// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // The eviction policy is a very simple pure LRU, so the elements at the end of // the list are evicted until kCleanUpMargin free space is available. There is // only one list in use (Rankings::NO_USE), and elements are sent to the front // of the list whenever they are accessed. // The new (in-development) eviction policy adds re-use as a factor to evict // an entry. The story so far: // Entries are linked on separate lists depending on how often they are used. // When we see an element for the first time, it goes to the NO_USE list; if // the object is reused later on, we move it to the LOW_USE list, until it is // used kHighUse times, at which point it is moved to the HIGH_USE list. // Whenever an element is evicted, we move it to the DELETED list so that if the // element is accessed again, we remember the fact that it was already stored // and maybe in the future we don't evict that element. // When we have to evict an element, first we try to use the last element from // the NO_USE list, then we move to the LOW_USE and only then we evict an entry // from the HIGH_USE. We attempt to keep entries on the cache for at least // kTargetTime hours (with frequently accessed items stored for longer periods), // but if we cannot do that, we fall-back to keep each list roughly the same // size so that we have a chance to see an element again and move it to another // list. #include "net/disk_cache/blockfile/eviction.h" #include #include #include "base/bind.h" #include "base/compiler_specific.h" #include "base/location.h" #include "base/logging.h" #include "base/metrics/histogram_macros.h" #include "base/single_thread_task_runner.h" #include "base/strings/string_util.h" #include "base/threading/thread_task_runner_handle.h" #include "base/time/time.h" #include "net/disk_cache/blockfile/backend_impl.h" #include "net/disk_cache/blockfile/disk_format.h" #include "net/disk_cache/blockfile/entry_impl.h" #include "net/disk_cache/blockfile/experiments.h" #include "net/disk_cache/blockfile/histogram_macros.h" #include "net/disk_cache/blockfile/trace.h" #include "net/disk_cache/blockfile/webfonts_histogram.h" // Provide a BackendImpl object to macros from histogram_macros.h. #define CACHE_UMA_BACKEND_IMPL_OBJ backend_ using base::Time; using base::TimeTicks; namespace { const int kCleanUpMargin = 1024 * 1024; const int kHighUse = 10; // Reuse count to be on the HIGH_USE list. const int kTargetTime = 24 * 7; // Time to be evicted (hours since last use). const int kMaxDelayedTrims = 60; int LowWaterAdjust(int high_water) { if (high_water < kCleanUpMargin) return 0; return high_water - kCleanUpMargin; } bool FallingBehind(int current_size, int max_size) { return current_size > max_size - kCleanUpMargin * 20; } } // namespace namespace disk_cache { // The real initialization happens during Init(), init_ is the only member that // has to be initialized here. Eviction::Eviction() : backend_(NULL), init_(false), ptr_factory_(this) { } Eviction::~Eviction() = default; void Eviction::Init(BackendImpl* backend) { // We grab a bunch of info from the backend to make the code a little cleaner // when we're actually doing work. backend_ = backend; rankings_ = &backend->rankings_; header_ = &backend_->data_->header; max_size_ = LowWaterAdjust(backend_->max_size_); index_size_ = backend->mask_ + 1; new_eviction_ = backend->new_eviction_; first_trim_ = true; trimming_ = false; delay_trim_ = false; trim_delays_ = 0; init_ = true; test_mode_ = false; } void Eviction::Stop() { // It is possible for the backend initialization to fail, in which case this // object was never initialized... and there is nothing to do. if (!init_) return; // We want to stop further evictions, so let's pretend that we are busy from // this point on. DCHECK(!trimming_); trimming_ = true; ptr_factory_.InvalidateWeakPtrs(); } void Eviction::TrimCache(bool empty) { if (backend_->disabled_ || trimming_) return; if (!empty && !ShouldTrim()) return PostDelayedTrim(); if (new_eviction_) return TrimCacheV2(empty); Trace("*** Trim Cache ***"); trimming_ = true; TimeTicks start = TimeTicks::Now(); Rankings::ScopedRankingsBlock node(rankings_); Rankings::ScopedRankingsBlock next( rankings_, rankings_->GetPrev(node.get(), Rankings::NO_USE)); int deleted_entries = 0; int target_size = empty ? 