// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/debug/stack_trace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if !defined(USE_SYMBOLIZE) #include #endif #if !defined(__UCLIBC__) && !defined(_AIX) #include #endif #if defined(OS_MACOSX) #include #endif #if defined(OS_LINUX) #include "base/debug/proc_maps_linux.h" #endif #include "base/cfi_buildflags.h" #include "base/debug/debugger.h" #include "base/files/scoped_file.h" #include "base/logging.h" #include "base/macros.h" #include "base/memory/free_deleter.h" #include "base/memory/singleton.h" #include "base/numerics/safe_conversions.h" #include "base/posix/eintr_wrapper.h" #include "base/strings/string_number_conversions.h" #include "build/build_config.h" #if defined(USE_SYMBOLIZE) #include "base/third_party/symbolize/symbolize.h" #endif namespace base { namespace debug { namespace { volatile sig_atomic_t in_signal_handler = 0; bool (*try_handle_signal)(int, void*, void*) = nullptr; #if !defined(USE_SYMBOLIZE) // The prefix used for mangled symbols, per the Itanium C++ ABI: // http://www.codesourcery.com/cxx-abi/abi.html#mangling const char kMangledSymbolPrefix[] = "_Z"; // Characters that can be used for symbols, generated by Ruby: // (('a'..'z').to_a+('A'..'Z').to_a+('0'..'9').to_a + ['_']).join const char kSymbolCharacters[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; #endif // !defined(USE_SYMBOLIZE) #if !defined(USE_SYMBOLIZE) // Demangles C++ symbols in the given text. Example: // // "out/Debug/base_unittests(_ZN10StackTraceC1Ev+0x20) [0x817778c]" // => // "out/Debug/base_unittests(StackTrace::StackTrace()+0x20) [0x817778c]" void DemangleSymbols(std::string* text) { // Note: code in this function is NOT async-signal safe (std::string uses // malloc internally). #if !defined(__UCLIBC__) && !defined(_AIX) std::string::size_type search_from = 0; while (search_from < text->size()) { // Look for the start of a mangled symbol, from search_from. std::string::size_type mangled_start = text->find(kMangledSymbolPrefix, search_from); if (mangled_start == std::string::npos) { break; // Mangled symbol not found. } // Look for the end of the mangled symbol. std::string::size_type mangled_end = text->find_first_not_of(kSymbolCharacters, mangled_start); if (mangled_end == std::string::npos) { mangled_end = text->size(); } std::string mangled_symbol = text->substr(mangled_start, mangled_end - mangled_start); // Try to demangle the mangled symbol candidate. int status = 0; std::unique_ptr demangled_symbol( abi::__cxa_demangle(mangled_symbol.c_str(), nullptr, 0, &status)); if (status == 0) { // Demangling is successful. // Remove the mangled symbol. text->erase(mangled_start, mangled_end - mangled_start); // Insert the demangled symbol. text->insert(mangled_start, demangled_symbol.get()); // Next time, we'll start right after the demangled symbol we inserted. search_from = mangled_start + strlen(demangled_symbol.get()); } else { // Failed to demangle. Retry after the "_Z" we just found. search_from = mangled_start + 2; } } #endif // !defined(__UCLIBC__) && !defined(_AIX) } #endif // !defined(USE_SYMBOLIZE) class BacktraceOutputHandler { public: virtual void HandleOutput(const char* output) = 0; protected: virtual ~BacktraceOutputHandler() = default; }; #if !defined(__UCLIBC__) && !defined(_AIX) void OutputPointer(void* pointer, BacktraceOutputHandler* handler) { // This should be more than enough to store a 64-bit number in hex: // 16 hex digits + 1 for null-terminator. char buf[17] = { '\0' }; handler->HandleOutput("0x"); internal::itoa_r(reinterpret_cast(pointer), buf, sizeof(buf), 16, 12); handler->HandleOutput(buf); } #if defined(USE_SYMBOLIZE) void OutputFrameId(intptr_t frame_id, BacktraceOutputHandler* handler) { // Max unsigned 64-bit number in decimal has 20 digits (18446744073709551615). // Hence, 30 digits should be more than enough to represent