// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/blockfile/sparse_control.h" #include #include "base/bind.h" #include "base/format_macros.h" #include "base/location.h" #include "base/logging.h" #include "base/macros.h" #include "base/single_thread_task_runner.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/threading/thread_task_runner_handle.h" #include "base/time/time.h" #include "net/base/interval.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/disk_cache/blockfile/backend_impl.h" #include "net/disk_cache/blockfile/entry_impl.h" #include "net/disk_cache/blockfile/file.h" #include "net/disk_cache/net_log_parameters.h" #include "net/log/net_log.h" #include "net/log/net_log_event_type.h" #include "net/log/net_log_with_source.h" using base::Time; namespace { // Stream of the sparse data index. const int kSparseIndex = 2; // Stream of the sparse data. const int kSparseData = 1; // We can have up to 64k children. const int kMaxMapSize = 8 * 1024; // The maximum number of bytes that a child can store. const int kMaxEntrySize = 0x100000; // The size of each data block (tracked by the child allocation bitmap). const int kBlockSize = 1024; // Returns the name of a child entry given the base_name and signature of the // parent and the child_id. // If the entry is called entry_name, child entries will be named something // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the // number of the particular child. std::string GenerateChildName(const std::string& base_name, int64_t signature, int64_t child_id) { return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(), signature, child_id); } // This class deletes the children of a sparse entry. class ChildrenDeleter : public base::RefCounted, public disk_cache::FileIOCallback { public: ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name) : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {} void OnFileIOComplete(int bytes_copied) override; // Two ways of deleting the children: if we have the children map, use Start() // directly, otherwise pass the data address to ReadData(). void Start(char* buffer, int len); void ReadData(disk_cache::Addr address, int len); private: friend class base::RefCounted; ~ChildrenDeleter() override = default; void DeleteChildren(); base::WeakPtr backend_; std::string name_; disk_cache::Bitmap children_map_; int64_t signature_; std::unique_ptr buffer_; DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter); }; // This is the callback of the file operation. void ChildrenDeleter::OnFileIOComplete(int bytes_copied) { char* buffer = buffer_.release(); Start(buffer, bytes_copied); } void ChildrenDeleter::Start(char* buffer, int len) { buffer_.reset(buffer); if (len < static_cast(sizeof(disk_cache::SparseData))) return Release(); // Just copy the information from |buffer|, delete |buffer| and start deleting // the child entries. disk_cache::SparseData* data = reinterpret_cast(buffer); signature_ = data->header.signature; int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8; children_map_.Resize(num_bits, false); children_map_.SetMap(data->bitmap, num_bits / 32); buffer_.reset(); DeleteChildren(); } void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) { DCHECK(address.is_block_file()); if (!backend_.get()) return Release(); disk_cache::File* file(backend_->File(address)); if (!file) return Release(); size_t file_offset = address.start_block() * address.BlockSize() + disk_cache::kBlockHeaderSize; buffer_.reset(new char[len]); bool completed; if (!file->Read(buffer_.get(), len, file_offset, this, &completed)) return Release(); if (completed) OnFileIOComplete(len); // And wait until OnFileIOComplete gets called. } void ChildrenDeleter::DeleteChildren() { int child_id = 0; if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) { // We are done. Just delete this object. return Release(); } std::string child_name = GenerateChildName(name_, signature_, child_id); backend_->SyncDoomEntry(child_name); children_map_.Set(child_id, false); // Post a task to delete the next child. base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&ChildrenDeleter::DeleteChildren, this)); } // Returns the NetLog event type corresponding to a SparseOperation. net::NetLogEventType GetSparseEventType( disk_cache::SparseControl::SparseOperation operation) { switch (operation) { case disk_cache::SparseControl::kReadOperation: return net::NetLogEventType::SPARSE_READ; case disk_cache::SparseControl::kWriteOperation: return net::NetLogEventType::SPARSE_WRITE; case disk_cache::SparseControl::kGetRangeOperation: return net::NetLogEventType::SPARSE_GET_RANGE; default: NOTREACHED(); return net::NetLogEventType::CANCELLED; } } // Logs the end event for |operation| on a child entry. Range operations log // no events for each child they search through. void LogChildOperationEnd(const net::NetLogWithSource& net_log, disk_cache::SparseControl::SparseOperation operation, int result) { if (net_log.IsCapturing()) { net::NetLogEventType event_type; switch (operation) { case disk_cache::SparseControl::kReadOperation: event_type = net::NetLogEventType::SPARSE_READ_CHILD_DATA; break; case disk_cache::SparseControl::kWriteOperation: event_type = net::NetLogEventType::SPARSE_WRITE_CHILD_DATA; break; case disk_cache::SparseControl::kGetRangeOperation: return; default: NOTREACHED(); return; } net_log.EndEventWithNetErrorCode(event_type, result); } } } // namespace. namespace disk_cache { SparseControl::SparseControl(EntryImpl* entry) : entry_(entry), child_(NULL), operation_(kNoOperation), pending_(false), finished_(false), init_(false), range_found_(false), abort_(false), child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32), offset_(0), buf_len_(0), child_offset_(0), child_len_(0), result_(0) { memset(&sparse_header_, 0, sizeof(sparse_header_)); memset(&child_data_, 0, sizeof(child_data_)); } SparseControl::~SparseControl() { if (child_) CloseChild(); if (init_) WriteSparseData(); } int SparseControl::Init() { DCHECK(!init_); // We should not have sparse data for the exposed entry. if (entry_->GetDataSize(kSparseData)) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; // Now see if there is something where we store our data. int rv = net::OK; int data_len = entry_->GetDataSize(kSparseIndex); if (!data_len) { rv = CreateSparseEntry(); } else { rv = OpenSparseEntry(data_len); } if (rv == net::OK) init_ = true; return rv; } bool SparseControl::CouldBeSparse() const { DCHECK(!init_); if (entry_->GetDataSize(kSparseData)) return false; // We don't verify the data, just see if it could be there. return (entry_->GetDataSize(kSparseIndex) != 0); } int SparseControl::StartIO(SparseOperation op, int64_t offset, net::IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { DCHECK(init_); // We don't support simultaneous IO for sparse data. if (operation_ != kNoOperation) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; if (offset < 0 || buf_len < 0) return net::ERR_INVALID_ARGUMENT; // We only support up to 64 GB. if (static_cast(offset) + static_cast(buf_len) >= UINT64_C(0x1000000000)) { return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; } DCHECK(!user_buf_.get()); DCHECK(user_callback_.is_null()); if (!buf && (op == kReadOperation || op == kWriteOperation)) return 0; // Copy the operation parameters. operation_ = op; offset_ = offset; user_buf_ = buf ? base::MakeRefCounted(buf, buf_len) : NULL; buf_len_ = buf_len; user_callback_ = std::move(callback); result_ = 0; pending_ = false; finished_ = false; abort_ = false; if (entry_->net_log().IsCapturing()) { entry_->net_log().BeginEvent( GetSparseEventType(operation_), CreateNetLogSparseOperationCallback(offset_, buf_len_)); } DoChildrenIO(); if (!pending_) { // Everything was done synchronously. operation_ = kNoOperation; user_buf_ = NULL; user_callback_.Reset(); return result_; } return net::ERR_IO_PENDING; } int SparseControl::GetAvailableRange(int64_t offset, int len, int64_t* start) { DCHECK(init_); // We don't support simultaneous IO for sparse data. if (operation_ != kNoOperation) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; DCHECK(start); range_found_ = false; int result = StartIO(kGetRangeOperation, offset, NULL, len, CompletionOnceCallback()); if (range_found_) { *start = offset_; return result; } // This is a failure. We want to return a valid start value in any case. *start = offset; return result < 0 ? result : 0; // Don't mask error codes to the caller. } void SparseControl::CancelIO() { if (operation_ == kNoOperation) return; abort_ = true; } int SparseControl::ReadyToUse(CompletionOnceCallback callback) { if (!abort_) return