// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/simple/simple_synchronous_entry.h" #include #include #include #include #include "base/compiler_specific.h" #include "base/files/file_util.h" #include "base/hash.h" #include "base/location.h" #include "base/metrics/field_trial_params.h" #include "base/metrics/histogram_macros.h" #include "base/numerics/safe_conversions.h" #include "base/sha1.h" #include "base/strings/string_piece.h" #include "base/timer/elapsed_timer.h" #include "crypto/secure_hash.h" #include "net/base/hash_value.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/disk_cache/simple/simple_backend_version.h" #include "net/disk_cache/simple/simple_experiment.h" #include "net/disk_cache/simple/simple_histogram_enums.h" #include "net/disk_cache/simple/simple_histogram_macros.h" #include "net/disk_cache/simple/simple_util.h" #include "third_party/zlib/zlib.h" using base::File; using base::FilePath; using base::Time; namespace disk_cache { namespace { void RecordSyncOpenResult(net::CacheType cache_type, OpenEntryResult result, bool had_index) { DCHECK_LT(result, OPEN_ENTRY_MAX); SIMPLE_CACHE_UMA(ENUMERATION, "SyncOpenResult", cache_type, result, OPEN_ENTRY_MAX); if (had_index) { SIMPLE_CACHE_UMA(ENUMERATION, "SyncOpenResult_WithIndex", cache_type, result, OPEN_ENTRY_MAX); } else { SIMPLE_CACHE_UMA(ENUMERATION, "SyncOpenResult_WithoutIndex", cache_type, result, OPEN_ENTRY_MAX); } } void RecordWriteResult(net::CacheType cache_type, SyncWriteResult result) { SIMPLE_CACHE_UMA(ENUMERATION, "SyncWriteResult", cache_type, result, SYNC_WRITE_RESULT_MAX); } void RecordCheckEOFResult(net::CacheType cache_type, CheckEOFResult result) { SIMPLE_CACHE_UMA(ENUMERATION, "SyncCheckEOFResult", cache_type, result, CHECK_EOF_RESULT_MAX); } void RecordCloseResult(net::CacheType cache_type, CloseResult result) { SIMPLE_CACHE_UMA(ENUMERATION, "SyncCloseResult", cache_type, result, CLOSE_RESULT_MAX); } void RecordKeySHA256Result(net::CacheType cache_type, KeySHA256Result result) { SIMPLE_CACHE_UMA(ENUMERATION, "SyncKeySHA256Result", cache_type, static_cast(result), static_cast(KeySHA256Result::MAX)); } void RecordWhetherOpenDidPrefetch(net::CacheType cache_type, bool result) { SIMPLE_CACHE_UMA(BOOLEAN, "SyncOpenDidPrefetch", cache_type, result); } bool CanOmitEmptyFile(int file_index) { DCHECK_GE(file_index, 0); DCHECK_LT(file_index, kSimpleEntryNormalFileCount); return file_index == simple_util::GetFileIndexFromStreamIndex(2); } bool TruncatePath(const FilePath& filename_to_truncate) { File file_to_truncate; int flags = File::FLAG_OPEN | File::FLAG_READ | File::FLAG_WRITE | File::FLAG_SHARE_DELETE; file_to_truncate.Initialize(filename_to_truncate, flags); if (!file_to_truncate.IsValid()) return false; if (!file_to_truncate.SetLength(0)) return false; return true; } void CalculateSHA256OfKey(const std::string& key, net::SHA256HashValue* out_hash_value) { std::unique_ptr hash( crypto::SecureHash::Create(crypto::SecureHash::SHA256)); hash->Update(key.data(), key.size()); hash->Finish(out_hash_value, sizeof(*out_hash_value)); } } // namespace using simple_util::GetEntryHashKey; using simple_util::GetFilenameFromEntryHashAndFileIndex; using simple_util::GetSparseFilenameFromEntryHash; using simple_util::GetHeaderSize; using simple_util::GetDataSizeFromFileSize; using simple_util::GetFileSizeFromDataSize; using simple_util::GetFileIndexFromStreamIndex; const base::Feature kSimpleCachePrefetchExperiment = { "SimpleCachePrefetchExperiment", base::FEATURE_DISABLED_BY_DEFAULT}; const char kSimplePrefetchBytesParam[] = "Bytes"; int GetSimpleCachePrefetchSize() { return base::GetFieldTrialParamByFeatureAsInt(kSimpleCachePrefetchExperiment, kSimplePrefetchBytesParam, 0); } SimpleEntryStat::SimpleEntryStat(base::Time last_used, base::Time last_modified, const int32_t data_size[], const int32_t sparse_data_size) : last_used_(last_used), last_modified_(last_modified), sparse_data_size_(sparse_data_size) { memcpy(data_size_, data_size, sizeof(data_size_)); } // These size methods all assume the presence of the SHA256 on stream zero, // since this version of the cache always writes it. In the read case, it may // not be present and these methods can't be relied upon. int SimpleEntryStat::GetOffsetInFile(size_t key_length, int offset, int stream_index) const { const size_t headers_size = sizeof(SimpleFileHeader) + key_length; const size_t additional_offset = stream_index == 0 ? data_size_[1] + sizeof(SimpleFileEOF) : 0; return headers_size + offset + additional_offset; } int SimpleEntryStat::GetEOFOffsetInFile(size_t key_length, int stream_index) const { size_t additional_offset; if (stream_index != 0) additional_offset = 0; else additional_offset = sizeof(net::SHA256HashValue); return additional_offset + GetOffsetInFile(key_length, data_size_[stream_index], stream_index); } int SimpleEntryStat::GetLastEOFOffsetInFile(size_t key_length, int stream_index) const { if (stream_index == 1) return GetEOFOffsetInFile(key_length, 0); return GetEOFOffsetInFile(key_length, stream_index); } int64_t SimpleEntryStat::GetFileSize(size_t key_length, int file_index) const { int32_t total_data_size; if (file_index == 0) { total_data_size = data_size_[0] + data_size_[1] + sizeof(net::SHA256HashValue) + sizeof(SimpleFileEOF); } else { total_data_size = data_size_[2]; } return GetFileSizeFromDataSize(key_length, total_data_size); } SimpleStreamPrefetchData::SimpleStreamPrefetchData() : stream_crc32(crc32(0, Z_NULL, 0)) {} SimpleStreamPrefetchData::~SimpleStreamPrefetchData() {} SimpleEntryCreationResults::SimpleEntryCreationResults( SimpleEntryStat entry_stat) : sync_entry(NULL), entry_stat(entry_stat), result(net::OK) {} SimpleEntryCreationResults::~SimpleEntryCreationResults() { } SimpleSynchronousEntry::CRCRecord::CRCRecord() : index(-1), has_crc32(false), data_crc32(0) { } SimpleSynchronousEntry::CRCRecord::CRCRecord(int index_p, bool has_crc32_p, uint32_t data_crc32_p) : index(index_p), has_crc32(has_crc32_p), data_crc32(data_crc32_p) {} SimpleSynchronousEntry::EntryOperationData::EntryOperationData(int index_p, int offset_p, int buf_len_p) : index(index_p), offset(offset_p), buf_len(buf_len_p) {} SimpleSynchronousEntry::EntryOperationData::EntryOperationData(int index_p, int offset_p, int buf_len_p, bool truncate_p, bool doomed_p) : index(index_p), offset(offset_p), buf_len(buf_len_p), truncate(truncate_p), doomed(doomed_p) {} SimpleSynchronousEntry::EntryOperationData::EntryOperationData( int64_t