// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #import "base/message_loop/message_pump_mac.h" #import #include #include #include "base/auto_reset.h" #include "base/logging.h" #include "base/mac/call_with_eh_frame.h" #include "base/mac/scoped_cftyperef.h" #include "base/macros.h" #include "base/message_loop/timer_slack.h" #include "base/run_loop.h" #include "base/time/time.h" #include "build/build_config.h" #if !defined(OS_IOS) #import #endif // !defined(OS_IOS) namespace base { const CFStringRef kMessageLoopExclusiveRunLoopMode = CFSTR("kMessageLoopExclusiveRunLoopMode"); namespace { // Mask that determines which modes to use. enum { kCommonModeMask = 0x1, kAllModesMask = 0xf }; // Modes to use for MessagePumpNSApplication that are considered "safe". // Currently just common and exclusive modes. Ideally, messages would be pumped // in all modes, but that interacts badly with app modal dialogs (e.g. NSAlert). enum { kNSApplicationModalSafeModeMask = 0x3 }; void NoOp(void* info) { } constexpr CFTimeInterval kCFTimeIntervalMax = std::numeric_limits::max(); #if !defined(OS_IOS) // Set to true if MessagePumpMac::Create() is called before NSApp is // initialized. Only accessed from the main thread. bool g_not_using_cr_app = false; // The MessagePump controlling [NSApp run]. MessagePumpNSApplication* g_app_pump; // Various CoreFoundation definitions. typedef struct __CFRuntimeBase { uintptr_t _cfisa; uint8_t _cfinfo[4]; uint32_t _rc; } CFRuntimeBase; #if defined(__BIG_ENDIAN__) #define __CF_BIG_ENDIAN__ 1 #define __CF_LITTLE_ENDIAN__ 0 #endif #if defined(__LITTLE_ENDIAN__) #define __CF_LITTLE_ENDIAN__ 1 #define __CF_BIG_ENDIAN__ 0 #endif #define CF_INFO_BITS (!!(__CF_BIG_ENDIAN__)*3) #define __CFBitfieldMask(N1, N2) \ ((((UInt32)~0UL) << (31UL - (N1) + (N2))) >> (31UL - N1)) #define __CFBitfieldSetValue(V, N1, N2, X) \ ((V) = ((V) & ~__CFBitfieldMask(N1, N2)) | \ (((X) << (N2)) & __CFBitfieldMask(N1, N2))) // Marking timers as invalid at the right time by flipping their valid bit helps // significantly reduce power use (see the explanation in // RunDelayedWorkTimer()), however there is no public API for doing so. // CFRuntime.h states that CFRuntimeBase can change from release to release // and should not be accessed directly. The last known change of this struct // occurred in 2008 in CF-476 / 10.5; unfortunately the source for 10.11 and // 10.12 is not available for inspection at this time. // CanInvalidateCFRunLoopTimers() will at least prevent us from invalidating // timers if this function starts flipping the wrong bit on a future OS release. void __ChromeCFRunLoopTimerSetValid(CFRunLoopTimerRef timer, bool valid) { __CFBitfieldSetValue(((CFRuntimeBase*)timer)->_cfinfo[CF_INFO_BITS], 3, 3, valid); } #endif // !defined(OS_IOS) } // namespace // A scoper for autorelease pools created from message pump run loops. // Avoids dirtying up the ScopedNSAutoreleasePool interface for the rare // case where an autorelease pool needs to be passed in. class MessagePumpScopedAutoreleasePool { public: explicit MessagePumpScopedAutoreleasePool(MessagePumpCFRunLoopBase* pump) : pool_(pump->CreateAutoreleasePool()) { } ~MessagePumpScopedAutoreleasePool() { [pool_ drain]; } private: NSAutoreleasePool* pool_; DISALLOW_COPY_AND_ASSIGN(MessagePumpScopedAutoreleasePool); }; class MessagePumpCFRunLoopBase::ScopedModeEnabler { public: ScopedModeEnabler(MessagePumpCFRunLoopBase* owner, int mode_index) : owner_(owner), mode_index_(mode_index) { CFRunLoopRef loop = owner_->run_loop_; CFRunLoopAddTimer(loop, owner_->delayed_work_timer_, mode()); CFRunLoopAddSource(loop, owner_->work_source_, mode()); CFRunLoopAddSource(loop, owner_->idle_work_source_, mode()); CFRunLoopAddSource(loop, owner_->nesting_deferred_work_source_, mode()); CFRunLoopAddObserver(loop, owner_->pre_wait_observer_, mode()); CFRunLoopAddObserver(loop, owner_->pre_source_observer_, mode()); CFRunLoopAddObserver(loop, owner_->enter_exit_observer_, mode()); } ~ScopedModeEnabler() { CFRunLoopRef loop = owner_->run_loop_; CFRunLoopRemoveObserver(loop, owner_->enter_exit_observer_, mode()); CFRunLoopRemoveObserver(loop, owner_->pre_source_observer_, mode()); CFRunLoopRemoveObserver(loop, owner_->pre_wait_observer_, mode()); CFRunLoopRemoveSource(loop, owner_->nesting_deferred_work_source_, mode()); CFRunLoopRemoveSource(loop, owner_->idle_work_source_, mode()); CFRunLoopRemoveSource(loop, owner_->work_source_, mode()); CFRunLoopRemoveTimer(loop, owner_->delayed_work_timer_, mode()); } // This function knows about the AppKit RunLoop modes observed to potentially // run tasks posted to Chrome's main thread task runner. Some are internal to // AppKit but must be observed to keep Chrome's UI responsive. Others that may // be interesting, but are not watched: // - com.apple.hitoolbox.windows.transitionmode // - com.apple.hitoolbox.windows.flushmode const CFStringRef& mode() const { static const CFStringRef modes[] = { // The standard Core Foundation "common modes" constant. Must always be // first in this list to match the value of kCommonModeMask. kCFRunLoopCommonModes, // Mode that only sees Chrome work sources. kMessageLoopExclusiveRunLoopMode, // Process work when NSMenus are fading out. CFSTR("com.apple.hitoolbox.windows.windowfadingmode"), // Process work when AppKit is highlighting an item on the main menubar. CFSTR("NSUnhighlightMenuRunLoopMode"), }; static_assert(arraysize(modes) == kNumModes, "mode size mismatch"); static_assert((1 << kNumModes) - 1 == kAllModesMask, "kAllModesMask not large enough"); return modes[mode_index_]; } private: MessagePumpCFRunLoopBase* const owner_; // Weak. Owns this. const int mode_index_; DISALLOW_COPY_AND_ASSIGN(ScopedModeEnabler); }; // Must be called on the run loop thread. void MessagePumpCFRunLoopBase::Run(Delegate* delegate) { // nesting_level_ will be incremented in EnterExitRunLoop, so set // run_nesting_level_ accordingly. int last_run_nesting_level = run_nesting_level_; run_nesting_level_ = nesting_level_ + 1; Delegate* last_delegate = delegate_; SetDelegate(delegate); DoRun(delegate); // Restore the previous state of the object. SetDelegate(last_delegate); run_nesting_level_ = last_run_nesting_level; } // May be called on any thread. void MessagePumpCFRunLoopBase::ScheduleWork() { CFRunLoopSourceSignal(work_source_); CFRunLoopWakeUp(run_loop_); } // Must be called on the run loop thread. void MessagePumpCFRunLoopBase::ScheduleDelayedWork( const TimeTicks& delayed_work_time) { TimeDelta delta = delayed_work_time - TimeTicks::Now(); delayed_work_fire_time_ = CFAbsoluteTimeGetCurrent() + delta.InSecondsF(); // Flip the timer's validation bit just before setting the new fire time. Do // this now because CFRunLoopTimerSetNextFireDate() likely checks the validity // of a timer before proceeding to set its fire date. Making the timer valid // now won't have any side effects (such as a premature firing of the timer) // because we're only flipping a bit. // // Please see the comment in RunDelayedWorkTimer() for more info on the whys // of invalidation. ChromeCFRunLoopTimerSetValid(delayed_work_timer_, true); CFRunLoopTimerSetNextFireDate(delayed_work_timer_, delayed_work_fire_time_); if (timer_slack_ == TIMER_SLACK_MAXIMUM) { CFRunLoopTimerSetTolerance(delayed_work_timer_, delta.InSecondsF() * 0.5); } else { CFRunLoopTimerSetTolerance(delayed_work_timer_, 0); } } void MessagePumpCFRunLoopBase::SetTimerSlack(TimerSlack