORY_TRANSPORT, 20, nullptr); if (transport_rtt == nqe::internal::InvalidRTT()) return; int32_t downlink_throughput_kbps = GetDownlinkThroughputKbpsEstimateInternal(base::TimeTicks(), 20); if (downlink_throughput_kbps == nqe::internal::INVALID_RTT_THROUGHPUT) return; bandwidth_delay_product_kbits_ = (downlink_throughput_kbps * transport_rtt.InMilliseconds()) / 1000; // Record UMA histograms. UMA_HISTOGRAM_TIMES("NQE.BDPComputationTransportRTT.OnECTComputation", transport_rtt); UMA_HISTOGRAM_COUNTS_1M("NQE.BDPComputationKbps.OnECTComputation", downlink_throughput_kbps); UMA_HISTOGRAM_COUNTS_1M("NQE.BDPKbits.OnECTComputation", bandwidth_delay_product_kbits_.value()); } void NetworkQualityEstimator::IncreaseInTransportRTTUpdater() { DCHECK(thread_checker_.CalledOnValidThread()); increase_in_transport_rtt_ = ComputeIncreaseInTransportRTT(); // Stop the timer if there was no recent data and |increase_in_transport_rtt_| // could not be computed. This is fine because |increase_in_transport_rtt| can // only be computed if there is recent transport RTT data, and the timer is // restarted when there is a new observation. if (!increase_in_transport_rtt_) { increase_in_transport_rtt_updater_posted_ = false; return; } increase_in_transport_rtt_updater_posted_ = true; base::ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, base::Bind(&NetworkQualityEstimator::IncreaseInTransportRTTUpdater, weak_ptr_factory_.GetWeakPtr()), params_->increase_in_transport_rtt_logging_interval()); } base::Optional NetworkQualityEstimator::ComputeIncreaseInTransportRTT() const { DCHECK(thread_checker_.CalledOnValidThread()); base::TimeTicks now = tick_clock_->NowTicks(); // The time after which the observations are considered to be recent enough to // be a good proxy for the current level of congestion. base::TimeTicks recent_start_time = now - params_->recent_time_threshold(); // Get the median transport RTT observed over the last 5 seconds for each // remote host. This is an estimate of the current RTT which will be compared // to the baseline obtained from historical data to detect an increase in RTT. std::map recent_median_rtts; std::map recent_observation_counts; rtt_ms_observations_[nqe::internal::OBSERVATION_CATEGORY_TRANSPORT] .GetPercentileForEachHostWithCounts(recent_start_time, 50, base::nullopt, &recent_median_rtts, &recent_observation_counts); if (recent_median_rtts.empty()) return base::nullopt; // The time after which the observations are used to calculate the baseline. // This is needed because the general network characteristics could have // changed over time. base::TimeTicks history_start_time = now - params_->historical_time_threshold(); // Create a set of the remote hosts seen in the recent observations so that // the data can be filtered while calculating the percentiles. std::set recent_hosts_set; for (const auto& recent_median_rtts_for_host : recent_median_rtts) recent_hosts_set.insert(recent_median_rtts_for_host.first); // Get the minimum transport RTT observed over 1 minute for each remote host. // This is an estimate of the true RTT which will be used as a baseline value // to detect an increase in RTT. The minimum value is used here because the // observed values cannot be lower than the true RTT. The median is used for // the recent data to reduce noise in the calculation. std::map historical_min_rtts; std::map historical_observation_counts; rtt_ms_observations_[nqe::internal::OBSERVATION_CATEGORY_TRANSPORT] .GetPercentileForEachHostWithCounts( history_start_time, 0, recent_hosts_set, &historical_min_rtts, &historical_observation_counts); // Calculate the total observation counts for the hosts common to the recent // data and the historical data. size_t total_historical_count = 0; size_t total_recent_count = 0; for (const auto& recent_median_rtts_for_host : recent_median_rtts) { nqe::internal::IPHash host = recent_median_rtts_for_host.first; total_historical_count += historical_observation_counts[host]; total_recent_count += recent_observation_counts[host]; } // Compute the increases in transport RTT for each remote host. Also compute // the weight for each remote host based on the number of observations. double total_weight = 0.0; std::vector weighted_rtts; for (auto& host : recent_hosts_set) { // The relative weight signifies the amount of confidence in the