sparse_offset_p, int buf_len_p) : sparse_offset(sparse_offset_p), buf_len(buf_len_p) {} // static void SimpleSynchronousEntry::OpenEntry( net::CacheType cache_type, const FilePath& path, const std::string& key, const uint64_t entry_hash, const bool had_index, const base::TimeTicks& time_enqueued, SimpleEntryCreationResults* out_results) { base::TimeTicks start_sync_open_entry = base::TimeTicks::Now(); SIMPLE_CACHE_UMA(TIMES, "QueueLatency.OpenEntry", cache_type, (start_sync_open_entry - time_enqueued)); SimpleSynchronousEntry* sync_entry = new SimpleSynchronousEntry(cache_type, path, key, entry_hash, had_index); out_results->result = sync_entry->InitializeForOpen( &out_results->entry_stat, out_results->stream_prefetch_data); if (out_results->result != net::OK) { sync_entry->Doom(); delete sync_entry; out_results->sync_entry = NULL; out_results->stream_prefetch_data[0].data = nullptr; out_results->stream_prefetch_data[1].data = nullptr; return; } SIMPLE_CACHE_UMA(TIMES, "DiskOpenLatency", cache_type, base::TimeTicks::Now() - start_sync_open_entry); out_results->sync_entry = sync_entry; } // static void SimpleSynchronousEntry::CreateEntry( net::CacheType cache_type, const FilePath& path, const std::string& key, const uint64_t entry_hash, const bool had_index, const base::TimeTicks& time_enqueued, SimpleEntryCreationResults* out_results) { DCHECK_EQ(entry_hash, GetEntryHashKey(key)); base::TimeTicks start_sync_create_entry = base::TimeTicks::Now(); SIMPLE_CACHE_UMA(TIMES, "QueueLatency.CreateEntry", cache_type, (start_sync_create_entry - time_enqueued)); SimpleSynchronousEntry* sync_entry = new SimpleSynchronousEntry(cache_type, path, key, entry_hash, had_index); out_results->result = sync_entry->InitializeForCreate(&out_results->entry_stat); if (out_results->result != net::OK) { if (out_results->result != net::ERR_FILE_EXISTS) sync_entry->Doom(); delete sync_entry; out_results->sync_entry = NULL; return; } out_results->sync_entry = sync_entry; SIMPLE_CACHE_UMA(TIMES, "DiskCreateLatency", cache_type, base::TimeTicks::Now() - start_sync_create_entry); } // static int SimpleSynchronousEntry::DoomEntry(const FilePath& path, uint64_t entry_hash) { const bool deleted_well = DeleteFilesForEntryHash(path, entry_hash); return deleted_well ? net::OK : net::ERR_FAILED; } // static int SimpleSynchronousEntry::TruncateEntryFiles(const base::FilePath& path, uint64_t entry_hash) { const bool deleted_well = TruncateFilesForEntryHash(path, entry_hash); return deleted_well ? net::OK : net::ERR_FAILED; } // static int SimpleSynchronousEntry::DoomEntrySet( const std::vector* key_hashes, const FilePath& path) { const size_t did_delete_count = std::count_if( key_hashes->begin(), key_hashes->end(), [&path](const uint64_t& key_hash) { return SimpleSynchronousEntry::DeleteFilesForEntryHash(path, key_hash); }); return (did_delete_count == key_hashes->size()) ? net::OK : net::ERR_FAILED; } void SimpleSynchronousEntry::ReadData(const EntryOperationData& in_entry_op, CRCRequest* crc_request, SimpleEntryStat* entry_stat, net::IOBuffer* out_buf, int* out_result) { DCHECK(initialized_); DCHECK_NE(0, in_entry_op.index); int file_index = GetFileIndexFromStreamIndex(in_entry_op.index); if (header_and_key_check_needed_[file_index] && !CheckHeaderAndKey(file_index)) { *out_result = net::ERR_FAILED; Doom(); return; } const int64_t file_offset = entry_stat->GetOffsetInFile( key_.size(), in_entry_op.offset, in_entry_op.index); // Zero-length reads and reads to the empty streams of omitted files should // be handled in the SimpleEntryImpl. DCHECK_GT(in_entry_op.buf_len, 0); DCHECK(!empty_file_omitted_[file_index]); int bytes_read = files_[file_index].Read(file_offset, out_buf->data(), in_entry_op.buf_len); if (bytes_read > 0) { entry_stat->set_last_used(Time::Now()); if (crc_request != nullptr) { crc_request->data_crc32 = simple_util::IncrementalCrc32( crc_request->data_crc32, out_buf->data(), bytes_read); // Verify checksum after last read, if we've been asked to. if (crc_request->request_verify && in_entry_op.offset + bytes_read == entry_stat->data_size(in_entry_op.index)) { crc_request->performed_verify = true; int checksum_result = CheckEOFRecord(in_entry_op.index, *entry_stat, crc_request->data_crc32); if (checksum_result < 0) { crc_request->verify_ok = false; *out_result = checksum_result; return; } else { crc_request->verify_ok = true; } } } } if (bytes_read >= 0) { *out_result = bytes_read; } else { *out_result = net::ERR_CACHE_READ_FAILURE; Doom(); } } void SimpleSynchronousEntry::WriteData(const EntryOperationData& in_entry_op, net::IOBuffer* in_buf, SimpleEntryStat* out_entry_stat, int* out_result) { base::ElapsedTimer write_time; DCHECK(initialized_); DCHECK_NE(0, in_entry_op.index); int index = in_entry_op.index; int file_index = GetFileIndexFromStreamIndex(index); if (header_and_key_check_needed_[file_index] && !empty_file_omitted_[file_index] && !CheckHeaderAndKey(file_index)) { *out_result = net::ERR_FAILED; Doom(); return; } int offset = in_entry_op.offset; int buf_len = in_entry_op.buf_len; bool truncate = in_entry_op.truncate; bool doomed = in_entry_op.doomed; const int64_t file_offset = out_entry_stat->GetOffsetInFile( key_.size(), in_entry_op.offset, in_entry_op.index); bool extending_by_write = offset + buf_len > out_entry_stat->data_size(index); if (empty_file_omitted_[file_index]) { // Don't create a new file if the entry has been doomed, to avoid it being // mixed up with a newly-created entry with the same key. if (doomed) { DLOG(WARNING) << "Rejecting write to lazily omitted stream " << in_entry_op.index << " of doomed cache entry."; RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_LAZY_STREAM_ENTRY_DOOMED); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } File::Error error; if (!MaybeCreateFile(file_index, FILE_REQUIRED, &error)) { RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_LAZY_CREATE_FAILURE); Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } CreateEntryResult result; if (!InitializeCreatedFile(file_index, &result)) { RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_LAZY_INITIALIZE_FAILURE); Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } } DCHECK(!empty_file_omitted_[file_index]); if (extending_by_write) { // The EOF record and the eventual stream afterward need to be zeroed out. const int64_t file_eof_offset = out_entry_stat->GetEOFOffsetInFile(key_.size(), index); if (!files_[file_index].SetLength(file_eof_offset)) { RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_PRETRUNCATE_FAILURE); Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } } if (buf_len > 0) { if (files_[file_index].Write(file_offset, in_buf->data(), buf_len) != buf_len) { RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_WRITE_FAILURE); Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } } if (!truncate && (buf_len > 0 || !extending_by_write)) { out_entry_stat->set_data_size( index, std::max(out_entry_stat->data_size(index), offset + buf_len)); } else { out_entry_stat->set_data_size(index, offset + buf_len); int file_eof_offset = out_entry_stat->GetLastEOFOffsetInFile(key_.size(), index); if (!files_[file_index].SetLength(file_eof_offset)) { RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_TRUNCATE_FAILURE); Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } } SIMPLE_CACHE_UMA(TIMES, "DiskWriteLatency", cache_type_, write_time.Elapsed()); RecordWriteResult(cache_type_, SYNC_WRITE_RESULT_SUCCESS); base::Time modification_time = Time::Now(); out_entry_stat->set_last_used(modification_time); out_entry_stat->set_last_modified(modification_time); *out_result = buf_len; } void SimpleSynchronousEntry::ReadSparseData( const EntryOperationData& in_entry_op, net::IOBuffer* out_buf, base::Time* out_last_used, int* out_result) { DCHECK(initialized_); int64_t offset = in_entry_op.sparse_offset; int buf_len = in_entry_op.buf_len; char* buf = out_buf->data(); int read_so_far = 0; // Find the first sparse range at or after the requested offset. SparseRangeIterator it = sparse_ranges_.lower_bound(offset); if (it != sparse_ranges_.begin()) { // Hop back one range and read the one overlapping with the start. --it; SparseRange* found_range = &it->second; DCHECK_EQ(it->first, found_range->offset); if (found_range->offset + found_range->length > offset) { DCHECK_GE(found_range->length, 0); DCHECK_LE(found_range->length, std::numeric_limits::max()); DCHECK_GE(offset - found_range->offset, 0); DCHECK_LE(offset - found_range->offset, std::numeric_limits::max()); int net_offset = static_cast(offset - found_range->offset); int range_len_after_offset = static_cast(found_range->length - net_offset); DCHECK_GE(range_len_after_offset, 0); int len_to_read = std::min(buf_len, range_len_after_offset); if (!ReadSparseRange(found_range, net_offset, len_to_read, buf)) { Doom(); *out_result = net::ERR_CACHE_READ_FAILURE; return; } read_so_far += len_to_read; } ++it; } // Keep reading until the buffer is full or there is not another contiguous // range. while (read_so_far < buf_len && it != sparse_ranges_.end() && it->second.offset == offset + read_so_far) { SparseRange* found_range = &it->second; DCHECK_EQ(it->first, found_range->offset); int range_len = base::saturated_cast(found_range->length); int len_to_read = std::min(buf_len - read_so_far, range_len); if (!ReadSparseRange(found_range, 0, len_to_read, buf + read_so_far)) { Doom(); *out_result = net::ERR_CACHE_READ_FAILURE; return; } read_so_far += len_to_read; ++it; } *out_result = read_so_far; } void SimpleSynchronousEntry::WriteSparseData( const EntryOperationData& in_entry_op, net::IOBuffer* in_buf, uint64_t max_sparse_data_size, SimpleEntryStat* out_entry_stat, int* out_result) { DCHECK(initialized_); int64_t offset = in_entry_op.sparse_offset; int buf_len = in_entry_op.buf_len; const char* buf = in_buf->data(); int written_so_far = 0; int appended_so_far = 0; if (!sparse_file_open() && !CreateSparseFile()) { Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } uint64_t sparse_data_size = out_entry_stat->sparse_data_size(); // This is a pessimistic estimate; it assumes the entire buffer is going to // be appended as a new range, not written over existing ranges. if (sparse_data_size + buf_len > max_sparse_data_size) { DVLOG(1) << "Truncating sparse data file (" << sparse_data_size << " + " << buf_len << " > " << max_sparse_data_size << ")"; TruncateSparseFile(); out_entry_stat->set_sparse_data_size(0); } SparseRangeIterator it = sparse_ranges_.lower_bound(offset); if (it != sparse_ranges_.begin()) { --it; SparseRange* found_range = &it->second; if (found_range->offset + found_range->length > offset) { DCHECK_GE(found_range->length, 0); DCHECK_LE(found_range->length, std::numeric_limits::max()); DCHECK_GE(offset - found_range->offset, 0); DCHECK_LE(offset - found_range->offset, std::numeric_limits::max()); int net_offset = static_cast(offset - found_range->offset); int range_len_after_offset = static_cast(found_range->length - net_offset); DCHECK_GE(range_len_after_offset, 0); int len_to_write = std::min(buf_len, range_len_after_offset); if (!WriteSparseRange(found_range, net_offset, len_to_write, buf)) { Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } written_so_far += len_to_write; } ++it; } while (written_so_far < buf_len && it != sparse_ranges_.end() && it->second.offset < offset + buf_len) { SparseRange* found_range = &it->second; if (offset + written_so_far < found_range->offset) { int len_to_append = static_cast(found_range->offset - (offset + written_so_far)); if (!AppendSparseRange(offset + written_so_far, len_to_append, buf + written_so_far)) { Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } written_so_far += len_to_append; appended_so_far += len_to_append; } int range_len = base::saturated_cast(found_range->length); int len_to_write = std::min(buf_len - written_so_far, range_len); if (!WriteSparseRange(found_range, 0, len_to_write, buf + written_so_far)) { Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } written_so_far += len_to_write; ++it; } if (written_so_far < buf_len) { int len_to_append = buf_len - written_so_far; if (!AppendSparseRange(offset + written_so_far, len_to_append, buf + written_so_far)) { Doom(); *out_result = net::ERR_CACHE_WRITE_FAILURE; return; } written_so_far += len_to_append; appended_so_far += len_to_append; } DCHECK_EQ(buf_len, written_so_far); base::Time modification_time = Time::Now(); out_entry_stat->set_last_used(modification_time); out_entry_stat->set_last_modified(modification_time); int32_t old_sparse_data_size = out_entry_stat->sparse_data_size(); out_entry_stat->set_sparse_data_size(old_sparse_data_size + appended_so_far); *out_result = written_so_far; } void SimpleSynchronousEntry::GetAvailableRange( const EntryOperationData& in_entry_op, int64_t* out_start, int* out_result) { DCHECK(initialized_); int64_t