// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Portions of this code based on Mozilla: // (netwerk/cookie/src/nsCookieService.cpp) /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is mozilla.org code. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Daniel Witte (dwitte@stanford.edu) * Michiel van Leeuwen (mvl@exedo.nl) * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "net/cookies/cookie_monster.h" #include #include #include "base/bind.h" #include "base/callback.h" #include "base/location.h" #include "base/logging.h" #include "base/macros.h" #include "base/metrics/field_trial.h" #include "base/metrics/histogram.h" #include "base/single_thread_task_runner.h" #include "base/stl_util.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/threading/thread_task_runner_handle.h" #include "net/base/registry_controlled_domains/registry_controlled_domain.h" #include "net/cookies/canonical_cookie.h" #include "net/cookies/cookie_util.h" #include "net/cookies/parsed_cookie.h" #include "net/ssl/channel_id_service.h" #include "url/origin.h" using base::Time; using base::TimeDelta; using base::TimeTicks; // In steady state, most cookie requests can be satisfied by the in memory // cookie monster store. If the cookie request cannot be satisfied by the in // memory store, the relevant cookies must be fetched from the persistent // store. The task is queued in CookieMonster::tasks_pending_ if it requires // all cookies to be loaded from the backend, or tasks_pending_for_key_ if it // only requires all cookies associated with an eTLD+1. // // On the browser critical paths (e.g. for loading initial web pages in a // session restore) it may take too long to wait for the full load. If a cookie // request is for a specific URL, DoCookieCallbackForURL is called, which // triggers a priority load if the key is not loaded yet by calling // PersistentCookieStore::LoadCookiesForKey. The request is queued in // CookieMonster::tasks_pending_for_key_ and executed upon receiving // notification of key load completion via CookieMonster::OnKeyLoaded(). If // multiple requests for the same eTLD+1 are received before key load // completion, only the first request calls // PersistentCookieStore::LoadCookiesForKey, all subsequent requests are queued // in CookieMonster::tasks_pending_for_key_ and executed upon receiving // notification of key load completion triggered by the first request for the // same eTLD+1. static const int kMinutesInTenYears = 10 * 365 * 24 * 60; namespace { const char kFetchWhenNecessaryName[] = "FetchWhenNecessary"; const char kAlwaysFetchName[] = "AlwaysFetch"; const char kCookieMonsterFetchStrategyName[] = "CookieMonsterFetchStrategy"; void MayeRunDeleteCallback(base::WeakPtr cookie_monster, base::OnceClosure callback) { if (cookie_monster && callback) std::move(callback).Run(); } void MaybeRunCookieCallback(base::OnceClosure callback) { if (callback) std::move(callback).Run(); } template void MaybeRunCookieCallback(base::OnceCallback callback, const T& result) { if (callback) std::move(callback).Run(result); } template void MaybeRunCookieCallback(base::OnceCallback callback, const T& result) { if (callback) std::move(callback).Run(result); } } // namespace namespace net { // See comments at declaration of these variables in cookie_monster.h // for details. const size_t CookieMonster::kDomainMaxCookies = 180; const size_t CookieMonster::kDomainPurgeCookies = 30; const size_t CookieMonster::kMaxCookies = 3300; const size_t CookieMonster::kPurgeCookies = 300; const size_t CookieMonster::kDomainCookiesQuotaLow = 30; const size_t CookieMonster::kDomainCookiesQuotaMedium = 50; const size_t CookieMonster::kDomainCookiesQuotaHigh = kDomainMaxCookies - kDomainPurgeCookies - kDomainCookiesQuotaLow - kDomainCookiesQuotaMedium; const int CookieMonster::kSafeFromGlobalPurgeDays = 30; namespace { // This class owns the CookieStore::CookieChangedCallbackList::Subscription, // thus guaranteeing destruction when it is destroyed. In addition, it // wraps the callback for a particular subscription, guaranteeing that it // won't be run even if a PostTask completes after the subscription has // been destroyed. class CookieMonsterCookieChangedSubscription : public CookieStore::CookieChangedSubscription { public: CookieMonsterCookieChangedSubscription( const CookieStore::CookieChangedCallback& callback) : callback_(callback), weak_ptr_factory_(this) {} ~CookieMonsterCookieChangedSubscription() override = default; void SetCallbackSubscription( std::unique_ptr subscription) { subscription_ = std::move(subscription); } // The returned callback runs the callback passed to the constructor // directly as long as this object hasn't been destroyed. CookieStore::CookieChangedCallback WeakCallback() { return base::Bind(&CookieMonsterCookieChangedSubscription::RunCallback, weak_ptr_factory_.GetWeakPtr()); } private: void RunCallback(const CanonicalCookie& cookie, CookieStore::ChangeCause cause) { callback_.Run(cookie, cause); } const CookieStore::CookieChangedCallback callback_; std::unique_ptr subscription_; base::WeakPtrFactory weak_ptr_factory_; DISALLOW_COPY_AND_ASSIGN(CookieMonsterCookieChangedSubscription); }; bool ContainsControlCharacter(const std::string& s) { for (std::string::const_iterator i = s.begin(); i != s.end(); ++i) { if ((*i >= 0) && (*i <= 31)) return true; } return false; } typedef std::vector CanonicalCookieVector; // Default minimum delay after updating a cookie's LastAccessDate before we // will update it again. const int kDefaultAccessUpdateThresholdSeconds = 60; // Comparator to sort cookies from highest creation date to lowest // creation date. struct OrderByCreationTimeDesc { bool operator()(const CookieMonster::CookieMap::iterator& a, const CookieMonster::CookieMap::iterator& b) const { return a->second->CreationDate() > b->second->CreationDate(); } }; // Constants for use in VLOG const int kVlogPerCookieMonster = 1; const int kVlogGarbageCollection = 5; const int kVlogSetCookies = 7; const int kVlogGetCookies = 9; // Mozilla sorts on the path length (longest first), and then it // sorts by creation time (oldest first). // The RFC says the sort order for the domain attribute is undefined. bool CookieSorter(CanonicalCookie* cc1, CanonicalCookie* cc2) { if (cc1->Path().length() == cc2->Path().length()) return cc1->CreationDate() < cc2->CreationDate(); return cc1->Path().length() > cc2->Path().length(); } bool LRACookieSorter(const CookieMonster::CookieMap::iterator& it1, const CookieMonster::CookieMap::iterator& it2) { if (it1->second->LastAccessDate() != it2->second->LastAccessDate()) return it1->second->LastAccessDate() < it2->second->LastAccessDate(); // Ensure stability for == last access times by falling back to creation. return it1->second->CreationDate() < it2->second->CreationDate(); } // Our strategy to find duplicates is: // (1) Build a map from (cookiename, cookiepath) to // {list of cookies with this signature, sorted by creation time}. // (2) For each list with more than 1 entry, keep the cookie having the // most recent creation time, and delete the others. // // Two cookies are considered equivalent if they have the same domain, // name, and path. struct CookieSignature { public: CookieSignature(const std::string& name, const std::string& domain, const std::string& path) : name(name), domain(domain), path(path) {} // To be a key for a map this class needs to be assignable, copyable, // and have an operator<. The default assignment operator // and copy constructor are exactly what we want. bool operator<(const CookieSignature& cs) const { // Name compare dominates, then domain, then path. int diff = name.compare(cs.name); if (diff != 0) return diff < 0; diff = domain.compare(cs.domain); if (diff != 0) return diff < 0; return path.compare(cs.path) < 0; } std::string name; std::string domain; std::string path; }; // For a CookieItVector iterator range [|it_begin|, |it_end|), // sorts the first |num_sort| elements by LastAccessDate(). void SortLeastRecentlyAccessed(CookieMonster::CookieItVector::iterator it_begin, CookieMonster::CookieItVector::iterator it_end, size_t num_sort) { DCHECK_LE(static_cast(num_sort), it_end - it_begin); std::partial_sort(it_begin, it_begin + num_sort, it_end, LRACookieSorter); } // Given