it in decimal // (including the null-terminator). char buf[30] = { '\0' }; handler->HandleOutput("#"); internal::itoa_r(frame_id, buf, sizeof(buf), 10, 1); handler->HandleOutput(buf); } #endif // defined(USE_SYMBOLIZE) void ProcessBacktrace(void *const *trace, size_t size, BacktraceOutputHandler* handler) { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. #if defined(USE_SYMBOLIZE) for (size_t i = 0; i < size; ++i) { OutputFrameId(i, handler); handler->HandleOutput(" "); OutputPointer(trace[i], handler); handler->HandleOutput(" "); char buf[1024] = { '\0' }; // Subtract by one as return address of function may be in the next // function when a function is annotated as noreturn. void* address = static_cast(trace[i]) - 1; if (google::Symbolize(address, buf, sizeof(buf))) handler->HandleOutput(buf); else handler->HandleOutput(""); handler->HandleOutput("\n"); } #else bool printed = false; // Below part is async-signal unsafe (uses malloc), so execute it only // when we are not executing the signal handler. if (in_signal_handler == 0) { std::unique_ptr trace_symbols( backtrace_symbols(trace, size)); if (trace_symbols.get()) { for (size_t i = 0; i < size; ++i) { std::string trace_symbol = trace_symbols.get()[i]; DemangleSymbols(&trace_symbol); handler->HandleOutput(trace_symbol.c_str()); handler->HandleOutput("\n"); } printed = true; } } if (!printed) { for (size_t i = 0; i < size; ++i) { handler->HandleOutput(" ["); OutputPointer(trace[i], handler); handler->HandleOutput("]\n"); } } #endif // defined(USE_SYMBOLIZE) } #endif // !defined(__UCLIBC__) && !defined(_AIX) void PrintToStderr(const char* output) { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. ignore_result(HANDLE_EINTR(write(STDERR_FILENO, output, strlen(output)))); } void StackDumpSignalHandler(int signal, siginfo_t* info, void* void_context) { // NOTE: This code MUST be async-signal safe. // NO malloc or stdio is allowed here. // Give a registered callback a chance to recover from this signal // // V8 uses guard regions to guarantee memory safety in WebAssembly. This means // some signals might be expected if they originate from Wasm code while // accessing the guard region. We give V8 the chance to handle and recover // from these signals first. if (try_handle_signal != nullptr && try_handle_signal(signal, info, void_context)) { // The first chance handler took care of this. The SA_RESETHAND flag // replaced this signal handler upon entry, but we want to stay // installed. Thus, we reinstall ourselves before returning. struct sigaction action; memset(&action, 0, sizeof(action)); action.sa_flags = SA_RESETHAND | SA_SIGINFO; action.sa_sigaction = &StackDumpSignalHandler; sigemptyset(&action.sa_mask); sigaction(signal, &action, nullptr); return; } // Do not take the "in signal handler" code path on Mac in a DCHECK-enabled // build, as this prevents seeing a useful (symbolized) stack trace on a crash // or DCHECK() failure. While it may not be fully safe to run the stack symbol // printing code, in practice it's better to provide meaningful stack traces - // and the risk is low given we're likely crashing already. #if !defined(OS_MACOSX) || !DCHECK_IS_ON() // Record the fact that we are in the signal handler now, so that the rest // of StackTrace can behave in an async-signal-safe manner. in_signal_handler = 1; #endif if (BeingDebugged()) BreakDebugger(); PrintToStderr("Received signal "); char buf[1024] = { 0 }; internal::itoa_r(signal, buf, sizeof(buf), 10, 0); PrintToStderr(buf); if (signal == SIGBUS) { if (info->si_code == BUS_ADRALN) PrintToStderr(" BUS_ADRALN "); else if (info->si_code == BUS_ADRERR) PrintToStderr(" BUS_ADRERR "); else if (info->si_code == BUS_OBJERR) PrintToStderr(" BUS_OBJERR "); else PrintToStderr(" "); } else if (signal == SIGFPE) { if (info->si_code == FPE_FLTDIV) PrintToStderr(" FPE_FLTDIV "); else if (info->si_code == FPE_FLTINV) PrintToStderr(" FPE_FLTINV "); else if (info->si_code == FPE_FLTOVF) PrintToStderr(" FPE_FLTOVF "); else if (info->si_code == FPE_FLTRES) PrintToStderr(" FPE_FLTRES "); else if (info->si_code == FPE_FLTSUB) PrintToStderr(" FPE_FLTSUB "); else if (info->si_code == FPE_FLTUND) PrintToStderr(" FPE_FLTUND "); else if (info->si_code == FPE_INTDIV) PrintToStderr(" FPE_INTDIV "); else if (info->si_code == FPE_INTOVF) PrintToStderr(" FPE_INTOVF "); else PrintToStderr(" "); } else if (signal == SIGILL) { if (info->si_code == ILL_BADSTK) PrintToStderr(" ILL_BADSTK "); else if (info->si_code == ILL_COPROC) PrintToStderr(" ILL_COPROC "); else if (info->si_code == ILL_ILLOPN) PrintToStderr(" ILL_ILLOPN "); else if (info->si_code == ILL_ILLADR) PrintToStderr(" ILL_ILLADR "); else if (info->si_code == ILL_ILLTRP) PrintToStderr(" ILL_ILLTRP "); else if (info->si_code == ILL_PRVOPC) PrintToStderr(" ILL_PRVOPC "); else if (info->si_code == ILL_PRVREG) PrintToStderr(" ILL_PRVREG "); else PrintToStderr(" "); } else if (signal == SIGSEGV) { if (info->si_code == SEGV_MAPERR) PrintToStderr(" SEGV_MAPERR "); else if (info->si_code == SEGV_ACCERR) PrintToStderr(" SEGV_ACCERR "); else PrintToStderr(" "); } if (signal == SIGBUS || signal == SIGFPE || signal == SIGILL || signal == SIGSEGV) { internal::itoa_r(reinterpret_cast(info->si_addr), buf, sizeof(buf), 16, 12); PrintToStderr(buf); } PrintToStderr("\n"); #if BUILDFLAG(CFI_ENFORCEMENT_TRAP) if (signal == SIGILL && info->si_code == ILL_ILLOPN) { PrintToStderr( "CFI: Most likely a control flow integrity violation; for more " "information see:\n"); PrintToStderr( "https://www.chromium.org/developers/testing/control-flow-integrity\n"); } #endif // BUILDFLAG(CFI_ENFORCEMENT_TRAP) debug::StackTrace().Print(); #if defined(OS_LINUX) #if ARCH_CPU_X86_FAMILY ucontext_t* context = reinterpret_cast(void_context); const struct { const char* label; greg_t value; } registers[] = { #if ARCH_CPU_32_BITS { " gs: ", context->uc_mcontext.gregs[REG_GS] }, { " fs: ", context->uc_mcontext.gregs[REG_FS] }, { " es: ", context->uc_mcontext.gregs[REG_ES] }, { " ds: ", context->uc_mcontext.gregs[REG_DS] }, { " edi: ", context->uc_mcontext.gregs[REG_EDI] }, { " esi: ", context->uc_mcontext.gregs[REG_ESI] }, { " ebp: ", context->uc_mcontext.gregs[REG_EBP] }, { " esp: ", context->uc_mcontext.gregs[REG_ESP] }, { " ebx: ", context->uc_mcontext.gregs[REG_EBX] }, { " edx: ", context->uc_mcontext.gregs[REG_EDX] }, { " ecx: ", context->uc_mcontext.gregs[REG_ECX] }, { " eax: ", context->uc_mcontext.gregs[REG_EAX] }, { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, { " err: ", context->uc_mcontext.gregs[REG_ERR] }, { " ip: ", context->uc_mcontext.gregs[REG_EIP] }, { " cs: ", context->uc_mcontext.gregs[REG_CS] }, { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, { " usp: ", context->uc_mcontext.gregs[REG_UESP] }, { " ss: ", context->uc_mcontext.gregs[REG_SS] }, #elif ARCH_CPU_64_BITS { " r8: ", context->uc_mcontext.gregs[REG_R8] }, { " r9: ", context->uc_mcontext.gregs[REG_R9] }, { " r10: ", context->uc_mcontext.gregs[REG_R10] }, { " r11: ", context->uc_mcontext.gregs[REG_R11] }, { " r12: ", context->uc_mcontext.gregs[REG_R12] }, { " r13: ", context->uc_mcontext.gregs[REG_R13] }, { " r14: ", context->uc_mcontext.gregs[REG_R14] }, { " r15: ", context->uc_mcontext.gregs[REG_R15] }, { " di: ", context->uc_mcontext.gregs[REG_RDI] }, { " si: ", context->uc_mcontext.gregs[REG_RSI] }, { " bp: ", context->uc_mcontext.gregs[REG_RBP] }, { " bx: ", context->uc_mcontext.gregs[REG_RBX] }, { " dx: ", context->uc_mcontext.gregs[REG_RDX] }, { " ax: ", context->uc_mcontext.gregs[REG_RAX] }, { " cx: ", context->uc_mcontext.gregs[REG_RCX] }, { " sp: ", context->uc_mcontext.gregs[REG_RSP] }, { " ip: ", context->uc_mcontext.gregs[REG_RIP] }, { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, { " cgf: ", context->uc_mcontext.gregs[REG_CSGSFS] }, { " erf: ", context->uc_mcontext.gregs[REG_ERR] }, { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, { " msk: ", context->uc_mcontext.gregs[REG_OLDMASK] }, { " cr2: ", context->uc_mcontext.gregs[REG_CR2] }, #endif // ARCH_CPU_32_BITS }; #if ARCH_CPU_32_BITS const int kRegisterPadding = 8; #elif ARCH_CPU_64_BITS const int kRegisterPadding = 16; #endif for (size_t i = 0; i < arraysize(registers); i++) { PrintToStderr(registers[i].label); internal::itoa_r(registers[i].value, buf, sizeof(buf), 16, kRegisterPadding); PrintToStderr(buf); if ((i + 1) % 4 == 0) PrintToStderr("\n"); } PrintToStderr("\n"); #endif // ARCH_CPU_X86_FAMILY #endif // defined(OS_LINUX) PrintToStderr("[end of stack trace]\n"); #if defined(OS_MACOSX) && !defined(OS_IOS) if (::signal(signal, SIG_DFL) == SIG_ERR) _exit(1); #else // Non-Mac OSes should probably reraise the signal as well, but the Linux // sandbox tests break on CrOS devices. // https://code.google.com/p/chromium/issues/detail?id=551681 PrintToStderr("Calling _exit(1). Core file will not be generated.\n"); _exit(1); #endif // defined(OS_MACOSX) && !defined(OS_IOS) } class PrintBacktraceOutputHandler : public BacktraceOutputHandler { public: PrintBacktraceOutputHandler() = default; void HandleOutput(const char* output) override { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. PrintToStderr(output); } private: DISALLOW_COPY_AND_ASSIGN(PrintBacktraceOutputHandler); }; class StreamBacktraceOutputHandler : public BacktraceOutputHandler { public: explicit StreamBacktraceOutputHandler(std::ostream* os) : os_(os) { } void HandleOutput(const char* output) override { (*os_) << output; } private: std::ostream* os_; DISALLOW_COPY_AND_ASSIGN(StreamBacktraceOutputHandler); }; void WarmUpBacktrace() { // Warm up stack trace infrastructure. It turns out that on the first // call glibc initializes some internal data structures using pthread_once, // and even backtrace() can call malloc(), leading to hangs. // // Example stack trace snippet (with tcmalloc): // // #8 0x0000000000a173b5 in tc_malloc // at ./third_party/tcmalloc/chromium/src/debugallocation.cc:1161 // #9 0x00007ffff7de7900 in _dl_map_object_deps at dl-deps.c:517 // #10 0x00007ffff7ded8a9 in dl_open_worker at dl-open.c:262 // #11 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 // #12 0x00007ffff7ded31a in _dl_open (file=0x7ffff625e298 "libgcc_s.so.1") // at dl-open.c:639 // #13 0x00007ffff6215602 in do_dlopen at dl-libc.c:89 // #14 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 // #15 0x00007ffff62156c4 in dlerror_run at dl-libc.c:48 // #16 __GI___libc_dlopen_mode at dl-libc.c:165 // #17 0x00007ffff61ef8f5 in init // at ../sysdeps/x86_64/../ia64/backtrace.c:53 // #18 0x00007ffff6aad400 in pthread_once // at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_once.S:104 // #19 0x00007ffff61efa14 in __GI___backtrace // at ../sysdeps/x86_64/../ia64/backtrace.c:104 // #20 0x0000000000752a54 in base::debug::StackTrace::StackTrace // at base/debug/stack_trace_posix.cc:175 // #21 0x00000000007a4ae5 in // base::(anonymous namespace)::StackDumpSignalHandler // at base/process_util_posix.cc:172 // #22 StackTrace stack_trace; } #if defined(USE_SYMBOLIZE) // class SandboxSymbolizeHelper. // // The purpose of this class is to prepare and install a "file open" callback // needed by the stack trace symbolization code // (base/third_party/symbolize/symbolize.h) so that it can function properly // in a sandboxed process. The caveat is that this class must be instantiated // before the sandboxing is enabled so that it can get the chance to open all // the object files that are loaded in the virtual address space of the current // process. class SandboxSymbolizeHelper { public: // Returns the singleton instance. static SandboxSymbolizeHelper* GetInstance() { return Singleton>::get(); } private: friend struct DefaultSingletonTraits; SandboxSymbolizeHelper() : is_initialized_(false) { Init(); } ~SandboxSymbolizeHelper() { UnregisterCallback(); CloseObjectFiles(); } // Returns a O_RDONLY file descriptor for |file_path| if it was opened // successfully during the initialization. The file is repositioned at // offset 0. // IMPORTANT: This function must be async-signal-safe because it can be // called from a signal handler (symbolizing stack frames for a crash). int GetFileDescriptor(const char* file_path) { int fd = -1; #if !defined(OFFICIAL_BUILD) if (file_path) { // The assumption here is that iterating over std::map // using a const_iterator does not allocate dynamic memory, hense it is // async-signal-safe. std::map::const_iterator it; for (it = modules_.begin(); it != modules_.end(); ++it) { if (strcmp((it->first).c_str(), file_path) == 0) { // POSIX.1-2004 requires an implementation to guarantee that dup() // is async-signal-safe. fd = HANDLE_EINTR(dup(it->second)); break; } } // POSIX.1-2004 requires an implementation to guarantee that lseek() // is async-signal-safe. if (fd >= 0 && lseek(fd, 0, SEEK_SET) < 0) { // Failed to seek. fd = -1; } } #endif // !defined(OFFICIAL_BUILD) return fd; } // Searches for the object file (from /proc/self/maps) that contains // the specified pc. If found, sets |start_address| to the start address // of where this object file is mapped in memory, sets the module base // address into |base_address|, copies the object file name into // |out_file_name|, and attempts to open the object file. If the object // file is opened successfully, returns the file descriptor. Otherwise, // returns -1. |out_file_name_size| is the size of the file name buffer // (including the null terminator). // IMPORTANT: This function must be async-signal-safe because it can be // called from a signal handler (symbolizing stack frames for a crash). static int OpenObjectFileContainingPc(uint64_t pc, uint64_t& start_address, uint64_t& base_address, char* file_path, int file_path_size) { // This method can only be called after the singleton is instantiated. // This is ensured by the following facts: // * This is the only static method in this class, it is private, and // the class has no friends (except for the DefaultSingletonTraits). // The compiler guarantees that it can only be called after the // singleton is instantiated. // * This method is used as a callback for the stack tracing code and // the callback registration is done in the constructor, so logically // it cannot be called before the singleton is created. SandboxSymbolizeHelper* instance = GetInstance(); // The assumption here is that iterating over // std::vector using a const_iterator does not allocate // dynamic memory, hence it is async-signal-safe. for (const MappedMemoryRegion& region : instance->regions_) { if (region.start <= pc && pc < region.end) { start_address = region.start; base_address = region.base; if (file_path && file_path_size > 0) { strncpy(file_path, region.path.c_str(), file_path_size); // Ensure null termination. file_path[file_path_size - 1] = '\0'; } return instance->GetFileDescriptor(region.path.c_str()); } } return -1; } // Set the base address for each memory region by reading ELF headers in // process memory. void SetBaseAddressesForMemoryRegions() { base::ScopedFD mem_fd( HANDLE_EINTR(open("/proc/self/mem", O_RDONLY | O_CLOEXEC))); if (!mem_fd.is_valid()) return; auto safe_memcpy = [&mem_fd](void* dst, uintptr_t src, size_t size) { return HANDLE_EINTR(pread(mem_fd.get(), dst, size, src)) == ssize_t(size); }; uintptr_t cur_base = 0; for (auto& r : regions_) { ElfW(Ehdr) ehdr; static_assert(SELFMAG <= sizeof(ElfW(Ehdr)), "SELFMAG too large"); if ((r.permissions & MappedMemoryRegion::READ) && safe_memcpy(&ehdr, r.start, sizeof(ElfW(Ehdr))) && memcmp(ehdr.e_ident, ELFMAG, SELFMAG) == 0) { switch (ehdr.e_type) { case