// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_BIND_INTERNAL_H_ #define BASE_BIND_INTERNAL_H_ #include <stddef.h> #include <type_traits> #include <utility> #include "base/bind_helpers.h" #include "base/callback_internal.h" #include "base/memory/raw_scoped_refptr_mismatch_checker.h" #include "base/memory/weak_ptr.h" #include "base/template_util.h" #include "build/build_config.h" namespace base { namespace internal { // See base/callback.h for user documentation. // // // CONCEPTS: // Functor -- A movable type representing something that should be called. // All function pointers and Callback<> are functors even if the // invocation syntax differs. // RunType -- A function type (as opposed to function _pointer_ type) for // a Callback<>::Run(). Usually just a convenience typedef. // (Bound)Args -- A set of types that stores the arguments. // // Types: // ForceVoidReturn<> -- Helper class for translating function signatures to // equivalent forms with a "void" return type. // FunctorTraits<> -- Type traits used to determine the correct RunType and // invocation manner for a Functor. This is where function // signature adapters are applied. // InvokeHelper<> -- Take a Functor + arguments and actully invokes it. // Handle the differing syntaxes needed for WeakPtr<> // support. This is separate from Invoker to avoid creating // multiple version of Invoker<>. // Invoker<> -- Unwraps the curried parameters and executes the Functor. // BindState<> -- Stores the curried parameters, and is the main entry point // into the Bind() system. template <typename Callable, typename Signature = decltype(&Callable::operator())> struct ExtractCallableRunTypeImpl; template <typename Callable, typename R, typename... Args> struct ExtractCallableRunTypeImpl<Callable, R(Callable::*)(Args...) const> { using Type = R(Args...); }; // Evaluated to RunType of the given callable type. // Example: // auto f = [](int, char*) { return 0.1; }; // ExtractCallableRunType<decltype(f)> // is evaluated to // double(int, char*); template <typename Callable> using ExtractCallableRunType = typename ExtractCallableRunTypeImpl<Callable>::Type; // IsConvertibleToRunType<Functor> is std::true_type if |Functor| has operator() // and convertible to the corresponding function pointer. Otherwise, it's // std::false_type. // Example: // IsConvertibleToRunType<void(*)()>::value is false. // // struct Foo {}; // IsConvertibleToRunType<void(Foo::*)()>::value is false. // // auto f = []() {}; // IsConvertibleToRunType<decltype(f)>::value is true. // // int i = 0; // auto g = [i]() {}; // IsConvertibleToRunType<decltype(g)>::value is false. template <typename Functor, typename SFINAE = void> struct IsConvertibleToRunType : std::false_type {}; template <typename Callable> struct IsConvertibleToRunType<Callable, void_t<decltype(&Callable::operator())>> : std::is_convertible<Callable, ExtractCallableRunType<Callable>*> {}; // HasRefCountedTypeAsRawPtr selects true_type when any of the |Args| is a raw // pointer to a RefCounted type. // Implementation note: This non-specialized case handles zero-arity case only. // Non-zero-arity cases should be handled by the specialization below. template <typename... Args> struct HasRefCountedTypeAsRawPtr : std::false_type {}; // Implementation note: Select true_type if the first parameter is a raw pointer // to a RefCounted type. Otherwise, skip the first parameter and check rest of // parameters recursively. template <typename T, typename... Args> struct HasRefCountedTypeAsRawPtr<T, Args...> : std::conditional_t<NeedsScopedRefptrButGetsRawPtr<T>::value, std::true_type, HasRefCountedTypeAsRawPtr<Args...>> {}; // ForceVoidReturn<> // // Set of templates that support forcing the function return type to void. template <typename Sig> struct ForceVoidReturn; template <typename R, typename... Args> struct ForceVoidReturn<R(Args...)