data. The // weight is higher if there were more observations. A regularization term // of |1 / recent_hosts_set.size()| is added so that if one particular // remote host has a lot of observations, the results do not get skewed. double weight = 1.0 / recent_hosts_set.size() + std::min(static_cast(recent_observation_counts[host]) / total_recent_count, static_cast(historical_observation_counts[host]) / total_historical_count); weighted_rtts.push_back(nqe::internal::WeightedObservation( recent_median_rtts[host] - historical_min_rtts[host], weight)); total_weight += weight; } // Sort the increases in RTT for percentile computation. std::sort(weighted_rtts.begin(), weighted_rtts.end()); // Calculate the weighted 50th percentile increase in transport RTT. double desired_weight = 0.5 * total_weight; for (nqe::internal::WeightedObservation wo : weighted_rtts) { desired_weight -= wo.weight; if (desired_weight <= 0) return wo.value; } // Calculation will reach here when the 50th percentile is the last value. return weighted_rtts.back().value; } void NetworkQualityEstimator::ComputeEffectiveConnectionType() { DCHECK(thread_checker_.CalledOnValidThread()); UpdateSignalStrength(); const base::TimeTicks now = tick_clock_->NowTicks(); const EffectiveConnectionType past_type = effective_connection_type_; last_effective_connection_type_computation_ = now; base::TimeDelta http_rtt = nqe::internal::InvalidRTT(); base::TimeDelta transport_rtt = nqe::internal::InvalidRTT(); base::TimeDelta end_to_end_rtt = nqe::internal::InvalidRTT(); int32_t downstream_throughput_kbps = nqe::internal::INVALID_RTT_THROUGHPUT; effective_connection_type_ = GetRecentEffectiveConnectionTypeAndNetworkQuality( base::TimeTicks(), &http_rtt, &transport_rtt, &end_to_end_rtt, &downstream_throughput_kbps, &transport_rtt_observation_count_last_ect_computation_, &end_to_end_rtt_observation_count_at_last_ect_computation_); network_quality_ = nqe::internal::NetworkQuality(http_rtt, transport_rtt, downstream_throughput_kbps); ComputeBandwidthDelayProduct(); UMA_HISTOGRAM_ENUMERATION("NQE.EffectiveConnectionType.OnECTComputation", effective_connection_type_, EFFECTIVE_CONNECTION_TYPE_LAST); if (network_quality_.http_rtt() != nqe::internal::InvalidRTT()) { UMA_HISTOGRAM_TIMES("NQE.RTT.OnECTComputation", network_quality_.http_rtt()); } if (network_quality_.transport_rtt() != nqe::internal::InvalidRTT()) { UMA_HISTOGRAM_TIMES("NQE.TransportRTT.OnECTComputation", network_quality_.transport_rtt()); } if (end_to_end_rtt != nqe::internal::InvalidRTT()) { UMA_HISTOGRAM_TIMES("NQE.EndToEndRTT.OnECTComputation", end_to_end_rtt); } end_to_end_rtt_ = base::nullopt; if (end_to_end_rtt != nqe::internal::InvalidRTT()) end_to_end_rtt_ = end_to_end_rtt; if (network_quality_.downstream_throughput_kbps() != nqe::internal::INVALID_RTT_THROUGHPUT) { UMA_HISTOGRAM_COUNTS_1M("NQE.Kbps.OnECTComputation", network_quality_.downstream_throughput_kbps()); } NotifyObserversOfRTTOrThroughputComputed(); if (past_type != effective_connection_type_) NotifyObserversOfEffectiveConnectionTypeChanged(); event_creator_.MaybeAddNetworkQualityChangedEventToNetLog( effective_connection_type_, network_quality_); rtt_observations_size_at_last_ect_computation_ = rtt_ms_observations_[nqe::internal::OBSERVATION_CATEGORY_HTTP].Size() + rtt_ms_observations_[nqe::internal::OBSERVATION_CATEGORY_TRANSPORT] .Size(); throughput_observations_size_at_last_ect_computation_ = http_downstream_throughput_kbps_observations_.Size(); new_rtt_observations_since_last_ect_computation_ = 0; new_throughput_observations_since_last_ect_computation_ = 0; } EffectiveConnectionType NetworkQualityEstimator::GetEffectiveConnectionType() const { DCHECK(thread_checker_.CalledOnValidThread()); return effective_connection_type_; } EffectiveConnectionType NetworkQualityEstimator::GetRecentEffectiveConnectionType( const base::TimeTicks& start_time) const { DCHECK(thread_checker_.CalledOnValidThread()); base::TimeDelta http_rtt = nqe::internal::InvalidRTT(); base::TimeDelta transport_rtt = nqe::internal::InvalidRTT(); base::TimeDelta end_to_end_rtt = nqe::internal::InvalidRTT(); int32_t downstream_throughput_kbps = nqe::internal::INVALID_RTT_THROUGHPUT; return GetRecentEffectiveConnectionTypeAndNetworkQuality( start_time, &http_rtt, &transport_rtt, &end_to_end_rtt, &downstream_throughput_kbps, nullptr, nullptr); } EffectiveConnectionType