net::OK; // We'll grab another reference to keep this object alive because we just have // one extra reference due to the pending IO operation itself, but we'll // release that one before invoking user_callback_. entry_->AddRef(); // Balanced in DoAbortCallbacks. abort_callbacks_.push_back(std::move(callback)); return net::ERR_IO_PENDING; } // Static void SparseControl::DeleteChildren(EntryImpl* entry) { DCHECK(entry->GetEntryFlags() & PARENT_ENTRY); int data_len = entry->GetDataSize(kSparseIndex); if (data_len < static_cast(sizeof(SparseData)) || entry->GetDataSize(kSparseData)) return; int map_len = data_len - sizeof(SparseHeader); if (map_len > kMaxMapSize || map_len % 4) return; char* buffer; Addr address; entry->GetData(kSparseIndex, &buffer, &address); if (!buffer && !address.is_initialized()) return; entry->net_log().AddEvent(net::NetLogEventType::SPARSE_DELETE_CHILDREN); DCHECK(entry->backend_.get()); ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(), entry->GetKey()); // The object will self destruct when finished. deleter->AddRef(); if (buffer) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&ChildrenDeleter::Start, deleter, buffer, data_len)); } else { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&ChildrenDeleter::ReadData, deleter, address, data_len)); } } // We are going to start using this entry to store sparse data, so we have to // initialize our control info. int SparseControl::CreateSparseEntry() { if (CHILD_ENTRY & entry_->GetEntryFlags()) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; memset(&sparse_header_, 0, sizeof(sparse_header_)); sparse_header_.signature = Time::Now().ToInternalValue(); sparse_header_.magic = kIndexMagic; sparse_header_.parent_key_len = entry_->GetKey().size(); children_map_.Resize(kNumSparseBits, true); // Save the header. The bitmap is saved in the destructor. scoped_refptr buf = base::MakeRefCounted( reinterpret_cast(&sparse_header_)); int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_), CompletionOnceCallback(), false); if (rv != sizeof(sparse_header_)) { DLOG(ERROR) << "Unable to save sparse_header_"; return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; } entry_->SetEntryFlags(PARENT_ENTRY); return net::OK; } // We are opening an entry from disk. Make sure that our control data is there. int SparseControl::OpenSparseEntry(int data_len) { if (data_len < static_cast(sizeof(SparseData))) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; if (entry_->GetDataSize(kSparseData)) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; if (!(PARENT_ENTRY & entry_->GetEntryFlags())) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB. int map_len = data_len - sizeof(sparse_header_); if (map_len > kMaxMapSize || map_len % 4) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; scoped_refptr buf = base::MakeRefCounted( reinterpret_cast(&sparse_header_)); // Read header. int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_), CompletionOnceCallback()); if (rv != static_cast(sizeof(sparse_header_))) return net::ERR_CACHE_READ_FAILURE; // The real validation should be performed by the caller. This is just to // double check. if (sparse_header_.magic != kIndexMagic || sparse_header_.parent_key_len != static_cast(entry_->GetKey().size())) return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; // Read the actual bitmap. buf = base::MakeRefCounted(map_len); rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(), map_len, CompletionOnceCallback()); if (rv != map_len) return net::ERR_CACHE_READ_FAILURE; // Grow the bitmap to the current size and copy the bits. children_map_.Resize(map_len * 8, false); children_map_.SetMap(reinterpret_cast(buf->data()), map_len); return net::OK; } bool SparseControl::OpenChild() { DCHECK_GE(result_, 0); std::string key = GenerateChildKey(); if (child_) { // Keep using the same child or open another one?. if (key == child_->GetKey()) return true; CloseChild(); } // See if we are tracking this child. if (!ChildPresent()) return ContinueWithoutChild(key); if (!entry_->backend_.get()) return false; child_ = entry_->backend_->OpenEntryImpl(key); if (!child_) return ContinueWithoutChild(key); if (!