> { using RunType = void(Args...); }; // FunctorTraits<> // // See description at top of file. template <typename Functor, typename SFINAE> struct FunctorTraits; // For a callable type that is convertible to the corresponding function type. // This specialization is intended to allow binding captureless lambdas by // base::Bind(), based on the fact that captureless lambdas can be convertible // to the function type while capturing lambdas can't. template <typename Functor> struct FunctorTraits<Functor, std::enable_if_t<IsConvertibleToRunType<Functor>::value>> { using RunType = ExtractCallableRunType<Functor>; static constexpr bool is_method = false; static constexpr bool is_nullable = false; template <typename... RunArgs> static ExtractReturnType<RunType> Invoke(const Functor& functor, RunArgs&&... args) { return functor(std::forward<RunArgs>(args)...); } }; // For functions. template <typename R, typename... Args> struct FunctorTraits<R (*)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename... RunArgs> static R Invoke(R (*function)(Args...), RunArgs&&... args) { return function(std::forward<RunArgs>(args)...); } }; #if defined(OS_WIN) && !defined(ARCH_CPU_X86_64) // For functions. template <typename R, typename... Args> struct FunctorTraits<R(__stdcall*)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename... RunArgs> static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) { return function(std::forward<RunArgs>(args)...); } }; // For functions. template <typename R, typename... Args> struct FunctorTraits<R(__fastcall*)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename... RunArgs> static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) { return function(std::forward<RunArgs>(args)...); } }; #endif // defined(OS_WIN) && !defined(ARCH_CPU_X86_64) // For methods. template <typename R, typename Receiver, typename... Args> struct FunctorTraits<R (Receiver::*)(Args...)> { using RunType = R(Receiver*, Args...); static constexpr bool is_method = true; static constexpr bool is_nullable = true; template <typename ReceiverPtr, typename... RunArgs> static R Invoke(R (Receiver::*method)(Args...), ReceiverPtr&& receiver_ptr, RunArgs&&... args) { return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); } }; // For const methods. template <typename R, typename Receiver, typename... Args> struct FunctorTraits<R (Receiver::*)(Args...) const> { using RunType = R(const Receiver*, Args...); static constexpr bool is_method = true; static constexpr bool is_nullable = true; template <typename ReceiverPtr, typename... RunArgs> static R Invoke(R (Receiver::*method)(Args...) const, ReceiverPtr&& receiver_ptr, RunArgs&&... args) { return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); } }; // For IgnoreResults. template <typename T> struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> { using RunType = typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType; template <typename IgnoreResultType, typename... RunArgs> static void Invoke(IgnoreResultType&& ignore_result_helper, RunArgs&&... args) { FunctorTraits<T>::Invoke( std::forward<IgnoreResultType>(ignore_result_helper).functor_, std::forward<RunArgs>(args)...); } }; // For OnceCallbacks. template <typename R, typename... Args> struct FunctorTraits<OnceCallback<R(Args...)>> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename CallbackType, typename... RunArgs> static R Invoke(CallbackType&& callback, RunArgs&&... args) { DCHECK(!callback.is_null()); return std::forward<CallbackType>(callback).Run( std::forward<RunArgs>(args)...); } }; // For RepeatingCallbacks. template <typename R, typename... Args> struct FunctorTraits<RepeatingCallback<R(Args...)>> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename CallbackType, typename... RunArgs> static R Invoke(CallbackType&& callback, RunArgs&&... args) { DCHECK(!callback.is_null()); return std::forward<CallbackType>(callback).Run( std::forward<RunArgs>(args)...); } }; template <typename Functor> using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>; // InvokeHelper<> // // There are 2 logical InvokeHelper<> specializations: normal, WeakCalls. // // The normal type just calls the underlying runnable. // // WeakCalls need special syntax that is applied to the first argument to check // if they should no-op themselves. template <bool is_weak_call, typename ReturnType> struct InvokeHelper; template <typename ReturnType> struct InvokeHelper<false, ReturnType> { template <typename Functor, typename... RunArgs> static inline ReturnType MakeItSo(Functor&& functor, RunArgs&&... args) { using Traits = MakeFunctorTraits<Functor>; return