// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/time/time.h" #include #include #include #include #include #include #include #include #include #include #include "base/logging.h" #include "base/mac/mach_logging.h" #include "base/mac/scoped_cftyperef.h" #include "base/mac/scoped_mach_port.h" #include "base/macros.h" #include "base/numerics/safe_conversions.h" #include "build/build_config.h" #if defined(OS_IOS) #include #include "base/ios/ios_util.h" #endif namespace { #if defined(OS_MACOSX) && !defined(OS_IOS) int64_t MachAbsoluteTimeToTicks(uint64_t mach_absolute_time) { static mach_timebase_info_data_t timebase_info; if (timebase_info.denom == 0) { // Zero-initialization of statics guarantees that denom will be 0 before // calling mach_timebase_info. mach_timebase_info will never set denom to // 0 as that would be invalid, so the zero-check can be used to determine // whether mach_timebase_info has already been called. This is // recommended by Apple's QA1398. kern_return_t kr = mach_timebase_info(&timebase_info); MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info"; } // timebase_info converts absolute time tick units into nanoseconds. Convert // to microseconds up front to stave off overflows. base::CheckedNumeric result(mach_absolute_time / base::Time::kNanosecondsPerMicrosecond); result *= timebase_info.numer; result /= timebase_info.denom; // Don't bother with the rollover handling that the Windows version does. // With numer and denom = 1 (the expected case), the 64-bit absolute time // reported in nanoseconds is enough to last nearly 585 years. return base::checked_cast(result.ValueOrDie()); } #endif // defined(OS_MACOSX) && !defined(OS_IOS) // Returns monotonically growing number of ticks in microseconds since some // unspecified starting point. int64_t ComputeCurrentTicks() { #if defined(OS_IOS) // iOS 10 supports clock_gettime(CLOCK_MONOTONIC, ...), which is // around 15 times faster than sysctl() call. Use it if possible; // otherwise, fall back to sysctl(). if (__builtin_available(iOS 10, *)) { struct timespec tp; if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) { return (int64_t)tp.tv_sec * 1000000 + tp.tv_nsec / 1000; } } // On iOS mach_absolute_time stops while the device is sleeping. Instead use // now - KERN_BOOTTIME to get a time difference that is not impacted by clock // changes. KERN_BOOTTIME will be updated by the system whenever the system // clock change. struct timeval boottime; int mib[2] = {CTL_KERN, KERN_BOOTTIME}; size_t size = sizeof(boottime); int kr = sysctl(mib, arraysize(mib), &boottime, &size, nullptr, 0); DCHECK_EQ(KERN_SUCCESS, kr); base::TimeDelta time_difference = base::Time::Now() - (base::Time::FromTimeT(boottime.tv_sec) + base::TimeDelta::FromMicroseconds(boottime.tv_usec)); return time_difference.InMicroseconds(); #else // mach_absolute_time is it when it comes to ticks on the Mac. Other calls // with less precision (such as TickCount) just call through to // mach_absolute_time. return MachAbsoluteTimeToTicks(mach_absolute_time()); #endif // defined(OS_IOS) } int64_t ComputeThreadTicks() { #if defined(OS_IOS) NOTREACHED(); return 0; #else base::mac::ScopedMachSendRight thread(mach_thread_self()); mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; thread_basic_info_data_t thread_info_data; if (thread.get() == MACH_PORT_NULL) { DLOG(ERROR) << "Failed to get mach_thread_self()"; return 0; } kern_return_t kr = thread_info( thread.get(), THREAD_BASIC_INFO, reinterpret_cast(&thread_info_data), &thread_info_count); MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info"; base::CheckedNumeric absolute_micros( thread_info_data.user_time.seconds + thread_info_data.system_time.seconds); absolute_micros *= base::Time::kMicrosecondsPerSecond; absolute_micros += (thread_info_data.user_time.microseconds + thread_info_data.system_time.microseconds); return absolute_micros.ValueOrDie(); #endif // defined(OS_IOS) } } // namespace namespace base { // The Time routines in this file use Mach and CoreFoundation APIs, since the // POSIX definition of time_t in Mac OS X wraps around after 2038--and // there are already cookie expiration dates, etc., past that time out in // the field. Using CFDate prevents that problem, and using mach_absolute_time // for TimeTicks gives us nice high-resolution interval timing. // Time ----------------------------------------------------------------------- // static Time Time::Now() { return FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent()); } // static Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) { static_assert(std::numeric_limits::has_infinity, "CFAbsoluteTime must have an infinity value"); if (t == 0) return Time(); // Consider 0 as a null Time. if (t == std::numeric_limits::infinity()) return Max(); return Time(static_cast((t + kCFAbsoluteTimeIntervalSince1970) * kMicrosecondsPerSecond) + kTimeTToMicrosecondsOffset); } CFAbsoluteTime Time::ToCFAbsoluteTime() const { static_assert(std::numeric_limits::has_infinity, "CFAbsoluteTime