NetworkQualityEstimator::GetRecentEffectiveConnectionTypeAndNetworkQuality( const base::TimeTicks& start_time, base::TimeDelta* http_rtt, base::TimeDelta* transport_rtt, base::TimeDelta* end_to_end_rtt, int32_t* downstream_throughput_kbps, size_t* transport_rtt_observation_count, size_t* end_to_end_rtt_observation_count) const { DCHECK(thread_checker_.CalledOnValidThread()); return GetRecentEffectiveConnectionTypeUsingMetrics( start_time, NetworkQualityEstimator::MetricUsage::MUST_BE_USED /* http_rtt_metric */, NetworkQualityEstimator::MetricUsage:: DO_NOT_USE /* transport_rtt_metric */, NetworkQualityEstimator::MetricUsage:: USE_IF_AVAILABLE /* downstream_throughput_kbps_metric */, http_rtt, transport_rtt, end_to_end_rtt, downstream_throughput_kbps, transport_rtt_observation_count, end_to_end_rtt_observation_count); } EffectiveConnectionType NetworkQualityEstimator::GetRecentEffectiveConnectionTypeUsingMetrics( const base::TimeTicks& start_time, NetworkQualityEstimator::MetricUsage http_rtt_metric, NetworkQualityEstimator::MetricUsage transport_rtt_metric, NetworkQualityEstimator::MetricUsage downstream_throughput_kbps_metric, base::TimeDelta* http_rtt, base::TimeDelta* transport_rtt, base::TimeDelta* end_to_end_rtt, int32_t* downstream_throughput_kbps, size_t* transport_rtt_observation_count, size_t* end_to_end_rtt_observation_count) const { DCHECK(thread_checker_.CalledOnValidThread()); *http_rtt = nqe::internal::InvalidRTT(); *transport_rtt = nqe::internal::InvalidRTT(); *end_to_end_rtt = nqe::internal::InvalidRTT(); *downstream_throughput_kbps = nqe::internal::INVALID_RTT_THROUGHPUT; auto forced_ect = params_->GetForcedEffectiveConnectionType(current_network_id_.type); if (forced_ect) { *http_rtt = params_->TypicalNetworkQuality(forced_ect.value()).http_rtt(); *transport_rtt = params_->TypicalNetworkQuality(forced_ect.value()).transport_rtt(); *downstream_throughput_kbps = params_->TypicalNetworkQuality(forced_ect.value()) .downstream_throughput_kbps(); return forced_ect.value(); } // If the device is currently offline, then return // EFFECTIVE_CONNECTION_TYPE_OFFLINE. if (current_network_id_.type == NetworkChangeNotifier::CONNECTION_NONE && !disable_offline_check_) { return EFFECTIVE_CONNECTION_TYPE_OFFLINE; } if (!GetRecentRTT(nqe::internal::OBSERVATION_CATEGORY_HTTP, start_time, http_rtt, nullptr)) { *http_rtt = nqe::internal::InvalidRTT(); } if (!GetRecentRTT(nqe::internal::OBSERVATION_CATEGORY_TRANSPORT, start_time, transport_rtt, transport_rtt_observation_count)) { *transport_rtt = nqe::internal::InvalidRTT(); } if (!GetRecentRTT(nqe::internal::OBSERVATION_CATEGORY_END_TO_END, start_time, end_to_end_rtt, end_to_end_rtt_observation_count)) { *end_to_end_rtt = nqe::internal::InvalidRTT(); } if (*http_rtt != nqe::internal::InvalidRTT() && *transport_rtt != nqe::internal::InvalidRTT()) { // Use transport RTT to clamp the HTTP RTT between lower and upper bounds. // To improve accuracy, the transport RTT estimate is used only when the // transport RTT estimate was computed using at least // |params_->http_rtt_transport_rtt_min_count()| observations. if (transport_rtt_observation_count_last_ect_computation_ >= params_->http_rtt_transport_rtt_min_count()) { if (params_->lower_bound_http_rtt_transport_rtt_multiplier() > 0) { *http_rtt = std::max( *http_rtt, *transport_rtt * params_->lower_bound_http_rtt_transport_rtt_multiplier()); } } } // Put lower bound on |http_rtt| using |end_to_end_rtt|. if (params_->use_end_to_end_rtt() && *end_to_end_rtt != nqe::internal::InvalidRTT() && end_to_end_rtt_observation_count_at_last_ect_computation_ >= params_->http_rtt_transport_rtt_min_count() && params_->lower_bound_http_rtt_transport_rtt_multiplier() > 0) { *http_rtt = std::max(*http_rtt, *end_to_end_rtt * params_->lower_bound_http_rtt_transport_rtt_multiplier()); } if (!GetRecentDownlinkThroughputKbps(start_time, downstream_throughput_kbps)) *downstream_throughput_kbps = nqe::internal::INVALID_RTT_THROUGHPUT; if (*http_rtt == nqe::internal::InvalidRTT() && http_rtt_metric == NetworkQualityEstimator::MetricUsage::MUST_BE_USED) { return EFFECTIVE_CONNECTION_TYPE_UNKNOWN; } if (*transport_rtt == nqe::internal::InvalidRTT() && transport_rtt_metric == NetworkQualityEstimator::MetricUsage::MUST_BE_USED) { return EFFECTIVE_CONNECTION_TYPE_UNKNOWN; } if (*downstream_throughput_kbps == nqe::internal::INVALID_RTT_THROUGHPUT && downstream_throughput_kbps_metric == NetworkQualityEstimator::MetricUsage::MUST_BE_USED) { return EFFECTIVE_CONNECTION_TYPE_UNKNOWN; } if (*http_rtt == nqe::internal::InvalidRTT() && *transport_rtt == nqe::internal::InvalidRTT() && *downstream_throughput_kbps == nqe::internal::INVALID_RTT_THROUGHPUT) { // None of the metrics are available. return EFFECTIVE_CONNECTION_TYPE_UNKNOWN; } // Search from the slowest connection type to the fastest to find the // EffectiveConnectionType that best matches the current connection's // performance. The match is done by comparing RTT and throughput. for (size_t i = 0; i < EFFECTIVE_CONNECTION_TYPE_LAST; ++i) { EffectiveConnectionType type = static_cast(i); if (i == EFFECTIVE_CONNECTION_TYPE_UNKNOWN) continue; const bool estimated_http_rtt_is_higher_than_threshold = http_rtt_metric != NetworkQualityEstimator::MetricUsage::DO_NOT_USE && *http_rtt != nqe::internal::InvalidRTT() && params_->ConnectionThreshold(type).http_rtt() != nqe::internal::InvalidRTT() && *http_rtt >= params_->ConnectionThreshold(type).http_rtt(); const bool estimated_transport_rtt_is_higher_than_threshold = transport_rtt_metric != NetworkQualityEstimator::MetricUsage::DO_NOT_USE && *transport_rtt != nqe::internal::InvalidRTT() && params_->ConnectionThreshold(type).transport_rtt() != nqe::internal::InvalidRTT() && *transport_rtt >= params_->ConnectionThreshold(type).transport_rtt(); const bool estimated_throughput_is_lower_than_threshold = downstream_throughput_kbps_metric != NetworkQualityEstimator::MetricUsage::DO_NOT_USE && *downstream_throughput_kbps != nqe::internal::INVALID_RTT_THROUGHPUT && params_->ConnectionThreshold(type).downstream_throughput_kbps() != nqe::internal::INVALID_RTT_THROUGHPUT && *downstream_throughput_kbps <= params_->ConnectionThreshold(type).downstream_throughput_kbps(); if (estimated_http_rtt_is_higher_than_threshold || estimated_transport_rtt_is_higher_than_threshold || estimated_throughput_is_lower_than_threshold) { return type; } } // Return the fastest connection type. return static_cast(EFFECTIVE_CONNECTION_TYPE_LAST - 1); } void NetworkQualityEstimator::AddEffectiveConnectionTypeObserver( EffectiveConnectionTypeObserver* observer) { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK(observer); effective_connection_type_observer_list_.AddObserver(observer); // Notify the |observer| on the next message pump since |observer| may not // be completely set up for receiving the callbacks. base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&NetworkQualityEstimator:: NotifyEffectiveConnectionTypeObserverIfPresent, weak_ptr_factory_.GetWeakPtr(), observer)); } void NetworkQualityEstimator::RemoveEffectiveConnectionTypeObserver( EffectiveConnectionTypeObserver* observer) { DCHECK(thread_checker_.CalledOnValidThread()); effective_connection_type_observer_list_.RemoveObserver(observer); } void NetworkQualityEstimator::AddRTTAndThroughputEstimatesObserver( RTTAndThroughputEstimatesObserver* observer) { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK(observer); rtt_and_throughput_estimates_observer_list_.AddObserver(observer); // Notify the |observer| on the next message pump since |observer| may not // be completely set up for receiving the callbacks. base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&NetworkQualityEstimator:: NotifyRTTAndThroughputEstimatesObserverIfPresent, weak_ptr_factory_.GetWeakPtr(), observer)); } void NetworkQualityEstimator::RemoveRTTAndThroughputEstimatesObserver( RTTAndThroughputEstimatesObserver* observer) { DCHECK(thread_checker_.CalledOnValidThread()); rtt_and_throughput_estimates_observer_list_.RemoveObserver(observer); } bool NetworkQualityEstimator::GetRecentRTT( nqe::internal::ObservationCategory observation_category, const base::TimeTicks& start_time, base::TimeDelta* rtt, size_t* observations_count) const { DCHECK(thread_checker_.CalledOnValidThread()); *rtt = GetRTTEstimateInternal(start_time, observation_category, 50, observations_count); return (*rtt != nqe::internal::InvalidRTT()); } bool NetworkQualityEstimator::GetRecentDownlinkThroughputKbps( const base::TimeTicks& start_time, int32_t* kbps) const { DCHECK(thread_checker_.CalledOnValidThread()); *kbps = GetDownlinkThroughputKbpsEstimateInternal(start_time, 