// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/test_tools/crypto_test_utils.h" #include #include #include "net/quic/core/crypto/channel_id.h" #include "net/quic/core/crypto/common_cert_set.h" #include "net/quic/core/crypto/crypto_handshake.h" #include "net/quic/core/crypto/crypto_server_config_protobuf.h" #include "net/quic/core/crypto/quic_crypto_server_config.h" #include "net/quic/core/crypto/quic_decrypter.h" #include "net/quic/core/crypto/quic_encrypter.h" #include "net/quic/core/crypto/quic_random.h" #include "net/quic/core/quic_crypto_client_stream.h" #include "net/quic/core/quic_crypto_server_stream.h" #include "net/quic/core/quic_crypto_stream.h" #include "net/quic/core/quic_server_id.h" #include "net/quic/core/quic_utils.h" #include "net/quic/platform/api/quic_bug_tracker.h" #include "net/quic/platform/api/quic_clock.h" #include "net/quic/platform/api/quic_logging.h" #include "net/quic/platform/api/quic_socket_address.h" #include "net/quic/platform/api/quic_test.h" #include "net/quic/platform/api/quic_text_utils.h" #include "net/quic/test_tools/quic_connection_peer.h" #include "net/quic/test_tools/quic_framer_peer.h" #include "net/quic/test_tools/quic_stream_peer.h" #include "net/quic/test_tools/quic_test_utils.h" #include "net/quic/test_tools/simple_quic_framer.h" #include "third_party/boringssl/src/include/openssl/bn.h" #include "third_party/boringssl/src/include/openssl/ec.h" #include "third_party/boringssl/src/include/openssl/ecdsa.h" #include "third_party/boringssl/src/include/openssl/nid.h" #include "third_party/boringssl/src/include/openssl/sha.h" using std::string; namespace net { namespace test { TestChannelIDKey::TestChannelIDKey(EVP_PKEY* ecdsa_key) : ecdsa_key_(ecdsa_key) {} TestChannelIDKey::~TestChannelIDKey() {} bool TestChannelIDKey::Sign(QuicStringPiece signed_data, string* out_signature) const { bssl::ScopedEVP_MD_CTX md_ctx; if (EVP_DigestSignInit(md_ctx.get(), nullptr, EVP_sha256(), nullptr, ecdsa_key_.get()) != 1) { return false; } EVP_DigestUpdate(md_ctx.get(), ChannelIDVerifier::kContextStr, strlen(ChannelIDVerifier::kContextStr) + 1); EVP_DigestUpdate(md_ctx.get(), ChannelIDVerifier::kClientToServerStr, strlen(ChannelIDVerifier::kClientToServerStr) + 1); EVP_DigestUpdate(md_ctx.get(), signed_data.data(), signed_data.size()); size_t sig_len; if (!EVP_DigestSignFinal(md_ctx.get(), nullptr, &sig_len)) { return false; } std::unique_ptr der_sig(new uint8_t[sig_len]); if (!EVP_DigestSignFinal(md_ctx.get(), der_sig.get(), &sig_len)) { return false; } uint8_t* derp = der_sig.get(); bssl::UniquePtr sig( d2i_ECDSA_SIG(nullptr, const_cast(&derp), sig_len)); if (sig.get() == nullptr) { return false; } // The signature consists of a pair of 32-byte numbers. static const size_t kSignatureLength = 32 * 2; std::unique_ptr signature(new uint8_t[kSignatureLength]); if (!BN_bn2bin_padded(&signature[0], 32, sig->r) || !BN_bn2bin_padded(&signature[32], 32, sig->s)) { return false; } *out_signature = string(reinterpret_cast(signature.get()), kSignatureLength); return true; } string TestChannelIDKey::SerializeKey() const { // i2d_PublicKey will produce an ANSI X9.62 public key which, for a P-256 // key, is 0x04 (meaning uncompressed) followed by the x and y field // elements as 32-byte, big-endian numbers. static const int kExpectedKeyLength = 65; int len = i2d_PublicKey(ecdsa_key_.get(), nullptr); if (len != kExpectedKeyLength) { return ""; } uint8_t buf[kExpectedKeyLength]; uint8_t* derp = buf; i2d_PublicKey(ecdsa_key_.get(), &derp); return string(reinterpret_cast(buf + 1), kExpectedKeyLength - 1); } TestChannelIDSource::~TestChannelIDSource() {} QuicAsyncStatus TestChannelIDSource::GetChannelIDKey( const string& hostname, std::unique_ptr* channel_id_key, ChannelIDSourceCallback* /*callback*/) { channel_id_key->reset(new TestChannelIDKey(HostnameToKey(hostname))); return QUIC_SUCCESS; } // static EVP_PKEY* TestChannelIDSource::HostnameToKey(const string& hostname) { // In order to generate a deterministic key for a