// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef TOOLS_GN_SCOPE_H_ #define TOOLS_GN_SCOPE_H_ #include #include #include #include #include #include "base/containers/hash_tables.h" #include "base/macros.h" #include "base/memory/ref_counted.h" #include "tools/gn/err.h" #include "tools/gn/pattern.h" #include "tools/gn/source_dir.h" #include "tools/gn/value.h" class Item; class ParseNode; class Settings; class Template; // Scope for the script execution. // // Scopes are nested. Writing goes into the toplevel scope, reading checks // values resursively down the stack until a match is found or there are no // more containing scopes. // // A containing scope can be const or non-const. The const containing scope is // used primarily to refer to the master build config which is shared across // many invocations. A const containing scope, however, prevents us from // marking variables "used" which prevents us from issuing errors on unused // variables. So you should use a non-const containing scope whenever possible. class Scope { public: typedef base::hash_map KeyValueMap; // Holds an owning list of Items. typedef std::vector> ItemVector; // A flag to indicate whether a function should recurse into nested scopes, // or only operate on the current scope. enum SearchNested { SEARCH_NESTED, SEARCH_CURRENT }; // Allows code to provide values for built-in variables. This class will // automatically register itself on construction and deregister itself on // destruction. class ProgrammaticProvider { public: explicit ProgrammaticProvider(Scope* scope) : scope_(scope) { scope_->AddProvider(this); } virtual ~ProgrammaticProvider(); // Returns a non-null value if the given value can be programmatically // generated, or NULL if there is none. virtual const Value* GetProgrammaticValue( const base::StringPiece& ident) = 0; protected: Scope* scope_; }; // Options for configuring scope merges. struct MergeOptions { MergeOptions(); ~MergeOptions(); // When set, all existing avlues in the destination scope will be // overwritten. // // When false, it will be an error to merge a variable into another scope // where a variable with the same name is already set. The exception is // if both of the variables have the same value (which happens if you // somehow multiply import the same file, for example). This case will be // ignored since there is nothing getting lost. bool clobber_existing; // When true, private variables (names beginning with an underscore) will // be copied to the destination scope. When false, private values will be // skipped. bool skip_private_vars; // When set, values copied to the destination scope will be marked as used // so won't trigger an unused variable warning. You want this when doing an // import, for example, or files that don't need a variable from the .gni // file will throw an error. bool mark_dest_used; // When set, those variables are not merged. std::set excluded_values; }; // Creates an empty toplevel scope. explicit Scope(const Settings* settings); // Creates a dependent scope. explicit Scope(Scope* parent); explicit Scope(const Scope* parent); ~Scope(); const Settings* settings() const { return settings_; } // See the const_/mutable_containing_ var declarations below. Yes, it's a // bit weird that we can have a const pointer to the "mutable" one. Scope* mutable_containing() { return mutable_containing_; } const Scope* mutable_containing() const { return mutable_containing_; } const Scope* const_containing() const { return const_containing_; } const Scope* containing() const { return mutable_containing_ ? mutable_containing_ : const_containing_; } // Clears any references to containing scopes. This scope will now be // self-sufficient. void DetachFromContaining(); // Returns true if the scope has any values set. This does not check other // things that may be set like templates or defaults. // // Currently this does not search nested scopes and this will assert if you // want to search nested scopes. The enum is passed so the callers are // unambiguous about nested scope handling. This can be added if needed. bool HasValues(SearchNested search_nested) const; // Returns NULL if there's no such value. // // counts_as_used should be set if the variable is being read in a way that // should count for unused variable checking. // // found_in_scope is set to the scope that contains the definition of the // ident. If the value was provided programmatically (like host_cpu), // found_in_scope will be set to null. const Value* GetValue(const base::StringPiece& ident, bool counts_as_used); const Value* GetValue(const base::StringPiece& ident) const; const Value* GetValueWithScope(const base::StringPiece& ident, const Scope** found_in_scope) const; const