ET_EXEC: cur_base = 0; break; case ET_DYN: // Find the segment containing file offset 0. This will correspond // to the ELF header that we just read. Normally this will have // virtual address 0, but this is not guaranteed. We must subtract // the virtual address from the address where the ELF header was // mapped to get the base address. // // If we fail to find a segment for file offset 0, use the address // of the ELF header as the base address. cur_base = r.start; for (unsigned i = 0; i != ehdr.e_phnum; ++i) { ElfW(Phdr) phdr; if (safe_memcpy(&phdr, r.start + ehdr.e_phoff + i * sizeof(phdr), sizeof(phdr)) && phdr.p_type == PT_LOAD && phdr.p_offset == 0) { cur_base = r.start - phdr.p_vaddr; break; } } break; default: // ET_REL or ET_CORE. These aren't directly executable, so they // don't affect the base address. break; } } r.base = cur_base; } } // Parses /proc/self/maps in order to compile a list of all object file names // for the modules that are loaded in the current process. // Returns true on success. bool CacheMemoryRegions() { // Reads /proc/self/maps. std::string contents; if (!ReadProcMaps(&contents)) { LOG(ERROR) << "Failed to read /proc/self/maps"; return false; } // Parses /proc/self/maps. if (!ParseProcMaps(contents, ®ions_)) { LOG(ERROR) << "Failed to parse the contents of /proc/self/maps"; return false; } SetBaseAddressesForMemoryRegions(); is_initialized_ = true; return true; } // Opens all object files and caches their file descriptors. void OpenSymbolFiles() { // Pre-opening and caching the file descriptors of all loaded modules is // not safe for production builds. Hence it is only done in non-official // builds. For more details, take a look at: http://crbug.com/341966. #if !defined(OFFICIAL_BUILD) // Open the object files for all read-only executable regions and cache // their file descriptors. std::vector::const_iterator it; for (it = regions_.begin(); it != regions_.end(); ++it) { const MappedMemoryRegion& region = *it; // Only interesed in read-only executable regions. if ((region.permissions & MappedMemoryRegion::READ) == MappedMemoryRegion::READ && (region.permissions & MappedMemoryRegion::WRITE) == 0 && (region.permissions & MappedMemoryRegion::EXECUTE) == MappedMemoryRegion::EXECUTE) { if (region.path.empty()) { // Skip regions with empty file names. continue; } if (region.path[0] == '[') { // Skip pseudo-paths, like [stack], [vdso], [heap], etc ... continue; } // Avoid duplicates. if (modules_.find(region.path) == modules_.end()) { int fd = open(region.path.c_str(), O_RDONLY | O_CLOEXEC); if (fd >= 0) { modules_.insert(std::make_pair(region.path, fd)); } else { LOG(WARNING) << "Failed to open file: " << region.path << "\n Error: " << strerror(errno); } } } } #endif // !defined(OFFICIAL_BUILD) } // Initializes and installs the symbolization callback. void Init() { if (CacheMemoryRegions()) { OpenSymbolFiles(); google::InstallSymbolizeOpenObjectFileCallback( &OpenObjectFileContainingPc); } } // Unregister symbolization callback. void UnregisterCallback() { if (is_initialized_) { google::InstallSymbolizeOpenObjectFileCallback(nullptr); is_initialized_ = false; } } // Closes all file descriptors owned by this instance. void CloseObjectFiles() { #if !defined(OFFICIAL_BUILD) std::map::iterator it; for (it = modules_.begin(); it != modules_.end(); ++it) { int ret = IGNORE_EINTR(close(it->second)); DCHECK(!ret); it->second = -1; } modules_.clear(); #endif // !defined(OFFICIAL_BUILD) } // Set to true upon successful initialization. bool is_initialized_; #if !defined(OFFICIAL_BUILD) // Mapping from file name to file descriptor. Includes file descriptors // for all successfully opened object files and the file descriptor for // /proc/self/maps. This code is not safe for production builds. std::map modules_; #endif // !defined(OFFICIAL_BUILD) // Cache for the process memory