given hostname the // hostname is hashed with SHA-256 and the resulting digest is treated as a // big-endian number. The most-significant bit is cleared to ensure that // the resulting value is less than the order of the group and then it's // taken as a private key. Given the private key, the public key is // calculated with a group multiplication. SHA256_CTX sha256; SHA256_Init(&sha256); SHA256_Update(&sha256, hostname.data(), hostname.size()); unsigned char digest[SHA256_DIGEST_LENGTH]; SHA256_Final(digest, &sha256); // Ensure that the digest is less than the order of the P-256 group by // clearing the most-significant bit. digest[0] &= 0x7f; bssl::UniquePtr k(BN_new()); CHECK(BN_bin2bn(digest, sizeof(digest), k.get()) != nullptr); bssl::UniquePtr p256( EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); CHECK(p256); bssl::UniquePtr ecdsa_key(EC_KEY_new()); CHECK(ecdsa_key && EC_KEY_set_group(ecdsa_key.get(), p256.get())); bssl::UniquePtr point(EC_POINT_new(p256.get())); CHECK(EC_POINT_mul(p256.get(), point.get(), k.get(), nullptr, nullptr, nullptr)); EC_KEY_set_private_key(ecdsa_key.get(), k.get()); EC_KEY_set_public_key(ecdsa_key.get(), point.get()); bssl::UniquePtr pkey(EVP_PKEY_new()); // EVP_PKEY_set1_EC_KEY takes a reference so no |release| here. EVP_PKEY_set1_EC_KEY(pkey.get(), ecdsa_key.get()); return pkey.release(); } namespace crypto_test_utils { namespace { // CryptoFramerVisitor is a framer visitor that records handshake messages. class CryptoFramerVisitor : public CryptoFramerVisitorInterface { public: CryptoFramerVisitor() : error_(false) {} void OnError(CryptoFramer* framer) override { error_ = true; } void OnHandshakeMessage(const CryptoHandshakeMessage& message) override { messages_.push_back(message); } bool error() const { return error_; } const std::vector& messages() const { return messages_; } private: bool error_; std::vector messages_; }; // HexChar parses |c| as a hex character. If valid, it sets |*value| to the // value of the hex character and returns true. Otherwise it returns false. bool HexChar(char c, uint8_t* value) { if (c >= '0' && c <= '9') { *value = c - '0'; return true; } if (c >= 'a' && c <= 'f') { *value = c - 'a' + 10; return true; } if (c >= 'A' && c <= 'F') { *value = c - 'A' + 10; return true; } return false; } // A ChannelIDSource that works in asynchronous mode unless the |callback| // argument to GetChannelIDKey is nullptr. class AsyncTestChannelIDSource : public ChannelIDSource, public CallbackSource { public: // Takes ownership of |sync_source|, a synchronous ChannelIDSource. explicit AsyncTestChannelIDSource(ChannelIDSource* sync_source) : sync_source_(sync_source) {} ~AsyncTestChannelIDSource() override {} // ChannelIDSource implementation. QuicAsyncStatus GetChannelIDKey(const string& hostname, std::unique_ptr* channel_id_key, ChannelIDSourceCallback* callback) override { // Synchronous mode. if (!callback) { return sync_source_->GetChannelIDKey(hostname, channel_id_key, nullptr); } // Asynchronous mode. QuicAsyncStatus status = sync_source_->GetChannelIDKey(hostname, &channel_id_key_, nullptr); if (status != QUIC_SUCCESS) { return QUIC_FAILURE; } callback_.reset(callback); return QUIC_PENDING; } // CallbackSource implementation. void RunPendingCallbacks() override { if (callback_.get()) { callback_->Run(&channel_id_key_); callback_.reset(); } } private: std::unique_ptr sync_source_; std::unique_ptr callback_; std::unique_ptr channel_id_key_; }; } // anonymous namespace FakeServerOptions::FakeServerOptions() {} FakeServerOptions::~FakeServerOptions() {} FakeClientOptions::FakeClientOptions() : channel_id_enabled(false), channel_id_source_async(false) {} FakeClientOptions::~FakeClientOptions() {} namespace { // This class is used by GenerateFullCHLO() to extract SCID and STK from // REJ/SREJ and to construct a full CHLO with these fields and given inchoate // CHLO. class FullChloGenerator { public: FullChloGenerator( QuicCryptoServerConfig* crypto_config, QuicSocketAddress