// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/cert_verify_proc.h" #include #include #include "base/containers/span.h" #include "base/metrics/histogram.h" #include "base/metrics/histogram_functions.h" #include "base/metrics/histogram_macros.h" #include "base/sha1.h" #include "base/stl_util.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/threading/scoped_blocking_call.h" #include "base/time/time.h" #include "build/build_config.h" #include "crypto/sha2.h" #include "net/base/net_errors.h" #include "net/base/registry_controlled_domains/registry_controlled_domain.h" #include "net/base/url_util.h" #include "net/cert/asn1_util.h" #include "net/cert/cert_status_flags.h" #include "net/cert/cert_verifier.h" #include "net/cert/cert_verify_result.h" #include "net/cert/crl_set.h" #include "net/cert/internal/ocsp.h" #include "net/cert/internal/signature_algorithm.h" #include "net/cert/known_roots.h" #include "net/cert/ocsp_revocation_status.h" #include "net/cert/symantec_certs.h" #include "net/cert/x509_certificate.h" #include "net/cert/x509_util.h" #include "net/der/encode_values.h" #include "url/url_canon.h" #if defined(USE_NSS_CERTS) #include "net/cert/cert_verify_proc_nss.h" #elif defined(OS_ANDROID) #include "net/cert/cert_verify_proc_android.h" #elif defined(OS_IOS) #include "net/cert/cert_verify_proc_ios.h" #elif defined(OS_MACOSX) #include "net/cert/cert_verify_proc_mac.h" #elif defined(OS_WIN) #include "base/win/windows_version.h" #include "net/cert/cert_verify_proc_win.h" #elif defined(OS_FUCHSIA) #include "net/cert/cert_verify_proc_builtin.h" #else #error Implement certificate verification. #endif namespace net { namespace { // Constants used to build histogram names const char kLeafCert[] = "Leaf"; const char kIntermediateCert[] = "Intermediate"; const char kRootCert[] = "Root"; // Histogram buckets for RSA/DSA/DH key sizes. const int kRsaDsaKeySizes[] = {512, 768, 1024, 1536, 2048, 3072, 4096, 8192, 16384}; // Histogram buckets for ECDSA/ECDH key sizes. The list is based upon the FIPS // 186-4 approved curves. const int kEccKeySizes[] = {163, 192, 224, 233, 256, 283, 384, 409, 521, 571}; const char* CertTypeToString(X509Certificate::PublicKeyType cert_type) { switch (cert_type) { case X509Certificate::kPublicKeyTypeUnknown: return "Unknown"; case X509Certificate::kPublicKeyTypeRSA: return "RSA"; case X509Certificate::kPublicKeyTypeDSA: return "DSA"; case X509Certificate::kPublicKeyTypeECDSA: return "ECDSA"; case X509Certificate::kPublicKeyTypeDH: return "DH"; case X509Certificate::kPublicKeyTypeECDH: return "ECDH"; } NOTREACHED(); return "Unsupported"; } void RecordPublicKeyHistogram(const char* chain_position, bool baseline_keysize_applies, size_t size_bits, X509Certificate::PublicKeyType cert_type) { std::string histogram_name = base::StringPrintf("CertificateType2.%s.%s.%s", baseline_keysize_applies ? "BR" : "NonBR", chain_position, CertTypeToString(cert_type)); // Do not use UMA_HISTOGRAM_... macros here, as it caches the Histogram // instance and thus only works if |histogram_name| is constant. base::HistogramBase* counter = NULL; // Histogram buckets are contingent upon the underlying algorithm being used. if (cert_type == X509Certificate::kPublicKeyTypeECDH || cert_type == X509Certificate::kPublicKeyTypeECDSA) { // Typical key sizes match SECP/FIPS 186-3 recommendations for prime and // binary curves - which range from 163 bits to 571 bits. counter = base::CustomHistogram::FactoryGet( histogram_name, base::CustomHistogram::ArrayToCustomEnumRanges(kEccKeySizes), base::HistogramBase::kUmaTargetedHistogramFlag); } else { // Key sizes < 1024 bits should cause errors, while key sizes > 16K are not // uniformly supported by the underlying cryptographic libraries. counter = base::CustomHistogram::FactoryGet( histogram_name, base::CustomHistogram::ArrayToCustomEnumRanges(kRsaDsaKeySizes), base::HistogramBase::kUmaTargetedHistogramFlag); } counter->Add(size_bits); } // Returns true if |type| is |kPublicKeyTypeRSA| or |kPublicKeyTypeDSA|, and // if |size_bits| is < 1024. Note that this means there may be false // negatives: keys for other algorithms and which are weak will pass this // test. bool IsWeakKey(X509Certificate::PublicKeyType type, size_t size_bits) { switch (type) { case X509Certificate::kPublicKeyTypeRSA: case X509Certificate::kPublicKeyTypeDSA: return size_bits < 1024; default: return false; } } // Returns true if |cert| contains a known-weak key. Additionally, histograms // the observed keys for future tightening of the definition of what // constitutes a weak key. bool ExaminePublicKeys(const scoped_refptr& cert, bool should_histogram) { // The effective date of the CA/Browser Forum's Baseline Requirements - // 2012-07-01 00:00:00 UTC. const base::Time kBaselineEffectiveDate = base::Time::FromInternalValue(INT64_C(12985574400000000)); // The effective date of the key size requirements from Appendix A, v1.1.5 // 2014-01-01 00:00:00 UTC. const base::Time kBaselineKeysizeEffectiveDate = base::Time::FromInternalValue(INT64_C(13033008000000000)); size_t size_bits = 0; X509Certificate::PublicKeyType type = X509Certificate::kPublicKeyTypeUnknown; bool weak_key = false; bool baseline_keysize_applies = cert->valid_start() >= kBaselineEffectiveDate && cert->valid_expiry() >= kBaselineKeysizeEffectiveDate; X509Certificate::GetPublicKeyInfo(cert->cert_buffer(), &size_bits, &type); if (should_histogram) { RecordPublicKeyHistogram(kLeafCert, baseline_keysize_applies, size_bits, type); } if (IsWeakKey(type, size_bits)) weak_key = true; const std::vector>& intermediates = cert->intermediate_buffers(); for (size_t i = 0; i < intermediates.size(); ++i) { X509Certificate::GetPublicKeyInfo(intermediates[i].get(), &size_bits, &type); if (should_histogram) { RecordPublicKeyHistogram( (i < intermediates.size() - 1) ? kIntermediateCert : kRootCert, baseline_keysize_applies, size_bits, type); } if (!weak_key && IsWeakKey(type, size_bits)) weak_key = true; } return weak_key; } // See // https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html // for more details. bool IsUntrustedSymantecCert(const X509Certificate& cert) { const base::Time& start = cert.valid_start(); if (start.is_max() || start.is_null()) return true; // Certificates issued on/after 2017-12-01 00:00:00 UTC are no longer // trusted. const base::Time kSymantecDeprecationDate = base::Time::UnixEpoch() + base::TimeDelta::FromSeconds(1512086400); if (start >= kSymantecDeprecationDate) return true; // Certificates issued prior to 2016-06-01 00:00:00 UTC are no longer // trusted. const base::Time kFirstAcceptedCertDate = base::Time::UnixEpoch() + base::TimeDelta::FromSeconds(1464739200); if (start < kFirstAcceptedCertDate) return true; return false; } void BestEffortCheckOCSP(const std::string& raw_response, const X509Certificate& certificate, OCSPVerifyResult* verify_result) { if (raw_response.empty()) { *verify_result = OCSPVerifyResult(); verify_result->response_status = OCSPVerifyResult::MISSING; return; } base::StringPiece cert_der = x509_util::CryptoBufferAsStringPiece(certificate.cert_buffer()); // Try to get the certificate that signed |certificate|. This will run into // problems if the CertVerifyProc implementation doesn't return the ordered // certificates. If that happens the OCSP verification may be incorrect. base::StringPiece issuer_der; if (certificate.intermediate_buffers().empty()) { if (X509Certificate::IsSelfSigned(certificate.cert_buffer())) { issuer_der = cert_der; } else { // A valid cert chain wasn't