a single cookie vector |cookie_its|, pushs all of the secure cookies in // |cookie_its| into |secure_cookie_its| and all of the non-secure cookies into // |non_secure_cookie_its|. Both |secure_cookie_its| and |non_secure_cookie_its| // must be non-NULL. void SplitCookieVectorIntoSecureAndNonSecure( const CookieMonster::CookieItVector& cookie_its, CookieMonster::CookieItVector* secure_cookie_its, CookieMonster::CookieItVector* non_secure_cookie_its) { DCHECK(secure_cookie_its && non_secure_cookie_its); for (const auto& curit : cookie_its) { if (curit->second->IsSecure()) secure_cookie_its->push_back(curit); else non_secure_cookie_its->push_back(curit); } } bool LowerBoundAccessDateComparator(const CookieMonster::CookieMap::iterator it, const Time& access_date) { return it->second->LastAccessDate() < access_date; } // For a CookieItVector iterator range [|it_begin|, |it_end|) // from a CookieItVector sorted by LastAccessDate(), returns the // first iterator with access date >= |access_date|, or cookie_its_end if this // holds for all. CookieMonster::CookieItVector::iterator LowerBoundAccessDate( const CookieMonster::CookieItVector::iterator its_begin, const CookieMonster::CookieItVector::iterator its_end, const Time& access_date) { return std::lower_bound(its_begin, its_end, access_date, LowerBoundAccessDateComparator); } // Mapping between DeletionCause and CookieStore::ChangeCause; the // mapping also provides a boolean that specifies whether or not an // OnCookieChanged notification ought to be generated. typedef struct ChangeCausePair_struct { CookieStore::ChangeCause cause; bool notify; } ChangeCausePair; const ChangeCausePair kChangeCauseMapping[] = { // DELETE_COOKIE_EXPLICIT {CookieStore::ChangeCause::EXPLICIT, true}, // DELETE_COOKIE_OVERWRITE {CookieStore::ChangeCause::OVERWRITE, true}, // DELETE_COOKIE_EXPIRED {CookieStore::ChangeCause::EXPIRED, true}, // DELETE_COOKIE_EVICTED {CookieStore::ChangeCause::EVICTED, true}, // DELETE_COOKIE_DUPLICATE_IN_BACKING_STORE {CookieStore::ChangeCause::EXPLICIT, false}, // DELETE_COOKIE_DONT_RECORD {CookieStore::ChangeCause::EXPLICIT, false}, // DELETE_COOKIE_EVICTED_DOMAIN {CookieStore::ChangeCause::EVICTED, true}, // DELETE_COOKIE_EVICTED_GLOBAL {CookieStore::ChangeCause::EVICTED, true}, // DELETE_COOKIE_EVICTED_DOMAIN_PRE_SAFE {CookieStore::ChangeCause::EVICTED, true}, // DELETE_COOKIE_EVICTED_DOMAIN_POST_SAFE {CookieStore::ChangeCause::EVICTED, true}, // DELETE_COOKIE_EXPIRED_OVERWRITE {CookieStore::ChangeCause::EXPIRED_OVERWRITE, true}, // DELETE_COOKIE_CONTROL_CHAR {CookieStore::ChangeCause::EVICTED, true}, // DELETE_COOKIE_NON_SECURE {CookieStore::ChangeCause::EVICTED, true}, // DELETE_COOKIE_CREATED_BETWEEN {CookieStore::ChangeCause::EXPLICIT_DELETE_BETWEEN, true}, // DELETE_COOKIE_CREATED_BETWEEN_WITH_PREDICATE {CookieStore::ChangeCause::EXPLICIT_DELETE_PREDICATE, true}, // DELETE_COOKIE_SINGLE {CookieStore::ChangeCause::EXPLICIT_DELETE_SINGLE, true}, // DELETE_COOKIE_CANONICAL {CookieStore::ChangeCause::EXPLICIT_DELETE_CANONICAL, true}, // DELETE_COOKIE_LAST_ENTRY {CookieStore::ChangeCause::EXPLICIT, false}}; void RunAsync(scoped_refptr proxy, const CookieStore::CookieChangedCallback& callback, const CanonicalCookie& cookie, CookieStore::ChangeCause cause) { proxy->PostTask(FROM_HERE, base::Bind(callback, cookie, cause)); } bool IsCookieEligibleForEviction(CookiePriority current_priority_level, bool protect_secure_cookies, const CanonicalCookie* cookie) { if (cookie->Priority() == current_priority_level && protect_secure_cookies) return !cookie->IsSecure(); return cookie->Priority() == current_priority_level; } size_t CountCookiesForPossibleDeletion( CookiePriority priority, const CookieMonster::CookieItVector* cookies, bool protect_secure_cookies) { size_t cookies_count = 0U; for (const auto& cookie : *cookies) { if (cookie->second->Priority() == priority) { if (!protect_secure_cookies || cookie->second->IsSecure()) cookies_count++; } } return cookies_count; } } // namespace CookieMonster::CookieMonster(PersistentCookieStore* store) : CookieMonster( store, nullptr, base::TimeDelta::FromSeconds(kDefaultAccessUpdateThresholdSeconds)) {} CookieMonster::CookieMonster(PersistentCookieStore* store, ChannelIDService* channel_id_service) : CookieMonster( store, channel_id_service, base::TimeDelta::FromSeconds(kDefaultAccessUpdateThresholdSeconds)) {} CookieMonster::CookieMonster(PersistentCookieStore* store, base::TimeDelta last_access_threshold) : CookieMonster(store, nullptr, last_access_threshold) {} CookieMonster::CookieMonster(PersistentCookieStore* store, ChannelIDService* channel_id_service, base::TimeDelta last_access_threshold) : initialized_(false), started_fetching_all_cookies_(false), finished_fetching_all_cookies_(false), fetch_strategy_(kUnknownFetch), seen_global_task_(false), store_(store), last_access_threshold_(last_access_threshold), channel_id_service_(channel_id_service), last_statistic_record_time_(base::Time::Now()), persist_session_cookies_(false), global_hook_map_(std::make_unique()), weak_ptr_factory_(this) { InitializeHistograms(); cookieable_schemes_.insert( cookieable_schemes_.begin(), kDefaultCookieableSchemes, kDefaultCookieableSchemes + kDefaultCookieableSchemesCount); if (channel_id_service_ && store_) { // |store_| can outlive this CookieMonster, but there are no guarantees // about the lifetime of |channel_id_service_| relative to |store_|. The // only guarantee is that |channel_id_service_| will outlive this // CookieMonster. To avoid the PersistentCookieStore retaining a pointer to // the ChannelIDStore via this callback after this CookieMonster is // destroyed, CookieMonster's d'tor sets the callback to a null callback. store_->SetBeforeFlushCallback( base::Bind(&ChannelIDStore::Flush, base::Unretained(channel_id_service_->GetChannelIDStore()))); } } // Asynchronous CookieMonster API void CookieMonster::FlushStore(base::OnceClosure callback) { DCHECK(thread_checker_.CalledOnValidThread()); if (initialized_ && store_.get()) { store_->Flush(std::move(callback)); } else if (callback) { base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, std::move(callback)); } } void CookieMonster::SetForceKeepSessionState() { DCHECK(thread_checker_.CalledOnValidThread()); if (store_) store_->SetForceKeepSessionState(); } void CookieMonster::SetAllCookiesAsync(const CookieList& list, SetCookiesCallback callback) { DoCookieCallback(base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::SetAllCookies, base::Unretained(this), list, std::move(callback))); } void CookieMonster::SetCanonicalCookieAsync( std::unique_ptr cookie, bool secure_source, bool modify_http_only, SetCookiesCallback callback) { DCHECK(cookie->IsCanonical()); // TODO(rdsmith): Switch to DoCookieCallbackForURL (or the equivalent). // This is tricky because we don't have the scheme in this routine // and DoCookieCallbackForURL uses // cookie_util::GetEffectiveDomain(scheme, host) // to generate the database key to block behind. DoCookieCallback(base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::SetCanonicalCookie, base::Unretained(this), std::move(cookie), secure_source, modify_http_only, std::move(callback))); } void CookieMonster::SetCookieWithOptionsAsync(const GURL& url, const std::string& cookie_line, const CookieOptions& options, SetCookiesCallback callback) { DoCookieCallbackForURL( base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::SetCookieWithOptions, base::Unretained(this), url, cookie_line, options, std::move(callback)), url); } void CookieMonster::GetCookiesWithOptionsAsync(const GURL& url, const CookieOptions& options, GetCookiesCallback callback) { DoCookieCallbackForURL( base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::GetCookiesWithOptions, base::Unretained(this), url, options, std::move(callback)), url); } void CookieMonster::GetCookieListWithOptionsAsync( const GURL& url, const CookieOptions& options, GetCookieListCallback callback) { DoCookieCallbackForURL( base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::GetCookieListWithOptions, base::Unretained(this), url, options, std::move(callback)), url); } void CookieMonster::GetAllCookiesAsync(GetCookieListCallback