timer_slack) { timer_slack_ = timer_slack; } // Must be called on the run loop thread. MessagePumpCFRunLoopBase::MessagePumpCFRunLoopBase(int initial_mode_mask) : delegate_(NULL), delayed_work_fire_time_(kCFTimeIntervalMax), timer_slack_(base::TIMER_SLACK_NONE), nesting_level_(0), run_nesting_level_(0), deepest_nesting_level_(0), delegateless_work_(false), delegateless_idle_work_(false) { run_loop_ = CFRunLoopGetCurrent(); CFRetain(run_loop_); // Set a repeating timer with a preposterous firing time and interval. The // timer will effectively never fire as-is. The firing time will be adjusted // as needed when ScheduleDelayedWork is called. CFRunLoopTimerContext timer_context = CFRunLoopTimerContext(); timer_context.info = this; delayed_work_timer_ = CFRunLoopTimerCreate(NULL, // allocator kCFTimeIntervalMax, // fire time kCFTimeIntervalMax, // interval 0, // flags 0, // priority RunDelayedWorkTimer, &timer_context); CFRunLoopSourceContext source_context = CFRunLoopSourceContext(); source_context.info = this; source_context.perform = RunWorkSource; work_source_ = CFRunLoopSourceCreate(NULL, // allocator 1, // priority &source_context); source_context.perform = RunIdleWorkSource; idle_work_source_ = CFRunLoopSourceCreate(NULL, // allocator 2, // priority &source_context); source_context.perform = RunNestingDeferredWorkSource; nesting_deferred_work_source_ = CFRunLoopSourceCreate(NULL, // allocator 0, // priority &source_context); CFRunLoopObserverContext observer_context = CFRunLoopObserverContext(); observer_context.info = this; pre_wait_observer_ = CFRunLoopObserverCreate(NULL, // allocator kCFRunLoopBeforeWaiting, true, // repeat 0, // priority PreWaitObserver, &observer_context); pre_source_observer_ = CFRunLoopObserverCreate(NULL, // allocator kCFRunLoopBeforeSources, true, // repeat 0, // priority PreSourceObserver, &observer_context); enter_exit_observer_ = CFRunLoopObserverCreate(NULL, // allocator kCFRunLoopEntry | kCFRunLoopExit, true, // repeat 0, // priority EnterExitObserver, &observer_context); SetModeMask(initial_mode_mask); } // Ideally called on the run loop thread. If other run loops were running // lower on the run loop thread's stack when this object was created, the // same number of run loops must be running when this object is destroyed. MessagePumpCFRunLoopBase::~MessagePumpCFRunLoopBase() { SetModeMask(0); CFRelease(enter_exit_observer_); CFRelease(pre_source_observer_); CFRelease(pre_wait_observer_); CFRelease(nesting_deferred_work_source_); CFRelease(idle_work_source_); CFRelease(work_source_); CFRelease(delayed_work_timer_); CFRelease(run_loop_); } void MessagePumpCFRunLoopBase::SetDelegate(Delegate* delegate) { delegate_ = delegate; if (delegate) { // If any work showed up but could not be dispatched for want of a // delegate, set it up for dispatch again now that a delegate is // available. if (delegateless_work_) { CFRunLoopSourceSignal(work_source_); delegateless_work_ = false; } if (delegateless_idle_work_) { CFRunLoopSourceSignal(idle_work_source_); delegateless_idle_work_ = false; } } } // Base version returns a standard NSAutoreleasePool. AutoreleasePoolType* MessagePumpCFRunLoopBase::CreateAutoreleasePool() { return [[NSAutoreleasePool alloc] init]; } void MessagePumpCFRunLoopBase::SetModeMask(int mode_mask) { for (size_t i = 0; i < kNumModes; ++i) { bool enable = mode_mask & (0x1 << i); if (enable == !enabled_modes_[i]) { enabled_modes_[i] = enable ? std::make_unique(this, i) : nullptr; } } } int MessagePumpCFRunLoopBase::GetModeMask() const { int mask = 0; for (size_t i = 0; i < kNumModes; ++i) mask |= enabled_modes_[i] ? (0x1 << i) : 0; return mask; } #if !defined(OS_IOS) // This function uses private API to modify a test