provided. *verify_result = OCSPVerifyResult(); return; } } else { issuer_der = x509_util::CryptoBufferAsStringPiece( certificate.intermediate_buffers().front().get()); } verify_result->revocation_status = CheckOCSP(raw_response, cert_der, issuer_der, base::Time::Now(), kMaxOCSPLeafUpdateAge, &verify_result->response_status); } // Records histograms indicating whether the certificate |cert|, which // is assumed to have been validated chaining to a private root, // contains the TLS Feature Extension (https://tools.ietf.org/html/rfc7633) and // has valid OCSP information stapled. void RecordTLSFeatureExtensionWithPrivateRoot( X509Certificate* cert, const OCSPVerifyResult& ocsp_result) { // This checks only for the presence of the TLS Feature Extension, but // does not check the feature list, and in particular does not verify that // its value is 'status_request' or 'status_request2'. In practice the // only use of the TLS feature extension is for OCSP stapling, so // don't bother to check the value. bool has_extension = asn1::HasTLSFeatureExtension( x509_util::CryptoBufferAsStringPiece(cert->cert_buffer())); UMA_HISTOGRAM_BOOLEAN("Net.Certificate.TLSFeatureExtensionWithPrivateRoot", has_extension); if (!has_extension) return; UMA_HISTOGRAM_BOOLEAN( "Net.Certificate.TLSFeatureExtensionWithPrivateRootHasOCSP", (ocsp_result.response_status != OCSPVerifyResult::MISSING)); } // Records details about the most-specific trust anchor in |hashes|, which is // expected to be ordered with the leaf cert first and the root cert last. // "Most-specific" refers to the case that it is not uncommon to have multiple // potential trust anchors present in a chain, depending on the client trust // store. For example, '1999-Root' cross-signing '2005-Root' cross-signing // '2012-Root' cross-signing '2017-Root', then followed by intermediate and // leaf. For purposes of assessing impact of, say, removing 1999-Root, while // including 2017-Root as a trust anchor, then the validation should be // counted as 2017-Root, rather than 1999-Root. // // This also accounts for situations in which a new CA is introduced, and // has been cross-signed by an existing CA. Assessing impact should use the // most-specific trust anchor, when possible. // // This also histograms for divergence between the root store and // |spki_hashes| - that is, situations in which the OS methods of detecting // a known root flag a certificate as known, but its hash is not known as part // of the built-in list. void RecordTrustAnchorHistogram(const HashValueVector& spki_hashes, bool is_issued_by_known_root) { int32_t id = 0; for (const auto& hash : spki_hashes) { id = GetNetTrustAnchorHistogramIdForSPKI(hash); if (id != 0) break; } base::UmaHistogramSparse("Net.Certificate.TrustAnchor.Verify", id); // Record when a known trust anchor is not found within the chain, but the // certificate is flagged as being from a known root (meaning a fallback to // OS-based methods of determination). if (id == 0) { UMA_HISTOGRAM_BOOLEAN("Net.Certificate.TrustAnchor.VerifyOutOfDate", is_issued_by_known_root); } } // Comparison functor used for binary searching whether a given HashValue, // which MUST be a SHA-256 hash, is contained with an array of SHA-256 // hashes. struct HashToArrayComparator { template bool operator()(const uint8_t(&lhs)[N], const HashValue& rhs) const { static_assert(N == crypto::kSHA256Length, "Only SHA-256 hashes are supported"); return memcmp(lhs, rhs.data(), crypto::kSHA256Length) < 0; } template bool operator()(const HashValue& lhs, const uint8_t(&rhs)[N]) const { static_assert(N == crypto::kSHA256Length, "Only SHA-256 hashes are supported"); return memcmp(lhs.data(), rhs, crypto::kSHA256Length) < 0; } }; bool AreSHA1IntermediatesAllowed() { #if