0 : max_size_; while ((header_->num_bytes > target_size || test_mode_) && next.get()) { // The iterator could be invalidated within EvictEntry(). if (!next->HasData()) break; node.reset(next.release()); next.reset(rankings_->GetPrev(node.get(), Rankings::NO_USE)); if (node->Data()->dirty != backend_->GetCurrentEntryId() || empty) { // This entry is not being used by anybody. // Do NOT use node as an iterator after this point. rankings_->TrackRankingsBlock(node.get(), false); if (EvictEntry(node.get(), empty, Rankings::NO_USE) && !test_mode_) deleted_entries++; if (!empty && test_mode_) break; } if (!empty && (deleted_entries > 20 || (TimeTicks::Now() - start).InMilliseconds() > 20)) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&Eviction::TrimCache, ptr_factory_.GetWeakPtr(), false)); break; } } if (empty) { CACHE_UMA(AGE_MS, "TotalClearTimeV1", 0, start); } else { CACHE_UMA(AGE_MS, "TotalTrimTimeV1", 0, start); } CACHE_UMA(COUNTS, "TrimItemsV1", 0, deleted_entries); trimming_ = false; Trace("*** Trim Cache end ***"); return; } void Eviction::UpdateRank(EntryImpl* entry, bool modified) { if (new_eviction_) return UpdateRankV2(entry, modified); rankings_->UpdateRank(entry->rankings(), modified, GetListForEntry(entry)); } void Eviction::OnOpenEntry(EntryImpl* entry) { if (new_eviction_) return OnOpenEntryV2(entry); } void Eviction::OnCreateEntry(EntryImpl* entry) { if (new_eviction_) return OnCreateEntryV2(entry); rankings_->Insert(entry->rankings(), true, GetListForEntry(entry)); } void Eviction::OnDoomEntry(EntryImpl* entry) { if (new_eviction_) return OnDoomEntryV2(entry); if (entry->LeaveRankingsBehind()) return; rankings_->Remove(entry->rankings(), GetListForEntry(entry), true); } void Eviction::OnDestroyEntry(EntryImpl* entry) { if (new_eviction_) return OnDestroyEntryV2(entry); } void Eviction::SetTestMode() { test_mode_ = true; } void Eviction::TrimDeletedList(bool empty) { DCHECK(test_mode_ && new_eviction_); TrimDeleted(empty); } void Eviction::PostDelayedTrim() { // Prevent posting multiple tasks. if (delay_trim_) return; delay_trim_ = true; trim_delays_++; base::ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, base::Bind(&Eviction::DelayedTrim, ptr_factory_.GetWeakPtr()), base::TimeDelta::FromMilliseconds(1000)); } void Eviction::DelayedTrim() { delay_trim_ = false; if (trim_delays_ < kMaxDelayedTrims && backend_->IsLoaded()) return PostDelayedTrim(); TrimCache(false); } bool Eviction::ShouldTrim() { if (!FallingBehind(header_->num_bytes, max_size_) && trim_delays_ < kMaxDelayedTrims && backend_->IsLoaded()) { return false; } UMA_HISTOGRAM_COUNTS_1M("DiskCache.TrimDelays", trim_delays_); trim_delays_ = 0; return true; } bool Eviction::ShouldTrimDeleted() { int index_load = header_->num_entries * 100 / index_size_; // If the index is not loaded, the deleted list will tend to double the size // of the other lists 3 lists (40% of the total). Otherwise, all lists will be // about the same size. int max_length = (index_load < 25) ? header_->num_entries * 2 / 5 : header_->num_entries / 4; return (!test_mode_ && header_->lru.sizes[Rankings::DELETED] > max_length); } void Eviction::ReportTrimTimes(EntryImpl* entry) { if (first_trim_) { first_trim_ = false; if (backend_->ShouldReportAgain()) { CACHE_UMA(AGE, "TrimAge", 0, entry->GetLastUsed()); ReportListStats(); } if (header_->lru.filled) return; header_->lru.filled = 1; if (header_->create_time) { // This is the first entry that we have to evict, generate some noise. backend_->FirstEviction(); } else { // This is an old file, but we may want more reports from this user so // lets save some create_time. Conversion cannot fail here. const base::Time time_2009_3_1 = base::Time::FromInternalValue(12985574400000000); header_->create_time = time_2009_3_1.ToInternalValue(); } } } Rankings::List Eviction::GetListForEntry(EntryImpl* entry) { return Rankings::NO_USE; } bool Eviction::EvictEntry(CacheRankingsBlock* node, bool empty, Rankings::List list) { scoped_refptr entry = backend_->GetEnumeratedEntry(node, list); if (!entry) { Trace("NewEntry failed on Trim 0x%x", node->address().value()); return