callback) { DoCookieCallback(base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::GetAllCookies, base::Unretained(this), std::move(callback))); } void CookieMonster::DeleteCookieAsync(const GURL& url, const std::string& cookie_name, base::OnceClosure callback) { DoCookieCallbackForURL( base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::DeleteCookie, base::Unretained(this), url, cookie_name, std::move(callback)), url); } void CookieMonster::DeleteCanonicalCookieAsync(const CanonicalCookie& cookie, DeleteCallback callback) { DoCookieCallback(base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::DeleteCanonicalCookie, base::Unretained(this), cookie, std::move(callback))); } void CookieMonster::DeleteAllCreatedBetweenAsync(const Time& delete_begin, const Time& delete_end, DeleteCallback callback) { DoCookieCallback(base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::DeleteAllCreatedBetween, base::Unretained(this), delete_begin, delete_end, std::move(callback))); } void CookieMonster::DeleteAllCreatedBetweenWithPredicateAsync( const Time& delete_begin, const Time& delete_end, const base::Callback& predicate, DeleteCallback callback) { if (predicate.is_null()) { MaybeRunCookieCallback(std::move(callback), 0u); return; } DoCookieCallback(base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::DeleteAllCreatedBetweenWithPredicate, base::Unretained(this), delete_begin, delete_end, predicate, std::move(callback))); } void CookieMonster::DeleteSessionCookiesAsync( CookieStore::DeleteCallback callback) { DoCookieCallback(base::BindOnce( // base::Unretained is safe as DoCookieCallbackForURL stores // the callback on |*this|, so the callback will not outlive // the object. &CookieMonster::DeleteSessionCookies, base::Unretained(this), std::move(callback))); } void CookieMonster::SetCookieableSchemes( const std::vector& schemes) { DCHECK(thread_checker_.CalledOnValidThread()); // Calls to this method will have no effect if made after a WebView or // CookieManager instance has been created. if (initialized_) return; cookieable_schemes_ = schemes; } // This function must be called before the CookieMonster is used. void CookieMonster::SetPersistSessionCookies(bool persist_session_cookies) { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK(!initialized_); persist_session_cookies_ = persist_session_cookies; } bool CookieMonster::IsCookieableScheme(const std::string& scheme) { DCHECK(thread_checker_.CalledOnValidThread()); return base::ContainsValue(cookieable_schemes_, scheme); } const char* const CookieMonster::kDefaultCookieableSchemes[] = {"http", "https", "ws", "wss"}; const int CookieMonster::kDefaultCookieableSchemesCount = arraysize(kDefaultCookieableSchemes); std::unique_ptr CookieMonster::AddCallbackForCookie(const GURL& gurl, const std::string& name, const CookieChangedCallback& callback) { DCHECK(thread_checker_.CalledOnValidThread()); std::pair key(gurl, name); if (hook_map_.count(key) == 0) hook_map_[key] = std::make_unique(); std::unique_ptr sub( std::make_unique(callback)); sub->SetCallbackSubscription(hook_map_[key]->Add(base::Bind( &RunAsync, base::ThreadTaskRunnerHandle::Get(), sub->WeakCallback()))); return std::move(sub); } std::unique_ptr CookieMonster::AddCallbackForAllChanges(const CookieChangedCallback& callback) { DCHECK(thread_checker_.CalledOnValidThread()); std::unique_ptr sub( std::make_unique(callback)); sub->SetCallbackSubscription(global_hook_map_->Add(base::Bind( &RunAsync, base::ThreadTaskRunnerHandle::Get(), sub->WeakCallback()))); return std::move(sub); } bool CookieMonster::IsEphemeral() { return store_.get() == nullptr; } CookieMonster::~CookieMonster() { DCHECK(thread_checker_.CalledOnValidThread()); if (channel_id_service_ && store_) { store_->SetBeforeFlushCallback(base::Closure()); } // TODO(mmenke): Does it really make sense to run // CookieChanged callbacks when the CookieStore is destroyed? for (CookieMap::iterator cookie_it = cookies_.begin(); cookie_it != cookies_.end();) { CookieMap::iterator current_cookie_it = cookie_it; ++cookie_it; InternalDeleteCookie(current_cookie_it, false /* sync_to_store */, DELETE_COOKIE_DONT_RECORD); } } void CookieMonster::GetAllCookies(GetCookieListCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); // This function is being called to scrape the cookie list for management UI // or similar. We shouldn't show expired cookies in this list since it will // just be confusing to users, and this function is called rarely enough (and // is already slow enough) that it's OK to take the time to garbage collect // the expired cookies now. // // Note that this does not prune cookies to be below our limits (if we've // exceeded them) the way that calling GarbageCollect() would. GarbageCollectExpired( Time::Now(), CookieMapItPair(cookies_.begin(), cookies_.end()), NULL); // Copy the CanonicalCookie pointers from the map so that we can use the same // sorter as elsewhere, then copy the result out. std::vector cookie_ptrs; cookie_ptrs.reserve(cookies_.size()); for (const auto& cookie : cookies_) cookie_ptrs.push_back(cookie.second.get()); std::sort(cookie_ptrs.begin(), cookie_ptrs.end(), CookieSorter); CookieList cookie_list; cookie_list.reserve(cookie_ptrs.size()); for (auto* cookie_ptr : cookie_ptrs) cookie_list.push_back(*cookie_ptr); MaybeRunCookieCallback(std::move(callback), cookie_list); } void CookieMonster::GetCookieListWithOptions(const GURL& url, const CookieOptions& options, GetCookieListCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); CookieList cookies; if (HasCookieableScheme(url)) { std::vector cookie_ptrs; FindCookiesForHostAndDomain(url, options, &cookie_ptrs); std::sort(cookie_ptrs.begin(), cookie_ptrs.end(), CookieSorter); cookies.reserve(cookie_ptrs.size()); for (std::vector::const_iterator it = cookie_ptrs.begin(); it != cookie_ptrs.end(); it++) cookies.push_back(**it); } MaybeRunCookieCallback(std::move(callback), cookies); } void CookieMonster::DeleteAllCreatedBetween(const Time& delete_begin, const Time& delete_end, DeleteCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); uint32_t num_deleted = 0; for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) { CookieMap::iterator curit = it; CanonicalCookie* cc = curit->second.get(); ++it; if (cc->CreationDate() >= delete_begin && (delete_end.is_null() || cc->CreationDate() < delete_end)) { InternalDeleteCookie(curit, true, /*sync_to_store*/ DELETE_COOKIE_CREATED_BETWEEN); ++num_deleted; } } FlushStore( base::BindOnce(&MayeRunDeleteCallback, weak_ptr_factory_.GetWeakPtr(), callback ? base::BindOnce(std::move(callback), num_deleted) : base::OnceClosure())); } void CookieMonster::DeleteAllCreatedBetweenWithPredicate( const base::Time& delete_begin, const base::Time& delete_end, const base::Callback& predicate, DeleteCallback callback) { uint32_t num_deleted = 0; for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) { CookieMap::iterator curit = it; CanonicalCookie* cc = curit->second.get(); ++it; if (cc->CreationDate() >= delete_begin && // The assumption that null |delete_end| is equivalent to // Time::Max() is confusing. (delete_end.is_null() || cc->CreationDate() < delete_end) && predicate.Run(*cc)) { InternalDeleteCookie(curit, true, /*sync_to_store*/ DELETE_COOKIE_CREATED_BETWEEN_WITH_PREDICATE); ++num_deleted; } } FlushStore( base::BindOnce(&MayeRunDeleteCallback, weak_ptr_factory_.GetWeakPtr(), callback ? base::BindOnce(std::move(callback), num_deleted) : base::OnceClosure())); } void CookieMonster::SetCookieWithOptions(const GURL& url, const std::string& cookie_line, const CookieOptions& options, SetCookiesCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); if (!HasCookieableScheme(url)) { MaybeRunCookieCallback(std::move(callback), false); return; } SetCookieWithCreationTimeAndOptions(url, cookie_line, Time(), options, std::move(callback)); } void CookieMonster::GetCookiesWithOptions(const GURL& url, const CookieOptions& options, GetCookiesCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); std::string cookie_line; if (HasCookieableScheme(url)) { std::vector cookies; FindCookiesForHostAndDomain(url, options, &cookies); std::sort(cookies.begin(), cookies.end(), CookieSorter); cookie_line = BuildCookieLine(cookies); VLOG(kVlogGetCookies) << "GetCookies() result: " << cookie_line; } MaybeRunCookieCallback(std::move(callback), cookie_line); } void