timer's valid state and // uses public API to confirm that the private API changed the correct bit. // static bool MessagePumpCFRunLoopBase::CanInvalidateCFRunLoopTimers() { CFRunLoopTimerContext timer_context = CFRunLoopTimerContext(); timer_context.info = nullptr; ScopedCFTypeRef test_timer( CFRunLoopTimerCreate(NULL, // allocator kCFTimeIntervalMax, // fire time kCFTimeIntervalMax, // interval 0, // flags 0, // priority nullptr, &timer_context)); // Should be valid from the start. if (!CFRunLoopTimerIsValid(test_timer)) { return false; } // Confirm that the private API can mark the timer invalid. __ChromeCFRunLoopTimerSetValid(test_timer, false); if (CFRunLoopTimerIsValid(test_timer)) { return false; } // Confirm that the private API can mark the timer valid. __ChromeCFRunLoopTimerSetValid(test_timer, true); return CFRunLoopTimerIsValid(test_timer); } #endif // !defined(OS_IOS) // static void MessagePumpCFRunLoopBase::ChromeCFRunLoopTimerSetValid( CFRunLoopTimerRef timer, bool valid) { #if !defined(OS_IOS) static bool can_invalidate_timers = CanInvalidateCFRunLoopTimers(); if (can_invalidate_timers) { __ChromeCFRunLoopTimerSetValid(timer, valid); } #endif // !defined(OS_IOS) } // Called from the run loop. // static void MessagePumpCFRunLoopBase::RunDelayedWorkTimer(CFRunLoopTimerRef timer, void* info) { MessagePumpCFRunLoopBase* self = static_cast(info); // The timer won't fire again until it's reset. self->delayed_work_fire_time_ = kCFTimeIntervalMax; // The message pump's timer needs to fire at changing and unpredictable // intervals. Creating a new timer for each firing time is very expensive, so // the message pump instead uses a repeating timer with a very large repeat // rate. After each firing of the timer, the run loop sets the timer's next // firing time to the distant future, essentially pausing the timer until the // pump sets the next firing time. This is the solution recommended by Apple. // // It turns out, however, that scheduling timers is also quite expensive, and // that every one of the message pump's timer firings incurs two // reschedulings. The first rescheduling occurs in ScheduleDelayedWork(), // which sets the desired next firing time. The second comes after exiting // this method (the timer's callback method), when the run loop sets the // timer's next firing time to far in the future. // // The code in __CFRunLoopDoTimer() inside CFRunLoop.c calls the timer's // callback, confirms that the timer is valid, and then sets its future // firing time based on its repeat frequency. Flipping the valid bit here // causes the __CFRunLoopDoTimer() to skip setting the future firing time. // Note that there's public API to invalidate a timer but it goes beyond // flipping the valid bit, making the timer unusable in the future. // // ScheduleDelayedWork() flips the valid bit back just before setting the // timer's new firing time. ChromeCFRunLoopTimerSetValid(self->delayed_work_timer_, false); // CFRunLoopTimers fire outside of the priority scheme for CFRunLoopSources. // In order to establish the proper priority in which work and delayed work // are processed one for one, the timer used to schedule delayed work must // signal a CFRunLoopSource used to dispatch both work and delayed work. CFRunLoopSourceSignal(self->work_source_); } // Called from the run loop. // static void MessagePumpCFRunLoopBase::RunWorkSource(void* info) { MessagePumpCFRunLoopBase* self = static_cast(info); base::mac::CallWithEHFrame(^{ self->RunWork(); }); } // Called by MessagePumpCFRunLoopBase::RunWorkSource. bool MessagePumpCFRunLoopBase::RunWork() { if (!delegate_) { // This point can be reached with a NULL delegate_ if Run is not on the // stack but foreign code