Traits::Invoke(std::forward<Functor>(functor), std::forward<RunArgs>(args)...); } }; template <typename ReturnType> struct InvokeHelper<true, ReturnType> { // WeakCalls are only supported for functions with a void return type. // Otherwise, the function result would be undefined if the the WeakPtr<> // is invalidated. static_assert(std::is_void<ReturnType>::value, "weak_ptrs can only bind to methods without return values"); template <typename Functor, typename BoundWeakPtr, typename... RunArgs> static inline void MakeItSo(Functor&& functor, BoundWeakPtr&& weak_ptr, RunArgs&&... args) { if (!weak_ptr) return; using Traits = MakeFunctorTraits<Functor>; Traits::Invoke(std::forward<Functor>(functor), std::forward<BoundWeakPtr>(weak_ptr), std::forward<RunArgs>(args)...); } }; // Invoker<> // // See description at the top of the file. template <typename StorageType, typename UnboundRunType> struct Invoker; template <typename StorageType, typename R, typename... UnboundArgs> struct Invoker<StorageType, R(UnboundArgs...)> { static R RunOnce(BindStateBase* base, PassingTraitsType<UnboundArgs>... unbound_args) { // Local references to make debugger stepping easier. If in a debugger, // you really want to warp ahead and step through the // InvokeHelper<>::MakeItSo() call below. StorageType* storage = static_cast<StorageType*>(base); static constexpr size_t num_bound_args = std::tuple_size<decltype(storage->bound_args_)>::value; return RunImpl(std::move(storage->functor_), std::move(storage->bound_args_), std::make_index_sequence<num_bound_args>(), std::forward<UnboundArgs>(unbound_args)...); } static R Run(BindStateBase* base, PassingTraitsType<UnboundArgs>... unbound_args) { // Local references to make debugger stepping easier. If in a debugger, // you really want to warp ahead and step through the // InvokeHelper<>::MakeItSo() call below. const StorageType* storage = static_cast<StorageType*>(base); static constexpr size_t num_bound_args = std::tuple_size<decltype(storage->bound_args_)>::value; return RunImpl(storage->functor_, storage->bound_args_, std::make_index_sequence<num_bound_args>(), std::forward<UnboundArgs>(unbound_args)...); } private: template <typename Functor, typename BoundArgsTuple, size_t... indices> static inline R RunImpl(Functor&& functor, BoundArgsTuple&& bound, std::index_sequence<indices...>, UnboundArgs&&... unbound_args) { static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method; using DecayedArgsTuple = std::decay_t<BoundArgsTuple>; static constexpr bool is_weak_call = IsWeakMethod<is_method, std::tuple_element_t<indices, DecayedArgsTuple>...>(); return InvokeHelper<is_weak_call, R>::MakeItSo( std::forward<Functor>(functor), Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))..., std::forward<UnboundArgs>(unbound_args)...); } }; // Extracts necessary type info from Functor and BoundArgs. // Used to implement MakeUnboundRunType, BindOnce and BindRepeating. template <typename Functor, typename... BoundArgs> struct BindTypeHelper { static constexpr size_t num_bounds = sizeof...(BoundArgs); using FunctorTraits = MakeFunctorTraits<Functor>; // Example: // When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs // is a template pack of `Foo*` and `int16_t`: // - RunType is `double(Foo*, int, const std::string&)`, // - ReturnType is `double`, // - RunParamsList is `TypeList<Foo*, int, const std::string&>`, // - BoundParamsList is `TypeList<Foo*, int>`, // - UnboundParamsList is `TypeList<const std::string&>`, // - BoundArgsList is `TypeList<Foo*, int16_t>`, // - UnboundRunType is `double(const std::string&)`. using RunType = typename FunctorTraits::RunType; using ReturnType = ExtractReturnType<RunType>; using RunParamsList = ExtractArgs<RunType>; using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>; using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>; using BoundArgsList = TypeList<BoundArgs...>; using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>; }; template <typename Functor> std::enable_if_t<FunctorTraits<Functor>::is_nullable, bool> IsNull( const Functor& functor) { return !functor; } template <typename Functor> std::enable_if_t<!FunctorTraits<Functor>::is_nullable, bool> IsNull( const Functor&) { return false; } // Used by ApplyCancellationTraits below. template <typename Functor, typename BoundArgsTuple, size_t... indices> bool ApplyCancellationTraitsImpl(const Functor& functor, const BoundArgsTuple& bound_args, std::index_sequence<indices...