// Copyright 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_CONTAINERS_SPAN_H_ #define BASE_CONTAINERS_SPAN_H_ #include #include #include #include #include #include namespace base { template class span; namespace internal { template struct IsSpanImpl : std::false_type {}; template struct IsSpanImpl> : std::true_type {}; template using IsSpan = IsSpanImpl>; template struct IsStdArrayImpl : std::false_type {}; template struct IsStdArrayImpl> : std::true_type {}; template using IsStdArray = IsStdArrayImpl>; template using IsLegalSpanConversion = std::is_convertible; template using ContainerHasConvertibleData = IsLegalSpanConversion< std::remove_pointer_t().data())>, T>; template using ContainerHasIntegralSize = std::is_integral().size())>; template using EnableIfLegalSpanConversion = std::enable_if_t::value>; // SFINAE check if Container can be converted to a span. Note that the // implementation details of this check differ slightly from the requirements in // the working group proposal: in particular, the proposal also requires that // the container conversion constructor participate in overload resolution only // if two additional conditions are true: // // 1. Container implements operator[]. // 2. Container::value_type matches remove_const_t. // // The requirements are relaxed slightly here: in particular, not requiring (2) // means that an immutable span can be easily constructed from a mutable // container. template using EnableIfSpanCompatibleContainer = std::enable_if_t::value && !internal::IsStdArray::value && ContainerHasConvertibleData::value && ContainerHasIntegralSize::value>; template using EnableIfConstSpanCompatibleContainer = std::enable_if_t::value && !internal::IsSpan::value && !internal::IsStdArray::value && ContainerHasConvertibleData::value && ContainerHasIntegralSize::value>; } // namespace internal // A span is a value type that represents an array of elements of type T. Since // it only consists of a pointer to memory with an associated size, it is very // light-weight. It is cheap to construct, copy, move and use spans, so that // users are encouraged to use it as a pass-by-value parameter. A span does not // own the underlying memory, so care must be taken to ensure that a span does // not outlive the backing store. // // span is somewhat analogous to StringPiece, but with arbitrary element types, // allowing mutation if T is non-const. // // span is implicitly convertible from C++ arrays, as well as most [1] // container-like types that provide a data() and size() method (such as // std::vector). A mutable span can also be implicitly converted to an // immutable span. // // Consider using a span for functions that take a data pointer and size // parameter: it allows the function to still act on an array-like type, while // allowing the caller code to be a bit more concise. // // For read-only data access pass a span: the caller can supply either // a span or a span, while the callee will have a read-only view. // For read-write access a mutable span is required. // // Without span: // Read-Only: // // std::string HexEncode(const uint8_t* data, size_t size); // std::vector data_buffer = GenerateData(); // std::string r = HexEncode(data_buffer.data(), data_buffer.size()); // // Mutable: // // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...); // char str_buffer[100]; // SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14); // // With span: // Read-Only: // // std::string HexEncode(base::span data); // std::vector data_buffer = GenerateData(); // std::string r = HexEncode(data_buffer); // // Mutable: // // ssize_t SafeSNPrintf(base::span, const char* fmt, Args...); // char str_buffer[100]; // SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14); // // Spans with "const" and pointers // ------------------------------- // // Const and pointers can get confusing. Here are vectors of pointers and their // corresponding spans (you can always make the span "more const" too): // // const std::vector => base::span // std::vector => base::span // const std::vector => base::span // // Differences from the working group proposal // ------------------------------------------- // // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0122r5.pdf is the // latest working group proposal. The biggest difference is span does not // support a static extent template parameter. Other differences are documented // in subsections below. // // Differences from [views.constants]: // - no dynamic_extent constant // // Differences in constants and types: // - no element_type type alias // - no index_type type alias // - no different_type type alias // - no extent constant // // Differences from [span.cons]: // - no constructor from a pointer range // - no constructor from std::array // - no constructor from std::unique_ptr // - no constructor from std::shared_ptr // - no explicitly defaulted the copy/move constructor/assignment operators, // since MSVC complains about constexpr functions that aren't marked const. // // Differences from [span.sub]: // - no templated first() // - no templated last() // - no templated subspan() // // Differences from [span.obs]: // - no length_bytes() // - no size_bytes() // // Differences from [span.elem]: // - no operator ()() // // Differences from [span.objectrep]: // - no as_bytes() // - no as_writeable_bytes() template class span { public: using value_type = std::remove_cv_t; using pointer = T*; using reference = T&; using iterator = T*; using const_iterator = const T*; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; // span constructors, copy, assignment, and destructor constexpr span() noexcept : data_(nullptr), size_(0) {} constexpr span(std::nullptr_t) noexcept : span() {} constexpr span(T* data, size_t size) noexcept : data_(data), size_(size) {} // TODO(dcheng): Implement construction from a |begin| and |end| pointer. template constexpr span(T (&array)[N]) noexcept : span(array, N) {} // TODO(dcheng): Implement construction from std::array. // Conversion from a container that provides |T* data()| and |integral_type // size()|. template > constexpr span(Container& container) : span(container.data(), container.size()) {} template < typename Container, typename = internal::EnableIfConstSpanCompatibleContainer> span(const Container& container) : span(container.data(), container.size()) {} ~span() noexcept = default; // Conversions from spans of compatible types: this allows a span to be // seamlessly used as a span, but not the other way around. template > constexpr span(const span& other) : span(other.data(), other.size()) {} template > constexpr span(span&& other) : span(other.data(), other.size()) {} // span subviews // Note: ideally all of these would DCHECK, but it requires fairly horrible // contortions. constexpr span first(size_t count) const { return span(data_, count); } constexpr span last(size_t count) const { return span(data_ + (size_ - count), count); } constexpr span subspan(size_t pos, size_t count = -1) const { return span(data_ + pos, std::min(size_ - pos, count)); } // span observers constexpr size_t length() const noexcept { return size_; } constexpr size_t size() const noexcept { return size_; } constexpr bool empty() const noexcept { return size_ == 0; } // span element access constexpr T& operator[](size_t index) const noexcept { return data_[index]; } constexpr T* data() const noexcept { return data_; } // span iterator support iterator begin() const noexcept { return data_; } iterator end() const noexcept { return data_ + size_; } const_iterator cbegin() const noexcept { return begin(); } const_iterator cend() const noexcept { return end(); } reverse_iterator rbegin() const noexcept { return reverse_iterator(end()); } reverse_iterator rend() const noexcept { return reverse_iterator(begin()); } const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(cend()); } const_reverse_iterator crend() const noexcept { return const_reverse_iterator(cbegin()); } private: T* data_; size_t size_; }; // Relational operators. Equality is a element-wise comparison. template constexpr bool operator==(const span& lhs, const span& rhs) noexcept { return std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend()); } template constexpr bool operator!=(const span& lhs, const span& rhs) noexcept { return !(lhs == rhs); } template constexpr bool operator<(const span& lhs, const span& rhs) noexcept { return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend()); } template constexpr bool operator<=(const span& lhs, const span& rhs) noexcept { return !(rhs < lhs); } template constexpr bool operator>(const span& lhs, const span& rhs) noexcept { return rhs < lhs; } template constexpr bool operator>=(const span& lhs, const span& rhs) noexcept { return !(lhs < rhs); } // Type-deducing helpers for constructing a span. template constexpr span make_span(T* data, size_t size) noexcept { return span(data, size); } template constexpr span make_span(T (&array)[N]) noexcept { return span(array); } template > constexpr span make_span(Container& container) { return span(container); } template < typename Container, typename T = std::add_const_t, typename = internal::EnableIfConstSpanCompatibleContainer> constexpr span make_span(const Container& container) { return span(container); } } // namespace base #endif // BASE_CONTAINERS_SPAN_H_