is spinning the CFRunLoop. Arrange to come back // here when a delegate is available. delegateless_work_ = true; return false; } // The NSApplication-based run loop only drains the autorelease pool at each // UI event (NSEvent). The autorelease pool is not drained for each // CFRunLoopSource target that's run. Use a local pool for any autoreleased // objects if the app is not currently handling a UI event to ensure they're // released promptly even in the absence of UI events. MessagePumpScopedAutoreleasePool autorelease_pool(this); // Call DoWork and DoDelayedWork once, and if something was done, arrange to // come back here again as long as the loop is still running. bool did_work = delegate_->DoWork(); bool resignal_work_source = did_work; TimeTicks next_time; delegate_->DoDelayedWork(&next_time); if (!did_work) { // Determine whether there's more delayed work, and if so, if it needs to // be done at some point in the future or if it's already time to do it. // Only do these checks if did_work is false. If did_work is true, this // function, and therefore any additional delayed work, will get another // chance to run before the loop goes to sleep. bool more_delayed_work = !next_time.is_null(); if (more_delayed_work) { TimeDelta delay = next_time - TimeTicks::Now(); if (delay > TimeDelta()) { // There's more delayed work to be done in the future. ScheduleDelayedWork(next_time); } else { // There's more delayed work to be done, and its time is in the past. // Arrange to come back here directly as long as the loop is still // running. resignal_work_source = true; } } } if (resignal_work_source) { CFRunLoopSourceSignal(work_source_); } return resignal_work_source; } // Called from the run loop. // static void MessagePumpCFRunLoopBase::RunIdleWorkSource(void* info) { MessagePumpCFRunLoopBase* self = static_cast(info); base::mac::CallWithEHFrame(^{ self->RunIdleWork(); }); } // Called by MessagePumpCFRunLoopBase::RunIdleWorkSource. bool MessagePumpCFRunLoopBase::RunIdleWork() { if (!delegate_) { // This point can be reached with a NULL delegate_ if Run is not on the // stack but foreign code is spinning the CFRunLoop. Arrange to come back // here when a delegate is available. delegateless_idle_work_ = true; return false; } // The NSApplication-based run loop only drains the autorelease pool at each // UI event (NSEvent). The autorelease pool is not drained for each // CFRunLoopSource target that's run. Use a local pool for any autoreleased // objects if the app is not currently handling a UI event to ensure they're // released promptly even in the absence of UI events. MessagePumpScopedAutoreleasePool autorelease_pool(this); // Call DoIdleWork once, and if something was done, arrange to come back here // again as long as the loop is still running. bool did_work = delegate_->DoIdleWork(); if (did_work) { CFRunLoopSourceSignal(idle_work_source_); } return did_work; } // Called from the run loop. // static void MessagePumpCFRunLoopBase::RunNestingDeferredWorkSource(void* info) { MessagePumpCFRunLoopBase* self = static_cast(info); base::mac::CallWithEHFrame(^{ self->RunNestingDeferredWork(); }); } // Called by MessagePumpCFRunLoopBase::RunNestingDeferredWorkSource. bool MessagePumpCFRunLoopBase::RunNestingDeferredWork() { if (!delegate_) { // This point can be reached with a NULL delegate_ if Run is not on the // stack but foreign code is spinning the CFRunLoop. There's no sense in // attempting to do any work or signalling the work sources because // without a delegate, work is not possible. return false; } // Immediately try work in priority order. if (!RunWork()) { if (!RunIdleWork()) { return false; } } else { // Work was done. Arrange for the loop to try