offset = in_entry_op.sparse_offset; int len = in_entry_op.buf_len; SparseRangeIterator it = sparse_ranges_.lower_bound(offset); int64_t start = offset; int64_t avail_so_far = 0; if (it != sparse_ranges_.end() && it->second.offset < offset + len) start = it->second.offset; if ((it == sparse_ranges_.end() || it->second.offset > offset) && it != sparse_ranges_.begin()) { --it; if (it->second.offset + it->second.length > offset) { start = offset; avail_so_far = (it->second.offset + it->second.length) - offset; } ++it; } while (start + avail_so_far < offset + len && it != sparse_ranges_.end() && it->second.offset == start + avail_so_far) { avail_so_far += it->second.length; ++it; } int64_t len_from_start = len - (start - offset); *out_start = start; *out_result = static_cast(std::min(avail_so_far, len_from_start)); } int SimpleSynchronousEntry::CheckEOFRecord(int stream_index, const SimpleEntryStat& entry_stat, uint32_t expected_crc32) { DCHECK(initialized_); SimpleFileEOF eof_record; int file_offset = entry_stat.GetEOFOffsetInFile(key_.size(), stream_index); int file_index = GetFileIndexFromStreamIndex(stream_index); int rv = GetEOFRecordData(base::StringPiece(), file_index, file_offset, &eof_record); if (rv != net::OK) { Doom(); return rv; } if ((eof_record.flags & SimpleFileEOF::FLAG_HAS_CRC32) && eof_record.data_crc32 != expected_crc32) { DVLOG(1) << "EOF record had bad crc."; RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_CRC_MISMATCH); Doom(); return net::ERR_CACHE_CHECKSUM_MISMATCH; } RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_SUCCESS); return net::OK; } int SimpleSynchronousEntry::PreReadStreamPayload( base::StringPiece file_0_prefetch, int stream_index, int extra_size, const SimpleEntryStat& entry_stat, const SimpleFileEOF& eof_record, SimpleStreamPrefetchData* out) { DCHECK(stream_index == 0 || stream_index == 1); int stream_size = entry_stat.data_size(stream_index); int read_size = stream_size + extra_size; out->data = new net::GrowableIOBuffer(); out->data->SetCapacity(read_size); int file_offset = entry_stat.GetOffsetInFile(key_.size(), 0, stream_index); if (!ReadFromFileOrPrefetched(file_0_prefetch, 0, file_offset, read_size, out->data->data())) return net::ERR_FAILED; // Check the CRC32. uint32_t expected_crc32 = simple_util::Crc32(out->data->data(), stream_size); if ((eof_record.flags & SimpleFileEOF::FLAG_HAS_CRC32) && eof_record.data_crc32 != expected_crc32) { DVLOG(1) << "EOF record had bad crc."; RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_CRC_MISMATCH); return net::ERR_CACHE_CHECKSUM_MISMATCH; } out->stream_crc32 = expected_crc32; RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_SUCCESS); return net::OK; } void SimpleSynchronousEntry::Close( const SimpleEntryStat& entry_stat, std::unique_ptr> crc32s_to_write, net::GrowableIOBuffer* stream_0_data) { base::ElapsedTimer close_time; DCHECK(stream_0_data); for (std::vector::const_iterator it = crc32s_to_write->begin(); it != crc32s_to_write->end(); ++it) { const int stream_index = it->index; const int file_index = GetFileIndexFromStreamIndex(stream_index); if (empty_file_omitted_[file_index]) continue; if (stream_index == 0) { // Write stream 0 data. int stream_0_offset = entry_stat.GetOffsetInFile(key_.size(), 0, 0); if (files_[0].Write(stream_0_offset, stream_0_data->data(), entry_stat.data_size(0)) != entry_stat.data_size(0)) { RecordCloseResult(cache_type_, CLOSE_RESULT_WRITE_FAILURE); DVLOG(1) << "Could not write stream 0 data."; Doom(); } net::SHA256HashValue hash_value; CalculateSHA256OfKey(key_, &hash_value); if (files_[0].Write(stream_0_offset + entry_stat.data_size(0), reinterpret_cast(hash_value.data), sizeof(hash_value)) != sizeof(hash_value)) { RecordCloseResult(cache_type_, CLOSE_RESULT_WRITE_FAILURE); DVLOG(1) << "Could not write stream 0 data."; Doom(); } } SimpleFileEOF eof_record; eof_record.stream_size = entry_stat.data_size(stream_index); eof_record.final_magic_number = kSimpleFinalMagicNumber; eof_record.flags = 0; if (it->has_crc32) eof_record.flags |= SimpleFileEOF::FLAG_HAS_CRC32; if (stream_index == 0) eof_record.flags |= SimpleFileEOF::FLAG_HAS_KEY_SHA256; eof_record.data_crc32 = it->data_crc32; int eof_offset = entry_stat.GetEOFOffsetInFile(key_.size(), stream_index); // If stream 0 changed size, the file needs to be resized, otherwise the // next open will yield wrong stream sizes. On stream 1 and stream 2 proper // resizing of the file is handled in SimpleSynchronousEntry::WriteData(). if (stream_index == 0 && !files_[file_index].SetLength(eof_offset)) { RecordCloseResult(cache_type_, CLOSE_RESULT_WRITE_FAILURE); DVLOG(1) << "Could not truncate stream 0 file."; Doom(); break; } if (files_[file_index].Write(eof_offset, reinterpret_cast(&eof_record), sizeof(eof_record)) != sizeof(eof_record)) { RecordCloseResult(cache_type_, CLOSE_RESULT_WRITE_FAILURE); DVLOG(1) << "Could not write eof record."; Doom(); break; } } for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) { if (empty_file_omitted_[i]) continue; if (header_and_key_check_needed_[i] && !CheckHeaderAndKey(i)) { Doom(); } files_[i].Close(); const int64_t file_size = entry_stat.GetFileSize(key_.size(), i); SIMPLE_CACHE_UMA(CUSTOM_COUNTS, "LastClusterSize", cache_type_, file_size % 4096, 0, 4097, 50); const int64_t cluster_loss = file_size % 4096 ? 4096 - file_size % 4096 : 0; SIMPLE_CACHE_UMA(PERCENTAGE, "LastClusterLossPercent", cache_type_, static_cast( cluster_loss * 100 / (cluster_loss + file_size))); } if (sparse_file_open()) sparse_file_.Close(); if (files_created_) { const int stream2_file_index = GetFileIndexFromStreamIndex(2); SIMPLE_CACHE_UMA(BOOLEAN, "EntryCreatedAndStream2Omitted", cache_type_, empty_file_omitted_[stream2_file_index]); } SIMPLE_CACHE_UMA(TIMES, "DiskCloseLatency", cache_type_, close_time.Elapsed()); RecordCloseResult(cache_type_, CLOSE_RESULT_SUCCESS); have_open_files_ = false; delete this; } SimpleSynchronousEntry::SimpleSynchronousEntry(net::CacheType cache_type, const FilePath& path, const std::string& key, const uint64_t entry_hash, const bool had_index) : cache_type_(cache_type), path_(path), entry_hash_(entry_hash), had_index_(had_index), key_(key), have_open_files_(false), initialized_(false) { for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) empty_file_omitted_[i] = false; } SimpleSynchronousEntry::~SimpleSynchronousEntry() { DCHECK(!