must have an infinity value"); if (is_null()) return 0; // Consider 0 as a null Time. if (is_max()) return std::numeric_limits::infinity(); return (static_cast(us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond) - kCFAbsoluteTimeIntervalSince1970; } // static Time Time::NowFromSystemTime() { // Just use Now() because Now() returns the system time. return Now(); } // Note: These implementations of Time::FromExploded() and Time::Explode() are // only used on iOS now. Since Mac is now always 64-bit, we can use the POSIX // versions of these functions as time_t is not capped at year 2038 on 64-bit // builds. The POSIX functions are preferred since they don't suffer from some // performance problems that are present in these implementations. // See crbug.com/781601 for more details. #if defined(OS_IOS) // static bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) { base::ScopedCFTypeRef time_zone( is_local ? CFTimeZoneCopySystem() : CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0)); base::ScopedCFTypeRef gregorian(CFCalendarCreateWithIdentifier( kCFAllocatorDefault, kCFGregorianCalendar)); CFCalendarSetTimeZone(gregorian, time_zone); CFAbsoluteTime absolute_time; // 'S' is not defined in componentDesc in Apple documentation, but can be // found at http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c CFCalendarComposeAbsoluteTime( gregorian, &absolute_time, "yMdHmsS", exploded.year, exploded.month, exploded.day_of_month, exploded.hour, exploded.minute, exploded.second, exploded.millisecond); CFAbsoluteTime seconds = absolute_time + kCFAbsoluteTimeIntervalSince1970; // CFAbsolutTime is typedef of double. Convert seconds to // microseconds and then cast to int64. If // it cannot be suited to int64, then fail to avoid overflows. double microseconds = (seconds * kMicrosecondsPerSecond) + kTimeTToMicrosecondsOffset; if (microseconds > std::numeric_limits::max() || microseconds < std::numeric_limits::min()) { *time = Time(0); return false; } base::Time converted_time = Time(static_cast(microseconds)); // If |exploded.day_of_month| is set to 31 // on a 28-30 day month, it will return the first day of the next month. // Thus round-trip the time and compare the initial |exploded| with // |utc_to_exploded| time. base::Time::Exploded to_exploded; if (!is_local) converted_time.UTCExplode(&to_exploded); else converted_time.LocalExplode(&to_exploded); if (ExplodedMostlyEquals(to_exploded, exploded)) { *time = converted_time; return true; } *time = Time(0); return false; } void Time::Explode(bool is_local, Exploded* exploded) const { // Avoid rounding issues, by only putting the integral number of seconds // (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|). int64_t microsecond = us_ % kMicrosecondsPerSecond; if (microsecond < 0) microsecond += kMicrosecondsPerSecond; CFAbsoluteTime seconds = ((us_ - microsecond - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond) - kCFAbsoluteTimeIntervalSince1970; base::ScopedCFTypeRef time_zone( is_local ? CFTimeZoneCopySystem() : CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0)); base::ScopedCFTypeRef gregorian(CFCalendarCreateWithIdentifier( kCFAllocatorDefault, kCFGregorianCalendar)); CFCalendarSetTimeZone(gregorian, time_zone); int second, day_of_week; // 'E' sets the day of week, but is not defined in componentDesc in Apple // documentation. It can be found in open source code here: // http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c CFCalendarDecomposeAbsoluteTime(gregorian, seconds, "yMdHmsE", &exploded->year, &exploded->month, &exploded->day_of_month, &exploded->hour, &exploded->minute, &second, &day_of_week); // Make sure seconds are rounded down towards -infinity. exploded->second = floor(second); // |Exploded|'s convention for day of week is 0 = Sunday, i.e. different // from CF's 1 = Sunday. exploded->day_of_week = (day_of_week - 1) % 7; // Calculate milliseconds ourselves, since we rounded the |seconds|, making // sure to round towards -infinity. exploded->millisecond = (microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond : (microsecond - kMicrosecondsPerMillisecond + 1) / kMicrosecondsPerMillisecond; } #endif // OS_IOS // TimeTicks ------------------------------------------------------------------ // static TimeTicks TimeTicks::Now() { return TimeTicks(ComputeCurrentTicks()); } // static bool TimeTicks::IsHighResolution() { return true; } // static bool TimeTicks::IsConsistentAcrossProcesses() { return true; } #if defined(OS_MACOSX) && !defined(OS_IOS) // static TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) { return TimeTicks(MachAbsoluteTimeToTicks(mach_absolute_time)); } #endif // defined(OS_MACOSX) && !defined(OS_IOS) // static TimeTicks::Clock TimeTicks::GetClock() { #if defined(OS_IOS) return Clock::IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME; #else return Clock::MAC_MACH_ABSOLUTE_TIME; #endif // defined(OS_IOS) } // static ThreadTicks ThreadTicks::Now() { return ThreadTicks(ComputeThreadTicks()); } } // namespace base