defined(OS_WIN) // TODO(rsleevi): Remove this once https://crbug.com/588789 is resolved // for Windows 7/2008 users. // Note: This must be kept in sync with cert_verify_proc_unittest.cc return base::win::GetVersion() < base::win::VERSION_WIN8; #else return false; #endif }; // Sets the "has_*" boolean members in |verify_result| that correspond with // the the presence of |hash| somewhere in the certificate chain (excluding the // trust anchor). void MapAlgorithmToBool(DigestAlgorithm hash, CertVerifyResult* verify_result) { switch (hash) { case DigestAlgorithm::Md2: verify_result->has_md2 = true; break; case DigestAlgorithm::Md4: verify_result->has_md4 = true; break; case DigestAlgorithm::Md5: verify_result->has_md5 = true; break; case DigestAlgorithm::Sha1: verify_result->has_sha1 = true; break; case DigestAlgorithm::Sha256: case DigestAlgorithm::Sha384: case DigestAlgorithm::Sha512: break; } } // Inspects the signature algorithms in a single certificate |cert|. // // * Sets |verify_result->has_md2| to true if the certificate uses MD2. // * Sets |verify_result->has_md4| to true if the certificate uses MD4. // * Sets |verify_result->has_md5| to true if the certificate uses MD5. // * Sets |verify_result->has_sha1| to true if the certificate uses SHA1. // // Returns false if the signature algorithm was unknown or mismatched. WARN_UNUSED_RESULT bool InspectSignatureAlgorithmForCert( const CRYPTO_BUFFER* cert, CertVerifyResult* verify_result) { base::StringPiece cert_algorithm_sequence; base::StringPiece tbs_algorithm_sequence; // Extract the AlgorithmIdentifier SEQUENCEs if (!asn1::ExtractSignatureAlgorithmsFromDERCert( x509_util::CryptoBufferAsStringPiece(cert), &cert_algorithm_sequence, &tbs_algorithm_sequence)) { return false; } if (!SignatureAlgorithm::IsEquivalent(der::Input(cert_algorithm_sequence), der::Input(tbs_algorithm_sequence))) { return false; } std::unique_ptr algorithm = SignatureAlgorithm::Create(der::Input(cert_algorithm_sequence), nullptr); if (!algorithm) return false; MapAlgorithmToBool(algorithm->digest(), verify_result); // Check algorithm-specific parameters. switch (algorithm->algorithm()) { case SignatureAlgorithmId::Dsa: case SignatureAlgorithmId::RsaPkcs1: case SignatureAlgorithmId::Ecdsa: DCHECK(!algorithm->has_params()); break; case SignatureAlgorithmId::RsaPss: MapAlgorithmToBool(algorithm->ParamsForRsaPss()->mgf1_hash(), verify_result); break; } return true; } // InspectSignatureAlgorithmsInChain() sets |verify_result->has_*| based on // the signature algorithms used in the chain, and also checks that certificates // don't have contradictory signature algorithms. // // Returns false if any signature algorithm in the chain is unknown or // mismatched. // // Background: // // X.509 certificates contain two redundant descriptors for the signature // algorithm; one is covered by the signature, but in order to verify the // signature, the other signature algorithm is untrusted. // // RFC 5280 states that the two should be equal, in order to mitigate risk of // signature substitution attacks, but also discourages verifiers from enforcing // the profile of RFC 5280. // // System verifiers are inconsistent - some use the unsigned signature, some use // the signed signature, and they generally do not enforce that both match. This // creates confusion, as it's possible that the signature itself may be checked // using algorithm A, but if subsequent consumers report the certificate // algorithm, they may end up reporting algorithm B, which was not used to // verify the certificate. This function enforces that the two signatures match // in order to prevent such confusion. WARN_UNUSED_RESULT bool InspectSignatureAlgorithmsInChain( CertVerifyResult* verify_result) { const std::vector>& intermediates = verify_result->verified_cert->intermediate_buffers(); // If there are no intermediates, then the leaf is trusted or verification // failed. if (intermediates.empty()) return true; DCHECK(!verify_result->has_sha1); // Fill in hash algorithms for the leaf certificate. if (!InspectSignatureAlgorithmForCert( verify_result->verified_cert->cert_buffer(), verify_result)) { return false; } verify_result->has_sha1_leaf = verify_result->has_sha1; // Fill in hash algorithms for the intermediate cerificates, excluding the // final one (which is presumably the trust anchor; may be incorrect for // partial chains). for (size_t i = 0; i + 1 < intermediates.size(); ++i) { if (!InspectSignatureAlgorithmForCert(intermediates[i].get(), verify_result)) return false; } return true; } } // namespace // static scoped_refptr CertVerifyProc::CreateDefault() { #if defined(USE_NSS_CERTS) return new CertVerifyProcNSS(); #elif defined(OS_ANDROID) return new CertVerifyProcAndroid(); #elif defined(OS_IOS) return new CertVerifyProcIOS(); #elif defined(OS_MACOSX) return new CertVerifyProcMac(); #elif defined(OS_WIN) return new CertVerifyProcWin(); #elif defined(OS_FUCHSIA) return CreateCertVerifyProcBuiltin(); #else #error Unsupported platform #endif } CertVerifyProc::CertVerifyProc() {} CertVerifyProc::~CertVerifyProc() = default; int CertVerifyProc::Verify(X509Certificate* cert, const std::string& hostname, const std::string& ocsp_response, int flags, CRLSet* crl_set, const CertificateList& additional_trust_anchors, CertVerifyResult* verify_result) { // CertVerifyProc's contract allows ::VerifyInternal() to wait on File I/O // (such as the Windows registry or smart cards on all platforms) or may re- // enter this code via extension hooks (such as smart card UI). To ensure // threads are not starved or deadlocked, the base::ScopedBlockingCall below // increments the thread pool capacity when this method takes too much time to // run. base::ScopedBlockingCall scoped_blocking_call(base::BlockingType::MAY_BLOCK); verify_result->Reset(); verify_result->verified_cert = cert; if (IsBlacklisted(cert)) { verify_result->cert_status |= CERT_STATUS_REVOKED; return ERR_CERT_REVOKED; } int rv = VerifyInternal(cert, hostname, ocsp_response, flags, crl_set, additional_trust_anchors, verify_result); // Check for mismatched signature algorithms and unknown signature algorithms // in the chain. Also fills in the has_* booleans for the digest algorithms // present in the chain. if (!InspectSignatureAlgorithmsInChain(verify_result)) { verify_result->cert_status |= CERT_STATUS_INVALID; rv = MapCertStatusToNetError(verify_result->cert_status); } if (!cert->VerifyNameMatch(hostname)) { verify_result->cert_status |= CERT_STATUS_COMMON_NAME_INVALID; rv = MapCertStatusToNetError(verify_result->cert_status); } BestEffortCheckOCSP(ocsp_response, *verify_result->verified_cert, &verify_result->ocsp_result); // This check is done after VerifyInternal so that VerifyInternal can fill // in the list of public key hashes. if (IsPublicKeyBlacklisted(verify_result->public_key_hashes)) { verify_result->cert_status |= CERT_STATUS_REVOKED; rv = MapCertStatusToNetError(verify_result->cert_status); } std::vector dns_names, ip_addrs; cert->GetSubjectAltName(&dns_names, &ip_addrs); if (HasNameConstraintsViolation(verify_result->public_key_hashes, cert->subject().common_name, dns_names, ip_addrs)) { verify_result->cert_status |= CERT_STATUS_NAME_CONSTRAINT_VIOLATION; rv = MapCertStatusToNetError(verify_result->cert_status); } // Check for weak keys in the entire verified chain. bool weak_key = ExaminePublicKeys(verify_result->verified_cert, verify_result->is_issued_by_known_root); if (weak_key) { verify_result->cert_status |= CERT_STATUS_WEAK_KEY; // Avoid replacing a more serious