CookieMonster::DeleteCookie(const GURL& url, const std::string& cookie_name, base::OnceClosure callback) { DCHECK(thread_checker_.CalledOnValidThread()); if (!HasCookieableScheme(url)) { // TODO(rdsmith): Would be good to provide a failure indication here. MaybeRunCookieCallback(std::move(callback)); return; } CookieOptions options; options.set_include_httponly(); options.set_same_site_cookie_mode( CookieOptions::SameSiteCookieMode::INCLUDE_STRICT_AND_LAX); // Get the cookies for this host and its domain(s). std::vector cookies; FindCookiesForHostAndDomain(url, options, &cookies); std::set matching_cookies; for (auto* cookie : cookies) { if (cookie->Name() != cookie_name) continue; if (!cookie->IsOnPath(url.path())) continue; matching_cookies.insert(cookie); } for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) { CookieMap::iterator curit = it; ++it; if (matching_cookies.find(curit->second.get()) != matching_cookies.end()) { InternalDeleteCookie(curit, true, DELETE_COOKIE_SINGLE); } } FlushStore(base::BindOnce(&MayeRunDeleteCallback, weak_ptr_factory_.GetWeakPtr(), // No callback null check needed as BindOnce // is not being called and MaybeRunDeleteCallback // has its own check. std::move(callback))); } void CookieMonster::DeleteCanonicalCookie(const CanonicalCookie& cookie, DeleteCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); uint32_t result = 0u; for (CookieMapItPair its = cookies_.equal_range(GetKey(cookie.Domain())); its.first != its.second; ++its.first) { // The creation date acts as the unique index... if (its.first->second->CreationDate() == cookie.CreationDate()) { InternalDeleteCookie(its.first, true, DELETE_COOKIE_CANONICAL); result = 1u; break; } } FlushStore( base::BindOnce(&MayeRunDeleteCallback, weak_ptr_factory_.GetWeakPtr(), callback ? base::BindOnce(std::move(callback), result) : base::OnceClosure())); } void CookieMonster::SetCookieWithCreationTimeForTesting( const GURL& url, const std::string& cookie_line, const base::Time& creation_time, SetCookiesCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK(!store_.get()) << "This method is only to be used by unit-tests."; if (!HasCookieableScheme(url)) { MaybeRunCookieCallback(std::move(callback), false); return; } MarkCookieStoreAsInitialized(); if (ShouldFetchAllCookiesWhenFetchingAnyCookie()) FetchAllCookiesIfNecessary(); return SetCookieWithCreationTimeAndOptions( url, cookie_line, creation_time, CookieOptions(), std::move(callback)); } void CookieMonster::DeleteSessionCookies(DeleteCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); uint32_t num_deleted = 0; for (CookieMap::iterator it = cookies_.begin(); it != cookies_.end();) { CookieMap::iterator curit = it; CanonicalCookie* cc = curit->second.get(); ++it; if (!cc->IsPersistent()) { InternalDeleteCookie(curit, true, /*sync_to_store*/ DELETE_COOKIE_EXPIRED); ++num_deleted; } } FlushStore( base::BindOnce(&MayeRunDeleteCallback, weak_ptr_factory_.GetWeakPtr(), callback ? base::BindOnce(std::move(callback), num_deleted) : base::OnceClosure())); } void CookieMonster::MarkCookieStoreAsInitialized() { DCHECK(thread_checker_.CalledOnValidThread()); initialized_ = true; } void CookieMonster::FetchAllCookiesIfNecessary() { DCHECK(thread_checker_.CalledOnValidThread()); if (store_.get() && !started_fetching_all_cookies_) { started_fetching_all_cookies_ = true; FetchAllCookies(); } } void CookieMonster::FetchAllCookies() { DCHECK(thread_checker_.CalledOnValidThread()); DCHECK(store_.get()) << "Store must exist to initialize"; DCHECK(!finished_fetching_all_cookies_) << "All cookies have already been fetched."; // We bind in the current time so that we can report the wall-clock time for // loading cookies. store_->Load(base::Bind(&CookieMonster::OnLoaded, weak_ptr_factory_.GetWeakPtr(), TimeTicks::Now())); } bool CookieMonster::ShouldFetchAllCookiesWhenFetchingAnyCookie() { DCHECK(thread_checker_.CalledOnValidThread()); if (fetch_strategy_ == kUnknownFetch) { const std::string group_name = base::FieldTrialList::FindFullName(kCookieMonsterFetchStrategyName); if (group_name == kFetchWhenNecessaryName) { fetch_strategy_ = kFetchWhenNecessary; } else if (group_name == kAlwaysFetchName) { fetch_strategy_ = kAlwaysFetch; } else { // The logic in the conditional is redundant, but it makes trials of // the Finch experiment more explicit. fetch_strategy_ = kAlwaysFetch; } } return fetch_strategy_ == kAlwaysFetch; } void CookieMonster::OnLoaded( TimeTicks beginning_time, std::vector> cookies) { DCHECK(thread_checker_.CalledOnValidThread()); StoreLoadedCookies(std::move(cookies)); histogram_time_blocked_on_load_->AddTime(TimeTicks::Now() - beginning_time); // Invoke the task queue of cookie request. InvokeQueue(); } void CookieMonster::OnKeyLoaded( const std::string& key, std::vector> cookies) { DCHECK(thread_checker_.CalledOnValidThread()); StoreLoadedCookies(std::move(cookies)); auto tasks_pending_for_key = tasks_pending_for_key_.find(key); // TODO(mmenke): Can this be turned into a DCHECK? if (tasks_pending_for_key == tasks_pending_for_key_.end()) return; // Run all tasks for the key. Note that running a task can result in multiple // tasks being added to the back of the deque. while (!tasks_pending_for_key->second.empty()) { base::OnceClosure task = std::move(tasks_pending_for_key->second.front()); tasks_pending_for_key->second.pop_front(); std::move(task).Run(); } tasks_pending_for_key_.erase(tasks_pending_for_key); // This has to be done last, in case running a task queues a new task for the // key, to ensure tasks are run in the correct order. keys_loaded_.insert(key); } void CookieMonster::StoreLoadedCookies( std::vector> cookies) { DCHECK(thread_checker_.CalledOnValidThread()); // Even if a key is expired, insert it so it can be garbage collected, // removed, and sync'd. CookieItVector cookies_with_control_chars; for (auto& cookie : cookies) { int64_t cookie_creation_time = cookie->CreationDate().ToInternalValue(); if (creation_times_.insert(cookie_creation_time).second) { CanonicalCookie* cookie_ptr = cookie.get(); CookieMap::iterator inserted = InternalInsertCookie( GetKey(cookie_ptr->Domain()), std::move(cookie), false); const Time cookie_access_time(cookie_ptr->LastAccessDate()); if (earliest_access_time_.is_null() || cookie_access_time < earliest_access_time_) earliest_access_time_ = cookie_access_time; if (ContainsControlCharacter(cookie_ptr->Name()) || ContainsControlCharacter(cookie_ptr->Value())) { cookies_with_control_chars.push_back(inserted); } } else { LOG(ERROR) << base::StringPrintf( "Found cookies with duplicate creation " "times in backing store: " "{name='%s', domain='%s', path='%s'}", cookie->Name().c_str(), cookie->Domain().c_str(), cookie->Path().c_str()); } } // Any cookies that contain control characters that we have loaded from the // persistent store should be deleted. See http://crbug.com/238041. for (CookieItVector::iterator it = cookies_with_control_chars.begin(); it != cookies_with_control_chars.end();) { CookieItVector::iterator curit = it; ++it; InternalDeleteCookie(*curit, true, DELETE_COOKIE_CONTROL_CHAR); } // After importing cookies from the PersistentCookieStore, verify that // none of our other constraints are violated. // In particular, the backing store might have given us duplicate cookies. // This method could be called multiple times due to priority loading, thus // cookies loaded in previous runs will be validated again, but this is OK // since they are expected to be much fewer than total DB. EnsureCookiesMapIsValid(); } void CookieMonster::InvokeQueue() { DCHECK(thread_checker_.CalledOnValidThread()); // Move all per-key tasks into the global queue, if there are any. This is // protection about a race where the store learns about all cookies loading // before it learned about the cookies for a key loading. // Needed to prevent any recursively queued tasks from going back into the // per-key queues. seen_global_task_ = true; for (auto& tasks_for_key : tasks_pending_for_key_) { tasks_pending_.insert(tasks_pending_.begin(), std::make_move_iterator(tasks_for_key.second.begin()), std::make_move_iterator(tasks_for_key.second.end())); } tasks_pending_for_key_.clear(); while (!tasks_pending_.empty()) { base::OnceClosure request_task = std::move(tasks_pending_.front()); tasks_pending_.pop_front(); std::move(request_task).Run(); } DCHECK(tasks_pending_for_key_.empty()); finished_fetching_all_cookies_ = true; creation_times_.clear(); keys_loaded_.clear(); } void CookieMonster::EnsureCookiesMapIsValid() { DCHECK(thread_checker_.CalledOnValidThread()); // Iterate through all the of the cookies, grouped by host. CookieMap::iterator prev_range_end = cookies_.begin(); while (prev_range_end != cookies_.end()) { CookieMap::iterator cur_range_begin = prev_range_end; const std::string key = cur_range_begin->first; // Keep a copy. CookieMap::iterator cur_range_end = cookies_.upper_bound(key); prev_range_end = cur_range_end; // Ensure no equivalent cookies for this host. TrimDuplicateCookiesForKey(key, cur_range_begin, cur_range_end); } } void CookieMonster::TrimDuplicateCookiesForKey(const std::string& key, CookieMap::iterator begin, CookieMap::iterator end) { DCHECK(thread_checker_.CalledOnValidThread()); // Set of cookies ordered by creation time. typedef std::set CookieSet; // Helper map we populate to find the duplicates. typedef std::map EquivalenceMap; EquivalenceMap equivalent_cookies; // The number of duplicate cookies that have been found. int num_duplicates = 0; // Iterate through all of the cookies in our range, and insert them into // the equivalence map. for (CookieMap::iterator it = begin; it != end; ++it) { DCHECK_EQ(key, it->first); CanonicalCookie* cookie = it->second.get(); CookieSignature signature(cookie->Name(), cookie->Domain(), cookie->Path()); CookieSet& set = equivalent_cookies[signature]; // We found a duplicate! if (!set.empty()) num_duplicates++; // We save the iterator into |cookies_| rather than the actual cookie // pointer, since we may need to delete it later. bool insert_success = set.insert(it).second; DCHECK(insert_success) << "Duplicate creation times found in duplicate cookie name scan."; } // If there were no duplicates, we are done! if (num_duplicates == 0) return; // Make sure we find everything below that we did above. int num_duplicates_found = 0; // Otherwise, delete all the duplicate cookies, both from our in-memory store // and from the backing store. for (EquivalenceMap::iterator it = equivalent_cookies.begin(); it != equivalent_cookies.end(); ++it) { const CookieSignature& signature = it->first; CookieSet& dupes = it->second; if (dupes.size() <= 1) continue; // This cookiename/path has no duplicates. num_duplicates_found += dupes.size() - 1; // Since |dups| is sorted by creation time (descending), the first cookie // is the most recent one, so we will keep it. The rest are duplicates. dupes.erase(dupes.begin()); LOG(ERROR) << base::StringPrintf( "Found %d duplicate cookies for host='%s', " "with {name='%s', domain='%s', path='%s'}", static_cast(dupes.size()), key.c_str(), signature.name.c_str(), signature.domain.c_str(), signature.path.c_str()); // Remove all the cookies identified by |dupes|. It is valid to delete our // list of iterators one at a time, since |cookies_| is a multimap (they // don't invalidate existing iterators following deletion). for (CookieSet::iterator dupes_it = dupes.begin(); dupes_it != dupes.end(); ++dupes_it) { InternalDeleteCookie(*dupes_it, true, DELETE_COOKIE_DUPLICATE_IN_BACKING_STORE); } } DCHECK_EQ(num_duplicates, num_duplicates_found); } void CookieMonster::FindCookiesForHostAndDomain( const GURL& url, const CookieOptions& options, std::vector* cookies) { DCHECK(thread_checker_.CalledOnValidThread()); const Time current_time(CurrentTime()); // Probe to save statistics relatively frequently. We do it here rather // than in the set path as many websites won't set cookies, and we // want to collect statistics whenever the browser's being used. RecordPeriodicStats(current_time); // Can just dispatch to FindCookiesForKey const std::string key(GetKey(url.host())); FindCookiesForKey(key, url, options, current_time, cookies); } void CookieMonster::FindCookiesForKey(const std::string& key, const GURL& url, const CookieOptions& options, const Time& current, std::vector* cookies) { DCHECK(thread_checker_.CalledOnValidThread()); for (CookieMapItPair its = cookies_.equal_range(key); its.first != its.second;) { CookieMap::iterator curit = its.first; CanonicalCookie* cc = curit->second.get(); ++its.first; // If the cookie is expired, delete it. if (cc->IsExpired(current)) { InternalDeleteCookie(curit, true, DELETE_COOKIE_EXPIRED); continue; } // Filter out cookies that should not be included for a request to the // given |url|. HTTP only cookies are filtered depending on the passed // cookie |options|. if (!cc->IncludeForRequestURL(url, options)) continue; // Add this cookie to the set of matching cookies. Update the access // time if we've been requested to do so. if (options.update_access_time()) { InternalUpdateCookieAccessTime(cc, current); } cookies->push_back(cc); } } bool CookieMonster::DeleteAnyEquivalentCookie( const std::string& key, const CanonicalCookie& ecc, bool source_secure, bool skip_httponly, bool already_expired, base::Time* creation_date_to_inherit) { DCHECK(thread_checker_.CalledOnValidThread()); bool found_equivalent_cookie = false; bool skipped_httponly = false; bool skipped_secure_cookie = false; histogram_cookie_delete_equivalent_->Add(COOKIE_DELETE_EQUIVALENT_ATTEMPT); for (CookieMapItPair its = cookies_.equal_range(key); its.first != its.second;) { CookieMap::iterator curit = its.first; CanonicalCookie* cc = curit->second.get(); ++its.first; // If the cookie is being set from an insecure scheme, then if a cookie // already exists with the same name and it is Secure, then the cookie // should *not* be updated if they domain-match and ignoring the path // attribute. // // See: https://tools.ietf.org/html/draft-ietf-httpbis-cookie-alone if (cc->IsSecure() && !source_secure && ecc.IsEquivalentForSecureCookieMatching(*cc)) { skipped_secure_cookie = true; histogram_cookie_delete_equivalent_->Add( COOKIE_DELETE_EQUIVALENT_SKIPPING_SECURE); // If the cookie is equivalent to the new cookie and wouldn't have been // skipped for being HTTP-only, record that it is a skipped secure cookie // that would have been deleted otherwise. if (ecc.IsEquivalent(*cc)) { found_equivalent_cookie = true; if (!skip_httponly || !cc->IsHttpOnly()) { histogram_cookie_delete_equivalent_->Add( COOKIE_DELETE_EQUIVALENT_WOULD_HAVE_DELETED); } } } else if (ecc.IsEquivalent(*cc)) { // We should never have more than one equivalent cookie, since they should // overwrite each other, unless secure cookies require secure scheme is // being enforced. In that case, cookies with different paths might exist // and be considered equivalent. CHECK(!found_equivalent_cookie) << "Duplicate equivalent cookies found, cookie store is corrupted."; if (skip_httponly && cc->IsHttpOnly()) { skipped_httponly = true; } else { histogram_cookie_delete_equivalent_->Add( COOKIE_DELETE_EQUIVALENT_FOUND); if (cc->Value() == ecc.Value()) { *creation_date_to_inherit = cc->CreationDate(); histogram_cookie_delete_equivalent_->Add( COOKIE_DELETE_EQUIVALENT_FOUND_WITH_SAME_VALUE); } InternalDeleteCookie(curit, true, already_expired ? DELETE_COOKIE_EXPIRED_OVERWRITE : DELETE_COOKIE_OVERWRITE); } found_equivalent_cookie = true; } } return skipped_httponly || skipped_secure_cookie; } CookieMonster::CookieMap::iterator CookieMonster::InternalInsertCookie( const std::string& key, std::unique_ptr cc, bool sync_to_store) { DCHECK(thread_checker_.CalledOnValidThread()); CanonicalCookie* cc_ptr = cc.get(); if ((cc_ptr->IsPersistent() || persist_session_cookies_) && store_.get() && sync_to_store) store_->AddCookie(*cc_ptr); CookieMap::iterator inserted = cookies_.insert(CookieMap::value_type(key, std::move(cc))); // See InitializeHistograms() for details. int32_t type_sample = cc_ptr->SameSite() != CookieSameSite::NO_RESTRICTION ? 1 << COOKIE_TYPE_SAME_SITE : 0; type_sample |= cc_ptr->IsHttpOnly() ? 1 << COOKIE_TYPE_HTTPONLY : 0; type_sample |= cc_ptr->IsSecure() ? 