(CHILD_ENTRY & child_->GetEntryFlags()) || child_->GetDataSize(kSparseIndex) < static_cast(sizeof(child_data_))) return KillChildAndContinue(key, false); scoped_refptr buf = base::MakeRefCounted( reinterpret_cast(&child_data_)); // Read signature. int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_), CompletionOnceCallback()); if (rv != sizeof(child_data_)) return KillChildAndContinue(key, true); // This is a fatal failure. if (child_data_.header.signature != sparse_header_.signature || child_data_.header.magic != kIndexMagic) return KillChildAndContinue(key, false); if (child_data_.header.last_block_len < 0 || child_data_.header.last_block_len >= kBlockSize) { // Make sure these values are always within range. child_data_.header.last_block_len = 0; child_data_.header.last_block = -1; } return true; } void SparseControl::CloseChild() { scoped_refptr buf = base::MakeRefCounted( reinterpret_cast(&child_data_)); // Save the allocation bitmap before closing the child entry. int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_), CompletionOnceCallback(), false); if (rv != sizeof(child_data_)) DLOG(ERROR) << "Failed to save child data"; child_ = NULL; } std::string SparseControl::GenerateChildKey() { return GenerateChildName(entry_->GetKey(), sparse_header_.signature, offset_ >> 20); } // We are deleting the child because something went wrong. bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) { SetChildBit(false); child_->DoomImpl(); child_ = NULL; if (fatal) { result_ = net::ERR_CACHE_READ_FAILURE; return false; } return ContinueWithoutChild(key); } // We were not able to open this child; see what we can do. bool SparseControl::ContinueWithoutChild(const std::string& key) { if (kReadOperation == operation_) return false; if (kGetRangeOperation == operation_) return true; if (!entry_->backend_.get()) return false; child_ = entry_->backend_->CreateEntryImpl(key); if (!child_) { child_ = NULL; result_ = net::ERR_CACHE_READ_FAILURE; return false; } // Write signature. InitChildData(); return true; } bool SparseControl::ChildPresent() { int child_bit = static_cast(offset_ >> 20); if (children_map_.Size() <= child_bit) return false; return children_map_.Get(child_bit); } void SparseControl::SetChildBit(bool value) { int child_bit = static_cast(offset_ >> 20); // We may have to increase the bitmap of child entries. if (children_map_.Size() <= child_bit) children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true); children_map_.Set(child_bit, value); } void SparseControl::WriteSparseData() { scoped_refptr buf = base::MakeRefCounted( reinterpret_cast(children_map_.GetMap())); int len = children_map_.ArraySize() * 4; int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(), len, CompletionOnceCallback(), false); if (rv != len) { DLOG(ERROR) << "Unable to save sparse map"; } } bool SparseControl::VerifyRange() { DCHECK_GE(result_, 0); child_offset_ = static_cast(offset_) & (kMaxEntrySize - 1); child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_); // We can write to (or get info from) anywhere in this child. if (operation_ != kReadOperation) return true; // Check that there are no holes in this range. int last_bit = (child_offset_ + child_len_ + 1023) >> 10; int start = child_offset_ >> 10; if (child_map_.FindNextBit(&start, last_bit, false)) { // Something is not here. DCHECK_GE(child_data_.header.last_block_len, 0); DCHECK_LT(child_data_.header.last_block_len, kBlockSize); int partial_block_len = PartialBlockLength(start); if (start == child_offset_ >> 10) { // It looks like we don't have anything. if (partial_block_len <= (child_offset_ & (kBlockSize - 1))) return false; } // We have the first part. child_len_ = (start << 10) - child_offset_; if (partial_block_len) { // We may have a few extra bytes. child_len_ = std::min(child_len_ + partial_block_len, buf_len_); } // There is no need to read more after this one. buf_len_ = child_len_; } return true; } void SparseControl::UpdateRange(int result) { if (result <= 0 || operation_ != kWriteOperation) return; DCHECK_GE(child_data_.header.last_block_len, 0); DCHECK_LT(child_data_.header.last_block_len, kBlockSize); // Write the bitmap. int first_bit = child_offset_ >> 10; int block_offset = child_offset_ & (kBlockSize - 1); if (block_offset && (child_data_.header.last_block != first_bit || child_data_.header.last_block_len < block_offset)) { // The first block is not completely filled; ignore it. first_bit++; } int last_bit = (child_offset_ + result) >> 10; block_offset = (child_offset_ + result) & (kBlockSize - 1); // This condition will hit with the following criteria: // 1. The first byte doesn't follow the last write. // 2. The first byte is in the middle of a block. // 3. The first byte and the last byte are in the same block. if (first_bit > last_bit) return; if (block_offset && !child_map_.Get(last_bit)) { // The last block is not completely filled; save it for later. child_data_.header.last_block = last_bit; child_data_.header.last_block_len = block_offset; } else { child_data_.header.last_block = -1; } child_map_.SetRange(first_bit, last_bit, true); } int SparseControl::PartialBlockLength(int block_index) const { if (block_index == child_data_.header.last_block) return child_data_.header.last_block_len; // This is really empty. return 0; } void SparseControl::InitChildData() { child_->SetEntryFlags(CHILD_ENTRY); memset(&child_data_, 0, sizeof(child_data_)); child_data_.header = sparse_header_; scoped_refptr buf = base::MakeRefCounted( reinterpret_cast(&child_data_)); int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_), CompletionOnceCallback(), false); if (rv != sizeof(child_data_)) DLOG(ERROR) << "Failed to save child data"; SetChildBit(true); } void SparseControl::DoChildrenIO() { while (DoChildIO()) continue; // Range operations are finished synchronously, often without setting // |finished_| to true. if (kGetRangeOperation == operation_ && entry_->net_log().IsCapturing()) { entry_->net_log().EndEvent( net::NetLogEventType::SPARSE_GET_RANGE, CreateNetLogGetAvailableRangeResultCallback(offset_, result_)); } if (finished_) { if (kGetRangeOperation != operation_ && entry_->net_log().IsCapturing()) { entry_->net_log().EndEvent(GetSparseEventType(operation_)); } if (pending_) DoUserCallback(); // Don't touch this object after this point. } } bool SparseControl::DoChildIO() { finished_ = true; if (!buf_len_ || result_ < 0) return false; if (!OpenChild()) return false; if (!VerifyRange()) return false; // We have more work to do. Let's not trigger a callback to the caller. finished_ = false; CompletionOnceCallback callback; if (!user_callback_.is_null()) { callback = base::BindOnce(&SparseControl::OnChildIOCompleted, base::Unretained(this)); } int rv = 0; switch (operation_) { case kReadOperation: if (entry_->net_log().IsCapturing()) { entry_->net_log().BeginEvent( net::NetLogEventType::SPARSE_READ_CHILD_DATA, CreateNetLogSparseReadWriteCallback(child_->net_log().source(), child_len_)); } rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(), child_len_, std::move(callback)); break; case kWriteOperation: if (entry_->net_log().IsCapturing()) { entry_->net_log().BeginEvent( net::NetLogEventType::SPARSE_WRITE_CHILD_DATA, CreateNetLogSparseReadWriteCallback(child_->net_log().source(), child_len_)); } rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(), child_len_, std::move(callback), false); break; case kGetRangeOperation: rv = DoGetAvailableRange(); break; default: NOTREACHED(); } if (rv == net::ERR_IO_PENDING) { if (!pending_) { pending_ = true; // The child will protect himself against closing the entry while IO is in // progress. However, this entry can still be closed, and that would not // be a good thing for us, so we increase the refcount until we're // finished doing sparse stuff. entry_->AddRef(); // Balanced in DoUserCallback. } return false; } if (!rv) return false; DoChildIOCompleted(rv); return true; } int SparseControl::DoGetAvailableRange() { if (!child_) return child_len_; // Move on to the next child. // Blockfile splits sparse files into multiple child entries, each responsible // for managing 1MiB of address space. This method is responsible for // implementing GetAvailableRange within a single child. // // Input: // |child_offset_|, |child_len_|: // describe range in current child's address space the client requested. // |offset_| is equivalent to |child_offset_| but in global address space. // // For example if this were child [2] and the original call was for // [0x200005, 0x200007) then |offset_| would be 0x200005, |child_offset_| // would be 5, and |child_len| would be 2. // // Output: // If nothing found: // return |child_len_| // // If something found: // |result_| gets the length of the available range. // |offset_| gets