server_addr, QuicSocketAddress client_addr, const QuicClock* clock, QuicReferenceCountedPointer signed_config, QuicCompressedCertsCache* compressed_certs_cache, CryptoHandshakeMessage* out) : crypto_config_(crypto_config), server_addr_(server_addr), client_addr_(client_addr), clock_(clock), signed_config_(signed_config), compressed_certs_cache_(compressed_certs_cache), out_(out), params_(new QuicCryptoNegotiatedParameters) {} class ValidateClientHelloCallback : public ValidateClientHelloResultCallback { public: explicit ValidateClientHelloCallback(FullChloGenerator* generator) : generator_(generator) {} void Run(QuicReferenceCountedPointer< ValidateClientHelloResultCallback::Result> result, std::unique_ptr /* details */) override { generator_->ValidateClientHelloDone(std::move(result)); } private: FullChloGenerator* generator_; }; std::unique_ptr GetValidateClientHelloCallback() { return std::unique_ptr( new ValidateClientHelloCallback(this)); } private: void ValidateClientHelloDone( QuicReferenceCountedPointer result) { result_ = result; crypto_config_->ProcessClientHello( result_, /*reject_only=*/false, /*connection_id=*/1, server_addr_, client_addr_, AllSupportedTransportVersions().front(), AllSupportedTransportVersions(), /*use_stateless_rejects=*/true, /*server_designated_connection_id=*/0, clock_, QuicRandom::GetInstance(), compressed_certs_cache_, params_, signed_config_, /*total_framing_overhead=*/50, kDefaultMaxPacketSize, GetProcessClientHelloCallback()); } class ProcessClientHelloCallback : public ProcessClientHelloResultCallback { public: explicit ProcessClientHelloCallback(FullChloGenerator* generator) : generator_(generator) {} void Run( QuicErrorCode error, const string& error_details, std::unique_ptr message, std::unique_ptr diversification_nonce, std::unique_ptr proof_source_details) override { generator_->ProcessClientHelloDone(std::move(message)); } private: FullChloGenerator* generator_; }; std::unique_ptr GetProcessClientHelloCallback() { return std::unique_ptr( new ProcessClientHelloCallback(this)); } void ProcessClientHelloDone(std::unique_ptr rej) { // Verify output is a REJ or SREJ. EXPECT_THAT(rej->tag(), testing::AnyOf(testing::Eq(kSREJ), testing::Eq(kREJ))); VLOG(1) << "Extract valid STK and SCID from\n" << rej->DebugString(Perspective::IS_SERVER); QuicStringPiece srct; ASSERT_TRUE(rej->GetStringPiece(kSourceAddressTokenTag, &srct)); QuicStringPiece scfg; ASSERT_TRUE(rej->GetStringPiece(kSCFG, &scfg)); std::unique_ptr server_config( CryptoFramer::ParseMessage(scfg, Perspective::IS_SERVER)); QuicStringPiece scid; ASSERT_TRUE(server_config->GetStringPiece(kSCID, &scid)); *out_ = result_->client_hello; out_->SetStringPiece(kSCID, scid); out_->SetStringPiece(kSourceAddressTokenTag, srct); uint64_t xlct = LeafCertHashForTesting(); out_->SetValue(kXLCT, xlct); } protected: QuicCryptoServerConfig* crypto_config_; QuicSocketAddress server_addr_; QuicSocketAddress client_addr_; const QuicClock* clock_; QuicReferenceCountedPointer signed_config_; QuicCompressedCertsCache* compressed_certs_cache_; CryptoHandshakeMessage* out_; QuicReferenceCountedPointer params_; QuicReferenceCountedPointer result_; }; } // namespace int HandshakeWithFakeServer(QuicConfig* server_quic_config, MockQuicConnectionHelper* helper, MockAlarmFactory* alarm_factory, PacketSavingConnection* client_conn, QuicCryptoClientStream* client, const FakeServerOptions& options) { PacketSavingConnection* server_conn = new PacketSavingConnection(helper, alarm_factory, Perspective::IS_SERVER, client_conn->supported_versions()); QuicCryptoServerConfig crypto_config(QuicCryptoServerConfig::TESTING, QuicRandom::GetInstance(), ProofSourceForTesting()); QuicCompressedCertsCache compressed_certs_cache( QuicCompressedCertsCache::kQuicCompressedCertsCacheSize); SetupCryptoServerConfigForTest(server_conn->clock(), server_conn->random_generator(), &crypto_config, options); TestQuicSpdyServerSession