1 << COOKIE_TYPE_SECURE : 0; histogram_cookie_type_->Add(type_sample); RunCookieChangedCallbacks(*cc_ptr, true, CookieStore::ChangeCause::INSERTED); return inserted; } void CookieMonster::SetCookieWithCreationTimeAndOptions( const GURL& url, const std::string& cookie_line, const Time& creation_time_or_null, const CookieOptions& options, SetCookiesCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); VLOG(kVlogSetCookies) << "SetCookie() line: " << cookie_line; Time creation_time = creation_time_or_null; if (creation_time.is_null()) { creation_time = CurrentTime(); last_time_seen_ = creation_time; } std::unique_ptr cc( CanonicalCookie::Create(url, cookie_line, creation_time, options)); if (!cc.get()) { VLOG(kVlogSetCookies) << "WARNING: Failed to allocate CanonicalCookie"; MaybeRunCookieCallback(std::move(callback), false); return; } SetCanonicalCookie(std::move(cc), url.SchemeIsCryptographic(), !options.exclude_httponly(), std::move(callback)); } void CookieMonster::SetCanonicalCookie(std::unique_ptr cc, bool secure_source, bool modify_http_only, SetCookiesCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); if ((cc->IsSecure() && !secure_source) || (cc->IsHttpOnly() && !modify_http_only)) { MaybeRunCookieCallback(std::move(callback), false); return; } const std::string key(GetKey(cc->Domain())); // TODO(mmenke): This class assumes each cookie to have a unique creation // time. Allowing the caller to set the creation time violates that // assumption. Worth fixing? Worth noting that time changes between browser // restarts can cause the same issue. base::Time creation_date = cc->CreationDate(); if (creation_date.is_null()) { creation_date = CurrentTime(); cc->SetCreationDate(creation_date); last_time_seen_ = creation_date; } bool already_expired = cc->IsExpired(creation_date); base::Time creation_date_to_inherit; if (DeleteAnyEquivalentCookie(key, *cc, secure_source, !modify_http_only, already_expired, &creation_date_to_inherit)) { std::string error; error = "SetCookie() not clobbering httponly cookie or secure cookie for " "insecure scheme"; VLOG(kVlogSetCookies) << error; MaybeRunCookieCallback(std::move(callback), false); return; } VLOG(kVlogSetCookies) << "SetCookie() key: " << key << " cc: " << cc->DebugString(); // Realize that we might be setting an expired cookie, and the only point // was to delete the cookie which we've already done. if (!already_expired) { // See InitializeHistograms() for details. if (cc->IsPersistent()) { histogram_expiration_duration_minutes_->Add( (cc->ExpiryDate() - creation_date).InMinutes()); } // Histogram the type of scheme used on URLs that set cookies. This // intentionally includes cookies that are set or overwritten by // http:// URLs, but not cookies that are cleared by http:// URLs, to // understand if the former behavior can be deprecated for Secure // cookies. CookieSource cookie_source_sample = (secure_source ? (cc->IsSecure() ? COOKIE_SOURCE_SECURE_COOKIE_CRYPTOGRAPHIC_SCHEME : COOKIE_SOURCE_NONSECURE_COOKIE_CRYPTOGRAPHIC_SCHEME) : (cc->IsSecure() ? COOKIE_SOURCE_SECURE_COOKIE_NONCRYPTOGRAPHIC_SCHEME : COOKIE_SOURCE_NONSECURE_COOKIE_NONCRYPTOGRAPHIC_SCHEME)); histogram_cookie_source_scheme_->Add(cookie_source_sample); if (!creation_date_to_inherit.is_null()) { cc->SetCreationDate(creation_date_to_inherit); // |last_time_seen_| is intentionally not updated, as moving it into the // past might cause duplicate cookie creation dates. See // `CookieMonster::CurrentTime()` for details. } InternalInsertCookie(key, std::move(cc), true); } else { VLOG(kVlogSetCookies) << "SetCookie() not storing already expired cookie."; } // We assume that hopefully setting a cookie will be less common than // querying a cookie. Since setting a cookie can put us over our limits, // make sure that we garbage collect... We can also make the assumption that // if a cookie was set, in the common case it will be used soon after, // and we will purge the expired cookies in GetCookies(). GarbageCollect(creation_date, key); MaybeRunCookieCallback(std::move(callback), true); } void CookieMonster::SetAllCookies(CookieList list, SetCookiesCallback callback) { DCHECK(thread_checker_.CalledOnValidThread()); // Nuke the existing store. while (!cookies_.empty()) { // TODO(rdsmith): The CANONICAL is a lie. InternalDeleteCookie(cookies_.begin(), true, DELETE_COOKIE_CANONICAL); } // Set all passed in cookies. for (const auto& cookie : list) { const std::string key(GetKey(cookie.Domain())); Time creation_time = cookie.CreationDate(); if (cookie.IsExpired(creation_time)) continue; if (cookie.IsPersistent()) { histogram_expiration_duration_minutes_->Add( (cookie.ExpiryDate() - creation_time).InMinutes()); } InternalInsertCookie(key, std::make_unique(cookie), true); GarbageCollect(creation_time, key); } // TODO(rdsmith): If this function always returns the same value, it // shouldn't have a return value. But it should also be deleted (see // https://codereview.chromium.org/2882063002/#msg64), which would // solve the return value problem. MaybeRunCookieCallback(std::move(callback), true); } void CookieMonster::InternalUpdateCookieAccessTime(CanonicalCookie* cc, const Time& current) { DCHECK(thread_checker_.CalledOnValidThread()); // Based off the Mozilla code. When a cookie has been accessed recently, // don't bother updating its access time again. This reduces the number of // updates we do during pageload, which in turn reduces the chance our storage // backend will hit its batch thresholds and be forced to update. if ((current - cc->LastAccessDate()) < last_access_threshold_) return; cc->SetLastAccessDate(current); if ((cc->IsPersistent() || persist_session_cookies_) && store_.get()) store_->UpdateCookieAccessTime(*cc); } // InternalDeleteCookies must not invalidate iterators other than the one being // deleted. void CookieMonster::InternalDeleteCookie(CookieMap::iterator it, bool sync_to_store, DeletionCause deletion_cause) { DCHECK(thread_checker_.CalledOnValidThread()); // Ideally, this would be asserted up where we define kChangeCauseMapping, // but DeletionCause's visibility (or lack thereof) forces us to make // this check here. static_assert(arraysize(kChangeCauseMapping) == DELETE_COOKIE_LAST_ENTRY + 1, "kChangeCauseMapping size should match DeletionCause size"); CanonicalCookie* cc = it->second.get(); VLOG(kVlogSetCookies) << "InternalDeleteCookie()" << ", cause:" << deletion_cause << ", cc: " << cc->DebugString(); if ((cc->IsPersistent() || persist_session_cookies_) && store_.get() && sync_to_store) store_->DeleteCookie(*cc); ChangeCausePair mapping = kChangeCauseMapping[deletion_cause]; RunCookieChangedCallbacks(*cc, mapping.notify, mapping.cause); cookies_.erase(it); } // Domain expiry behavior is unchanged by key/expiry scheme (the // meaning of the key is different, but that's not visible to this routine). size_t CookieMonster::GarbageCollect(const Time& current, const std::string& key) { DCHECK(thread_checker_.CalledOnValidThread()); size_t num_deleted = 0; Time safe_date(Time::Now() - TimeDelta::FromDays(kSafeFromGlobalPurgeDays)); // Collect garbage for this key, minding cookie priorities. if (cookies_.count(key) > kDomainMaxCookies) { VLOG(kVlogGarbageCollection) << "GarbageCollect() key: " << key; CookieItVector* cookie_its; CookieItVector non_expired_cookie_its; cookie_its = &non_expired_cookie_its; num_deleted += GarbageCollectExpired(current, cookies_.equal_range(key), cookie_its); if (cookie_its->size() > kDomainMaxCookies) { VLOG(kVlogGarbageCollection) << "Deep Garbage Collect domain."; size_t purge_goal = cookie_its->size() - (kDomainMaxCookies - kDomainPurgeCookies); DCHECK(purge_goal > kDomainPurgeCookies); // Sort the cookies by access date, from least-recent to most-recent. std::sort(cookie_its->begin(), cookie_its->end(), LRACookieSorter); // Remove all but the kDomainCookiesQuotaLow most-recently accessed // cookies with low-priority. Then, if cookies still need to be removed, // bump the quota and remove low- and medium-priority. Then, if cookies // _still_ need to be removed, bump the quota and remove cookies with // any priority. // // 1. Low-priority non-secure cookies. // 2. Low-priority secure cookies. // 3. Medium-priority non-secure cookies. // 4. High-priority non-secure cookies. // 5. Medium-priority secure cookies. // 6. High-priority secure cookies. const static struct { CookiePriority priority; bool protect_secure_cookies; } purge_rounds[] = { // 1. Low-priority non-secure cookies. {COOKIE_PRIORITY_LOW, true}, // 2. Low-priority secure cookies. {COOKIE_PRIORITY_LOW, false}, // 