// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/simple/simple_entry_impl.h" #include #include #include #include #include #include "base/bind.h" #include "base/bind_helpers.h" #include "base/callback.h" #include "base/location.h" #include "base/logging.h" #include "base/single_thread_task_runner.h" #include "base/task_runner.h" #include "base/task_runner_util.h" #include "base/threading/thread_task_runner_handle.h" #include "base/time/time.h" #include "base/trace_event/memory_usage_estimator.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/disk_cache/backend_cleanup_tracker.h" #include "net/disk_cache/net_log_parameters.h" #include "net/disk_cache/simple/simple_backend_impl.h" #include "net/disk_cache/simple/simple_histogram_enums.h" #include "net/disk_cache/simple/simple_histogram_macros.h" #include "net/disk_cache/simple/simple_index.h" #include "net/disk_cache/simple/simple_net_log_parameters.h" #include "net/disk_cache/simple/simple_synchronous_entry.h" #include "net/disk_cache/simple/simple_util.h" #include "net/log/net_log.h" #include "net/log/net_log_source_type.h" #include "third_party/zlib/zlib.h" namespace disk_cache { namespace { // An entry can store sparse data taking up to 1 / kMaxSparseDataSizeDivisor of // the cache. const int64_t kMaxSparseDataSizeDivisor = 10; // Used in histograms, please only add entries at the end. enum WriteResult { WRITE_RESULT_SUCCESS = 0, WRITE_RESULT_INVALID_ARGUMENT = 1, WRITE_RESULT_OVER_MAX_SIZE = 2, WRITE_RESULT_BAD_STATE = 3, WRITE_RESULT_SYNC_WRITE_FAILURE = 4, WRITE_RESULT_FAST_EMPTY_RETURN = 5, WRITE_RESULT_MAX = 6, }; // Used in histograms, please only add entries at the end. enum HeaderSizeChange { HEADER_SIZE_CHANGE_INITIAL, HEADER_SIZE_CHANGE_SAME, HEADER_SIZE_CHANGE_INCREASE, HEADER_SIZE_CHANGE_DECREASE, HEADER_SIZE_CHANGE_UNEXPECTED_WRITE, HEADER_SIZE_CHANGE_MAX }; void RecordReadResult(net::CacheType cache_type, SimpleReadResult result) { SIMPLE_CACHE_UMA(ENUMERATION, "ReadResult", cache_type, result, READ_RESULT_MAX); } void RecordWriteResult(net::CacheType cache_type, WriteResult result) { SIMPLE_CACHE_UMA(ENUMERATION, "WriteResult2", cache_type, result, WRITE_RESULT_MAX); } // TODO(juliatuttle): Consider removing this once we have a good handle on // header size changes. void RecordHeaderSizeChange(net::CacheType cache_type, int old_size, int new_size) { HeaderSizeChange size_change; SIMPLE_CACHE_UMA(COUNTS_10000, "HeaderSize", cache_type, new_size); if (old_size == 0) { size_change = HEADER_SIZE_CHANGE_INITIAL; } else if (new_size == old_size) { size_change = HEADER_SIZE_CHANGE_SAME; } else if (new_size > old_size) { int delta = new_size - old_size; SIMPLE_CACHE_UMA(COUNTS_10000, "HeaderSizeIncreaseAbsolute", cache_type, delta); SIMPLE_CACHE_UMA(PERCENTAGE, "HeaderSizeIncreasePercentage", cache_type, delta * 100 / old_size); size_change = HEADER_SIZE_CHANGE_INCREASE; } else { // new_size < old_size int delta = old_size - new_size; SIMPLE_CACHE_UMA(COUNTS_10000, "HeaderSizeDecreaseAbsolute", cache_type, delta); SIMPLE_CACHE_UMA(PERCENTAGE, "HeaderSizeDecreasePercentage", cache_type, delta * 100 / old_size); size_change = HEADER_SIZE_CHANGE_DECREASE; } SIMPLE_CACHE_UMA(ENUMERATION, "HeaderSizeChange", cache_type, size_change, HEADER_SIZE_CHANGE_MAX); } void RecordUnexpectedStream0Write(net::CacheType cache_type) { SIMPLE_CACHE_UMA(ENUMERATION, "HeaderSizeChange", cache_type, HEADER_SIZE_CHANGE_UNEXPECTED_WRITE, HEADER_SIZE_CHANGE_MAX); } int g_open_entry_count = 0; void AdjustOpenEntryCountBy(net::CacheType cache_type, int offset) { g_open_entry_count += offset; SIMPLE_CACHE_UMA(COUNTS_10000, "GlobalOpenEntryCount", cache_type, g_open_entry_count); } void InvokeCallbackIfBackendIsAlive( const base::WeakPtr& backend, const net::CompletionCallback& completion_callback, int result) { DCHECK(!completion_callback.is_null()); if (!backend.get()) return; completion_callback.Run(result); } // If |sync_possible| is false, and callback is available, posts rv to it and // return net::ERR_IO_PENDING; otherwise just passes through rv. int PostToCallbackIfNeeded(bool sync_possible, const net::CompletionCallback& callback, int rv) { if (!sync_possible && !callback.is_null()) { base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, base::Bind(callback, rv)); return net::ERR_IO_PENDING; } else { return rv; } } } // namespace using base::Closure; using base::FilePath; using base::Time; using base::TaskRunner; // Static function called by base::trace_event::EstimateMemoryUsage() to // estimate the memory of SimpleEntryOperation. // This needs to be in disk_cache namespace. size_t EstimateMemoryUsage(const SimpleEntryOperation& op) { return 0; } // A helper class to insure that RunNextOperationIfNeeded() is called when // exiting the current stack frame. class SimpleEntryImpl::ScopedOperationRunner { public: explicit ScopedOperationRunner(SimpleEntryImpl* entry) : entry_(entry) { } ~ScopedOperationRunner() { entry_->RunNextOperationIfNeeded(); } private: SimpleEntryImpl* const entry_; }; SimpleEntryImpl::ActiveEntryProxy::~ActiveEntryProxy() {} SimpleEntryImpl::SimpleEntryImpl( net::CacheType cache_type, const FilePath& path, scoped_refptr cleanup_tracker, const uint64_t entry_hash, OperationsMode operations_mode, SimpleBackendImpl* backend, net::NetLog* net_log) : cleanup_tracker_(std::move(cleanup_tracker)), backend_(backend->AsWeakPtr()), cache_type_(cache_type), worker_pool_(backend->worker_pool()), path_(path), entry_hash_(entry_hash), use_optimistic_operations_(operations_mode == OPTIMISTIC_OPERATIONS), is_initial_stream1_read_(true), last_used_(Time::Now()), last_modified_(last_used_), sparse_data_size_(0), open_count_(0), doomed_(false), state_(STATE_UNINITIALIZED), synchronous_entry_(NULL), net_log_( net::NetLogWithSource::Make(net_log, net::NetLogSourceType::DISK_CACHE_ENTRY)), stream_0_data_(new net::GrowableIOBuffer()) { static_assert(arraysize(data_size_) == arraysize(crc32s_end_offset_), "arrays should be the same size"); static_assert(arraysize(data_size_) == arraysize(crc32s_), "arrays should be the same size"); static_assert(arraysize(data_size_) == arraysize(have_written_), "arrays should be the same