(have_open_files_ && initialized_)); if (have_open_files_) CloseFiles(); } bool SimpleSynchronousEntry::MaybeOpenFile( int file_index, File::Error* out_error) { DCHECK(out_error); FilePath filename = GetFilenameFromFileIndex(file_index); int flags = File::FLAG_OPEN | File::FLAG_READ | File::FLAG_WRITE | File::FLAG_SHARE_DELETE; files_[file_index].Initialize(filename, flags); *out_error = files_[file_index].error_details(); if (CanOmitEmptyFile(file_index) && !files_[file_index].IsValid() && *out_error == File::FILE_ERROR_NOT_FOUND) { empty_file_omitted_[file_index] = true; return true; } return files_[file_index].IsValid(); } bool SimpleSynchronousEntry::MaybeCreateFile( int file_index, FileRequired file_required, File::Error* out_error) { DCHECK(out_error); if (CanOmitEmptyFile(file_index) && file_required == FILE_NOT_REQUIRED) { empty_file_omitted_[file_index] = true; return true; } FilePath filename = GetFilenameFromFileIndex(file_index); int flags = File::FLAG_CREATE | File::FLAG_READ | File::FLAG_WRITE | File::FLAG_SHARE_DELETE; files_[file_index].Initialize(filename, flags); // It's possible that the creation failed because someone deleted the // directory (e.g. because someone pressed "clear cache" on Android). // If so, we would keep failing for a while until periodic index snapshot // re-creates the cache dir, so try to recover from it quickly here. if (!files_[file_index].IsValid() && files_[file_index].error_details() == File::FILE_ERROR_NOT_FOUND && !base::DirectoryExists(path_)) { if (base::CreateDirectory(path_)) files_[file_index].Initialize(filename, flags); } *out_error = files_[file_index].error_details(); empty_file_omitted_[file_index] = false; return files_[file_index].IsValid(); } bool SimpleSynchronousEntry::OpenFiles(SimpleEntryStat* out_entry_stat) { for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) { File::Error error; if (!MaybeOpenFile(i, &error)) { // TODO(juliatuttle,gavinp): Remove one each of these triplets of // histograms. We can calculate the third as the sum or difference of the // other two. RecordSyncOpenResult(cache_type_, OPEN_ENTRY_PLATFORM_FILE_ERROR, had_index_); SIMPLE_CACHE_UMA(ENUMERATION, "SyncOpenPlatformFileError", cache_type_, -error, -base::File::FILE_ERROR_MAX); if (had_index_) { SIMPLE_CACHE_UMA(ENUMERATION, "SyncOpenPlatformFileError_WithIndex", cache_type_, -error, -base::File::FILE_ERROR_MAX); } else { SIMPLE_CACHE_UMA(ENUMERATION, "SyncOpenPlatformFileError_WithoutIndex", cache_type_, -error, -base::File::FILE_ERROR_MAX); } while (--i >= 0) CloseFile(i); return false; } } have_open_files_ = true; base::TimeDelta entry_age = base::Time::Now() - base::Time::UnixEpoch(); for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) { if (empty_file_omitted_[i]) { out_entry_stat->set_data_size(i + 1, 0); continue; } File::Info file_info; bool success = files_[i].GetInfo(&file_info); base::Time file_last_modified; if (!success) { DLOG(WARNING) << "Could not get platform file info."; continue; } out_entry_stat->set_last_used(file_info.last_accessed); out_entry_stat->set_last_modified(file_info.last_modified); base::TimeDelta stream_age = base::Time::Now() - out_entry_stat->last_modified(); if (stream_age < entry_age) entry_age = stream_age; // Two things prevent from knowing the right values for |data_size|: // 1) The key is not known, hence its length is unknown. // 2) Stream 0 and stream 1 are in the same file, and the exact size for // each will only be known when reading the EOF record for stream 0. // // The size for file 0 and 1 is temporarily kept in // |data_size(1)| and |data_size(2)| respectively. Reading the key in // InitializeForOpen yields the data size for each file. In the case of // file hash_1, this is the total size of stream 2, and is assigned to // data_size(2). In the case of file 0, it is the combined size of stream // 0, stream 1 and one EOF record. The exact distribution of sizes between // stream 1 and stream 0 is only determined after reading the EOF record // for stream 0 in ReadAndValidateStream0AndMaybe1. if (!base::IsValueInRangeForNumericType(file_info.size)) { RecordSyncOpenResult(cache_type_, OPEN_ENTRY_INVALID_FILE_LENGTH, had_index_); return false; } out_entry_stat->set_data_size(i + 1, static_cast(file_info.size)); } SIMPLE_CACHE_UMA(CUSTOM_COUNTS, "SyncOpenEntryAge", cache_type_, entry_age.InHours(), 1, 1000, 50); files_created_ = false; return true; } bool SimpleSynchronousEntry::CreateFiles(SimpleEntryStat* out_entry_stat) { for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) { File::Error error; if (!MaybeCreateFile(i, FILE_NOT_REQUIRED, &error)) { // TODO(juliatuttle,gavinp): Remove one each of these triplets of // histograms. We can calculate the third as the sum or difference of the // other two. RecordSyncCreateResult(CREATE_ENTRY_PLATFORM_FILE_ERROR, had_index_); SIMPLE_CACHE_UMA(ENUMERATION, "SyncCreatePlatformFileError", cache_type_, -error, -base::File::FILE_ERROR_MAX); if (had_index_) { SIMPLE_CACHE_UMA(ENUMERATION, "SyncCreatePlatformFileError_WithIndex", cache_type_, -error, -base::File::FILE_ERROR_MAX); } else { SIMPLE_CACHE_UMA(ENUMERATION, "SyncCreatePlatformFileError_WithoutIndex", cache_type_, -error, -base::File::FILE_ERROR_MAX); } while (--i >= 0) CloseFile(i); return false; } } have_open_files_ = true; base::Time creation_time = Time::Now(); out_entry_stat->set_last_modified(creation_time); out_entry_stat->set_last_used(creation_time); for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) out_entry_stat->set_data_size(i, 0); files_created_ = true; return true; } void SimpleSynchronousEntry::CloseFile(int index) { if (empty_file_omitted_[index]) { empty_file_omitted_[index] = false; } else { DCHECK(files_[index].IsValid()); files_[index].Close(); } } void SimpleSynchronousEntry::CloseFiles() { for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) CloseFile(i); if (sparse_file_open()) CloseSparseFile(); } bool SimpleSynchronousEntry::CheckHeaderAndKey(int file_index) { // TODO(gavinp): Frequently we are doing this at the same time as we read from // the beginning of an entry. It might improve performance to make a single // read(2) call rather than two separate reads. On the other hand, it would // mean an extra memory to memory copy. In the case where we are opening an // entry without a key, the kInitialHeaderRead setting means that we are // actually already reading stream 1 data here, and tossing it out. std::vector header_data(key_.empty() ? kInitialHeaderRead : GetHeaderSize(key_.size())); int bytes_read = files_[file_index].Read(0, header_data.data(), header_data.size()); const SimpleFileHeader* header = reinterpret_cast(header_data.data()); if (bytes_read == -1 || static_cast(bytes_read) < sizeof(*header)) { RecordSyncOpenResult(cache_type_, OPEN_ENTRY_CANT_READ_HEADER, had_index_); return false; } // This resize will not invalidate iterators since it does not enlarge the // header_data. DCHECK_LE(static_cast(bytes_read), header_data.size()); header_data.resize(bytes_read); if (header->initial_magic_number != kSimpleInitialMagicNumber) { RecordSyncOpenResult(cache_type_, OPEN_ENTRY_BAD_MAGIC_NUMBER, had_index_); return false; } if (header->version != kSimpleEntryVersionOnDisk) { RecordSyncOpenResult(cache_type_, OPEN_ENTRY_BAD_VERSION, had_index_); return false; } size_t expected_header_size = GetHeaderSize(header->key_length); if (header_data.size() < expected_header_size) { size_t old_size = header_data.size(); int bytes_to_read = expected_header_size - old_size; // This resize will invalidate iterators, since it is enlarging header_data. header_data.resize(expected_header_size); int bytes_read = files_[file_index].Read( old_size, header_data.data() + old_size, bytes_to_read); if (bytes_read != bytes_to_read) { RecordSyncOpenResult(cache_type_, OPEN_ENTRY_CANT_READ_KEY, had_index_); return false; } header = reinterpret_cast(header_data.data()); } char* key_data = header_data.data() + sizeof(*header); if (base::Hash(key_data, header->key_length) != header->key_hash) { RecordSyncOpenResult(cache_type_, OPEN_ENTRY_KEY_HASH_MISMATCH, had_index_); return false; } std::string key_from_header(key_data, header->key_length); if (key_.empty()) { key_.swap(key_from_header); } else { if (key_ != key_from_header) { RecordSyncOpenResult(cache_type_, OPEN_ENTRY_KEY_MISMATCH, had_index_); return false; } } header_and_key_check_needed_[file_index] = false; return true; } int SimpleSynchronousEntry::InitializeForOpen( SimpleEntryStat* out_entry_stat, SimpleStreamPrefetchData stream_prefetch_data[2]) { DCHECK(!initialized_); if (!OpenFiles(out_entry_stat)) { DLOG(WARNING) << "Could not open platform files for entry."; return net::ERR_FAILED; } for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) { if (empty_file_omitted_[i]) continue; if (key_.empty()) { // If |key_| is empty, we were opened via the iterator interface, without // knowing what our key is. We must therefore read the header immediately // to discover it, so SimpleEntryImpl can make it available to // disk_cache::Entry::GetKey(). if (!CheckHeaderAndKey(i)) return net::ERR_FAILED; } else { // If we do know which key were are looking for, we still need to // check that the file actually has it (rather than just being a hash // collision or some sort of file system accident), but that can be put // off until opportune time: either the read of the footer, or when we // start reading in the data, depending on stream # and format revision. header_and_key_check_needed_[i] = true; } if (i == 0) { // File size for stream 0 has been stored temporarily in data_size[1]. int ret_value_stream_0 = ReadAndValidateStream0AndMaybe1( out_entry_stat->data_size(1), out_entry_stat, stream_prefetch_data); if (ret_value_stream_0 != net::OK) return ret_value_stream_0; } else { out_entry_stat->set_data_size( 2, GetDataSizeFromFileSize(key_.size(), out_entry_stat->data_size(2))); if (out_entry_stat->data_size(2) < 0) { DLOG(WARNING) << "Stream 2 file is too small."; return net::ERR_FAILED; } } } int32_t sparse_data_size = 0; if (!OpenSparseFileIfExists(&sparse_data_size)) { RecordSyncOpenResult(cache_type_, OPEN_ENTRY_SPARSE_OPEN_FAILED, had_index_); return net::ERR_FAILED; } out_entry_stat->set_sparse_data_size(sparse_data_size); bool removed_stream2 = false; const int stream2_file_index = GetFileIndexFromStreamIndex(2); DCHECK(CanOmitEmptyFile(stream2_file_index)); if (!empty_file_omitted_[stream2_file_index] && out_entry_stat->data_size(2) == 0) { DVLOG(1) << "Removing empty stream 2 file."; CloseFile(stream2_file_index); DeleteFileForEntryHash(path_, entry_hash_, stream2_file_index); empty_file_omitted_[stream2_file_index] = true; removed_stream2 = true; } SIMPLE_CACHE_UMA(BOOLEAN, "EntryOpenedAndStream2Removed", cache_type_, removed_stream2); RecordSyncOpenResult(cache_type_, OPEN_ENTRY_SUCCESS, had_index_); initialized_ = true; return net::OK; } bool SimpleSynchronousEntry::InitializeCreatedFile( int file_index, CreateEntryResult* out_result) { SimpleFileHeader header; header.initial_magic_number = kSimpleInitialMagicNumber; header.version = kSimpleEntryVersionOnDisk; header.key_length = key_.size(); header.key_hash = base::Hash(key_); int bytes_written = files_[file_index].Write( 0, reinterpret_cast(&header), sizeof(header)); if (bytes_written != sizeof(header)) { *out_result = CREATE_ENTRY_CANT_WRITE_HEADER; return false; } bytes_written = files_[file_index].Write(sizeof(header), key_.data(), key_.size()); if (bytes_written != base::checked_cast(key_.size())) { *out_result = CREATE_ENTRY_CANT_WRITE_KEY; return false; } return true; } int SimpleSynchronousEntry::InitializeForCreate( SimpleEntryStat* out_entry_stat) { DCHECK(!initialized_); if (!CreateFiles(out_entry_stat)) { DLOG(WARNING) << "Could not create platform files."; return net::ERR_FILE_EXISTS; } for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) { if (empty_file_omitted_[i]) continue; CreateEntryResult result; if (!InitializeCreatedFile(i, &result)) { RecordSyncCreateResult(result, had_index_); return net::ERR_FAILED; } } RecordSyncCreateResult(CREATE_ENTRY_SUCCESS, had_index_); initialized_ = true; return net::OK; } int SimpleSynchronousEntry::ReadAndValidateStream0AndMaybe1( int file_size, SimpleEntryStat* out_entry_stat, SimpleStreamPrefetchData stream_prefetch_data[2]) { // If the file is sufficiently small, we will prefetch everything -- // in which case |prefetch_buf| will be non-null, and we should look at it // rather than call ::Read for the bits. std::unique_ptr prefetch_buf; base::StringPiece file_0_prefetch; if (file_size > GetSimpleCachePrefetchSize()) { RecordWhetherOpenDidPrefetch(cache_type_, false); } else { RecordWhetherOpenDidPrefetch(cache_type_, true); prefetch_buf = std::make_unique(file_size); if (files_[0].Read(0, prefetch_buf.get(), file_size) != file_size) return net::ERR_FAILED; file_0_prefetch.set(prefetch_buf.get(), file_size); } // Read