server_session(server_conn, *server_quic_config, &crypto_config, &compressed_certs_cache); EXPECT_CALL(*server_session.helper(), CanAcceptClientHello(testing::_, testing::_, testing::_)) .Times(testing::AnyNumber()); EXPECT_CALL(*server_session.helper(), GenerateConnectionIdForReject(testing::_)) .Times(testing::AnyNumber()); EXPECT_CALL(*server_conn, OnCanWrite()).Times(testing::AnyNumber()); EXPECT_CALL(*client_conn, OnCanWrite()).Times(testing::AnyNumber()); // The client's handshake must have been started already. CHECK_NE(0u, client_conn->encrypted_packets_.size()); CommunicateHandshakeMessages(client_conn, client, server_conn, server_session.GetMutableCryptoStream()); CompareClientAndServerKeys(client, server_session.GetMutableCryptoStream()); return client->num_sent_client_hellos(); } int HandshakeWithFakeClient(MockQuicConnectionHelper* helper, MockAlarmFactory* alarm_factory, PacketSavingConnection* server_conn, QuicCryptoServerStream* server, const QuicServerId& server_id, const FakeClientOptions& options) { PacketSavingConnection* client_conn = new PacketSavingConnection(helper, alarm_factory, Perspective::IS_CLIENT); // Advance the time, because timers do not like uninitialized times. client_conn->AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicCryptoClientConfig crypto_config(ProofVerifierForTesting()); AsyncTestChannelIDSource* async_channel_id_source = nullptr; if (options.channel_id_enabled) { ChannelIDSource* source = ChannelIDSourceForTesting(); if (options.channel_id_source_async) { async_channel_id_source = new AsyncTestChannelIDSource(source); source = async_channel_id_source; } crypto_config.SetChannelIDSource(source); } if (!options.token_binding_params.empty()) { crypto_config.tb_key_params = options.token_binding_params; } TestQuicSpdyClientSession client_session(client_conn, DefaultQuicConfig(), server_id, &crypto_config); EXPECT_CALL(client_session, OnProofValid(testing::_)) .Times(testing::AnyNumber()); EXPECT_CALL(client_session, OnProofVerifyDetailsAvailable(testing::_)) .Times(testing::AnyNumber()); EXPECT_CALL(*client_conn, OnCanWrite()).Times(testing::AnyNumber()); client_session.GetMutableCryptoStream()->CryptoConnect(); CHECK_EQ(1u, client_conn->encrypted_packets_.size()); CommunicateHandshakeMessagesAndRunCallbacks( client_conn, client_session.GetMutableCryptoStream(), server_conn, server, async_channel_id_source); if (server->handshake_confirmed() && server->encryption_established()) { CompareClientAndServerKeys(client_session.GetMutableCryptoStream(), server); if (options.channel_id_enabled) { std::unique_ptr channel_id_key; QuicAsyncStatus status = crypto_config.channel_id_source()->GetChannelIDKey( server_id.host(), &channel_id_key, nullptr); EXPECT_EQ(QUIC_SUCCESS, status); EXPECT_EQ(channel_id_key->SerializeKey(), server->crypto_negotiated_params().channel_id); EXPECT_EQ( options.channel_id_source_async, client_session.GetCryptoStream()->WasChannelIDSourceCallbackRun()); } } return client_session.GetCryptoStream()->num_sent_client_hellos(); } void SetupCryptoServerConfigForTest(const QuicClock* clock, QuicRandom* rand, QuicCryptoServerConfig* crypto_config, const FakeServerOptions& fake_options) { QuicCryptoServerConfig::ConfigOptions options; options.channel_id_enabled = true; options.token_binding_params = fake_options.token_binding_params; std::unique_ptr scfg( crypto_config->AddDefaultConfig(rand, clock, options)); } void SendHandshakeMessageToStream(QuicCryptoStream* stream, const CryptoHandshakeMessage& message, Perspective perspective) { const QuicData& data = message.GetSerialized(perspective); QuicStreamFrame frame(kCryptoStreamId, false, stream->stream_bytes_read(), data.AsStringPiece()); stream->OnStreamFrame(frame); } void CommunicateHandshakeMessages(PacketSavingConnection* client_conn, QuicCryptoStream* client, PacketSavingConnection* server_conn, QuicCryptoStream* server) { CommunicateHandshakeMessagesAndRunCallbacks(client_conn, client, server_conn, server, nullptr); } void