50); return (*kbps != nqe::internal::INVALID_RTT_THROUGHPUT); } base::TimeDelta NetworkQualityEstimator::GetRTTEstimateInternal( base::TimeTicks start_time, nqe::internal::ObservationCategory observation_category, int percentile, size_t* observations_count) const { DCHECK(thread_checker_.CalledOnValidThread()); // RTT observations are sorted by duration from shortest to longest, thus // a higher percentile RTT will have a longer RTT than a lower percentile. switch (observation_category) { case nqe::internal::OBSERVATION_CATEGORY_HTTP: case nqe::internal::OBSERVATION_CATEGORY_TRANSPORT: case nqe::internal::OBSERVATION_CATEGORY_END_TO_END: return base::TimeDelta::FromMilliseconds( rtt_ms_observations_[observation_category] .GetPercentile(start_time, current_network_id_.signal_strength, percentile, observations_count) .value_or(nqe::internal::INVALID_RTT_THROUGHPUT)); case nqe::internal::OBSERVATION_CATEGORY_COUNT: NOTREACHED(); return base::TimeDelta(); } } int32_t NetworkQualityEstimator::GetDownlinkThroughputKbpsEstimateInternal( const base::TimeTicks& start_time, int percentile) const { DCHECK(thread_checker_.CalledOnValidThread()); // Throughput observations are sorted by kbps from slowest to fastest, // thus a higher percentile throughput will be faster than a lower one. return http_downstream_throughput_kbps_observations_ .GetPercentile(start_time, current_network_id_.signal_strength, 100 - percentile, nullptr) .value_or(nqe::internal::INVALID_RTT_THROUGHPUT); } nqe::internal::NetworkID NetworkQualityEstimator::GetCurrentNetworkID() const { DCHECK(thread_checker_.CalledOnValidThread()); // TODO(tbansal): crbug.com/498068 Add NetworkQualityEstimatorAndroid class // that overrides this method on the Android platform. return DoGetCurrentNetworkID(); } bool NetworkQualityEstimator::ReadCachedNetworkQualityEstimate() { DCHECK(thread_checker_.CalledOnValidThread()); if (!params_->persistent_cache_reading_enabled()) return false; nqe::internal::CachedNetworkQuality cached_network_quality; const bool cached_estimate_available = network_quality_store_->GetById( current_network_id_, &cached_network_quality); UMA_HISTOGRAM_BOOLEAN("NQE.CachedNetworkQualityAvailable", cached_estimate_available); if (!cached_estimate_available) return false; EffectiveConnectionType effective_connection_type = cached_network_quality.effective_connection_type(); if (effective_connection_type == EFFECTIVE_CONNECTION_TYPE_UNKNOWN || effective_connection_type == EFFECTIVE_CONNECTION_TYPE_OFFLINE || effective_connection_type == EFFECTIVE_CONNECTION_TYPE_LAST) { return false; } nqe::internal::NetworkQuality network_quality = cached_network_quality.network_quality(); bool update_network_quality_store = false; // Populate |network_quality| with synthetic RTT and throughput observations // if they are missing. if (network_quality.http_rtt().InMilliseconds() == nqe::internal::INVALID_RTT_THROUGHPUT) { network_quality.set_http_rtt( params_->TypicalNetworkQuality(effective_connection_type).http_rtt()); update_network_quality_store = true; } if (network_quality.transport_rtt().InMilliseconds() == nqe::internal::INVALID_RTT_THROUGHPUT) { network_quality.set_transport_rtt( params_->TypicalNetworkQuality(effective_connection_type) .transport_rtt()); update_network_quality_store = true; } if (network_quality.downstream_throughput_kbps() == nqe::internal::INVALID_RTT_THROUGHPUT) { network_quality.set_downstream_throughput_kbps( params_->TypicalNetworkQuality(effective_connection_type) .downstream_throughput_kbps()); update_network_quality_store = true; } if (update_network_quality_store) { network_quality_store_->Add(current_network_id_, nqe::internal::CachedNetworkQuality( tick_clock_->NowTicks(), network_quality, effective_connection_type)); } Observation http_rtt_observation( network_quality.http_rtt().InMilliseconds(), tick_clock_->NowTicks(), INT32_MIN, NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP_CACHED_ESTIMATE); AddAndNotifyObserversOfRTT(http_rtt_observation); Observation transport_rtt_observation( network_quality.transport_rtt().InMilliseconds(), tick_clock_->NowTicks(), INT32_MIN, NETWORK_QUALITY_OBSERVATION_SOURCE_TRANSPORT_CACHED_ESTIMATE); AddAndNotifyObserversOfRTT(transport_rtt_observation); Observation