// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/metrics/sample_vector.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/memory/ptr_util.h" #include "base/metrics/persistent_memory_allocator.h" #include "base/numerics/safe_conversions.h" #include "base/synchronization/lock.h" #include "base/threading/platform_thread.h" // This SampleVector makes use of the single-sample embedded in the base // HistogramSamples class. If the count is non-zero then there is guaranteed // (within the bounds of "eventual consistency") to be no allocated external // storage. Once the full counts storage is allocated, the single-sample must // be extracted and disabled. namespace base { typedef HistogramBase::Count Count; typedef HistogramBase::Sample Sample; SampleVectorBase::SampleVectorBase(uint64_t id, Metadata* meta, const BucketRanges* bucket_ranges) : HistogramSamples(id, meta), bucket_ranges_(bucket_ranges) { CHECK_GE(bucket_ranges_->bucket_count(), 1u); } SampleVectorBase::~SampleVectorBase() {} void SampleVectorBase::Accumulate(Sample value, Count count) { const size_t bucket_index = GetBucketIndex(value); // Handle the single-sample case. if (!counts()) { // Try to accumulate the parameters into the single-count entry. if (AccumulateSingleSample(value, count, bucket_index)) { // A race condition could lead to a new single-sample being accumulated // above just after another thread executed the MountCountsStorage below. // Since it is mounted, it could be mounted elsewhere and have values // written to it. It's not allowed to have both a single-sample and // entries in the counts array so move the single-sample. if (counts()) MoveSingleSampleToCounts(); return; } // Need real storage to store both what was in the single-sample plus the // parameter information. MountCountsStorageAndMoveSingleSample(); } // Handle the multi-sample case. subtle::NoBarrier_AtomicIncrement(&counts()[bucket_index], count); IncreaseSumAndCount(strict_cast(count) * value, count); } Count SampleVectorBase::GetCount(Sample value) const { return GetCountAtIndex(GetBucketIndex(value)); } Count SampleVectorBase::TotalCount() const { // Handle the single-sample case. SingleSample sample = single_sample().Load(); if (sample.count != 0) return sample.count; // Handle the multi-sample case. if (counts() || MountExistingCountsStorage()) { Count count = 0; size_t size = counts_size(); const HistogramBase::AtomicCount* counts_array = counts(); for (size_t i = 0; i < size; ++i) { count += subtle::NoBarrier_Load(&counts_array[i]); } return count; } // And the no-value case. return 0; } Count SampleVectorBase::GetCountAtIndex(size_t bucket_index) const { DCHECK(bucket_index < counts_size()); // Handle the single-sample case. SingleSample sample = single_sample().Load(); if (sample.count != 0) return sample.bucket == bucket_index ? sample.count : 0; // Handle the multi-sample case. if (counts() || MountExistingCountsStorage()) return subtle::NoBarrier_Load(&counts()[bucket_index]); // And the no-value case. return 0; } std::unique_ptr SampleVectorBase::Iterator() const { // Handle the single-sample case. SingleSample sample = single_sample().Load(); if (sample.count != 0) { return std::make_unique( bucket_ranges_->range(sample.bucket), bucket_ranges_->range(sample.bucket + 1), sample.count, sample.bucket); } // Handle the multi-sample case. if (counts() || MountExistingCountsStorage()) { return std::make_unique(counts(), counts_size(), bucket_ranges_); } // And the no-value case. return std::make_unique(nullptr, 0, bucket_ranges_); } bool SampleVectorBase::AddSubtractImpl(SampleCountIterator* iter, HistogramSamples::Operator op) { // Stop now if there's nothing to do. if (iter->Done()) return true; // Get the first value and its index. HistogramBase::Sample min; int64_t max; HistogramBase::Count count; iter->Get(&min, &max, &count); size_t dest_index = GetBucketIndex(min); // The destination must be a superset of the source meaning that though the // incoming ranges will find an exact match, the incoming bucket-index, if // it exists, may be offset from the destination bucket-index. Calculate // that offset of the passed iterator; there are are no overflow checks // because 2's compliment math will work it out in the end. // // Because GetBucketIndex() always returns the same true or false result for // a given iterator object, |index_offset| is either set here and used below, // or never set and never used. The compiler doesn't know this, though, which // is why it's necessary to initialize it to something. size_t index_offset = 0; size_t iter_index; if (iter->GetBucketIndex(&iter_index)) index_offset = dest_index - iter_index; if (dest_index >= counts_size()) return false; // Post-increment. Information about the current sample is not available // after this point. iter->Next(); // Single-value storage is possible if there is no counts storage and the // retrieved entry is the only one in the iterator. if (!counts()) { if (iter->Done()) { // Don't call AccumulateSingleSample because that updates sum and count // which was already done by the caller of this method. if (single_sample().Accumulate( dest_index, op == HistogramSamples::ADD ? count : -count)) { // Handle race-condition that mounted counts storage between above and // here. if (counts()) MoveSingleSampleToCounts(); return true; } } // The counts storage will be needed to hold the multiple incoming values. MountCountsStorageAndMoveSingleSample(); } // Go through the iterator and add the counts into correct bucket. while (true) { // Ensure that the sample's min/max match the ranges min/max. if (min != bucket_ranges_->range(dest_index) || max != bucket_ranges_->range(dest_index + 1)) { NOTREACHED() << "sample=" << min << "," << max << "; range=" << bucket_ranges_->range(dest_index) << "," << bucket_ranges_->range(dest_index + 1); return false; } // Sample's bucket matches exactly. Adjust count. subtle::NoBarrier_AtomicIncrement( &counts()[dest_index], op == HistogramSamples::ADD ? count : -count); // Advance to the next iterable sample. See comments above for how // everything works. if (iter->Done()) return true; iter->Get(&min, &max, &count); if (iter->GetBucketIndex(&iter_index)) { // Destination bucket is a known offset from the source bucket. dest_index = iter_index + index_offset; } else { // Destination bucket has to be determined anew each time. dest_index = GetBucketIndex(min); } if (dest_index >= counts_size()) return false; iter->Next(); } } // Use simple binary search. This is very general, but there are better // approaches if we knew that the buckets were linearly distributed. size_t SampleVectorBase::GetBucketIndex(Sample value) const { size_t bucket_count = bucket_ranges_->bucket_count(); CHECK_GE(bucket_count, 1u); CHECK_GE(value, bucket_ranges_->range(0)); CHECK_LT(value, bucket_ranges_->range(bucket_count)); size_t under = 0; size_t over = bucket_count; size_t mid; do { DCHECK_GE(over, under); mid = under + (over - under)/2; if (mid == under) break; if (bucket_ranges_->range(mid) <= value) under = mid; else over = mid; } while (true); DCHECK_LE(bucket_ranges_->range(mid), value); CHECK_GT(bucket_ranges_->range(mid + 1), value); return mid; } void SampleVectorBase::MoveSingleSampleToCounts() { DCHECK(counts()); // Disable the single-sample since there is now counts storage for the data. SingleSample sample = single_sample().Extract(/*disable=*/true); // Stop here if there is no "count" as trying to find the bucket index of // an invalid (including zero) "value" will crash. if (sample.count == 0) return; // Move the value into storage. Sum and redundant-count already account // for this entry so no need to call IncreaseSumAndCount(). subtle::NoBarrier_AtomicIncrement(&counts()[sample.bucket], sample.count); } void SampleVectorBase::MountCountsStorageAndMoveSingleSample() { // There are many SampleVector objects and the lock is needed very // infrequently (just when advancing from single-sample to multi-sample) so // define a single, global lock that all can use. This lock only prevents // concurrent entry into the code below; access and updates to |counts_| // still requires atomic operations. static LazyInstance::Leaky counts_lock = LAZY_INSTANCE_INITIALIZER; if (subtle::NoBarrier_Load(&counts_) == 0) { AutoLock lock(counts_lock.Get()); if (subtle::NoBarrier_Load(&counts_) == 0) { // Create the actual counts storage while the above lock is acquired. HistogramBase::Count* counts = CreateCountsStorageWhileLocked(); DCHECK(counts); // Point |counts_| to the newly created storage. This is done while // locked to prevent possible concurrent calls to CreateCountsStorage // but, between that call and here, other threads could notice the // existence of the storage and race with this to set_counts(). That's // okay because (a) it's atomic and (b) it always writes the same value. set_counts(counts); } } // Move any single-sample into the newly mounted storage. MoveSingleSampleToCounts(); } SampleVector::SampleVector(const