CommunicateHandshakeMessagesAndRunCallbacks( PacketSavingConnection* client_conn, QuicCryptoStream* client, PacketSavingConnection* server_conn, QuicCryptoStream* server, CallbackSource* callback_source) { size_t client_i = 0, server_i = 0; while (!client->handshake_confirmed()) { ASSERT_GT(client_conn->encrypted_packets_.size(), client_i); QUIC_LOG(INFO) << "Processing " << client_conn->encrypted_packets_.size() - client_i << " packets client->server"; MovePackets(client_conn, &client_i, server, server_conn, Perspective::IS_SERVER); if (callback_source) { callback_source->RunPendingCallbacks(); } ASSERT_GT(server_conn->encrypted_packets_.size(), server_i); QUIC_LOG(INFO) << "Processing " << server_conn->encrypted_packets_.size() - server_i << " packets server->client"; MovePackets(server_conn, &server_i, client, client_conn, Perspective::IS_CLIENT); if (callback_source) { callback_source->RunPendingCallbacks(); } } } std::pair AdvanceHandshake(PacketSavingConnection* client_conn, QuicCryptoStream* client, size_t client_i, PacketSavingConnection* server_conn, QuicCryptoStream* server, size_t server_i) { QUIC_LOG(INFO) << "Processing " << client_conn->encrypted_packets_.size() - client_i << " packets client->server"; MovePackets(client_conn, &client_i, server, server_conn, Perspective::IS_SERVER); QUIC_LOG(INFO) << "Processing " << server_conn->encrypted_packets_.size() - server_i << " packets server->client"; if (server_conn->encrypted_packets_.size() - server_i == 2) { QUIC_LOG(INFO) << "here"; } MovePackets(server_conn, &server_i, client, client_conn, Perspective::IS_CLIENT); return std::make_pair(client_i, server_i); } string GetValueForTag(const CryptoHandshakeMessage& message, QuicTag tag) { QuicTagValueMap::const_iterator it = message.tag_value_map().find(tag); if (it == message.tag_value_map().end()) { return string(); } return it->second; } uint64_t LeafCertHashForTesting() { QuicReferenceCountedPointer chain; QuicSocketAddress server_address; QuicCryptoProof proof; std::unique_ptr proof_source(ProofSourceForTesting()); class Callback : public ProofSource::Callback { public: Callback(bool* ok, QuicReferenceCountedPointer* chain) : ok_(ok), chain_(chain) {} void Run(bool ok, const QuicReferenceCountedPointer& chain, const QuicCryptoProof& /* proof */, std::unique_ptr /* details */) override { *ok_ = ok; *chain_ = chain; } private: bool* ok_; QuicReferenceCountedPointer* chain_; }; // Note: relies on the callback being invoked synchronously bool ok = false; proof_source->GetProof( server_address, "", "", AllSupportedTransportVersions().front(), "", std::unique_ptr(new Callback(&ok, &chain))); if (!ok || chain->certs.empty()) { DCHECK(false) << "Proof generation failed"; return 0; } return QuicUtils::FNV1a_64_Hash(chain->certs.at(0)); } class MockCommonCertSets : public CommonCertSets { public: MockCommonCertSets(QuicStringPiece cert, uint64_t hash, uint32_t index) : cert_(cert.as_string()), hash_(hash), index_(index) {} QuicStringPiece GetCommonHashes() const override { QUIC_BUG << "not implemented"; return QuicStringPiece(); } QuicStringPiece GetCert(uint64_t hash, uint32_t index) const override { if (hash == hash_ && index == index_) { return cert_; } return QuicStringPiece(); } bool MatchCert(QuicStringPiece cert, QuicStringPiece common_set_hashes, uint64_t* out_hash, uint32_t* out_index) const override { if (cert != cert_) { return false; } if (common_set_hashes.size() % sizeof(uint64_t) != 0) { return false; } bool client_has_set = false; for (size_t i = 0; i < common_set_hashes.size(); i += sizeof(uint64_t)) { uint64_t hash; memcpy(&hash, common_set_hashes.data() + i, sizeof(hash)); if (hash == hash_) { client_has_set = true; break; } } if (!client_has_set) { return false; } *out_hash = hash_; *out_index = index_; return true; } private: const string cert_; const uint64_t hash_; const uint32_t index_; }; CommonCertSets* MockCommonCertSets(QuicStringPiece cert, uint64_t hash, uint32_t index) { return new class MockCommonCertSets(cert, hash, index); } void FillInDummyReject(CryptoHandshakeMessage* rej, bool