>) { return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled( functor, std::get<indices>(bound_args)...); } // Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns // true if the callback |base| represents is canceled. template <typename BindStateType> bool ApplyCancellationTraits(const BindStateBase* base) { const BindStateType* storage = static_cast<const BindStateType*>(base); static constexpr size_t num_bound_args = std::tuple_size<decltype(storage->bound_args_)>::value; return ApplyCancellationTraitsImpl( storage->functor_, storage->bound_args_, std::make_index_sequence<num_bound_args>()); }; // BindState<> // // This stores all the state passed into Bind(). template <typename Functor, typename... BoundArgs> struct BindState final : BindStateBase { using IsCancellable = std::integral_constant< bool, CallbackCancellationTraits<Functor, std::tuple<BoundArgs...>>::is_cancellable>; template <typename ForwardFunctor, typename... ForwardBoundArgs> explicit BindState(BindStateBase::InvokeFuncStorage invoke_func, ForwardFunctor&& functor, ForwardBoundArgs&&... bound_args) // IsCancellable is std::false_type if // CallbackCancellationTraits<>::IsCancelled returns always false. // Otherwise, it's std::true_type. : BindState(IsCancellable{}, invoke_func, std::forward<ForwardFunctor>(functor), std::forward<ForwardBoundArgs>(bound_args)...) { } Functor functor_; std::tuple<BoundArgs...> bound_args_; private: template <typename ForwardFunctor, typename... ForwardBoundArgs> explicit BindState(std::true_type, BindStateBase::InvokeFuncStorage invoke_func, ForwardFunctor&& functor, ForwardBoundArgs&&... bound_args) : BindStateBase(invoke_func, &Destroy, &ApplyCancellationTraits<BindState>), functor_(std::forward<ForwardFunctor>(functor)), bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) { DCHECK(!IsNull(functor_)); } template <typename ForwardFunctor, typename... ForwardBoundArgs> explicit BindState(std::false_type, BindStateBase::InvokeFuncStorage invoke_func, ForwardFunctor&& functor, ForwardBoundArgs&&... bound_args) : BindStateBase(invoke_func, &Destroy), functor_(std::forward<ForwardFunctor>(functor)), bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) { DCHECK(!IsNull(functor_)); } ~BindState() {} static void Destroy(const BindStateBase* self) { delete static_cast<const BindState*>(self); } }; // Used to implement MakeBindStateType. template <bool is_method, typename Functor, typename... BoundArgs> struct MakeBindStateTypeImpl; template <typename Functor, typename... BoundArgs> struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> { static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value, "A parameter is a refcounted type and needs scoped_refptr."); using Type = BindState<std::decay_t<Functor>, std::decay_t<BoundArgs>...>; }; template <typename Functor> struct MakeBindStateTypeImpl<true, Functor> { using Type = BindState<std::decay_t<Functor>>; }; template <typename Functor, typename Receiver, typename... BoundArgs> struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> { static_assert(!std::is_array<std::remove_reference_t<Receiver>>::value, "First bound argument to a method cannot be an array."); static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value, "A parameter is a refcounted type and needs scoped_refptr."); private: using DecayedReceiver = std::decay_t<Receiver>; public: using Type = BindState< std::decay_t<Functor>, std::conditional_t<std::is_pointer<DecayedReceiver>::value, scoped_refptr<std::remove_pointer_t<DecayedReceiver>>, DecayedReceiver>, std::decay_t<BoundArgs>...>; }; template <typename Functor, typename... BoundArgs> using MakeBindStateType = typename MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method, Functor, BoundArgs...>::Type; } // namespace internal // Returns a RunType of bound functor. // E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C). template <typename Functor, typename... BoundArgs> using MakeUnboundRunType = typename internal::BindTypeHelper<Functor, BoundArgs...>::UnboundRunType; } // namespace base #endif // BASE_BIND_INTERNAL_H_