error, such as an OS/library failure, // by ensuring that if verification failed, it failed with a certificate // error. if (rv == OK || IsCertificateError(rv)) rv = MapCertStatusToNetError(verify_result->cert_status); } // Treat certificates signed using broken signature algorithms as invalid. if (verify_result->has_md2 || verify_result->has_md4) { verify_result->cert_status |= CERT_STATUS_INVALID; rv = MapCertStatusToNetError(verify_result->cert_status); } if (verify_result->has_sha1) verify_result->cert_status |= CERT_STATUS_SHA1_SIGNATURE_PRESENT; // Flag certificates using weak signature algorithms. // Current SHA-1 behaviour: // - Reject all SHA-1 // - ... unless it's not publicly trusted and SHA-1 is allowed // - ... or SHA-1 is in the intermediate and SHA-1 intermediates are // allowed for that platform. See https://crbug.com/588789 bool current_sha1_issue = (verify_result->is_issued_by_known_root || !(flags & VERIFY_ENABLE_SHA1_LOCAL_ANCHORS)) && (verify_result->has_sha1_leaf || (verify_result->has_sha1 && !AreSHA1IntermediatesAllowed())); if (verify_result->has_md5 || current_sha1_issue) { verify_result->cert_status |= CERT_STATUS_WEAK_SIGNATURE_ALGORITHM; // Avoid replacing a more serious error, such as an OS/library failure, // by ensuring that if verification failed, it failed with a certificate // error. if (rv == OK || IsCertificateError(rv)) rv = MapCertStatusToNetError(verify_result->cert_status); } // Distrust Symantec-issued certificates, as described at // https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html if (!(flags & VERIFY_DISABLE_SYMANTEC_ENFORCEMENT) && IsLegacySymantecCert(verify_result->public_key_hashes)) { if (base::FeatureList::IsEnabled(kLegacySymantecPKIEnforcement) || IsUntrustedSymantecCert(*verify_result->verified_cert)) { verify_result->cert_status |= CERT_STATUS_SYMANTEC_LEGACY; if (rv == OK || IsCertificateError(rv)) rv = MapCertStatusToNetError(verify_result->cert_status); } } // Flag certificates from publicly-trusted CAs that are issued to intranet // hosts. While the CA/Browser Forum Baseline Requirements (v1.1) permit // these to be issued until 1 November 2015, they represent a real risk for // the deployment of gTLDs and are being phased out ahead of the hard // deadline. if (verify_result->is_issued_by_known_root && IsHostnameNonUnique(hostname)) { verify_result->cert_status |= CERT_STATUS_NON_UNIQUE_NAME; // CERT_STATUS_NON_UNIQUE_NAME will eventually become a hard error. For // now treat it as a warning and do not map it to an error return value. } // Flag certificates using too long validity periods. if (verify_result->is_issued_by_known_root && HasTooLongValidity(*cert)) { verify_result->cert_status |= CERT_STATUS_VALIDITY_TOO_LONG; if (rv == OK) rv = MapCertStatusToNetError(verify_result->cert_status); } // Record a histogram for the presence of the TLS feature extension in // a certificate chaining to a private root. if (rv == OK && !verify_result->is_issued_by_known_root) RecordTLSFeatureExtensionWithPrivateRoot(cert, verify_result->ocsp_result); // Record a histogram for per-verification usage of root certs. if (rv == OK) { RecordTrustAnchorHistogram(verify_result->public_key_hashes, verify_result->is_issued_by_known_root); } return rv; } // static bool CertVerifyProc::IsBlacklisted(X509Certificate* cert) { // CloudFlare revoked all certificates issued prior to April 2nd, 2014. Thus // all certificates where the CN ends with ".cloudflare.com" with a prior // issuance date are rejected. // // The old certs had a lifetime of five years, so this can be removed April // 2nd, 2019. const base::StringPiece cn(cert->subject().common_name); static constexpr base::StringPiece kCloudflareCNSuffix(".cloudflare.com"); // April 2nd, 2014 UTC, expressed