reject_is_stateless) { if (reject_is_stateless) { rej->set_tag(kSREJ); } else { rej->set_tag(kREJ); } // Minimum SCFG that passes config validation checks. // clang-format off unsigned char scfg[] = { // SCFG 0x53, 0x43, 0x46, 0x47, // num entries 0x01, 0x00, // padding 0x00, 0x00, // EXPY 0x45, 0x58, 0x50, 0x59, // EXPY end offset 0x08, 0x00, 0x00, 0x00, // Value '1', '2', '3', '4', '5', '6', '7', '8' }; // clang-format on rej->SetValue(kSCFG, scfg); rej->SetStringPiece(kServerNonceTag, "SERVER_NONCE"); int64_t ttl = 2 * 24 * 60 * 60; rej->SetValue(kSTTL, ttl); std::vector reject_reasons; reject_reasons.push_back(CLIENT_NONCE_INVALID_FAILURE); rej->SetVector(kRREJ, reject_reasons); } void CompareClientAndServerKeys(QuicCryptoClientStream* client, QuicCryptoServerStream* server) { QuicFramer* client_framer = QuicConnectionPeer::GetFramer( QuicStreamPeer::session(client)->connection()); QuicFramer* server_framer = QuicConnectionPeer::GetFramer( QuicStreamPeer::session(server)->connection()); const QuicEncrypter* client_encrypter( QuicFramerPeer::GetEncrypter(client_framer, ENCRYPTION_INITIAL)); const QuicDecrypter* client_decrypter( QuicStreamPeer::session(client)->connection()->decrypter()); const QuicEncrypter* client_forward_secure_encrypter( QuicFramerPeer::GetEncrypter(client_framer, ENCRYPTION_FORWARD_SECURE)); const QuicDecrypter* client_forward_secure_decrypter( QuicStreamPeer::session(client)->connection()->alternative_decrypter()); const QuicEncrypter* server_encrypter( QuicFramerPeer::GetEncrypter(server_framer, ENCRYPTION_INITIAL)); const QuicDecrypter* server_decrypter( QuicStreamPeer::session(server)->connection()->decrypter()); const QuicEncrypter* server_forward_secure_encrypter( QuicFramerPeer::GetEncrypter(server_framer, ENCRYPTION_FORWARD_SECURE)); const QuicDecrypter* server_forward_secure_decrypter( QuicStreamPeer::session(server)->connection()->alternative_decrypter()); QuicStringPiece client_encrypter_key = client_encrypter->GetKey(); QuicStringPiece client_encrypter_iv = client_encrypter->GetNoncePrefix(); QuicStringPiece client_decrypter_key = client_decrypter->GetKey(); QuicStringPiece client_decrypter_iv = client_decrypter->GetNoncePrefix(); QuicStringPiece client_forward_secure_encrypter_key = client_forward_secure_encrypter->GetKey(); QuicStringPiece client_forward_secure_encrypter_iv = client_forward_secure_encrypter->GetNoncePrefix(); QuicStringPiece client_forward_secure_decrypter_key = client_forward_secure_decrypter->GetKey(); QuicStringPiece client_forward_secure_decrypter_iv = client_forward_secure_decrypter->GetNoncePrefix(); QuicStringPiece server_encrypter_key = server_encrypter->GetKey(); QuicStringPiece server_encrypter_iv = server_encrypter->GetNoncePrefix(); QuicStringPiece server_decrypter_key = server_decrypter->GetKey(); QuicStringPiece server_decrypter_iv = server_decrypter->GetNoncePrefix(); QuicStringPiece server_forward_secure_encrypter_key = server_forward_secure_encrypter->GetKey(); QuicStringPiece server_forward_secure_encrypter_iv = server_forward_secure_encrypter->GetNoncePrefix(); QuicStringPiece server_forward_secure_decrypter_key = server_forward_secure_decrypter->GetKey(); QuicStringPiece server_forward_secure_decrypter_iv = server_forward_secure_decrypter->GetNoncePrefix(); QuicStringPiece client_subkey_secret = client->crypto_negotiated_params().subkey_secret; QuicStringPiece server_subkey_secret = server->crypto_negotiated_params().subkey_secret; const char kSampleLabel[] = "label"; const char kSampleContext[] = "context"; const size_t kSampleOutputLength = 32; string client_key_extraction; string server_key_extraction; string client_tb_ekm; string server_tb_ekm; EXPECT_TRUE(client->ExportKeyingMaterial(kSampleLabel, kSampleContext, kSampleOutputLength, &client_key_extraction)); EXPECT_TRUE(server->ExportKeyingMaterial(kSampleLabel, kSampleContext, kSampleOutputLength, &server_key_extraction)); EXPECT_TRUE(client->ExportTokenBindingKeyingMaterial(&client_tb_ekm)); EXPECT_TRUE(server->ExportTokenBindingKeyingMaterial(&server_tb_ekm)); CompareCharArraysWithHexError("client