the global address of beginning of the available range. // |range_found_| get true to signal SparseControl::GetAvailableRange(). // return 0 to exit loop. net::Interval to_find(child_offset_, child_offset_ + child_len_); // Within each child, valid portions are mostly tracked via the |child_map_| // bitmap which marks which 1KiB 'blocks' have valid data. Scan the bitmap // for the first contiguous range of set bits that's relevant to the range // [child_offset_, child_offset_ + len) int first_bit = child_offset_ >> 10; int last_bit = (child_offset_ + child_len_ + kBlockSize - 1) >> 10; int found = first_bit; int bits_found = child_map_.FindBits(&found, last_bit, true); net::Interval bitmap_range(found * kBlockSize, found * kBlockSize + bits_found * kBlockSize); // Bits on the bitmap should only be set when the corresponding block was // fully written (it's really being used). If a block is partially used, it // has to start with valid data, the length of the valid data is saved in // |header.last_block_len| and the block number saved in |header.last_block|. // This is updated after every write; with |header.last_block| set to -1 // if no sub-KiB range is being tracked. net::Interval last_write_range; if (child_data_.header.last_block >= 0) { last_write_range = net::Interval(child_data_.header.last_block * kBlockSize, child_data_.header.last_block * kBlockSize + child_data_.header.last_block_len); } // Often |last_write_range| is contiguously after |bitmap_range|, but not // always. See if they can be combined. if (!last_write_range.Empty() && !bitmap_range.Empty() && bitmap_range.max() == last_write_range.min()) { bitmap_range.SetMax(last_write_range.max()); last_write_range.Clear(); } // Do any of them have anything relevant? bitmap_range.IntersectWith(to_find); last_write_range.IntersectWith(to_find); // Now return the earliest non-empty interval, if any. net::Interval result_range = bitmap_range; if (bitmap_range.Empty() || (!last_write_range.Empty() && last_write_range.min() < bitmap_range.min())) result_range = last_write_range; if (result_range.Empty()) { // Nothing found, so we just skip over this child. return child_len_; } // Package up our results. range_found_ = true; offset_ += result_range.min() - child_offset_; result_ = result_range.max() - result_range.min(); return 0; } void SparseControl::DoChildIOCompleted(int result) { LogChildOperationEnd(entry_->net_log(), operation_, result); if (result < 0) { // We fail the whole operation if we encounter an error. result_ = result; return; } UpdateRange(result); result_ += result; offset_ += result; buf_len_ -= result; // We'll be reusing the user provided buffer for the next chunk. if (buf_len_ && user_buf_.get()) user_buf_->DidConsume(result); } void SparseControl::OnChildIOCompleted(int result) { DCHECK_NE(net::ERR_IO_PENDING, result); DoChildIOCompleted(result); if (abort_) { // We'll return the current result of the operation, which may be less than // the bytes to read or write, but the user cancelled the operation. abort_ = false; if (entry_->net_log().IsCapturing()) { entry_->net_log().AddEvent(net::NetLogEventType::CANCELLED); entry_->net_log().EndEvent(GetSparseEventType(operation_)); } // We have an indirect reference to this object for every callback so if // there is only one callback, we may delete this object before reaching // DoAbortCallbacks. bool has_abort_callbacks = !abort_callbacks_.empty(); DoUserCallback(); if (has_abort_callbacks) DoAbortCallbacks(); return; } // We are running a callback from the message loop. It's time to restart what // we were doing before. DoChildrenIO(); } void SparseControl::DoUserCallback() { DCHECK(!user_callback_.is_null()); CompletionOnceCallback cb = std::move(user_callback_); user_buf_ = NULL; pending_ = false; operation_ = kNoOperation; int rv = result_; entry_->Release(); // Don't touch object after this line. std::move(cb).Run(rv); } void SparseControl::DoAbortCallbacks() { std::vector abort_callbacks; abort_callbacks.swap(abort_callbacks_); for (CompletionOnceCallback& callback : abort_callbacks) { // Releasing all references to entry_ may result in the destruction of this // object so we should not be touching it after the last Release(). entry_->Release(); std::move(callback).Run(net::OK); } } } // namespace disk_cache