Value* GetValueWithScope(const base::StringPiece& ident, bool counts_as_used, const Scope** found_in_scope); // Returns the requested value as a mutable one if possible. If the value // is not found in a mutable scope, then returns null. Note that the value // could still exist in a const scope, so GetValue() could still return // non-null in this case. // // Say you have a local scope that then refers to the const root scope from // the master build config. You can't change the values from the master // build config (it's read-only so it can be read from multiple threads // without locking). Read-only operations would work on values from the root // scope, but write operations would only work on values in the derived // scope(s). // // Be careful when calling this. It's not normally correct to modify values, // but you should instead do a new Set each time. // // Consider this code: // a = 5 // { // a = 6 // } // The 6 should get set on the nested scope rather than modify the value // in the outer one. Value* GetMutableValue(const base::StringPiece& ident, SearchNested search_mode, bool counts_as_used); // Returns the StringPiece used to identify the value. This string piece // will have the same contents as "ident" passed in, but may point to a // different underlying buffer. This is useful because this StringPiece is // static and won't be deleted for the life of the program, so it can be used // as keys in places that may outlive a temporary. It will return an empty // string for programmatic and nonexistant values. base::StringPiece GetStorageKey(const base::StringPiece& ident) const; // The set_node indicates the statement that caused the set, for displaying // errors later. Returns a pointer to the value in the current scope (a copy // is made for storage). Value* SetValue(const base::StringPiece& ident, Value v, const ParseNode* set_node); // Removes the value with the given identifier if it exists on the current // scope. This does not search recursive scopes. Does nothing if not found. void RemoveIdentifier(const base::StringPiece& ident); // Removes from this scope all identifiers and templates that are considered // private. void RemovePrivateIdentifiers(); // Templates associated with this scope. A template can only be set once, so // AddTemplate will fail and return false if a rule with that name already // exists. GetTemplate returns NULL if the rule doesn't exist, and it will // check all containing scoped rescursively. bool AddTemplate(const std::string& name, const Template* templ); const Template* GetTemplate(const std::string& name) const; // Marks the given identifier as (un)used in the current scope. void MarkUsed(const base::StringPiece& ident); void MarkAllUsed(); void MarkAllUsed(const std::set& excluded_values); void MarkUnused(const base::StringPiece& ident); // Checks to see if the scope has a var set that hasn't been used. This is // called before replacing the var with a different one. It does not check // containing scopes. // // If the identifier is present but hasnn't been used, return true. bool IsSetButUnused(const base::StringPiece& ident) const; // Checks the scope to see if any values were set but not used, and fills in // the error and returns false if they were. bool CheckForUnusedVars(Err* err) const; // Returns all values set in the current scope, without going to the parent // scopes. void GetCurrentScopeValues(KeyValueMap* output) const; // Copies this scope's values into the destination. Values from the // containing scope(s) (normally shadowed into the current one) will not be // copied, neither will the reference to the containing scope (this is why // it's "non-recursive"). // // This is used in different contexts. When generating the error, the given // parse node will be blamed, and the given desc will be used to describe // the operation that doesn't support doing this. For example, desc_for_err // would be "import" when doing an import, and the error string would say // something like "The import contains...". bool NonRecursiveMergeTo(Scope* dest, const MergeOptions& options, const ParseNode* node_for_err, const char* desc_for_err, Err* err) const; // Constructs a scope that is a copy of the current one. Nested scopes will // be collapsed until we reach a const containing scope. Private values will // be included. The resulting closure will reference the const containing // scope as its containing scope (since we assume the const scope won't // change, we don't have to copy its values). std::unique_ptr MakeClosure() const; // Makes an empty scope with the given name. Overwrites any existing one. Scope* MakeTargetDefaults(const std::string& target_type); // Gets the scope associated with the given target name, or