non-nestable idle work on // a subsequent pass. CFRunLoopSourceSignal(idle_work_source_); } return true; } // Called before the run loop goes to sleep or exits, or processes sources. void MessagePumpCFRunLoopBase::MaybeScheduleNestingDeferredWork() { // deepest_nesting_level_ is set as run loops are entered. If the deepest // level encountered is deeper than the current level, a nested loop // (relative to the current level) ran since the last time nesting-deferred // work was scheduled. When that situation is encountered, schedule // nesting-deferred work in case any work was deferred because nested work // was disallowed. if (deepest_nesting_level_ > nesting_level_) { deepest_nesting_level_ = nesting_level_; CFRunLoopSourceSignal(nesting_deferred_work_source_); } } // Called from the run loop. // static void MessagePumpCFRunLoopBase::PreWaitObserver(CFRunLoopObserverRef observer, CFRunLoopActivity activity, void* info) { MessagePumpCFRunLoopBase* self = static_cast(info); base::mac::CallWithEHFrame(^{ // Attempt to do some idle work before going to sleep. self->RunIdleWork(); // The run loop is about to go to sleep. If any of the work done since it // started or woke up resulted in a nested run loop running, // nesting-deferred work may have accumulated. Schedule it for processing // if appropriate. self->MaybeScheduleNestingDeferredWork(); }); } // Called from the run loop. // static void MessagePumpCFRunLoopBase::PreSourceObserver(CFRunLoopObserverRef observer, CFRunLoopActivity activity, void* info) { MessagePumpCFRunLoopBase* self = static_cast(info); // The run loop has reached the top of the loop and is about to begin // processing sources. If the last iteration of the loop at this nesting // level did not sleep or exit, nesting-deferred work may have accumulated // if a nested loop ran. Schedule nesting-deferred work for processing if // appropriate. base::mac::CallWithEHFrame(^{ self->MaybeScheduleNestingDeferredWork(); }); } // Called from the run loop. // static void MessagePumpCFRunLoopBase::EnterExitObserver(CFRunLoopObserverRef observer, CFRunLoopActivity activity, void* info) { MessagePumpCFRunLoopBase* self = static_cast(info); switch (activity) { case kCFRunLoopEntry: ++self->nesting_level_; if (self->nesting_level_ > self->deepest_nesting_level_) { self->deepest_nesting_level_ = self->nesting_level_; } break; case kCFRunLoopExit: // Not all run loops go to sleep. If a run loop is stopped before it // goes to sleep due to a CFRunLoopStop call, or if the timeout passed // to CFRunLoopRunInMode expires, the run loop may proceed directly from // handling sources to exiting without any sleep. This most commonly // occurs when CFRunLoopRunInMode is passed a timeout of 0, causing it // to make a single pass through the loop and exit without sleep. Some // native loops use CFRunLoop in this way. Because PreWaitObserver will // not be called in these case, MaybeScheduleNestingDeferredWork needs // to be called here, as the run loop exits. // // MaybeScheduleNestingDeferredWork consults self->nesting_level_ // to determine whether to schedule nesting-deferred work. It expects // the nesting level to be set to the depth of the loop that is going // to sleep or exiting. It must be called before decrementing the // value so that the value still corresponds to the level of the exiting // loop. base::mac::CallWithEHFrame(^{ self->MaybeScheduleNestingDeferredWork(); }); --self->nesting_level_; break; default: break; } base::mac::CallWithEHFrame(^{ self->EnterExitRunLoop(activity); }); } // Called by MessagePumpCFRunLoopBase::EnterExitRunLoop. The default // implementation is a no-op. void MessagePumpCFRunLoopBase::EnterExitRunLoop(CFRunLoopActivity