3. Medium-priority non-secure cookies. {COOKIE_PRIORITY_MEDIUM, true}, // 4. High-priority non-secure cookies. {COOKIE_PRIORITY_HIGH, true}, // 5. Medium-priority secure cookies. {COOKIE_PRIORITY_MEDIUM, false}, // 6. High-priority secure cookies. {COOKIE_PRIORITY_HIGH, false}, }; size_t quota = 0; for (const auto& purge_round : purge_rounds) { // Adjust quota according to the priority of cookies. Each round should // protect certain number of cookies in order to avoid starvation. // For example, when each round starts to remove cookies, the number of // cookies of that priority are counted and a decision whether they // should be deleted or not is made. If yes, some number of cookies of // that priority are deleted considering the quota. switch (purge_round.priority) { case COOKIE_PRIORITY_LOW: quota = kDomainCookiesQuotaLow; break; case COOKIE_PRIORITY_MEDIUM: quota = kDomainCookiesQuotaMedium; break; case COOKIE_PRIORITY_HIGH: quota = kDomainCookiesQuotaHigh; break; } size_t just_deleted = 0u; // Purge up to |purge_goal| for all cookies at the given priority. This // path will be taken only if the initial non-secure purge did not evict // enough cookies. if (purge_goal > 0) { just_deleted = PurgeLeastRecentMatches( cookie_its, purge_round.priority, quota, purge_goal, purge_round.protect_secure_cookies); DCHECK_LE(just_deleted, purge_goal); purge_goal -= just_deleted; num_deleted += just_deleted; } } DCHECK_EQ(0u, purge_goal); } } // Collect garbage for everything. With firefox style we want to preserve // cookies accessed in kSafeFromGlobalPurgeDays, otherwise evict. if (cookies_.size() > kMaxCookies && earliest_access_time_ < safe_date) { VLOG(kVlogGarbageCollection) << "GarbageCollect() everything"; CookieItVector cookie_its; num_deleted += GarbageCollectExpired( current, CookieMapItPair(cookies_.begin(), cookies_.end()), &cookie_its); if (cookie_its.size() > kMaxCookies) { VLOG(kVlogGarbageCollection) << "Deep Garbage Collect everything."; size_t purge_goal = cookie_its.size() - (kMaxCookies - kPurgeCookies); DCHECK(purge_goal > kPurgeCookies); CookieItVector secure_cookie_its; CookieItVector non_secure_cookie_its; SplitCookieVectorIntoSecureAndNonSecure(cookie_its, &secure_cookie_its, &non_secure_cookie_its); size_t non_secure_purge_goal = std::min(purge_goal, non_secure_cookie_its.size()); base::Time earliest_non_secure_access_time; size_t just_deleted = GarbageCollectLeastRecentlyAccessed( current, safe_date, non_secure_purge_goal, non_secure_cookie_its, &earliest_non_secure_access_time); num_deleted += just_deleted; if (secure_cookie_its.size() == 0) { // This case is unlikely, but should still update // |earliest_access_time_| if only have non-secure cookies. earliest_access_time_ = earliest_non_secure_access_time; // Garbage collection can't delete all cookies. DCHECK(!earliest_access_time_.is_null()); } else if (just_deleted < purge_goal) { size_t secure_purge_goal = std::min(purge_goal - just_deleted, secure_cookie_its.size()); base::Time earliest_secure_access_time; num_deleted += GarbageCollectLeastRecentlyAccessed( current, safe_date, secure_purge_goal, secure_cookie_its, &earliest_secure_access_time); if (!earliest_non_secure_access_time.is_null() && earliest_non_secure_access_time < earliest_secure_access_time) { earliest_access_time_ = earliest_non_secure_access_time; } else { earliest_access_time_ = earliest_secure_access_time; } // Garbage collection can't delete all cookies. DCHECK(!earliest_access_time_.is_null()); } // If there are secure cookies, but deleting non-secure cookies was enough // to meet the purge goal, secure cookies are never examined, so // |earliest_access_time_| can't be determined. Leaving it alone will mean // it's no later than the real earliest last access time, so this won't // lead to any problems. } } return num_deleted; } size_t CookieMonster::PurgeLeastRecentMatches(CookieItVector* cookies, CookiePriority priority, size_t to_protect, size_t purge_goal, bool protect_secure_cookies) { DCHECK(thread_checker_.CalledOnValidThread()); // 1. Count number of the cookies at |priority| size_t cookies_count_possibly_to_be_deleted = CountCookiesForPossibleDeletion( priority, cookies, false /* count all cookies */); // 2. If |cookies_count_possibly_to_be_deleted| at |priority| is less than or // equal |to_protect|, skip round in order to preserve the quota. This // involves secure and non-secure cookies at |priority|. if (cookies_count_possibly_to_be_deleted <= to_protect) return 0u; // 3. Calculate number of secure cookies at |priority| // and number of cookies at |priority| that can possibly be deleted. // It is guaranteed we do not delete more than |purge_goal| even if // |cookies_count_possibly_to_be_deleted| is higher. size_t secure_cookies = 0u; if (protect_secure_cookies) { secure_cookies = CountCookiesForPossibleDeletion( priority, cookies, protect_secure_cookies /* count secure cookies */); cookies_count_possibly_to_be_deleted -= std::max(secure_cookies, to_protect - secure_cookies); } else { cookies_count_possibly_to_be_deleted -= to_protect; } size_t removed = 0u; size_t current = 0u; while ((removed < purge_goal && current < cookies->size()) && cookies_count_possibly_to_be_deleted > 0) { const CanonicalCookie* current_cookie = cookies->at(current)->second.get(); // Only delete the current cookie if the priority is equal to // the current level. if (IsCookieEligibleForEviction(priority, protect_secure_cookies, current_cookie)) { InternalDeleteCookie(cookies->at(current), true, DELETE_COOKIE_EVICTED_DOMAIN); cookies->erase(cookies->begin() + current); removed++; cookies_count_possibly_to_be_deleted--; } else { current++; } } return removed; } size_t CookieMonster::GarbageCollectExpired(const Time& current, const CookieMapItPair& itpair, CookieItVector* cookie_its) { DCHECK(thread_checker_.CalledOnValidThread()); int num_deleted = 0; for (CookieMap::iterator it = itpair.first, end = itpair.second; it != end;) { CookieMap::iterator curit = it; ++it; if (curit->second->IsExpired(current)) { InternalDeleteCookie(curit, true, DELETE_COOKIE_EXPIRED); ++num_deleted; } else if (cookie_its) { cookie_its->push_back(curit); } } return num_deleted; } size_t CookieMonster::GarbageCollectDeleteRange( const Time& current, DeletionCause cause, CookieItVector::iterator it_begin, CookieItVector::iterator it_end) { DCHECK(thread_checker_.CalledOnValidThread()); for (CookieItVector::iterator it = it_begin; it != it_end; it++) { InternalDeleteCookie((*it), true, cause); } return it_end - it_begin; } size_t CookieMonster::GarbageCollectLeastRecentlyAccessed( const base::Time& current, const base::Time& safe_date, size_t purge_goal, CookieItVector cookie_its, base::Time* earliest_time) { DCHECK_LE(purge_goal, cookie_its.size()); DCHECK(thread_checker_.CalledOnValidThread()); // Sorts up to *and including* |cookie_its[purge_goal]| (if it exists), so // |earliest_time| will be properly assigned even if // |global_purge_it| == |cookie_its.begin() + purge_goal|. SortLeastRecentlyAccessed( cookie_its.begin(), cookie_its.end(), cookie_its.size() < purge_goal ? purge_goal + 1 : purge_goal); // Find boundary to cookies older than safe_date. CookieItVector::iterator global_purge_it = LowerBoundAccessDate( cookie_its.begin(), cookie_its.begin() + purge_goal, safe_date); // Only delete the old cookies and delete non-secure ones first. size_t num_deleted = GarbageCollectDeleteRange(current, DELETE_COOKIE_EVICTED_GLOBAL, cookie_its.begin(), global_purge_it); if (global_purge_it != cookie_its.end()) *earliest_time = (*global_purge_it)->second->LastAccessDate(); return num_deleted; } // A wrapper around registry_controlled_domains::GetDomainAndRegistry // to make clear we're creating a key for our local map. Here and // in FindCookiesForHostAndDomain() are the only two places where // we need to conditionalize based on key type. // // Note that this key algorithm explicitly ignores the scheme. This is // because when we're entering cookies into the map from the backing store, // we in general won't have the scheme at that point. // In practical terms, this means that file cookies will be stored // in the map either by an empty string or by UNC name (and will be // limited by kMaxCookiesPerHost), and extension cookies