regions. Produced by parsing the contents // of /proc/self/maps cache. std::vector regions_; DISALLOW_COPY_AND_ASSIGN(SandboxSymbolizeHelper); }; #endif // USE_SYMBOLIZE } // namespace bool EnableInProcessStackDumping() { #if defined(USE_SYMBOLIZE) SandboxSymbolizeHelper::GetInstance(); #endif // USE_SYMBOLIZE // When running in an application, our code typically expects SIGPIPE // to be ignored. Therefore, when testing that same code, it should run // with SIGPIPE ignored as well. struct sigaction sigpipe_action; memset(&sigpipe_action, 0, sizeof(sigpipe_action)); sigpipe_action.sa_handler = SIG_IGN; sigemptyset(&sigpipe_action.sa_mask); bool success = (sigaction(SIGPIPE, &sigpipe_action, nullptr) == 0); // Avoid hangs during backtrace initialization, see above. WarmUpBacktrace(); struct sigaction action; memset(&action, 0, sizeof(action)); action.sa_flags = SA_RESETHAND | SA_SIGINFO; action.sa_sigaction = &StackDumpSignalHandler; sigemptyset(&action.sa_mask); success &= (sigaction(SIGILL, &action, nullptr) == 0); success &= (sigaction(SIGABRT, &action, nullptr) == 0); success &= (sigaction(SIGFPE, &action, nullptr) == 0); success &= (sigaction(SIGBUS, &action, nullptr) == 0); success &= (sigaction(SIGSEGV, &action, nullptr) == 0); // On Linux, SIGSYS is reserved by the kernel for seccomp-bpf sandboxing. #if !defined(OS_LINUX) success &= (sigaction(SIGSYS, &action, nullptr) == 0); #endif // !defined(OS_LINUX) return success; } void SetStackDumpFirstChanceCallback(bool (*handler)(int, void*, void*)) { DCHECK(try_handle_signal == nullptr || handler == nullptr); try_handle_signal = handler; } StackTrace::StackTrace(size_t count) { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. #if !defined(__UCLIBC__) && !defined(_AIX) count = std::min(arraysize(trace_), count); // Though the backtrace API man page does not list any possible negative // return values, we take no chance. count_ = base::saturated_cast(backtrace(trace_, count)); #else count_ = 0; #endif } void StackTrace::Print() const { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. #if !defined(__UCLIBC__) && !defined(_AIX) PrintBacktraceOutputHandler handler; ProcessBacktrace(trace_, count_, &handler); #endif } #if !defined(__UCLIBC__) && !defined(_AIX) void StackTrace::OutputToStream(std::ostream* os) const { StreamBacktraceOutputHandler handler(os); ProcessBacktrace(trace_, count_, &handler); } #endif namespace internal { // NOTE: code from sandbox/linux/seccomp-bpf/demo.cc. char* itoa_r(intptr_t i, char* buf, size_t sz, int base, size_t padding) { // Make sure we can write at least one NUL byte. size_t n = 1; if (n > sz) return nullptr; if (base < 2 || base > 16) { buf[0] = '\000'; return nullptr; } char* start = buf; uintptr_t j = i; // Handle negative numbers (only for base 10). if (i < 0 && base == 10) { // This does "j = -i" while avoiding integer overflow. j = static_cast(-(i + 1)) + 1; // Make sure we can write the '-' character. if (++n > sz) { buf[0] = '\000'; return nullptr; } *start++ = '-'; } // Loop until we have converted the entire number. Output at least one // character (i.e. '0'). char* ptr = start; do { // Make sure there is still enough space left in our output buffer. if (++n > sz) { buf[0] = '\000'; return nullptr; } // Output the next digit. *ptr++ = "0123456789abcdef"[j % base]; j /= base; if (padding > 0) padding--; } while (j > 0 || padding > 0); // Terminate the output with a NUL character. *ptr = '\000'; // Conversion to ASCII actually resulted in the digits being in reverse // order. We can't easily generate them in forward order, as we can't tell // the number of characters needed until we are done converting. // So, now, we reverse the string (except for the possible "-" sign). while (--ptr > start) { char ch = *ptr; *ptr = *start; *start++ = ch; } return buf; } } // namespace internal } // namespace debug } // namespace base