write key", client_encrypter_key.data(), client_encrypter_key.length(), server_decrypter_key.data(), server_decrypter_key.length()); CompareCharArraysWithHexError("client write IV", client_encrypter_iv.data(), client_encrypter_iv.length(), server_decrypter_iv.data(), server_decrypter_iv.length()); CompareCharArraysWithHexError("server write key", server_encrypter_key.data(), server_encrypter_key.length(), client_decrypter_key.data(), client_decrypter_key.length()); CompareCharArraysWithHexError("server write IV", server_encrypter_iv.data(), server_encrypter_iv.length(), client_decrypter_iv.data(), client_decrypter_iv.length()); CompareCharArraysWithHexError("client forward secure write key", client_forward_secure_encrypter_key.data(), client_forward_secure_encrypter_key.length(), server_forward_secure_decrypter_key.data(), server_forward_secure_decrypter_key.length()); CompareCharArraysWithHexError("client forward secure write IV", client_forward_secure_encrypter_iv.data(), client_forward_secure_encrypter_iv.length(), server_forward_secure_decrypter_iv.data(), server_forward_secure_decrypter_iv.length()); CompareCharArraysWithHexError("server forward secure write key", server_forward_secure_encrypter_key.data(), server_forward_secure_encrypter_key.length(), client_forward_secure_decrypter_key.data(), client_forward_secure_decrypter_key.length()); CompareCharArraysWithHexError("server forward secure write IV", server_forward_secure_encrypter_iv.data(), server_forward_secure_encrypter_iv.length(), client_forward_secure_decrypter_iv.data(), client_forward_secure_decrypter_iv.length()); CompareCharArraysWithHexError("subkey secret", client_subkey_secret.data(), client_subkey_secret.length(), server_subkey_secret.data(), server_subkey_secret.length()); CompareCharArraysWithHexError( "sample key extraction", client_key_extraction.data(), client_key_extraction.length(), server_key_extraction.data(), server_key_extraction.length()); CompareCharArraysWithHexError("token binding key extraction", client_tb_ekm.data(), client_tb_ekm.length(), server_tb_ekm.data(), server_tb_ekm.length()); } QuicTag ParseTag(const char* tagstr) { const size_t len = strlen(tagstr); CHECK_NE(0u, len); QuicTag tag = 0; if (tagstr[0] == '#') { CHECK_EQ(static_cast(1 + 2 * 4), len); tagstr++; for (size_t i = 0; i < 8; i++) { tag <<= 4; uint8_t v = 0; CHECK(HexChar(tagstr[i], &v)); tag |= v; } return tag; } CHECK_LE(len, 4u); for (size_t i = 0; i < 4; i++) { tag >>= 8; if (i < len) { tag |= static_cast(tagstr[i]) << 24; } } return tag; } CryptoHandshakeMessage CreateCHLO( std::vector> tags_and_values) { return CreateCHLO(tags_and_values, -1); } CryptoHandshakeMessage CreateCHLO( std::vector> tags_and_values, int minimum_size_bytes) { CryptoHandshakeMessage msg; msg.set_tag(MakeQuicTag('C', 'H', 'L', 'O')); if (minimum_size_bytes > 0) { msg.set_minimum_size(minimum_size_bytes); } for (const auto& tag_and_value : tags_and_values) { const string& tag = tag_and_value.first; const string& value = tag_and_value.second; const QuicTag quic_tag = ParseTag(tag.c_str()); size_t value_len = value.length(); if (value_len > 0 && value[0] == '#') { // This is ascii encoded hex. string hex_value = QuicTextUtils::HexDecode(QuicStringPiece(&value[1])); msg.SetStringPiece(quic_tag, hex_value); continue; } msg.SetStringPiece(quic_tag, value); } // The CryptoHandshakeMessage needs to be serialized and parsed to ensure // that any padding is included. std::unique_ptr bytes( CryptoFramer::ConstructHandshakeMessage(msg, Perspective::IS_CLIENT)); std::unique_ptr parsed(CryptoFramer::ParseMessage( bytes->AsStringPiece(), Perspective::IS_CLIENT)); CHECK(parsed.get()); return *parsed; } ChannelIDSource* ChannelIDSourceForTesting() { return new TestChannelIDSource(); } void MovePackets(PacketSavingConnection* source_conn, size_t* inout_packet_index, QuicCryptoStream* dest_stream, PacketSavingConnection* dest_conn, Perspective