will be stored // based on the single extension id, as the extension id won't have the // form of a DNS host and hence GetKey() will return it unchanged. // // Arguably the right thing to do here is to make the key // algorithm dependent on the scheme, and make sure that the scheme is // available everywhere the key must be obtained (specfically at backing // store load time). This would require either changing the backing store // database schema to include the scheme (far more trouble than it's worth), or // separating out file cookies into their own CookieMonster instance and // thus restricting each scheme to a single cookie monster (which might // be worth it, but is still too much trouble to solve what is currently a // non-problem). std::string CookieMonster::GetKey(const std::string& domain) const { DCHECK(thread_checker_.CalledOnValidThread()); std::string effective_domain( registry_controlled_domains::GetDomainAndRegistry( domain, registry_controlled_domains::INCLUDE_PRIVATE_REGISTRIES)); if (effective_domain.empty()) effective_domain = domain; if (!effective_domain.empty() && effective_domain[0] == '.') return effective_domain.substr(1); return effective_domain; } bool CookieMonster::HasCookieableScheme(const GURL& url) { DCHECK(thread_checker_.CalledOnValidThread()); // Make sure the request is on a cookie-able url scheme. for (size_t i = 0; i < cookieable_schemes_.size(); ++i) { // We matched a scheme. if (url.SchemeIs(cookieable_schemes_[i].c_str())) { // We've matched a supported scheme. return true; } } // The scheme didn't match any in our whitelist. VLOG(kVlogPerCookieMonster) << "WARNING: Unsupported cookie scheme: " << url.scheme(); return false; } // Test to see if stats should be recorded, and record them if so. // The goal here is to get sampling for the average browser-hour of // activity. We won't take samples when the web isn't being surfed, // and when the web is being surfed, we'll take samples about every // kRecordStatisticsIntervalSeconds. // last_statistic_record_time_ is initialized to Now() rather than null // in the constructor so that we won't take statistics right after // startup, to avoid bias from browsers that are started but not used. void CookieMonster::RecordPeriodicStats(const base::Time& current_time) { DCHECK(thread_checker_.CalledOnValidThread()); const base::TimeDelta kRecordStatisticsIntervalTime( base::TimeDelta::FromSeconds(kRecordStatisticsIntervalSeconds)); // If we've taken statistics recently, return. if (current_time - last_statistic_record_time_ <= kRecordStatisticsIntervalTime) { return; } // See InitializeHistograms() for details. histogram_count_->Add(cookies_.size()); // More detailed statistics on cookie counts at different granularities. last_statistic_record_time_ = current_time; } // Initialize all histogram counter variables used in this class. // // Normal histogram usage involves using the macros defined in // histogram.h, which automatically takes care of declaring these // variables (as statics), initializing them, and accumulating into // them, all from a single entry point. Unfortunately, that solution // doesn't work for the CookieMonster, as it's vulnerable to races between // separate threads executing the same functions and hence initializing the // same static variables. There isn't a race danger in the histogram // accumulation calls; they are written to be resilient to simultaneous // calls from multiple threads. // // The solution taken here is to have per-CookieMonster instance // variables that are constructed during CookieMonster construction. // Note that these variables refer to the same underlying histogram, // so we still race (but safely) with other CookieMonster instances // for accumulation. // // To do this we've expanded out the individual histogram macros calls, // with declarations of the variables in the class decl, initialization here // (done from the class constructor) and direct calls to the accumulation // methods where needed. The specific histogram macro calls on which the // initialization is based are included in comments below. void CookieMonster::InitializeHistograms() { DCHECK(thread_checker_.CalledOnValidThread()); // From UMA_HISTOGRAM_CUSTOM_COUNTS histogram_expiration_duration_minutes_ = base::Histogram::FactoryGet( "Cookie.ExpirationDurationMinutes", 1, kMinutesInTenYears, 50, base::Histogram::kUmaTargetedHistogramFlag); histogram_count_ = base::Histogram::FactoryGet( "Cookie.Count", 1, 4000, 50, base::Histogram::kUmaTargetedHistogramFlag); // From UMA_HISTOGRAM_ENUMERATION histogram_cookie_type_ = base::LinearHistogram::FactoryGet( "Cookie.Type", 1, (1 << COOKIE_TYPE_LAST_ENTRY) - 1, 1 << COOKIE_TYPE_LAST_ENTRY, base::Histogram::kUmaTargetedHistogramFlag); histogram_cookie_source_scheme_ = base::LinearHistogram::FactoryGet( "Cookie.CookieSourceScheme", 1, COOKIE_SOURCE_LAST_ENTRY - 1, COOKIE_SOURCE_LAST_ENTRY, base::Histogram::kUmaTargetedHistogramFlag); histogram_cookie_delete_equivalent_ = base::LinearHistogram::FactoryGet( "Cookie.CookieDeleteEquivalent", 1, COOKIE_DELETE_EQUIVALENT_LAST_ENTRY - 1, COOKIE_DELETE_EQUIVALENT_LAST_ENTRY, base::Histogram::kUmaTargetedHistogramFlag); // From UMA_HISTOGRAM_{CUSTOM_,}TIMES histogram_time_blocked_on_load_ = base::Histogram::FactoryTimeGet( "Cookie.TimeBlockedOnLoad", base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(1), 50, base::Histogram::kUmaTargetedHistogramFlag); } // The system resolution is not high enough, so we can have multiple // set cookies that result in the same system time. When this happens, we // increment by one Time unit. Let's hope computers don't get too fast. Time CookieMonster::CurrentTime() { return std::max(Time::Now(), Time::FromInternalValue( last_time_seen_.ToInternalValue() + 1)); } void CookieMonster::DoCookieCallback(base::OnceClosure callback) { DCHECK(thread_checker_.CalledOnValidThread()); MarkCookieStoreAsInitialized(); FetchAllCookiesIfNecessary(); seen_global_task_ = true; if (!finished_fetching_all_cookies_ && store_.get()) { tasks_pending_.push_back(std::move(callback)); return; } std::move(callback).Run(); } void CookieMonster::DoCookieCallbackForURL(base::OnceClosure callback, const GURL& url) { MarkCookieStoreAsInitialized(); if (ShouldFetchAllCookiesWhenFetchingAnyCookie()) FetchAllCookiesIfNecessary(); // If cookies for the requested domain key (eTLD+1) have been loaded from DB // then run the task, otherwise load from DB. if (!finished_fetching_all_cookies_ && store_.get()) { // If a global task has been previously seen, queue the task as a global // task. Note that the CookieMonster may be in the middle of executing // the global queue, |tasks_pending_| may be empty, which is why another // bool is needed. if (seen_global_task_) { tasks_pending_.push_back(std::move(callback)); return; } // Checks if the domain key has been loaded. std::string key(cookie_util::GetEffectiveDomain(url.scheme(), url.host())); if (keys_loaded_.find(key) == keys_loaded_.end()) { std::map>::iterator it = tasks_pending_for_key_.find(key); if (it == tasks_pending_for_key_.end()) { store_->LoadCookiesForKey( key, base::Bind(&CookieMonster::OnKeyLoaded, weak_ptr_factory_.GetWeakPtr(), key)); it = tasks_pending_for_key_ .insert(std::make_pair( key, base::circular_deque())) .first; } it->second.push_back(std::move(callback)); return; } } std::move(callback).Run(); } void CookieMonster::RunCookieChangedCallbacks(const CanonicalCookie& cookie, bool notify_global_hooks, ChangeCause cause) { DCHECK(thread_checker_.CalledOnValidThread()); CookieOptions opts; opts.set_include_httponly(); opts.set_same_site_cookie_mode( CookieOptions::SameSiteCookieMode::INCLUDE_STRICT_AND_LAX); // Note that the callbacks in hook_map_ are wrapped with RunAsync(), so they // are guaranteed to not take long - they just post a RunAsync task back to // the appropriate thread's message loop and return. // TODO(mmenke): Consider running these synchronously? for (CookieChangedHookMap::iterator it = hook_map_.begin(); it != hook_map_.end(); ++it) { std::pair key = it->first; if (cookie.IncludeForRequestURL(key.first, opts) && cookie.Name() == key.second) { it->second->Notify(cookie, cause); } } if (notify_global_hooks) global_hook_map_->Notify(cookie, cause); } } // namespace net