stream 0 footer first --- it has size/feature info required to figure // out file 0's layout. SimpleFileEOF stream_0_eof; int rv = GetEOFRecordData( file_0_prefetch, /* file_index = */ 0, /* file_offset = */ file_size - sizeof(SimpleFileEOF), &stream_0_eof); if (rv != net::OK) return rv; int32_t stream_0_size = stream_0_eof.stream_size; if (stream_0_size < 0 || stream_0_size > file_size) return net::ERR_FAILED; out_entry_stat->set_data_size(0, stream_0_size); // Calculate size for stream 1, now we know stream 0's. // See comments in simple_entry_format.h for background. bool has_key_sha256 = (stream_0_eof.flags & SimpleFileEOF::FLAG_HAS_KEY_SHA256) == SimpleFileEOF::FLAG_HAS_KEY_SHA256; int extra_post_stream_0_read = 0; if (has_key_sha256) extra_post_stream_0_read += sizeof(net::SHA256HashValue); int32_t stream1_size = file_size - 2 * sizeof(SimpleFileEOF) - stream_0_size - sizeof(SimpleFileHeader) - key_.size() - extra_post_stream_0_read; if (stream1_size < 0 || stream1_size > file_size) return net::ERR_FAILED; out_entry_stat->set_data_size(1, stream1_size); // Put stream 0 data in memory --- plus maybe the sha256(key) footer. rv = PreReadStreamPayload(file_0_prefetch, /* stream_index = */ 0, extra_post_stream_0_read, *out_entry_stat, stream_0_eof, &stream_prefetch_data[0]); if (rv != net::OK) return rv; // If prefetch buffer is available, and we have sha256(key) (so we don't need // to look at the header), extract out stream 1 info as well. if (prefetch_buf && has_key_sha256) { SimpleFileEOF stream_1_eof; rv = GetEOFRecordData( file_0_prefetch, /* file_index = */ 0, out_entry_stat->GetEOFOffsetInFile(key_.size(), /* stream_index = */ 1), &stream_1_eof); if (rv != net::OK) return rv; rv = PreReadStreamPayload(file_0_prefetch, /* stream_index = */ 1, /* extra_size = */ 0, *out_entry_stat, stream_1_eof, &stream_prefetch_data[1]); if (rv != net::OK) return rv; } // If present, check the key SHA256. if (has_key_sha256) { net::SHA256HashValue hash_value; CalculateSHA256OfKey(key_, &hash_value); bool matched = std::memcmp(&hash_value, stream_prefetch_data[0].data->data() + stream_0_size, sizeof(hash_value)) == 0; if (!matched) { RecordKeySHA256Result(cache_type_, KeySHA256Result::NO_MATCH); return net::ERR_FAILED; } // Elide header check if we verified sha256(key) via footer. header_and_key_check_needed_[0] = false; RecordKeySHA256Result(cache_type_, KeySHA256Result::MATCHED); } else { RecordKeySHA256Result(cache_type_, KeySHA256Result::NOT_PRESENT); } // Ensure the key is validated before completion. if (!has_key_sha256 && header_and_key_check_needed_[0]) CheckHeaderAndKey(0); return net::OK; } bool SimpleSynchronousEntry::ReadFromFileOrPrefetched( base::StringPiece file_0_prefetch, int file_index, int offset, int size, char* dest) { if (file_0_prefetch.empty() || file_index != 0) { return files_[file_index].Read(offset, dest, size) == size; } else { if (offset < 0 || size < 0) return false; if (size == 0) return true; base::CheckedNumeric start(offset); size_t start_numeric; if (!start.AssignIfValid(&start_numeric) || start_numeric >= file_0_prefetch.size()) return false; base::CheckedNumeric end = start + size - 1; size_t end_numeric; if (!end.AssignIfValid(&end_numeric) || end_numeric >= file_0_prefetch.size()) return false; memcpy(dest, file_0_prefetch.data() + offset, size); return true; } } int SimpleSynchronousEntry::GetEOFRecordData(base::StringPiece file_0_prefetch, int file_index, int file_offset, SimpleFileEOF* eof_record) { if (!ReadFromFileOrPrefetched(file_0_prefetch, file_index, file_offset, sizeof(SimpleFileEOF), reinterpret_cast(eof_record))) { RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_READ_FAILURE); return net::ERR_CACHE_CHECKSUM_READ_FAILURE; } if (eof_record->final_magic_number != kSimpleFinalMagicNumber) { RecordCheckEOFResult(cache_type_, CHECK_EOF_RESULT_MAGIC_NUMBER_MISMATCH); DVLOG(1) << "EOF record had bad magic number."; return net::ERR_CACHE_CHECKSUM_READ_FAILURE; } if (!base::IsValueInRangeForNumericType(eof_record->stream_size)) return net::ERR_FAILED; SIMPLE_CACHE_UMA(BOOLEAN, "SyncCheckEOFHasCrc", cache_type_, (eof_record->flags & SimpleFileEOF::FLAG_HAS_CRC32) == SimpleFileEOF::FLAG_HAS_CRC32); return net::OK; } void SimpleSynchronousEntry::Doom() const { DeleteFilesForEntryHash(path_, entry_hash_); } // static bool SimpleSynchronousEntry::DeleteFileForEntryHash(const FilePath& path, const uint64_t entry_hash, const int file_index) { FilePath to_delete = path.AppendASCII( GetFilenameFromEntryHashAndFileIndex(entry_hash, file_index)); return simple_util::SimpleCacheDeleteFile(to_delete); } // static bool SimpleSynchronousEntry::DeleteFilesForEntryHash( const FilePath& path, const uint64_t entry_hash) { bool result = true; for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) { if (!DeleteFileForEntryHash(path, entry_hash, i) && !CanOmitEmptyFile(i)) result = false; } FilePath to_delete = path.AppendASCII( GetSparseFilenameFromEntryHash(entry_hash)); simple_util::SimpleCacheDeleteFile(to_delete); return result; } // static bool SimpleSynchronousEntry::TruncateFilesForEntryHash( const FilePath& path, const uint64_t entry_hash) { bool result = true; for (int i = 0; i < kSimpleEntryNormalFileCount; ++i) { FilePath filename_to_truncate = path.AppendASCII(GetFilenameFromEntryHashAndFileIndex(entry_hash, i)); if (!TruncatePath(filename_to_truncate)) result = false; } FilePath to_delete = path.AppendASCII(GetSparseFilenameFromEntryHash(entry_hash)); TruncatePath(to_delete); return result; } void SimpleSynchronousEntry::RecordSyncCreateResult(CreateEntryResult result, bool had_index) { DCHECK_LT(result, CREATE_ENTRY_MAX); SIMPLE_CACHE_UMA(ENUMERATION, "SyncCreateResult", cache_type_, result, CREATE_ENTRY_MAX); if (had_index) { SIMPLE_CACHE_UMA(ENUMERATION, "SyncCreateResult_WithIndex", cache_type_, result, CREATE_ENTRY_MAX); } else { SIMPLE_CACHE_UMA(ENUMERATION, "SyncCreateResult_WithoutIndex", cache_type_, result, CREATE_ENTRY_MAX); } } FilePath SimpleSynchronousEntry::GetFilenameFromFileIndex(int file_index) { return path_.AppendASCII( GetFilenameFromEntryHashAndFileIndex(entry_hash_, file_index)); } bool SimpleSynchronousEntry::OpenSparseFileIfExists( int32_t* out_sparse_data_size) { DCHECK(!sparse_file_open()); FilePath filename = path_.AppendASCII( GetSparseFilenameFromEntryHash(entry_hash_)); int flags = File::FLAG_OPEN | File::FLAG_READ | File::FLAG_WRITE | File::FLAG_SHARE_DELETE; sparse_file_.Initialize(filename, flags); if (sparse_file_.IsValid()) return ScanSparseFile(out_sparse_data_size); return sparse_file_.error_details() == File::FILE_ERROR_NOT_FOUND; } bool SimpleSynchronousEntry::CreateSparseFile() { DCHECK(!sparse_file_open()); FilePath filename = path_.AppendASCII( GetSparseFilenameFromEntryHash(entry_hash_)); int flags = File::FLAG_CREATE | File::FLAG_READ | File::FLAG_WRITE | File::FLAG_SHARE_DELETE; sparse_file_.Initialize(filename, flags); if (!sparse_file_.IsValid()) return false; return InitializeSparseFile(); } void SimpleSynchronousEntry::CloseSparseFile() { DCHECK(sparse_file_open()); sparse_file_.Close(); } bool SimpleSynchronousEntry::TruncateSparseFile() { DCHECK(sparse_file_open()); int64_t header_and_key_length = sizeof(SimpleFileHeader) + key_.size(); if (!sparse_file_.SetLength(header_and_key_length)) { DLOG(WARNING) << "Could not truncate sparse file"; return false; } sparse_ranges_.clear(); sparse_tail_offset_ = header_and_key_length; return true; } bool SimpleSynchronousEntry::InitializeSparseFile() { DCHECK(sparse_file_open()); SimpleFileHeader header; header.initial_magic_number = kSimpleInitialMagicNumber; header.version = kSimpleVersion; header.key_length = key_.size(); header.key_hash = base::Hash(key_); int header_write_result = sparse_file_.Write(0, reinterpret_cast(&header), sizeof(header)); if (header_write_result != sizeof(header)) { DLOG(WARNING) << "Could not write sparse file header"; return false; } int key_write_result = sparse_file_.Write(sizeof(header), key_.data(), key_.size()); if (key_write_result != base::checked_cast(key_.size())) { DLOG(WARNING) << "Could not write sparse file key"; return false; } sparse_ranges_.clear(); sparse_tail_offset_ = sizeof(header) + key_.size(); return true; } bool SimpleSynchronousEntry::ScanSparseFile(int32_t* out_sparse_data_size) { DCHECK(sparse_file_open()); int64_t sparse_data_size = 0; SimpleFileHeader header; int header_read_result = sparse_file_.Read(0, reinterpret_cast(&header), sizeof(header)); if (header_read_result != sizeof(header)) { DLOG(WARNING) << "Could not read header from sparse file."; return false; } if (header.initial_magic_number != kSimpleInitialMagicNumber) { DLOG(WARNING) << "Sparse file magic number did not match."; return false; } if (header.version < kLastCompatSparseVersion || header.version > kSimpleVersion) { DLOG(WARNING) << "Sparse file unreadable version."; return false; } sparse_ranges_.clear(); int64_t range_header_offset = sizeof(header) + key_.size(); while (1) { SimpleFileSparseRangeHeader range_header; int range_header_read_result = sparse_file_.Read(range_header_offset, reinterpret_cast(&range_header), sizeof(range_header)); if (range_header_read_result == 0) break; if (range_header_read_result != sizeof(range_header)) { DLOG(WARNING) << "Could not read sparse range header."; return false; } if (range_header.sparse_range_magic_number != kSimpleSparseRangeMagicNumber) { DLOG(WARNING) << "Invalid sparse range header magic number."; return false; } SparseRange range; range.offset = range_header.offset; range.length = range_header.length; range.data_crc32 = range_header.data_crc32; range.file_offset = range_header_offset + sizeof(range_header); sparse_ranges_.insert(std::make_pair(range.offset, range)); range_header_offset += sizeof(range_header) + range.length; DCHECK_GE(sparse_data_size + range.length, sparse_data_size); sparse_data_size += range.length; } *out_sparse_data_size = static_cast(sparse_data_size); sparse_tail_offset_ = range_header_offset; return true; } bool SimpleSynchronousEntry::ReadSparseRange(const SparseRange* range, int offset, int len, char* buf) { DCHECK(range); DCHECK(buf); DCHECK_LE(offset, range->length); DCHECK_LE(offset + len, range->length); int bytes_read = sparse_file_.Read(range->file_offset + offset, buf, len); if (bytes_read < len) { DLOG(WARNING) << "Could not read sparse range."; return false; } // If we read the whole range and we have a crc32, check it. if (offset == 0 && len == range->length && range->data_crc32 != 0) { if (simple_util::Crc32(buf, len) != range->data_crc32) { DLOG(WARNING) << "Sparse range crc32 mismatch."; return false; } } // TODO(juliatuttle): Incremental crc32 calculation? return true; } bool SimpleSynchronousEntry::WriteSparseRange(SparseRange* range, int offset, int len, const char* buf) { DCHECK(range); DCHECK(buf); DCHECK_LE(offset, range->length); DCHECK_LE(offset + len, range->length); uint32_t new_crc32 = 0; if (offset == 0 && len == range->length) { new_crc32 = simple_util::Crc32(buf, len); } if (new_crc32 != range->data_crc32) { range->data_crc32 = new_crc32; SimpleFileSparseRangeHeader header; header.sparse_range_magic_number = kSimpleSparseRangeMagicNumber; header.offset = range->offset; header.length = range->length; header.data_crc32 = range->data_crc32; int bytes_written = sparse_file_.Write(range->file_offset - sizeof(header), reinterpret_cast(&header), sizeof(header)); if (bytes_written != base::checked_cast(sizeof(header))) { DLOG(WARNING) << "Could not rewrite sparse range header."; return false; } } int bytes_written = sparse_file_.Write(range->file_offset + offset, buf, len); if (bytes_written < len) { DLOG(WARNING) << "Could not write sparse range."; return false; } return true; } bool SimpleSynchronousEntry::AppendSparseRange(int64_t offset, int len, const char* buf) { DCHECK_GE(offset, 0); DCHECK_GT(len, 0); DCHECK(buf); uint32_t data_crc32 = simple_util::Crc32(buf, len); SimpleFileSparseRangeHeader header; header.sparse_range_magic_number = kSimpleSparseRangeMagicNumber; header.offset = offset; header.length = len; header.data_crc32 = data_crc32; int bytes_written = sparse_file_.Write(sparse_tail_offset_, reinterpret_cast(&header), sizeof(header)); if (bytes_written != base::checked_cast(sizeof(header))) { DLOG(WARNING) << "Could not append sparse range header."; return false; } sparse_tail_offset_ += bytes_written; bytes_written = sparse_file_.Write(sparse_tail_offset_, buf, len); if (bytes_written < len) { DLOG(WARNING) << "Could not append sparse range data."; return false; } int64_t data_file_offset = sparse_tail_offset_; sparse_tail_offset_ += bytes_written; SparseRange range; range.offset = offset; range.length = len; range.data_crc32 = data_crc32; range.file_offset = data_file_offset; sparse_ranges_.insert(std::make_pair(offset, range)); return true; } } // namespace disk_cache