size"); static_assert(arraysize(data_size_) == arraysize(crc_check_state_), "arrays should be the same size"); MakeUninitialized(); net_log_.BeginEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY, CreateNetLogSimpleEntryConstructionCallback(this)); } void SimpleEntryImpl::SetActiveEntryProxy( std::unique_ptr active_entry_proxy) { DCHECK(!active_entry_proxy_); active_entry_proxy_ = std::move(active_entry_proxy); } int SimpleEntryImpl::OpenEntry(Entry** out_entry, const CompletionCallback& callback) { DCHECK(backend_.get()); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_CALL); bool have_index = backend_->index()->initialized(); // This enumeration is used in histograms, add entries only at end. enum OpenEntryIndexEnum { INDEX_NOEXIST = 0, INDEX_MISS = 1, INDEX_HIT = 2, INDEX_MAX = 3, }; OpenEntryIndexEnum open_entry_index_enum = INDEX_NOEXIST; if (have_index) { if (backend_->index()->Has(entry_hash_)) open_entry_index_enum = INDEX_HIT; else open_entry_index_enum = INDEX_MISS; } SIMPLE_CACHE_UMA(ENUMERATION, "OpenEntryIndexState", cache_type_, open_entry_index_enum, INDEX_MAX); // If entry is not known to the index, initiate fast failover to the network. if (open_entry_index_enum == INDEX_MISS) { net_log_.AddEventWithNetErrorCode( net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_END, net::ERR_FAILED); return net::ERR_FAILED; } pending_operations_.push(SimpleEntryOperation::OpenOperation( this, have_index, callback, out_entry)); RunNextOperationIfNeeded(); return net::ERR_IO_PENDING; } int SimpleEntryImpl::CreateEntry(Entry** out_entry, const CompletionCallback& callback) { DCHECK(backend_.get()); DCHECK_EQ(entry_hash_, simple_util::GetEntryHashKey(key_)); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_CALL); bool have_index = backend_->index()->initialized(); int ret_value = net::ERR_FAILED; if (use_optimistic_operations_ && state_ == STATE_UNINITIALIZED && pending_operations_.size() == 0) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_OPTIMISTIC); ReturnEntryToCaller(out_entry); pending_operations_.push(SimpleEntryOperation::CreateOperation( this, have_index, CompletionCallback(), static_cast(NULL))); ret_value = net::OK; } else { pending_operations_.push(SimpleEntryOperation::CreateOperation( this, have_index, callback, out_entry)); ret_value = net::ERR_IO_PENDING; } // We insert the entry in the index before creating the entry files in the // SimpleSynchronousEntry, because this way the worst scenario is when we // have the entry in the index but we don't have the created files yet, this // way we never leak files. CreationOperationComplete will remove the entry // from the index if the creation fails. backend_->index()->Insert(entry_hash_); RunNextOperationIfNeeded(); return ret_value; } int SimpleEntryImpl::DoomEntry(const CompletionCallback& callback) { if (doomed_) return net::OK; net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_DOOM_CALL); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_DOOM_BEGIN); MarkAsDoomed(); if (backend_.get()) backend_->OnDoomStart(entry_hash_); pending_operations_.push(SimpleEntryOperation::DoomOperation(this, callback)); RunNextOperationIfNeeded(); return net::ERR_IO_PENDING; } void SimpleEntryImpl::SetKey(const std::string& key) { key_ = key; net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_SET_KEY, net::NetLog::StringCallback("key", &key)); } void SimpleEntryImpl::Doom() { DoomEntry(CompletionCallback()); } void SimpleEntryImpl::Close() { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK_LT(0, open_count_); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CLOSE_CALL); if (--open_count_ > 0) { DCHECK(!HasOneRef()); Release(); // Balanced in ReturnEntryToCaller(). return; } pending_operations_.push(SimpleEntryOperation::CloseOperation(this)); DCHECK(!HasOneRef()); Release(); // Balanced in ReturnEntryToCaller(). RunNextOperationIfNeeded(); } std::string SimpleEntryImpl::GetKey() const { DCHECK(io_thread_checker_.CalledOnValidThread()); return key_; } Time SimpleEntryImpl::GetLastUsed() const { DCHECK(io_thread_checker_.CalledOnValidThread()); return last_used_; } Time SimpleEntryImpl::GetLastModified() const { DCHECK(io_thread_checker_.CalledOnValidThread()); return last_modified_; } int32_t SimpleEntryImpl::GetDataSize(int stream_index) const { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK_LE(0, data_size_[stream_index]); return data_size_[stream_index]; } int SimpleEntryImpl::ReadData(int stream_index, int offset, net::IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(io_thread_checker_.CalledOnValidThread()); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_CALL, CreateNetLogReadWriteDataCallback(stream_index, offset, buf_len, false)); } if (stream_index < 0 || stream_index >= kSimpleEntryStreamCount || buf_len < 0) { if (net_log_.IsCapturing()) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_END, CreateNetLogReadWriteCompleteCallback(net::ERR_INVALID_ARGUMENT)); } RecordReadResult(cache_type_, READ_RESULT_INVALID_ARGUMENT); return net::ERR_INVALID_ARGUMENT; } // TODO(felipeg): Optimization: Add support for truly parallel read // operations. bool alone_in_queue = pending_operations_.size() == 0 && state_ == STATE_READY; if (alone_in_queue) { return ReadDataInternal(/*sync_possible = */ true, stream_index, offset, buf, buf_len, callback); } pending_operations_.push(SimpleEntryOperation::ReadOperation( this, stream_index, offset, buf_len, buf, callback, alone_in_queue)); RunNextOperationIfNeeded(); return net::ERR_IO_PENDING; } int SimpleEntryImpl::WriteData(int stream_index, int offset, net::IOBuffer* buf, int buf_len, const CompletionCallback& callback, bool truncate) { DCHECK(io_thread_checker_.CalledOnValidThread()); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_CALL, CreateNetLogReadWriteDataCallback(stream_index, offset, buf_len, truncate)); } if (stream_index < 0 || stream_index >= kSimpleEntryStreamCount || offset < 0 || buf_len < 0) { if (net_log_.IsCapturing()) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_END, CreateNetLogReadWriteCompleteCallback(net::ERR_INVALID_ARGUMENT)); } RecordWriteResult(cache_type_, WRITE_RESULT_INVALID_ARGUMENT); return net::ERR_INVALID_ARGUMENT; } if (backend_.get() && offset + buf_len > backend_->GetMaxFileSize()) { if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_END, CreateNetLogReadWriteCompleteCallback(net::ERR_FAILED)); } RecordWriteResult(cache_type_, WRITE_RESULT_OVER_MAX_SIZE); return net::ERR_FAILED; } ScopedOperationRunner operation_runner(this); // Stream 0 data is kept in memory, so can be written immediatly if there are // no IO operations pending. if (stream_index == 0 && state_ == STATE_READY && pending_operations_.size() == 0) return SetStream0Data(buf, offset, buf_len, truncate); // We can only do optimistic Write if there is no pending operations, so // that we are sure that the next call to RunNextOperationIfNeeded will // actually run the write operation that sets the stream size. It also // prevents from previous possibly-conflicting writes that could be stacked // in the |pending_operations_|. We could optimize this for when we have // only read operations enqueued. const bool optimistic = (use_optimistic_operations_ && state_ == STATE_READY && pending_operations_.size() == 0); CompletionCallback op_callback; scoped_refptr op_buf; int ret_value = net::ERR_FAILED; if (!optimistic) { op_buf = buf; op_callback = callback; ret_value = net::ERR_IO_PENDING; } else { // TODO(gavinp,pasko): For performance, don't use a copy of an IOBuffer // here to avoid paying the price of the RefCountedThreadSafe atomic // operations. if (buf) { op_buf = new IOBuffer(buf_len); memcpy(op_buf->data(), buf->data(), buf_len); } op_callback = CompletionCallback(); ret_value = buf_len; if (net_log_.IsCapturing()) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_OPTIMISTIC, CreateNetLogReadWriteCompleteCallback(buf_len)); } } pending_operations_.push(SimpleEntryOperation::WriteOperation(this, stream_index, offset, buf_len, op_buf.get(), truncate, optimistic, op_callback)); return ret_value; } int SimpleEntryImpl::ReadSparseData(int64_t offset, net::IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(io_thread_checker_.CalledOnValidThread()); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_SPARSE_CALL, CreateNetLogSparseOperationCallback(offset, buf_len)); } ScopedOperationRunner operation_runner(this); pending_operations_.push(SimpleEntryOperation::ReadSparseOperation( this, offset, buf_len, buf, callback)); return net::ERR_IO_PENDING; } int SimpleEntryImpl::WriteSparseData(int64_t offset, net::IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(io_thread_checker_.CalledOnValidThread()); if (net_log_.IsCapturing()) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_SPARSE_CALL, CreateNetLogSparseOperationCallback(offset, buf_len)); } ScopedOperationRunner operation_runner(this); pending_operations_.push(SimpleEntryOperation::WriteSparseOperation( this, offset, buf_len, buf, callback)); return net::ERR_IO_PENDING; } int SimpleEntryImpl::GetAvailableRange(int64_t offset, int len, int64_t* start, const CompletionCallback& callback) { DCHECK(io_thread_checker_.CalledOnValidThread()); ScopedOperationRunner operation_runner(this); pending_operations_.push(SimpleEntryOperation::GetAvailableRangeOperation( this, offset, len, start, callback)); return net::ERR_IO_PENDING; } bool SimpleEntryImpl::CouldBeSparse() const { DCHECK(io_thread_checker_.CalledOnValidThread()); // TODO(juliatuttle): Actually check. return true; } void SimpleEntryImpl::CancelSparseIO() { DCHECK(io_thread_checker_.CalledOnValidThread()); // The Simple Cache does not return distinct objects for the same non-doomed // entry, so there's no need to coordinate which object is performing sparse // I/O. Therefore, CancelSparseIO and ReadyForSparseIO succeed instantly. } int SimpleEntryImpl::ReadyForSparseIO(const CompletionCallback& callback) { DCHECK(io_thread_checker_.CalledOnValidThread()); // The simple Cache does not return distinct objects for the same non-doomed // entry, so there's no need to coordinate which object is performing sparse // I/O. Therefore, CancelSparseIO and ReadyForSparseIO succeed instantly. return net::OK; } size_t SimpleEntryImpl::EstimateMemoryUsage() const { // TODO(xunjieli): crbug.com/669108. It'd be nice to have the rest of |entry| // measured, but the ownership of SimpleSynchronousEntry isn't straightforward return sizeof(SimpleSynchronousEntry) + base::trace_event::EstimateMemoryUsage(pending_operations_) + base::trace_event::EstimateMemoryUsage(executing_operation_) + (stream_0_data_ ? stream_0_data_->capacity() : 0) + (stream_1_prefetch_data_ ? stream_1_prefetch_data_->capacity() : 0); } SimpleEntryImpl::~SimpleEntryImpl() { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK_EQ(0U, pending_operations_.size()); DCHECK(state_ == STATE_UNINITIALIZED || state_ == STATE_FAILURE); DCHECK(!synchronous_entry_); net_log_.EndEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY); } void SimpleEntryImpl::PostClientCallback(const CompletionCallback& callback, int result) { if (callback.is_null()) return; // Note that the callback is posted rather than directly invoked to avoid // reentrancy issues. base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&InvokeCallbackIfBackendIsAlive, backend_, callback, result)); } void SimpleEntryImpl::MakeUninitialized() { state_ = STATE_UNINITIALIZED; std::memset(crc32s_end_offset_, 0, sizeof(crc32s_end_offset_)); std::memset(crc32s_, 0, sizeof(crc32s_)); std::memset(have_written_, 0, sizeof(have_written_)); std::memset(data_size_, 0, sizeof(data_size_)); for (size_t i = 0; i < arraysize(crc_check_state_); ++i) { crc_check_state_[i] = CRC_CHECK_NEVER_READ_AT_ALL; } } void SimpleEntryImpl::ReturnEntryToCaller(Entry** out_entry) { DCHECK(out_entry); ++open_count_; AddRef(); // Balanced in Close() if (!backend_.get()) { // This method can be called when an asynchronous operation completed. // If the backend no longer exists, the callback won't be invoked, and so we // must close ourselves to avoid leaking. As well, there's no guarantee the // client-provided pointer (|out_entry|) hasn't been freed, and no point // dereferencing it, either. Close(); return; } *out_entry = this; } void SimpleEntryImpl::MarkAsDoomed() { doomed_ = true; if (!backend_.get()) return; backend_->index()->Remove(entry_hash_); active_entry_proxy_.reset(); } void