BucketRanges* bucket_ranges) : SampleVector(0, bucket_ranges) {} SampleVector::SampleVector(uint64_t id, const BucketRanges* bucket_ranges) : SampleVectorBase(id, new LocalMetadata(), bucket_ranges) {} SampleVector::~SampleVector() { delete static_cast(meta()); } bool SampleVector::MountExistingCountsStorage() const { // There is never any existing storage other than what is already in use. return counts() != nullptr; } HistogramBase::AtomicCount* SampleVector::CreateCountsStorageWhileLocked() { local_counts_.resize(counts_size()); return &local_counts_[0]; } PersistentSampleVector::PersistentSampleVector( uint64_t id, const BucketRanges* bucket_ranges, Metadata* meta, const DelayedPersistentAllocation& counts) : SampleVectorBase(id, meta, bucket_ranges), persistent_counts_(counts) { // Only mount the full storage if the single-sample has been disabled. // Otherwise, it is possible for this object instance to start using (empty) // storage that was created incidentally while another instance continues to // update to the single sample. This "incidental creation" can happen because // the memory is a DelayedPersistentAllocation which allows multiple memory // blocks within it and applies an all-or-nothing approach to the allocation. // Thus, a request elsewhere for one of the _other_ blocks would make _this_ // block available even though nothing has explicitly requested it. // // Note that it's not possible for the ctor to mount existing storage and // move any single-sample to it because sometimes the persistent memory is // read-only. Only non-const methods (which assume that memory is read/write) // can do that. if (single_sample().IsDisabled()) { bool success = MountExistingCountsStorage(); DCHECK(success); } } PersistentSampleVector::~PersistentSampleVector() {} bool PersistentSampleVector::MountExistingCountsStorage() const { // There is no early exit if counts is not yet mounted because, given that // this is a virtual function, it's more efficient to do that at the call- // site. There is no danger, however, should this get called anyway (perhaps // because of a race condition) because at worst the |counts_| value would // be over-written (in an atomic manner) with the exact same address. if (!persistent_counts_.reference()) return false; // Nothing to mount. // Mount the counts array in position. set_counts( static_cast(persistent_counts_.Get())); // The above shouldn't fail but can if the data is corrupt or incomplete. return counts() != nullptr; } HistogramBase::AtomicCount* PersistentSampleVector::CreateCountsStorageWhileLocked() { void* mem = persistent_counts_.Get(); if (!mem) { // The above shouldn't fail but can if Bad Things(tm) are occurring in the // persistent allocator. Crashing isn't a good option so instead just // allocate something from the heap and return that. There will be no // sharing or persistence but worse things are already happening. return new HistogramBase::AtomicCount[counts_size()]; } return static_cast(mem); } SampleVectorIterator::SampleVectorIterator( const std::vector* counts, const BucketRanges* bucket_ranges) : counts_(&(*counts)[0]), counts_size_(counts->size()), bucket_ranges_(bucket_ranges), index_(0) { DCHECK_GE(bucket_ranges_->bucket_count(), counts_size_); SkipEmptyBuckets(); } SampleVectorIterator::SampleVectorIterator( const HistogramBase::AtomicCount* counts, size_t counts_size, const BucketRanges* bucket_ranges) : counts_(counts), counts_size_(counts_size), bucket_ranges_(bucket_ranges), index_(0) { DCHECK_GE(bucket_ranges_->bucket_count(), counts_size_); SkipEmptyBuckets(); } SampleVectorIterator::~SampleVectorIterator() {} bool SampleVectorIterator::Done() const { return index_ >= counts_size_; } void SampleVectorIterator::Next() { DCHECK(!Done()); index_++; SkipEmptyBuckets(); } void SampleVectorIterator::Get(HistogramBase::Sample* min, int64_t* max, HistogramBase::Count* count) const { DCHECK(!Done()); if (min != NULL) *min = bucket_ranges_->range(index_); if (max != NULL) *max = strict_cast(bucket_ranges_->range(index_ + 1)); if (count != NULL) *count = subtle::NoBarrier_Load(&counts_[index_]); } bool SampleVectorIterator::GetBucketIndex(size_t* index) const { DCHECK(!Done()); if (index != NULL) *index = index_; return true; } void SampleVectorIterator::SkipEmptyBuckets() { if (Done()) return; while (index_ < counts_size_) { if (subtle::NoBarrier_Load(&counts_[index_]) != 0) return; index_++; } } } // namespace base