false; } web_fonts_histogram::RecordEviction(entry.get()); ReportTrimTimes(entry.get()); if (empty || !new_eviction_) { entry->DoomImpl(); } else { entry->DeleteEntryData(false); EntryStore* info = entry->entry()->Data(); DCHECK_EQ(ENTRY_NORMAL, info->state); rankings_->Remove(entry->rankings(), GetListForEntryV2(entry.get()), true); info->state = ENTRY_EVICTED; entry->entry()->Store(); rankings_->Insert(entry->rankings(), true, Rankings::DELETED); } if (!empty) backend_->OnEvent(Stats::TRIM_ENTRY); return true; } // ----------------------------------------------------------------------- void Eviction::TrimCacheV2(bool empty) { Trace("*** Trim Cache ***"); trimming_ = true; TimeTicks start = TimeTicks::Now(); const int kListsToSearch = 3; Rankings::ScopedRankingsBlock next[kListsToSearch]; int list = Rankings::LAST_ELEMENT; // Get a node from each list. bool done = false; for (int i = 0; i < kListsToSearch; i++) { next[i].set_rankings(rankings_); if (done) continue; next[i].reset(rankings_->GetPrev(NULL, static_cast(i))); if (!empty && NodeIsOldEnough(next[i].get(), i)) { list = static_cast(i); done = true; } } // If we are not meeting the time targets lets move on to list length. if (!empty && Rankings::LAST_ELEMENT == list) list = SelectListByLength(next); if (empty) list = 0; Rankings::ScopedRankingsBlock node(rankings_); int deleted_entries = 0; int target_size = empty ? 0 : max_size_; for (; list < kListsToSearch; list++) { while ((header_->num_bytes > target_size || test_mode_) && next[list].get()) { // The iterator could be invalidated within EvictEntry(). if (!next[list]->HasData()) break; node.reset(next[list].release()); next[list].reset(rankings_->GetPrev(node.get(), static_cast(list))); if (node->Data()->dirty != backend_->GetCurrentEntryId() || empty) { // This entry is not being used by anybody. // Do NOT use node as an iterator after this point. rankings_->TrackRankingsBlock(node.get(), false); if (EvictEntry(node.get(), empty, static_cast(list))) deleted_entries++; if (!empty && test_mode_) break; } if (!empty && (deleted_entries > 20 || (TimeTicks::Now() - start).InMilliseconds() > 20)) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&Eviction::TrimCache, ptr_factory_.GetWeakPtr(), false)); break; } } if (!empty) list = kListsToSearch; } if (empty) { TrimDeleted(true); } else if (ShouldTrimDeleted()) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&Eviction::TrimDeleted, ptr_factory_.GetWeakPtr(), empty)); } if (empty) { CACHE_UMA(AGE_MS, "TotalClearTimeV2", 0, start); } else { CACHE_UMA(AGE_MS, "TotalTrimTimeV2", 0, start); } CACHE_UMA(COUNTS, "TrimItemsV2", 0, deleted_entries); Trace("*** Trim Cache end ***"); trimming_ = false; return; } void Eviction::UpdateRankV2(EntryImpl* entry, bool modified) { rankings_->UpdateRank(entry->rankings(), modified, GetListForEntryV2(entry)); } void Eviction::OnOpenEntryV2(EntryImpl* entry) { EntryStore* info = entry->entry()->Data(); DCHECK_EQ(ENTRY_NORMAL, info->state); if (info->reuse_count < std::numeric_limits::max()) { info->reuse_count++; entry->entry()->set_modified(); // We may need to move this to a new list. if (1 == info->reuse_count) { rankings_->Remove(entry->rankings(), Rankings::NO_USE, true); rankings_->Insert(entry->rankings(), false, Rankings::LOW_USE); entry->entry()->Store(); } else if (kHighUse == info->reuse_count) { rankings_->Remove(entry->rankings(), Rankings::LOW_USE, true); rankings_->Insert(entry->rankings(), false, Rankings::HIGH_USE); entry->entry()->Store(); } } } void Eviction::OnCreateEntryV2(EntryImpl* entry) { EntryStore* info = entry->entry()->Data(); switch (info->state) { case ENTRY_NORMAL: { DCHECK(!info->reuse_count); DCHECK(!info->refetch_count); break; }; case ENTRY_EVICTED: { if (info->refetch_count < std::numeric_limits::max()) info->refetch_count++; if (info->refetch_count > kHighUse && info->reuse_count < kHighUse) { info->reuse_count = kHighUse; } else { info->reuse_count++; } info->state = ENTRY_NORMAL; entry->entry()->Store(); rankings_->Remove(entry->rankings(), Rankings::DELETED, true); break; }; default: NOTREACHED(); } rankings_->Insert(entry->rankings(), true, GetListForEntryV2(entry)); } void Eviction::OnDoomEntryV2(EntryImpl* entry) { EntryStore* info = entry->entry()->Data(); if (ENTRY_NORMAL != info->state) return; if (entry->LeaveRankingsBehind()) { info->state = ENTRY_DOOMED; entry->entry()->Store(); return; } rankings_->Remove(entry->rankings(), GetListForEntryV2(entry), true); info->state = ENTRY_DOOMED; entry->entry()->Store(); rankings_->Insert(entry->rankings(), true, Rankings::DELETED); } void Eviction::OnDestroyEntryV2(EntryImpl* entry) { if (entry->LeaveRankingsBehind()) return; rankings_->Remove(entry->rankings(), Rankings::DELETED, true); } Rankings::List Eviction::GetListForEntryV2(EntryImpl* entry) { EntryStore* info = entry->entry()->Data(); DCHECK_EQ(ENTRY_NORMAL, info->state); if (!info->reuse_count) return Rankings::NO_USE; if (info->reuse_count < kHighUse) return Rankings::LOW_USE; return Rankings::HIGH_USE; } // This is a minimal implementation that just discards the oldest nodes. // TODO(rvargas): Do something better here. void Eviction::TrimDeleted(bool empty) { Trace("*** Trim Deleted ***"); if (backend_->disabled_) return; TimeTicks start = TimeTicks::Now(); Rankings::ScopedRankingsBlock node(rankings_); Rankings::ScopedRankingsBlock next( rankings_, rankings_->GetPrev(node.get(), Rankings::DELETED)); int deleted_entries = 0; while (next.get() && (empty || (deleted_entries < 20 && (TimeTicks::Now() - start).InMilliseconds() < 20))) { node.reset(next.release()); next.reset(rankings_->GetPrev(node.get(), Rankings::DELETED)); if (RemoveDeletedNode(node.get())) deleted_entries++; if (test_mode_) break; } if (deleted_entries && !empty && ShouldTrimDeleted()) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&Eviction::TrimDeleted, ptr_factory_.GetWeakPtr(), false)); } CACHE_UMA(AGE_MS, "TotalTrimDeletedTime", 0, start); CACHE_UMA(COUNTS, "TrimDeletedItems", 0, deleted_entries); Trace("*** Trim Deleted end ***"); return; } bool Eviction::RemoveDeletedNode(CacheRankingsBlock* node) { scoped_refptr entry = backend_->GetEnumeratedEntry(node, Rankings::DELETED); if (!entry) { Trace("NewEntry failed on Trim 0x%x", node->address().value()); return false; } bool doomed = (entry->entry()->Data()->state == ENTRY_DOOMED); entry->entry()->Data()->state = ENTRY_DOOMED; entry->DoomImpl(); return !doomed; } bool Eviction::NodeIsOldEnough(CacheRankingsBlock* node, int list) { if (!node) return false; // If possible, we want to keep entries on each list at least kTargetTime // hours. Each successive list on the enumeration has 2x the target time of // the previous list. Time used = Time::FromInternalValue(node->Data()->last_used); int multiplier = 1 << list; return (Time::Now() - used).InHours() > kTargetTime * multiplier; } int Eviction::SelectListByLength(Rankings::ScopedRankingsBlock* next) { int data_entries = header_->num_entries - header_->lru.sizes[Rankings::DELETED]; // Start by having each list to be roughly the same size. if (header_->lru.sizes[0] > data_entries / 3) return 0; int list = (header_->lru.sizes[1] > data_entries / 3) ? 1 : 2; // Make sure that frequently used items are kept for a minimum time; we know // that this entry is not older than its current target, but it must be at // least older than the target for list 0 (kTargetTime), as long as we don't // exhaust list 0. if (!NodeIsOldEnough(next[list].get(), 0) && header_->lru.sizes[0] > data_entries / 10) list = 0; return list; } void Eviction::ReportListStats() { if (!new_eviction_) return; Rankings::ScopedRankingsBlock last1(rankings_, rankings_->GetPrev(NULL, Rankings::NO_USE)); Rankings::ScopedRankingsBlock last2(rankings_, rankings_->GetPrev(NULL, Rankings::LOW_USE)); Rankings::ScopedRankingsBlock last3(rankings_, rankings_->GetPrev(NULL, Rankings::HIGH_USE)); Rankings::ScopedRankingsBlock last4(rankings_, rankings_->GetPrev(NULL, Rankings::DELETED)); if (last1.get()) CACHE_UMA(AGE, "NoUseAge", 0, Time::FromInternalValue(last1.get()->Data()->last_used)); if (last2.get()) CACHE_UMA(AGE, "LowUseAge", 0, Time::FromInternalValue(last2.get()->Data()->last_used)); if (last3.get()) CACHE_UMA(AGE, "HighUseAge", 0, Time::FromInternalValue(last3.get()->Data()->last_used)); if (last4.get()) CACHE_UMA(AGE, "DeletedAge", 0, Time::FromInternalValue(last4.get()->Data()->last_used)); } } // namespace disk_cache