SimpleEntryImpl::RunNextOperationIfNeeded() { DCHECK(io_thread_checker_.CalledOnValidThread()); SIMPLE_CACHE_UMA(CUSTOM_COUNTS, "EntryOperationsPending", cache_type_, pending_operations_.size(), 0, 100, 20); if (!pending_operations_.empty() && state_ != STATE_IO_PENDING) { std::unique_ptr operation( new SimpleEntryOperation(pending_operations_.front())); pending_operations_.pop(); switch (operation->type()) { case SimpleEntryOperation::TYPE_OPEN: OpenEntryInternal(operation->have_index(), operation->callback(), operation->out_entry()); break; case SimpleEntryOperation::TYPE_CREATE: CreateEntryInternal(operation->have_index(), operation->callback(), operation->out_entry()); break; case SimpleEntryOperation::TYPE_CLOSE: CloseInternal(); break; case SimpleEntryOperation::TYPE_READ: RecordReadIsParallelizable(*operation); ReadDataInternal(/* sync_possible= */ false, operation->index(), operation->offset(), operation->buf(), operation->length(), operation->callback()); break; case SimpleEntryOperation::TYPE_WRITE: RecordWriteDependencyType(*operation); WriteDataInternal(operation->index(), operation->offset(), operation->buf(), operation->length(), operation->callback(), operation->truncate()); break; case SimpleEntryOperation::TYPE_READ_SPARSE: ReadSparseDataInternal(operation->sparse_offset(), operation->buf(), operation->length(), operation->callback()); break; case SimpleEntryOperation::TYPE_WRITE_SPARSE: WriteSparseDataInternal(operation->sparse_offset(), operation->buf(), operation->length(), operation->callback()); break; case SimpleEntryOperation::TYPE_GET_AVAILABLE_RANGE: GetAvailableRangeInternal(operation->sparse_offset(), operation->length(), operation->out_start(), operation->callback()); break; case SimpleEntryOperation::TYPE_DOOM: DoomEntryInternal(operation->callback()); break; default: NOTREACHED(); } // The operation is kept for histograms. Makes sure it does not leak // resources. executing_operation_.swap(operation); executing_operation_->ReleaseReferences(); // |this| may have been deleted. } } void SimpleEntryImpl::OpenEntryInternal(bool have_index, const CompletionCallback& callback, Entry** out_entry) { ScopedOperationRunner operation_runner(this); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_BEGIN); if (state_ == STATE_READY) { ReturnEntryToCaller(out_entry); PostClientCallback(callback, net::OK); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_END, CreateNetLogSimpleEntryCreationCallback(this, net::OK)); return; } if (state_ == STATE_FAILURE) { PostClientCallback(callback, net::ERR_FAILED); net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_END, CreateNetLogSimpleEntryCreationCallback(this, net::ERR_FAILED)); return; } DCHECK_EQ(STATE_UNINITIALIZED, state_); DCHECK(!synchronous_entry_); state_ = STATE_IO_PENDING; const base::TimeTicks start_time = base::TimeTicks::Now(); std::unique_ptr results( new SimpleEntryCreationResults(SimpleEntryStat( last_used_, last_modified_, data_size_, sparse_data_size_))); Closure task = base::Bind(&SimpleSynchronousEntry::OpenEntry, cache_type_, path_, key_, entry_hash_, have_index, start_time, results.get()); Closure reply = base::Bind(&SimpleEntryImpl::CreationOperationComplete, this, callback, start_time, base::Passed(&results), out_entry, net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_END); worker_pool_->PostTaskAndReply(FROM_HERE, task, reply); } void SimpleEntryImpl::CreateEntryInternal(bool have_index, const CompletionCallback& callback, Entry** out_entry) { ScopedOperationRunner operation_runner(this); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_BEGIN); if (state_ != STATE_UNINITIALIZED) { // There is already an active normal entry. net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_END, CreateNetLogSimpleEntryCreationCallback(this, net::ERR_FAILED)); PostClientCallback(callback, net::ERR_FAILED); return; } DCHECK_EQ(STATE_UNINITIALIZED, state_); DCHECK(!synchronous_entry_); state_ = STATE_IO_PENDING; // Since we don't know the correct values for |last_used_| and // |last_modified_| yet, we make this approximation. last_used_ = last_modified_ = base::Time::Now(); // If creation succeeds, we should mark all streams to be saved on close. for (int i = 0; i < kSimpleEntryStreamCount; ++i) have_written_[i] = true; const base::TimeTicks start_time = base::TimeTicks::Now(); std::unique_ptr results( new SimpleEntryCreationResults(SimpleEntryStat( last_used_, last_modified_, data_size_, sparse_data_size_))); Closure task = base::Bind(&SimpleSynchronousEntry::CreateEntry, cache_type_, path_, key_, entry_hash_, have_index, start_time, results.get()); Closure reply = base::Bind(&SimpleEntryImpl::CreationOperationComplete, this, callback, start_time, base::Passed(&results), out_entry, net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_END); worker_pool_->PostTaskAndReply(FROM_HERE, task, reply); } void SimpleEntryImpl::CloseInternal() { DCHECK(io_thread_checker_.CalledOnValidThread()); typedef SimpleSynchronousEntry::CRCRecord CRCRecord; std::unique_ptr> crc32s_to_write( new std::vector()); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CLOSE_BEGIN); if (state_ == STATE_READY) { DCHECK(synchronous_entry_); state_ = STATE_IO_PENDING; for (int i = 0; i < kSimpleEntryStreamCount; ++i) { if (have_written_[i]) { if (GetDataSize(i) == crc32s_end_offset_[i]) { int32_t crc = GetDataSize(i) == 0 ? crc32(0, Z_NULL, 0) : crc32s_[i]; crc32s_to_write->push_back(CRCRecord(i, true, crc)); } else { crc32s_to_write->push_back(CRCRecord(i, false, 0)); } } } } else { DCHECK(STATE_UNINITIALIZED == state_ || STATE_FAILURE == state_); } if (synchronous_entry_) { Closure task = base::Bind( &SimpleSynchronousEntry::Close, base::Unretained(synchronous_entry_), SimpleEntryStat(last_used_, last_modified_, data_size_, sparse_data_size_), base::Passed(&crc32s_to_write), base::RetainedRef(stream_0_data_)); Closure reply = base::Bind(&SimpleEntryImpl::CloseOperationComplete, this); synchronous_entry_ = NULL; worker_pool_->PostTaskAndReply(FROM_HERE, task, reply); for (int i = 0; i < kSimpleEntryStreamCount; ++i) { if (!have_written_[i]) { SIMPLE_CACHE_UMA(ENUMERATION, "CheckCRCResult", cache_type_, crc_check_state_[i], CRC_CHECK_MAX); } } } else { CloseOperationComplete(); } } int SimpleEntryImpl::ReadDataInternal(bool sync_possible, int stream_index, int offset, net::IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(io_thread_checker_.CalledOnValidThread()); ScopedOperationRunner operation_runner(this); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_BEGIN, CreateNetLogReadWriteDataCallback(stream_index, offset, buf_len, false)); } if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { RecordReadResult(cache_type_, READ_RESULT_BAD_STATE); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_END, CreateNetLogReadWriteCompleteCallback(net::ERR_FAILED)); } // Note that the API states that client-provided callbacks for entry-level // (i.e. non-backend) operations (e.g. read, write) are invoked even if // the backend was already destroyed. return PostToCallbackIfNeeded(sync_possible, callback, net::ERR_FAILED); } DCHECK_EQ(STATE_READY, state_); if (offset >= GetDataSize(stream_index) || offset < 0 || !buf_len) { RecordReadResult(cache_type_, sync_possible ? READ_RESULT_NONBLOCK_EMPTY_RETURN : READ_RESULT_FAST_EMPTY_RETURN); // If there is nothing to read, we bail out before setting state_ to // STATE_IO_PENDING (so ScopedOperationRunner might start us on next op // here). return PostToCallbackIfNeeded(sync_possible, callback, 0); } buf_len = std::min(buf_len, GetDataSize(stream_index) - offset); // Since stream 0 data is kept in memory, it is read immediately. if (stream_index == 0) { int rv = ReadFromBuffer(stream_0_data_.get(), offset, buf_len, buf); return PostToCallbackIfNeeded(sync_possible, callback, rv); } // Sometimes we can read in-ram prefetched stream 1 data immediately, too. if (stream_index == 1) { if (is_initial_stream1_read_) { SIMPLE_CACHE_UMA(BOOLEAN, "ReadStream1FromPrefetched", cache_type_, stream_1_prefetch_data_ != nullptr); } is_initial_stream1_read_ = false; if (stream_1_prefetch_data_) { int rv = ReadFromBuffer(stream_1_prefetch_data_.get(), offset, buf_len, buf); return PostToCallbackIfNeeded(sync_possible, callback, rv); } } state_ = STATE_IO_PENDING; if (!doomed_ && backend_.get()) backend_->index()->UseIfExists(entry_hash_); // Figure out if we should be computing the checksum for this read, // and whether we should be verifying it, too. std::unique_ptr crc_request; if (crc32s_end_offset_[stream_index] == offset) { crc_request.reset(new SimpleSynchronousEntry::CRCRequest()); crc_request->data_crc32 = offset == 0 ? crc32(0, Z_NULL, 0) : crc32s_[stream_index]; // We can't verify the checksum if we already overwrote part of the file. // (It may still make sense to compute it if the overwritten area and the // about-to-read-in area are adjoint). crc_request->request_verify = !have_written_[stream_index]; } std::unique_ptr result(new int()); std::unique_ptr entry_stat(new SimpleEntryStat( last_used_, last_modified_, data_size_, sparse_data_size_)); Closure task = base::Bind( &SimpleSynchronousEntry::ReadData, base::Unretained(synchronous_entry_), SimpleSynchronousEntry::EntryOperationData(stream_index, offset, buf_len), crc_request.get(), entry_stat.get(), base::RetainedRef(buf), result.get()); Closure reply = base::Bind(&SimpleEntryImpl::ReadOperationComplete, this, stream_index, offset, callback, base::Passed(&crc_request), base::Passed(&entry_stat), base::Passed(&result)); worker_pool_->PostTaskAndReply(FROM_HERE, task, reply); return net::ERR_IO_PENDING; } void SimpleEntryImpl::WriteDataInternal(int stream_index, int offset, net::IOBuffer* buf, int buf_len, const CompletionCallback& callback, bool truncate) { DCHECK(io_thread_checker_.CalledOnValidThread()); ScopedOperationRunner operation_runner(this); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_BEGIN, CreateNetLogReadWriteDataCallback(stream_index, offset, buf_len, truncate)); } if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { RecordWriteResult(cache_type_, WRITE_RESULT_BAD_STATE); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_END, CreateNetLogReadWriteCompleteCallback(net::ERR_FAILED)); } if (!callback.is_null()) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(callback, net::ERR_FAILED)); } // |this| may be destroyed after return here. return; } DCHECK_EQ(STATE_READY, state_); // Since stream 0 data is kept in memory, it will be written immediatly. if (stream_index == 0) { int ret_value = SetStream0Data(buf, offset, buf_len, truncate); if (!callback.is_null()) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(callback, ret_value)); } return; } // Ignore zero-length writes that do not change the file size. if (buf_len == 0) { int32_t data_size = data_size_[stream_index]; if (truncate ? (offset == data_size) : (offset <= data_size)) { RecordWriteResult(cache_type_, WRITE_RESULT_FAST_EMPTY_RETURN); if (!callback.is_null()) { base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, base::Bind(callback, 0)); } return; } } state_ = STATE_IO_PENDING; if (!doomed_ && backend_.get()) backend_->index()->UseIfExists(entry_hash_); // Any stream 1 write invalidates the prefetched data. if (stream_index == 1) stream_1_prefetch_data_ = nullptr; AdvanceCrc(buf, offset, buf_len, stream_index); // |entry_stat| needs to be initialized before modifying |data_size_|. std::unique_ptr entry_stat(new SimpleEntryStat( last_used_, last_modified_, data_size_, sparse_data_size_)); if (truncate) { data_size_[stream_index] = offset + buf_len; } else { data_size_[stream_index] = std::max(offset + buf_len, GetDataSize(stream_index)); } // Since we don't know the correct values for |last_used_| and // |last_modified_| yet, we make this approximation. last_used_ = last_modified_ = base::Time::Now(); have_written_[stream_index] = true; // Writing on stream 1 affects the placement of stream 0 in the file, the EOF // record will have to be rewritten. if (stream_index == 1) have_written_[0] = true; std::unique_ptr result(new int()); // Retain a reference to |buf| in |reply| instead of |task|, so that we can // reduce cross thread malloc/free pairs. The cross thread malloc/free pair // increases the apparent memory usage due to the thread cached free list. Closure task = base::Bind( &SimpleSynchronousEntry::WriteData, base::Unretained(synchronous_entry_), SimpleSynchronousEntry::EntryOperationData(stream_index, offset, buf_len, truncate, doomed_), base::Unretained(buf), entry_stat.get(), result.get()); Closure reply = base::Bind(&SimpleEntryImpl::WriteOperationComplete, this, stream_index, callback, base::Passed(&entry_stat), base::Passed(&result), base::RetainedRef(buf)); worker_pool_->PostTaskAndReply(FROM_HERE, task, reply); } void SimpleEntryImpl::ReadSparseDataInternal( int64_t sparse_offset, net::IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(io_thread_checker_.CalledOnValidThread()); ScopedOperationRunner operation_runner(this); if (net_log_.IsCapturing()) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_SPARSE_BEGIN, CreateNetLogSparseOperationCallback(sparse_offset, buf_len)); } if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { if (net_log_.IsCapturing()) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_SPARSE_END, CreateNetLogReadWriteCompleteCallback(net::ERR_FAILED)); } if (!callback.is_null()) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(callback, net::ERR_FAILED)); } // |this| may be destroyed after return here. return; } DCHECK_EQ(STATE_READY, state_); state_ = STATE_IO_PENDING; std::unique_ptr result(new int()); std::unique_ptr last_used(new base::Time()); Closure task = base::Bind( &SimpleSynchronousEntry::ReadSparseData, base::Unretained(synchronous_entry_), SimpleSynchronousEntry::EntryOperationData(sparse_offset, buf_len), base::RetainedRef(buf), last_used.get(), result.get()); Closure reply = base::Bind(&SimpleEntryImpl::ReadSparseOperationComplete, this, callback, base::Passed(&last_used), base::Passed(&result)); worker_pool_->PostTaskAndReply(FROM_HERE, task, reply); } void SimpleEntryImpl::WriteSparseDataInternal( int64_t sparse_offset, net::IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(io_thread_checker_.CalledOnValidThread()); ScopedOperationRunner operation_runner(this); if (net_log_.IsCapturing()) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_SPARSE_BEGIN, CreateNetLogSparseOperationCallback(sparse_offset, buf_len)); } if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { if (net_log_.IsCapturing()) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_SPARSE_END, CreateNetLogReadWriteCompleteCallback(net::ERR_FAILED)); } if (!callback.is_null()) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(callback, net::ERR_FAILED)); } // |this| may be destroyed after return here. return; } DCHECK_EQ(STATE_READY, state_); state_ = STATE_IO_PENDING; uint64_t max_sparse_data_size = std::numeric_limits::max(); if (backend_.get()) { uint64_t max_cache_size = backend_->index()->max_size(); max_sparse_data_size = max_cache_size / kMaxSparseDataSizeDivisor; } std::unique_ptr entry_stat(new SimpleEntryStat( last_used_, last_modified_, data_size_, sparse_data_size_)); last_used_ = last_modified_ = base::Time::Now(); std::unique_ptr result(new int()); Closure task = base::Bind( &SimpleSynchronousEntry::WriteSparseData, base::Unretained(synchronous_entry_), SimpleSynchronousEntry::EntryOperationData(sparse_offset, buf_len), base::RetainedRef(buf), max_sparse_data_size, entry_stat.get(), result.get()); Closure reply = base::Bind(&SimpleEntryImpl::WriteSparseOperationComplete, this, callback, base::Passed(&entry_stat), base::Passed(&result)); worker_pool_->PostTaskAndReply(FROM_HERE, task, reply); } void SimpleEntryImpl::GetAvailableRangeInternal( int64_t sparse_offset, int len, int64_t* out_start, const CompletionCallback& callback) { DCHECK(io_thread_checker_.CalledOnValidThread()); ScopedOperationRunner operation_runner(this); if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { if (!callback.is_null()) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(callback, net::ERR_FAILED)); } // |this| may be destroyed after return here. return; } DCHECK_EQ(STATE_READY, state_); state_ = STATE_IO_PENDING; std::unique_ptr result(new int()); Closure task = base::Bind(&SimpleSynchronousEntry::GetAvailableRange, base::Unretained(synchronous_entry_), SimpleSynchronousEntry::EntryOperationData( sparse_offset, len), out_start, result.get()); Closure reply = base::Bind( &SimpleEntryImpl::GetAvailableRangeOperationComplete, this, callback, base::Passed(&result)); worker_pool_->PostTaskAndReply(FROM_HERE, task, reply); } void SimpleEntryImpl::DoomEntryInternal(const CompletionCallback& callback) { if (!backend_) { // If there's no backend, we want to truncate the files rather than delete // them. Removing files will update the entry directory's mtime, which will // likely force a full index rebuild on the next startup; this is clearly an // undesirable cost. Instead, the lesser evil is to set the entry files to // length zero, leaving the invalid entry in the index. On the next attempt // to open the entry, it will fail asynchronously (since the magic numbers // will not be found), and the files will actually be removed. PostTaskAndReplyWithResult( worker_pool_.get(), FROM_HERE, base::Bind(&SimpleSynchronousEntry::TruncateEntryFiles, path_, entry_hash_), base::Bind(&SimpleEntryImpl::DoomOperationComplete, this, callback, // Return to STATE_FAILURE after dooming, since no operation // can succeed on the truncated entry files. STATE_FAILURE)); state_ = STATE_IO_PENDING; return; } PostTaskAndReplyWithResult( worker_pool_.get(), FROM_HERE, base::Bind(&SimpleSynchronousEntry::DoomEntry, path_, entry_hash_), base::Bind( &SimpleEntryImpl::DoomOperationComplete, this, callback, state_)); state_ = STATE_IO_PENDING; } void SimpleEntryImpl::CreationOperationComplete( const CompletionCallback& completion_callback, const base::TimeTicks& start_time, std::unique_ptr in_results, Entry** out_entry, net::NetLogEventType end_event_type) { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK_EQ(state_, STATE_IO_PENDING); DCHECK(in_results); ScopedOperationRunner operation_runner(this); SIMPLE_CACHE_UMA(BOOLEAN, "EntryCreationResult", cache_type_, in_results->result == net::OK); if (in_results->result != net::OK) { if (in_results->result != net::ERR_FILE_EXISTS) MarkAsDoomed(); net_log_.AddEventWithNetErrorCode(end_event_type, net::ERR_FAILED); PostClientCallback(completion_callback, net::ERR_FAILED); MakeUninitialized(); return; } // If out_entry is