througphput_observation( network_quality.downstream_throughput_kbps(), tick_clock_->NowTicks(), INT32_MIN, NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP_CACHED_ESTIMATE); AddAndNotifyObserversOfThroughput(througphput_observation); ComputeEffectiveConnectionType(); return true; } void NetworkQualityEstimator::SetTickClockForTesting( const base::TickClock* tick_clock) { DCHECK(thread_checker_.CalledOnValidThread()); tick_clock_ = tick_clock; for (int i = 0; i < nqe::internal::OBSERVATION_CATEGORY_COUNT; ++i) rtt_ms_observations_[i].SetTickClockForTesting(tick_clock_); http_downstream_throughput_kbps_observations_.SetTickClockForTesting( tick_clock_); throughput_analyzer_->SetTickClockForTesting(tick_clock_); watcher_factory_->SetTickClockForTesting(tick_clock_); } void NetworkQualityEstimator::OnUpdatedTransportRTTAvailable( SocketPerformanceWatcherFactory::Protocol protocol, const base::TimeDelta& rtt, const base::Optional& host) { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK_LT(nqe::internal::INVALID_RTT_THROUGHPUT, rtt.InMilliseconds()); Observation observation(rtt.InMilliseconds(), tick_clock_->NowTicks(), current_network_id_.signal_strength, ProtocolSourceToObservationSource(protocol), host); AddAndNotifyObserversOfRTT(observation); // Post a task to compute and update the increase in RTT if not already // posted. if (!increase_in_transport_rtt_updater_posted_) IncreaseInTransportRTTUpdater(); } void NetworkQualityEstimator::AddAndNotifyObserversOfRTT( const Observation& observation) { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK_NE(nqe::internal::InvalidRTT(), base::TimeDelta::FromMilliseconds(observation.value())); DCHECK_GT(NETWORK_QUALITY_OBSERVATION_SOURCE_MAX, observation.source()); if (!ShouldAddObservation(observation)) return; MaybeUpdateCachedEstimateApplied( observation, &rtt_ms_observations_[nqe::internal::OBSERVATION_CATEGORY_HTTP]); MaybeUpdateCachedEstimateApplied( observation, &rtt_ms_observations_[nqe::internal::OBSERVATION_CATEGORY_TRANSPORT]); ++new_rtt_observations_since_last_ect_computation_; std::vector observation_categories = observation.GetObservationCategories(); for (nqe::internal::ObservationCategory observation_category : observation_categories) { rtt_ms_observations_[observation_category].AddObservation(observation); } if (observation.source() == NETWORK_QUALITY_OBSERVATION_SOURCE_TCP || observation.source() == NETWORK_QUALITY_OBSERVATION_SOURCE_QUIC) { last_socket_watcher_rtt_notification_ = tick_clock_->NowTicks(); } UMA_HISTOGRAM_ENUMERATION("NQE.RTT.ObservationSource", observation.source(), NETWORK_QUALITY_OBSERVATION_SOURCE_MAX); base::HistogramBase* raw_observation_histogram = base::Histogram::FactoryGet( std::string("NQE.RTT.RawObservation.") + nqe::internal::GetNameForObservationSource(observation.source()), 1, 10 * 1000, 50, base::HistogramBase::kUmaTargetedHistogramFlag); if (raw_observation_histogram) raw_observation_histogram->Add(observation.value()); // Maybe recompute the effective connection type since a new RTT observation // is available. MaybeComputeEffectiveConnectionType(); for (auto& observer : rtt_observer_list_) { observer.OnRTTObservation(observation.value(), observation.timestamp(), observation.source()); } } void NetworkQualityEstimator::AddAndNotifyObserversOfThroughput( const Observation& observation) { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK_NE(nqe::internal::INVALID_RTT_THROUGHPUT, observation.value()); DCHECK_GT(NETWORK_QUALITY_OBSERVATION_SOURCE_MAX, observation.source()); DCHECK_EQ(1u, observation.GetObservationCategories().size()); DCHECK_EQ(nqe::internal::OBSERVATION_CATEGORY_HTTP, observation.GetObservationCategories().front()); if (!ShouldAddObservation(observation)) return; MaybeUpdateCachedEstimateApplied( observation, &http_downstream_throughput_kbps_observations_); ++new_throughput_observations_since_last_ect_computation_; http_downstream_throughput_kbps_observations_.AddObservation(observation); UMA_HISTOGRAM_ENUMERATION("NQE.Kbps.ObservationSource", observation.source(), NETWORK_QUALITY_OBSERVATION_SOURCE_MAX); base::HistogramBase* raw_observation_histogram = base::Histogram::FactoryGet( std::string("NQE.Kbps.RawObservation.") + nqe::internal::GetNameForObservationSource(observation.source()), 1, 10 * 1000, 50, base::HistogramBase::kUmaTargetedHistogramFlag); if (raw_observation_histogram) raw_observation_histogram->Add(observation.value()); // Maybe recompute the effective connection type since a new throughput // observation is available. MaybeComputeEffectiveConnectionType(); for (auto& observer : throughput_observer_list_) { observer.OnThroughputObservation( observation.value(), observation.timestamp(), observation.source()); } } void NetworkQualityEstimator::OnNewThroughputObservationAvailable( int32_t downstream_kbps) { DCHECK(thread_checker_.CalledOnValidThread()); if (downstream_kbps <= 0) return; DCHECK_NE(nqe::internal::INVALID_RTT_THROUGHPUT, downstream_kbps); Observation throughput_observation(downstream_kbps, tick_clock_->NowTicks(), current_network_id_.signal_strength, NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP); AddAndNotifyObserversOfThroughput(throughput_observation); } void NetworkQualityEstimator::MaybeComputeEffectiveConnectionType() { DCHECK(thread_checker_.CalledOnValidThread()); const base::TimeTicks now = tick_clock_->NowTicks(); // Recompute effective connection type only if // |effective_connection_type_recomputation_interval_| has passed since it was // last computed or a connection change event was observed since the last // computation. Strict inequalities are used to ensure that effective // connection type is recomputed on connection change events even if the clock // has not updated. if (now - last_effective_connection_type_computation_ < effective_connection_type_recomputation_interval_ && last_connection_change_ < last_effective_connection_type_computation_ && // Recompute the effective connection type if the previously computed // effective connection type was unknown. effective_connection_type_ != EFFECTIVE_CONNECTION_TYPE_UNKNOWN && // Recompute the effective connection type if the number of samples // available now are 50% more than the number of samples that were // available when the effective connection type was last computed. rtt_observations_size_at_last_ect_computation_ * 1.5 >= (rtt_ms_observations_[nqe::internal::OBSERVATION_CATEGORY_HTTP] .Size() + rtt_ms_observations_[nqe::internal::OBSERVATION_CATEGORY_TRANSPORT] .Size()) && throughput_observations_size_at_last_ect_computation_ * 1.5 >= http_downstream_throughput_kbps_observations_.Size() && (new_rtt_observations_since_last_ect_computation_ + new_throughput_observations_since_last_ect_computation_) < params_->count_new_observations_received_compute_ect()) { return; } ComputeEffectiveConnectionType(); } void NetworkQualityEstimator:: NotifyObserversOfEffectiveConnectionTypeChanged() { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK_NE(EFFECTIVE_CONNECTION_TYPE_LAST, effective_connection_type_); // TODO(tbansal): Add hysteresis in the notification. for (auto& observer : effective_connection_type_observer_list_) observer.OnEffectiveConnectionTypeChanged(effective_connection_type_); // Add the estimates of the current network to the cache store. network_quality_store_->Add(current_network_id_, nqe::internal::CachedNetworkQuality( tick_clock_->NowTicks(), network_quality_, effective_connection_type_)); } void NetworkQualityEstimator::NotifyObserversOfRTTOrThroughputComputed() const { DCHECK(thread_checker_.CalledOnValidThread()); // TODO(tbansal): Add hysteresis in the notification. for (auto& observer : rtt_and_throughput_estimates_observer_list_) { observer.OnRTTOrThroughputEstimatesComputed( network_quality_.http_rtt(), network_quality_.transport_rtt(), network_quality_.downstream_throughput_kbps()); } } void NetworkQualityEstimator::NotifyEffectiveConnectionTypeObserverIfPresent( EffectiveConnectionTypeObserver* observer) const { DCHECK(thread_checker_.CalledOnValidThread()); if (!effective_connection_type_observer_list_.HasObserver(observer)) return; if (effective_connection_type_ == EFFECTIVE_CONNECTION_TYPE_UNKNOWN) return; observer->OnEffectiveConnectionTypeChanged(effective_connection_type_); } void NetworkQualityEstimator::NotifyRTTAndThroughputEstimatesObserverIfPresent( RTTAndThroughputEstimatesObserver* observer) const { DCHECK(thread_checker_.CalledOnValidThread()); if (!rtt_and_throughput_estimates_observer_list_.HasObserver(observer)) return; observer->OnRTTOrThroughputEstimatesComputed( network_quality_.http_rtt(), network_quality_.transport_rtt(), network_quality_.downstream_throughput_kbps()); } void