as seconds since the Unix Epoch. static constexpr base::TimeDelta kCloudflareEpoch = base::TimeDelta::FromSeconds(1396396800); if (cn.ends_with(kCloudflareCNSuffix) && cert->valid_start() < (base::Time::UnixEpoch() + kCloudflareEpoch)) { return true; } return false; } // static bool CertVerifyProc::IsPublicKeyBlacklisted( const HashValueVector& public_key_hashes) { // Defines kBlacklistedSPKIs. #include "net/cert/cert_verify_proc_blacklist.inc" for (const auto& hash : public_key_hashes) { if (hash.tag() != HASH_VALUE_SHA256) continue; if (std::binary_search(std::begin(kBlacklistedSPKIs), std::end(kBlacklistedSPKIs), hash, HashToArrayComparator())) { return true; } } return false; } // CheckNameConstraints verifies that every name in |dns_names| is in one of // the domains specified by |domains|. static bool CheckNameConstraints(const std::vector& dns_names, base::span domains) { for (const auto& host : dns_names) { bool ok = false; url::CanonHostInfo host_info; const std::string dns_name = CanonicalizeHost(host, &host_info); if (host_info.IsIPAddress()) continue; // If the name is not in a known TLD, ignore it. This permits internal // server names. if (!registry_controlled_domains::HostHasRegistryControlledDomain( dns_name, registry_controlled_domains::EXCLUDE_UNKNOWN_REGISTRIES, registry_controlled_domains::INCLUDE_PRIVATE_REGISTRIES)) { continue; } for (const auto& domain : domains) { // The |domain| must be of ".somesuffix" form, and |dns_name| must // have |domain| as a suffix. DCHECK_EQ('.', domain[0]); if (dns_name.size() <= domain.size()) continue; base::StringPiece suffix = base::StringPiece(dns_name).substr(dns_name.size() - domain.size()); if (!base::LowerCaseEqualsASCII(suffix, domain)) continue; ok = true; break; } if (!ok) return false; } return true; } // static bool CertVerifyProc::HasNameConstraintsViolation( const HashValueVector& public_key_hashes, const std::string& common_name, const std::vector& dns_names, const std::vector& ip_addrs) { static constexpr base::StringPiece kDomainsANSSI[] = { ".fr", // France ".gp", // Guadeloupe ".gf", // Guyane ".mq", // Martinique ".re", // Réunion ".yt", // Mayotte ".pm", // Saint-Pierre et Miquelon ".bl", // Saint Barthélemy ".mf", // Saint Martin ".wf", // Wallis et Futuna ".pf", // Polynésie française ".nc", // Nouvelle Calédonie ".tf", // Terres australes et antarctiques françaises }; static constexpr base::StringPiece kDomainsIndiaCCA[] = { ".gov.in", ".nic.in", ".ac.in", ".rbi.org.in", ".bankofindia.co.in", ".ncode.in", ".tcs.co.in", }; static constexpr base::StringPiece kDomainsTest[] = { ".example.com", }; // PublicKeyDomainLimitation contains SHA-256(SPKI) and a pointer to an array // of fixed-length strings that contain the domains that the SPKI is allowed // to issue for. static const struct PublicKeyDomainLimitation { SHA256HashValue public_key_hash; base::span domains; } kLimits[] = { // C=FR, ST=France, L=Paris, O=PM/SGDN, OU=DCSSI, // CN=IGC/A/emailAddress=igca@sgdn.pm.gouv.fr // // net/data/ssl/blacklist/b9bea7860a962ea3611dab97ab6da3e21c1068b97d55575ed0e11279c11c8932.pem { {{0x86, 0xc1, 0x3a, 0x34, 0x08, 0xdd, 0x1a, 0xa7, 0x7e, 0xe8, 0xb6, 0x94, 0x7c, 0x03, 0x95, 0x87, 0x72, 0xf5, 0x31, 0x24, 0x8c, 0x16, 0x27, 0xbe, 0xfb, 0x2c, 0x4f, 0x4b, 0x04, 0xd0, 0x44, 0x96}}, kDomainsANSSI, }, // C=IN, O=India PKI, CN=CCA India 2007 // Expires: July 4th 2015. // // net/data/ssl/blacklist/f375e2f77a108bacc4234894a9af308edeca1acd8fbde0e7aaa9634e9daf7e1c.pem { {{0x7e, 0x6a, 0xcd, 0x85, 0x3c, 0xac, 0xc6, 0x93, 0x2e, 0x9b, 0x51, 0x9f, 0xda, 0xd1, 0xbe, 0xb5, 0x15, 0xed, 0x2a, 0x2d, 0x00, 0x25, 0xcf, 0xd3, 0x98, 0xc3, 0xac, 0x1f, 0x0d, 0xbb, 0x75, 0x4b}}, kDomainsIndiaCCA, }, // C=IN, O=India PKI, CN=CCA India 2011 // Expires: March 11 