NULL, it means we already called ReturnEntryToCaller from // the optimistic Create case. if (out_entry) ReturnEntryToCaller(out_entry); state_ = STATE_READY; synchronous_entry_ = in_results->sync_entry; // Copy over any pre-fetched data and its CRCs. for (int stream = 0; stream < 2; ++stream) { const SimpleStreamPrefetchData& prefetched = in_results->stream_prefetch_data[stream]; if (prefetched.data.get()) { if (stream == 0) stream_0_data_ = prefetched.data; else stream_1_prefetch_data_ = prefetched.data; // The crc was read in SimpleSynchronousEntry. crc_check_state_[stream] = CRC_CHECK_DONE; crc32s_[stream] = prefetched.stream_crc32; crc32s_end_offset_[stream] = in_results->entry_stat.data_size(stream); } } // If this entry was opened by hash, key_ could still be empty. If so, update // it with the key read from the synchronous entry. if (key_.empty()) { SetKey(synchronous_entry_->key()); } else { // This should only be triggered when creating an entry. In the open case // the key is either copied from the arguments to open, or checked // in the synchronous entry. DCHECK_EQ(key_, synchronous_entry_->key()); } UpdateDataFromEntryStat(in_results->entry_stat); SIMPLE_CACHE_UMA(TIMES, "EntryCreationTime", cache_type_, (base::TimeTicks::Now() - start_time)); AdjustOpenEntryCountBy(cache_type_, 1); net_log_.AddEvent(end_event_type); PostClientCallback(completion_callback, net::OK); } void SimpleEntryImpl::EntryOperationComplete( const CompletionCallback& completion_callback, const SimpleEntryStat& entry_stat, std::unique_ptr result) { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK(synchronous_entry_); DCHECK_EQ(STATE_IO_PENDING, state_); DCHECK(result); if (*result < 0) { state_ = STATE_FAILURE; MarkAsDoomed(); } else { state_ = STATE_READY; UpdateDataFromEntryStat(entry_stat); } if (!completion_callback.is_null()) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(completion_callback, *result)); } RunNextOperationIfNeeded(); } void SimpleEntryImpl::ReadOperationComplete( int stream_index, int offset, const CompletionCallback& completion_callback, std::unique_ptr crc_request, std::unique_ptr entry_stat, std::unique_ptr result) { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK(synchronous_entry_); DCHECK_EQ(STATE_IO_PENDING, state_); DCHECK(result); if (*result > 0 && crc_check_state_[stream_index] == CRC_CHECK_NEVER_READ_AT_ALL) { crc_check_state_[stream_index] = CRC_CHECK_NEVER_READ_TO_END; } if (crc_request != nullptr) { if (*result > 0) { DCHECK_EQ(crc32s_end_offset_[stream_index], offset); crc32s_end_offset_[stream_index] += *result; crc32s_[stream_index] = crc_request->data_crc32; } if (crc_request->performed_verify) crc_check_state_[stream_index] = CRC_CHECK_DONE; } if (*result < 0) { crc32s_end_offset_[stream_index] = 0; } else { if (crc_check_state_[stream_index] == CRC_CHECK_NEVER_READ_TO_END && offset + *result == GetDataSize(stream_index)) { crc_check_state_[stream_index] = CRC_CHECK_NOT_DONE; } } RecordReadResultConsideringChecksum(*result, std::move(crc_request)); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_END, CreateNetLogReadWriteCompleteCallback(*result)); } EntryOperationComplete(completion_callback, *entry_stat, std::move(result)); } void SimpleEntryImpl::WriteOperationComplete( int stream_index, const CompletionCallback& completion_callback, std::unique_ptr entry_stat, std::unique_ptr result, net::IOBuffer* buf) { if (*result >= 0) RecordWriteResult(cache_type_, WRITE_RESULT_SUCCESS); else RecordWriteResult(cache_type_, WRITE_RESULT_SYNC_WRITE_FAILURE); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_END, CreateNetLogReadWriteCompleteCallback(*result)); } if (*result < 0) { crc32s_end_offset_[stream_index] = 0; } EntryOperationComplete(completion_callback, *entry_stat, std::move(result)); } void SimpleEntryImpl::ReadSparseOperationComplete( const CompletionCallback& completion_callback, std::unique_ptr last_used, std::unique_ptr result) { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK(synchronous_entry_); DCHECK(result); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_SPARSE_END, CreateNetLogReadWriteCompleteCallback(*result)); } SimpleEntryStat entry_stat(*last_used, last_modified_, data_size_, sparse_data_size_); EntryOperationComplete(completion_callback, entry_stat, std::move(result)); } void SimpleEntryImpl::WriteSparseOperationComplete( const CompletionCallback& completion_callback, std::unique_ptr entry_stat, std::unique_ptr result) { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK(synchronous_entry_); DCHECK(result); if (net_log_.IsCapturing()) { net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_SPARSE_END, CreateNetLogReadWriteCompleteCallback(*result)); } EntryOperationComplete(completion_callback, *entry_stat, std::move(result)); } void SimpleEntryImpl::GetAvailableRangeOperationComplete( const CompletionCallback& completion_callback, std::unique_ptr result) { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK(synchronous_entry_); DCHECK(result); SimpleEntryStat entry_stat(last_used_, last_modified_, data_size_, sparse_data_size_); EntryOperationComplete(completion_callback, entry_stat, std::move(result)); } void SimpleEntryImpl::DoomOperationComplete( const CompletionCallback& callback, State state_to_restore, int result) { state_ = state_to_restore; net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_DOOM_END); PostClientCallback(callback, result); RunNextOperationIfNeeded(); if (backend_) backend_->OnDoomComplete(entry_hash_); } void SimpleEntryImpl::RecordReadResultConsideringChecksum( int result, std::unique_ptr crc_result) const { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK(synchronous_entry_); DCHECK_EQ(STATE_IO_PENDING, state_); if (result >= 0) { RecordReadResult(cache_type_, READ_RESULT_SUCCESS); } else { if (crc_result && crc_result->performed_verify && !crc_result->verify_ok) RecordReadResult(cache_type_, READ_RESULT_SYNC_CHECKSUM_FAILURE); else RecordReadResult(cache_type_, READ_RESULT_SYNC_READ_FAILURE); } } void SimpleEntryImpl::CloseOperationComplete() { DCHECK(!synchronous_entry_); DCHECK_EQ(0, open_count_); DCHECK(STATE_IO_PENDING == state_ || STATE_FAILURE == state_ || STATE_UNINITIALIZED == state_); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CLOSE_END); AdjustOpenEntryCountBy(cache_type_, -1); MakeUninitialized(); RunNextOperationIfNeeded(); } void SimpleEntryImpl::UpdateDataFromEntryStat( const SimpleEntryStat& entry_stat) { DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK(synchronous_entry_); DCHECK_EQ(STATE_READY, state_); last_used_ = entry_stat.last_used(); last_modified_ = entry_stat.last_modified(); for (int i = 0; i < kSimpleEntryStreamCount; ++i) { data_size_[i] = entry_stat.data_size(i); } sparse_data_size_ = entry_stat.sparse_data_size(); if (!doomed_ && backend_.get()) { backend_->index()->UpdateEntrySize( entry_hash_, base::checked_cast(GetDiskUsage())); } } int64_t SimpleEntryImpl::GetDiskUsage() const { int64_t file_size = 0; for (int i = 0; i < kSimpleEntryStreamCount; ++i) { file_size += simple_util::GetFileSizeFromDataSize(key_.size(), data_size_[i]); } file_size += sparse_data_size_; return file_size; } void SimpleEntryImpl::RecordReadIsParallelizable( const SimpleEntryOperation& operation) const { if (!executing_operation_) return; // Used in histograms, please only add entries at the end. enum ReadDependencyType { // READ_STANDALONE = 0, Deprecated. READ_FOLLOWS_READ = 1, READ_FOLLOWS_CONFLICTING_WRITE = 2, READ_FOLLOWS_NON_CONFLICTING_WRITE = 3, READ_FOLLOWS_OTHER = 4, READ_ALONE_IN_QUEUE = 5, READ_DEPENDENCY_TYPE_MAX = 6, }; ReadDependencyType type = READ_FOLLOWS_OTHER; if (operation.alone_in_queue()) { type = READ_ALONE_IN_QUEUE; } else if (executing_operation_->type() == SimpleEntryOperation::TYPE_READ) { type = READ_FOLLOWS_READ; } else if (executing_operation_->type() == SimpleEntryOperation::TYPE_WRITE) { if (executing_operation_->ConflictsWith(operation)) type = READ_FOLLOWS_CONFLICTING_WRITE; else type = READ_FOLLOWS_NON_CONFLICTING_WRITE; } SIMPLE_CACHE_UMA(ENUMERATION, "ReadIsParallelizable", cache_type_, type, READ_DEPENDENCY_TYPE_MAX); } void SimpleEntryImpl::RecordWriteDependencyType( const SimpleEntryOperation& operation) const { if (!executing_operation_) return; // Used in histograms, please only add entries at the end. enum WriteDependencyType { WRITE_OPTIMISTIC = 0, WRITE_FOLLOWS_CONFLICTING_OPTIMISTIC = 1, WRITE_FOLLOWS_NON_CONFLICTING_OPTIMISTIC = 2, WRITE_FOLLOWS_CONFLICTING_WRITE = 3, WRITE_FOLLOWS_NON_CONFLICTING_WRITE = 4, WRITE_FOLLOWS_CONFLICTING_READ = 5, WRITE_FOLLOWS_NON_CONFLICTING_READ = 6, WRITE_FOLLOWS_OTHER = 7, WRITE_DEPENDENCY_TYPE_MAX = 8, }; WriteDependencyType type = WRITE_FOLLOWS_OTHER; if (operation.optimistic()) { type = WRITE_OPTIMISTIC; } else if (executing_operation_->type() == SimpleEntryOperation::TYPE_READ || executing_operation_->type() == SimpleEntryOperation::TYPE_WRITE) { bool conflicting = executing_operation_->ConflictsWith(operation); if (executing_operation_->type() == SimpleEntryOperation::TYPE_READ) { type = conflicting ? WRITE_FOLLOWS_CONFLICTING_READ : WRITE_FOLLOWS_NON_CONFLICTING_READ; } else if (executing_operation_->optimistic()) { type = conflicting ? WRITE_FOLLOWS_CONFLICTING_OPTIMISTIC : WRITE_FOLLOWS_NON_CONFLICTING_OPTIMISTIC; } else { type = conflicting ? WRITE_FOLLOWS_CONFLICTING_WRITE : WRITE_FOLLOWS_NON_CONFLICTING_WRITE; } } SIMPLE_CACHE_UMA(ENUMERATION, "WriteDependencyType", cache_type_, type, WRITE_DEPENDENCY_TYPE_MAX); } int SimpleEntryImpl::ReadFromBuffer(net::GrowableIOBuffer* in_buf, int offset, int buf_len, net::IOBuffer* out_buf) { DCHECK_GE(buf_len, 0); memcpy(out_buf->data(), in_buf->data() + offset, buf_len); UpdateDataFromEntryStat(SimpleEntryStat(base::Time::Now(), last_modified_, data_size_, sparse_data_size_)); RecordReadResult(cache_type_, READ_RESULT_SUCCESS); return buf_len; } int SimpleEntryImpl::SetStream0Data(net::IOBuffer* buf, int offset, int buf_len, bool truncate) { // Currently, stream 0 is only used for HTTP headers, and always writes them // with a single, truncating write. Detect these writes and record the size // changes of the headers. Also, support writes to stream 0 that have // different access patterns, as required by the API contract. // All other clients of the Simple Cache are encouraged to use stream 1. have_written_[0] = true; int data_size = GetDataSize(0); if (offset == 0 && truncate) { RecordHeaderSizeChange(cache_type_, data_size, buf_len); stream_0_data_->SetCapacity(buf_len); memcpy(stream_0_data_->data(), buf->data(), buf_len); data_size_[0] = buf_len; } else { RecordUnexpectedStream0Write(cache_type_); const int buffer_size = truncate ? offset + buf_len : std::max(offset + buf_len, data_size); stream_0_data_->SetCapacity(buffer_size); // If |stream_0_data_| was extended, the extension until offset needs to be // zero-filled. const int fill_size = offset <= data_size ? 0 : offset - data_size; if (fill_size > 0) memset(stream_0_data_->data() + data_size, 0, fill_size); if (buf) memcpy(stream_0_data_->data() + offset, buf->data(), buf_len); data_size_[0] = buffer_size; } base::Time modification_time = base::Time::Now(); AdvanceCrc(buf, offset, buf_len, 0); UpdateDataFromEntryStat( SimpleEntryStat(modification_time, modification_time, data_size_, sparse_data_size_)); RecordWriteResult(cache_type_, WRITE_RESULT_SUCCESS); return buf_len; } void SimpleEntryImpl::AdvanceCrc(net::IOBuffer* buffer, int offset, int length, int stream_index) { // It is easy to incrementally compute the CRC from [0 .. |offset + buf_len|) // if |offset == 0| or we have already computed the CRC for [0 .. offset). // We rely on most write operations being sequential, start to end to compute // the crc of the data. When we write to an entry and close without having // done a sequential write, we don't check the CRC on read. if (offset == 0 || crc32s_end_offset_[stream_index] == offset) { uint32_t initial_crc = (offset != 0) ? crc32s_[stream_index] : crc32(0, Z_NULL, 0); if (length > 0) { crc32s_[stream_index] = simple_util::IncrementalCrc32(initial_crc, buffer->data(), length); } crc32s_end_offset_[stream_index] = offset + length; } else if (offset < crc32s_end_offset_[stream_index]) { // If a range for which the crc32 was already computed is rewritten, the // computation of the crc32 need to start from 0 again. crc32s_end_offset_[stream_index] = 0; } } } // namespace disk_cache