dest_perspective) { SimpleQuicFramer framer(source_conn->supported_versions(), dest_perspective); CryptoFramer crypto_framer; CryptoFramerVisitor crypto_visitor; // In order to properly test the code we need to perform encryption and // decryption so that the crypters latch when expected. The crypters are in // |dest_conn|, but we don't want to try and use them there. Instead we swap // them into |framer|, perform the decryption with them, and then swap ther // back. QuicConnectionPeer::SwapCrypters(dest_conn, framer.framer()); crypto_framer.set_visitor(&crypto_visitor); size_t index = *inout_packet_index; for (; index < source_conn->encrypted_packets_.size(); index++) { if (!framer.ProcessPacket(*source_conn->encrypted_packets_[index])) { // The framer will be unable to decrypt forward-secure packets sent after // the handshake is complete. Don't treat them as handshake packets. break; } for (const auto& stream_frame : framer.stream_frames()) { ASSERT_TRUE(crypto_framer.ProcessInput( QuicStringPiece(stream_frame->data_buffer, stream_frame->data_length), dest_perspective)); ASSERT_FALSE(crypto_visitor.error()); } QuicConnectionPeer::SetCurrentPacket( dest_conn, source_conn->encrypted_packets_[index]->AsStringPiece()); } *inout_packet_index = index; QuicConnectionPeer::SwapCrypters(dest_conn, framer.framer()); ASSERT_EQ(0u, crypto_framer.InputBytesRemaining()); for (const CryptoHandshakeMessage& message : crypto_visitor.messages()) { SendHandshakeMessageToStream(dest_stream, message, dest_perspective == Perspective::IS_SERVER ? Perspective::IS_CLIENT : Perspective::IS_SERVER); } QuicConnectionPeer::SetCurrentPacket(dest_conn, QuicStringPiece(nullptr, 0)); } CryptoHandshakeMessage GenerateDefaultInchoateCHLO( const QuicClock* clock, QuicTransportVersion version, QuicCryptoServerConfig* crypto_config) { // clang-format off return CreateCHLO( {{"PDMD", "X509"}, {"AEAD", "AESG"}, {"KEXS", "C255"}, {"PUBS", GenerateClientPublicValuesHex().c_str()}, {"NONC", GenerateClientNonceHex(clock, crypto_config).c_str()}, {"VER\0", QuicVersionLabelToString( QuicVersionToQuicVersionLabel(version)).c_str()}}, kClientHelloMinimumSize); // clang-format on } string GenerateClientNonceHex(const QuicClock* clock, QuicCryptoServerConfig* crypto_config) { QuicCryptoServerConfig::ConfigOptions old_config_options; QuicCryptoServerConfig::ConfigOptions new_config_options; old_config_options.id = "old-config-id"; delete crypto_config->AddDefaultConfig(QuicRandom::GetInstance(), clock, old_config_options); std::unique_ptr primary_config( crypto_config->GenerateConfig(QuicRandom::GetInstance(), clock, new_config_options)); primary_config->set_primary_time(clock->WallNow().ToUNIXSeconds()); std::unique_ptr msg( crypto_config->AddConfig(std::move(primary_config), clock->WallNow())); QuicStringPiece orbit; CHECK(msg->GetStringPiece(kORBT, &orbit)); string nonce; CryptoUtils::GenerateNonce( clock->WallNow(), QuicRandom::GetInstance(), QuicStringPiece(reinterpret_cast(orbit.data()), sizeof(orbit.size())), &nonce); return ("#" + QuicTextUtils::HexEncode(nonce)); } string GenerateClientPublicValuesHex() { char public_value[32]; memset(public_value, 42, sizeof(public_value)); return ("#" + QuicTextUtils::HexEncode(public_value, sizeof(public_value))); } void GenerateFullCHLO(const CryptoHandshakeMessage& inchoate_chlo, QuicCryptoServerConfig* crypto_config, QuicSocketAddress server_addr, QuicSocketAddress client_addr, QuicTransportVersion version, const QuicClock* clock, QuicReferenceCountedPointer proof, QuicCompressedCertsCache* compressed_certs_cache, CryptoHandshakeMessage* out) { // Pass a inchoate CHLO. FullChloGenerator generator(crypto_config, server_addr, client_addr, clock, proof, compressed_certs_cache, out); crypto_config->ValidateClientHello( inchoate_chlo, client_addr.host(), server_addr, version, clock, proof, generator.GetValidateClientHelloCallback()); } } // namespace crypto_test_utils } // namespace test } // namespace net