2016. // // net/data/ssl/blacklist/2d66a702ae81ba03af8cff55ab318afa919039d9f31b4d64388680f81311b65a.pem { {{0x42, 0xa7, 0x09, 0x84, 0xff, 0xd3, 0x99, 0xc4, 0xea, 0xf0, 0xe7, 0x02, 0xa4, 0x4b, 0xef, 0x2a, 0xd8, 0xa7, 0x9b, 0x8b, 0xf4, 0x64, 0x8f, 0x6b, 0xb2, 0x10, 0xe1, 0x23, 0xfd, 0x07, 0x57, 0x93}}, kDomainsIndiaCCA, }, // C=IN, O=India PKI, CN=CCA India 2014 // Expires: March 5 2024. // // net/data/ssl/blacklist/60109bc6c38328598a112c7a25e38b0f23e5a7511cb815fb64e0c4ff05db7df7.pem { {{0x9c, 0xf4, 0x70, 0x4f, 0x3e, 0xe5, 0xa5, 0x98, 0x94, 0xb1, 0x6b, 0xf0, 0x0c, 0xfe, 0x73, 0xd5, 0x88, 0xda, 0xe2, 0x69, 0xf5, 0x1d, 0xe6, 0x6a, 0x4b, 0xa7, 0x74, 0x46, 0xee, 0x2b, 0xd1, 0xf7}}, kDomainsIndiaCCA, }, // Not a real certificate - just for testing. // net/data/ssl/certificates/name_constraint_*.pem { {{0x8e, 0x9b, 0x14, 0x9f, 0x01, 0x45, 0x4c, 0xee, 0xde, 0xfa, 0x5e, 0x73, 0x40, 0x36, 0x21, 0xba, 0xd9, 0x1f, 0xee, 0xe0, 0x3e, 0x74, 0x25, 0x6c, 0x59, 0xf4, 0x6f, 0xbf, 0x45, 0x03, 0x5f, 0x8d}}, kDomainsTest, }, }; for (const auto& limit : kLimits) { for (const auto& hash : public_key_hashes) { if (hash.tag() != HASH_VALUE_SHA256) continue; if (memcmp(hash.data(), limit.public_key_hash.data, hash.size()) != 0) continue; if (dns_names.empty() && ip_addrs.empty()) { std::vector names; names.push_back(common_name); if (!CheckNameConstraints(names, limit.domains)) return true; } else { if (!CheckNameConstraints(dns_names, limit.domains)) return true; } } } return false; } // static bool CertVerifyProc::HasTooLongValidity(const X509Certificate& cert) { const base::Time& start = cert.valid_start(); const base::Time& expiry = cert.valid_expiry(); if (start.is_max() || start.is_null() || expiry.is_max() || expiry.is_null() || start > expiry) { return true; } // These dates are derived from the transitions noted in Section 1.2.2 // (Relevant Dates) of the Baseline Requirements. const base::Time time_2012_07_01 = base::Time::UnixEpoch() + base::TimeDelta::FromSeconds(1341100800); const base::Time time_2015_04_01 = base::Time::UnixEpoch() + base::TimeDelta::FromSeconds(1427846400); const base::Time time_2018_03_01 = base::Time::UnixEpoch() + base::TimeDelta::FromSeconds(1519862400); const base::Time time_2019_07_01 = base::Time::UnixEpoch() + base::TimeDelta::FromSeconds(1561939200); // Compute the maximally permissive interpretations, accounting for leap // years. // 10 years - two possible leap years. constexpr base::TimeDelta kTenYears = base::TimeDelta::FromDays((365 * 8) + (366 * 2)); // 5 years - two possible leap years (year 0/year 4 or year 1/year 5). constexpr base::TimeDelta kSixtyMonths = base::TimeDelta::FromDays((365 * 3) + (366 * 2)); // 39 months - one possible leap year, two at 365 days, and the longest // monthly sequence of 31/31/30 days (June/July/August). constexpr base::TimeDelta kThirtyNineMonths = base::TimeDelta::FromDays(366 + 365 + 365 + 31 + 31 + 30); base::TimeDelta validity_duration = cert.valid_expiry() - cert.valid_start(); // For certificates issued before the BRs took effect. if (start < time_2012_07_01 && (validity_duration > kTenYears || expiry > time_2019_07_01)) { return true; } // For certificates issued after the BR effective date of 1 July 2012: 60 // months. if (start >= time_2012_07_01 && validity_duration > kSixtyMonths) return true; // For certificates issued after 1 April 2015: 39 months. if (start >= time_2015_04_01 && validity_duration > kThirtyNineMonths) return true; // For certificates issued after 1 March 2018: 825 days. if (start >= time_2018_03_01 && validity_duration > base::TimeDelta::FromDays(825)) { return true; } return false; } // static const base::Feature CertVerifyProc::kLegacySymantecPKIEnforcement{ "LegacySymantecPKI", base::FEATURE_DISABLED_BY_DEFAULT}; } // namespace net