NetworkQualityEstimator::AddNetworkQualitiesCacheObserver( nqe::internal::NetworkQualityStore::NetworkQualitiesCacheObserver* observer) { DCHECK(thread_checker_.CalledOnValidThread()); network_quality_store_->AddNetworkQualitiesCacheObserver(observer); } void NetworkQualityEstimator::RemoveNetworkQualitiesCacheObserver( nqe::internal::NetworkQualityStore::NetworkQualitiesCacheObserver* observer) { DCHECK(thread_checker_.CalledOnValidThread()); network_quality_store_->RemoveNetworkQualitiesCacheObserver(observer); } void NetworkQualityEstimator::OnPrefsRead( const std::map read_prefs) { DCHECK(thread_checker_.CalledOnValidThread()); UMA_HISTOGRAM_COUNTS_1M("NQE.Prefs.ReadSize", read_prefs.size()); for (auto& it : read_prefs) { EffectiveConnectionType effective_connection_type = it.second.effective_connection_type(); if (effective_connection_type == EFFECTIVE_CONNECTION_TYPE_UNKNOWN || effective_connection_type == EFFECTIVE_CONNECTION_TYPE_OFFLINE) { continue; } // RTT and throughput values are not set in the prefs. DCHECK_EQ(nqe::internal::InvalidRTT(), it.second.network_quality().http_rtt()); DCHECK_EQ(nqe::internal::InvalidRTT(), it.second.network_quality().transport_rtt()); DCHECK_EQ(nqe::internal::INVALID_RTT_THROUGHPUT, it.second.network_quality().downstream_throughput_kbps()); nqe::internal::CachedNetworkQuality cached_network_quality( tick_clock_->NowTicks(), params_->TypicalNetworkQuality(effective_connection_type), effective_connection_type); network_quality_store_->Add(it.first, cached_network_quality); } ReadCachedNetworkQualityEstimate(); } #if defined(OS_CHROMEOS) void NetworkQualityEstimator::EnableGetNetworkIdAsynchronously() { get_network_id_asynchronously_ = true; } #endif // defined(OS_CHROMEOS) base::Optional NetworkQualityEstimator::GetHttpRTT() const { DCHECK(thread_checker_.CalledOnValidThread()); if (network_quality_.http_rtt() == nqe::internal::InvalidRTT()) return base::Optional(); return network_quality_.http_rtt(); } base::Optional NetworkQualityEstimator::GetTransportRTT() const { DCHECK(thread_checker_.CalledOnValidThread()); if (network_quality_.transport_rtt() == nqe::internal::InvalidRTT()) return base::Optional(); return network_quality_.transport_rtt(); } base::Optional NetworkQualityEstimator::GetDownstreamThroughputKbps() const { DCHECK(thread_checker_.CalledOnValidThread()); if (network_quality_.downstream_throughput_kbps() == nqe::internal::INVALID_RTT_THROUGHPUT) { return base::Optional(); } return network_quality_.downstream_throughput_kbps(); } base::Optional NetworkQualityEstimator::GetBandwidthDelayProductKbits() const { DCHECK(thread_checker_.CalledOnValidThread()); return bandwidth_delay_product_kbits_; } void NetworkQualityEstimator::MaybeUpdateCachedEstimateApplied( const Observation& observation, ObservationBuffer* buffer) { DCHECK(thread_checker_.CalledOnValidThread()); if (observation.source() != NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP_CACHED_ESTIMATE && observation.source() != NETWORK_QUALITY_OBSERVATION_SOURCE_TRANSPORT_CACHED_ESTIMATE) { return; } cached_estimate_applied_ = true; bool deleted_observation_sources[NETWORK_QUALITY_OBSERVATION_SOURCE_MAX] = { false}; deleted_observation_sources [NETWORK_QUALITY_OBSERVATION_SOURCE_DEFAULT_HTTP_FROM_PLATFORM] = true; deleted_observation_sources [NETWORK_QUALITY_OBSERVATION_SOURCE_DEFAULT_TRANSPORT_FROM_PLATFORM] = true; buffer->RemoveObservationsWithSource(deleted_observation_sources); } bool NetworkQualityEstimator::ShouldAddObservation( const Observation& observation) const { DCHECK(thread_checker_.CalledOnValidThread()); if (cached_estimate_applied_ && (observation.source() == NETWORK_QUALITY_OBSERVATION_SOURCE_DEFAULT_HTTP_FROM_PLATFORM || observation.source() == NETWORK_QUALITY_OBSERVATION_SOURCE_DEFAULT_TRANSPORT_FROM_PLATFORM)) { return false; } return true; } bool NetworkQualityEstimator::ShouldSocketWatcherNotifyRTT( base::TimeTicks now) { DCHECK(thread_checker_.CalledOnValidThread()); return (now - last_socket_watcher_rtt_notification_ >= params_->socket_watchers_min_notification_interval()); } void NetworkQualityEstimator::SimulateNetworkQualityChangeForTesting( net::EffectiveConnectionType type) { DCHECK(thread_checker_.CalledOnValidThread()); params_->SetForcedEffectiveConnectionTypeForTesting(type); ComputeEffectiveConnectionType(); } } // namespace net