null if it hasn't // been set. const Scope* GetTargetDefaults(const std::string& target_type) const; // Filter to apply when the sources variable is assigned. May return NULL. const PatternList* GetSourcesAssignmentFilter() const; void set_sources_assignment_filter(std::unique_ptr f) { sources_assignment_filter_ = std::move(f); } // Indicates if we're currently processing the build configuration file. // This is true when processing the config file for any toolchain. // // To set or clear the flag, it must currently be in the opposite state in // the current scope. Note that querying the state of the flag recursively // checks all containing scopes until it reaches the top or finds the flag // set. void SetProcessingBuildConfig(); void ClearProcessingBuildConfig(); bool IsProcessingBuildConfig() const; // Indicates if we're currently processing an import file. // // See SetProcessingBaseConfig for how flags work. void SetProcessingImport(); void ClearProcessingImport(); bool IsProcessingImport() const; // The source directory associated with this scope. This will check embedded // scopes until it finds a nonempty source directory. This will default to // an empty dir if no containing scope has a source dir set. const SourceDir& GetSourceDir() const; void set_source_dir(const SourceDir& d) { source_dir_ = d; } // The item collector is where Items (Targets, Configs, etc.) go that have // been defined. If a scope can generate items, this non-owning pointer will // point to the storage for such items. The creator of this scope will be // responsible for setting up the collector and then dealing with the // collected items once execution of the context is complete. // // The items in a scope are collected as we go and then dispatched at the end // of execution of a scope so that we can query the previously-generated // targets (like getting the outputs). // // This can be null if the current scope can not generate items (like for // imports and such). // // When retrieving the collector, the non-const scopes are recursively // queried. The collector is not copied for closures, etc. void set_item_collector(ItemVector* collector) { item_collector_ = collector; } ItemVector* GetItemCollector(); // Properties are opaque pointers that code can use to set state on a Scope // that it can retrieve later. // // The key should be a pointer to some use-case-specific object (to avoid // collisions, otherwise it doesn't matter). Memory management is up to the // setter. Setting the value to NULL will delete the property. // // Getting a property recursively searches all scopes, and the optional // |found_on_scope| variable will be filled with the actual scope containing // the key (if the pointer is non-NULL). void SetProperty(const void* key, void* value); void* GetProperty(const void* key, const Scope** found_on_scope) const; private: friend class ProgrammaticProvider; struct Record { Record() : used(false) {} explicit Record(const Value& v) : used(false), value(v) {} bool used; // Set to true when the variable is used. Value value; }; typedef base::hash_map RecordMap; void AddProvider(ProgrammaticProvider* p); void RemoveProvider(ProgrammaticProvider* p); // Returns true if the two RecordMaps contain the same values (the origins // of the values may be different). static bool RecordMapValuesEqual(const RecordMap& a, const RecordMap& b); // Scopes can have no containing scope (both null), a mutable containing // scope, or a const containing scope. The reason is that when we're doing // a new target, we want to refer to the base_config scope which will be read // by multiple threads at the same time, so we REALLY want it to be const. // When you jsut do a nested {}, however, we sometimes want to be able to // change things (especially marking unused vars). const Scope* const_containing_; Scope* mutable_containing_; const Settings* settings_; // Bits set for different modes. See the flag definitions in the .cc file // for more. unsigned mode_flags_; RecordMap values_; // Note that this can't use string pieces since the names are constructed from // Values which might be deallocated before this goes out of scope. typedef base::hash_map> NamedScopeMap; NamedScopeMap target_defaults_; // Null indicates not set and that we should fallback to the containing // scope's filter. std::unique_ptr sources_assignment_filter_; // Owning pointers, must be deleted. typedef std::map > TemplateMap; TemplateMap templates_; ItemVector* item_collector_; // Opaque pointers. See SetProperty() above. typedef std::map PropertyMap; PropertyMap properties_; typedef std::set ProviderSet; ProviderSet programmatic_providers_; SourceDir source_dir_; DISALLOW_COPY_AND_ASSIGN(Scope); }; #endif // TOOLS_GN_SCOPE_H_