activity) { } MessagePumpCFRunLoop::MessagePumpCFRunLoop() : MessagePumpCFRunLoopBase(kCommonModeMask), quit_pending_(false) {} MessagePumpCFRunLoop::~MessagePumpCFRunLoop() {} // Called by MessagePumpCFRunLoopBase::DoRun. If other CFRunLoopRun loops were // running lower on the run loop thread's stack when this object was created, // the same number of CFRunLoopRun loops must be running for the outermost call // to Run. Run/DoRun are reentrant after that point. void MessagePumpCFRunLoop::DoRun(Delegate* delegate) { // This is completely identical to calling CFRunLoopRun(), except autorelease // pool management is introduced. int result; do { MessagePumpScopedAutoreleasePool autorelease_pool(this); result = CFRunLoopRunInMode(kCFRunLoopDefaultMode, kCFTimeIntervalMax, false); } while (result != kCFRunLoopRunStopped && result != kCFRunLoopRunFinished); } // Must be called on the run loop thread. void MessagePumpCFRunLoop::Quit() { // Stop the innermost run loop managed by this MessagePumpCFRunLoop object. if (nesting_level() == run_nesting_level()) { // This object is running the innermost loop, just stop it. CFRunLoopStop(run_loop()); } else { // There's another loop running inside the loop managed by this object. // In other words, someone else called CFRunLoopRunInMode on the same // thread, deeper on the stack than the deepest Run call. Don't preempt // other run loops, just mark this object to quit the innermost Run as // soon as the other inner loops not managed by Run are done. quit_pending_ = true; } } // Called by MessagePumpCFRunLoopBase::EnterExitObserver. void MessagePumpCFRunLoop::EnterExitRunLoop(CFRunLoopActivity activity) { if (activity == kCFRunLoopExit && nesting_level() == run_nesting_level() && quit_pending_) { // Quit was called while loops other than those managed by this object // were running further inside a run loop managed by this object. Now // that all unmanaged inner run loops are gone, stop the loop running // just inside Run. CFRunLoopStop(run_loop()); quit_pending_ = false; } } MessagePumpNSRunLoop::MessagePumpNSRunLoop() : MessagePumpCFRunLoopBase(kCommonModeMask), keep_running_(true) { CFRunLoopSourceContext source_context = CFRunLoopSourceContext(); source_context.perform = NoOp; quit_source_ = CFRunLoopSourceCreate(NULL, // allocator 0, // priority &source_context); CFRunLoopAddSource(run_loop(), quit_source_, kCFRunLoopCommonModes); } MessagePumpNSRunLoop::~MessagePumpNSRunLoop() { CFRunLoopRemoveSource(run_loop(), quit_source_, kCFRunLoopCommonModes); CFRelease(quit_source_); } void MessagePumpNSRunLoop::DoRun(Delegate* delegate) { AutoReset auto_reset_keep_running(&keep_running_, true); while (keep_running_) { // NSRunLoop manages autorelease pools itself. [[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode beforeDate:[NSDate distantFuture]]; } } void MessagePumpNSRunLoop::Quit() { keep_running_ = false; CFRunLoopSourceSignal(quit_source_); CFRunLoopWakeUp(run_loop()); } #if defined(OS_IOS) MessagePumpUIApplication::MessagePumpUIApplication() : MessagePumpCFRunLoopBase(kCommonModeMask), run_loop_(NULL) {} MessagePumpUIApplication::~MessagePumpUIApplication() {} void MessagePumpUIApplication::DoRun(Delegate* delegate) { NOTREACHED(); } void MessagePumpUIApplication::Quit() { NOTREACHED(); } void MessagePumpUIApplication::Attach(Delegate* delegate) { DCHECK(!run_loop_); run_loop_ = new RunLoop(); CHECK(run_loop_->BeforeRun()); SetDelegate(delegate); } #else ScopedPumpMessagesInPrivateModes::ScopedPumpMessagesInPrivateModes() { DCHECK(g_app_pump); DCHECK_EQ(kNSApplicationModalSafeModeMask, g_app_pump->GetModeMask()); // Pumping events in private runloop modes is known to interact badly with // app modal windows like NSAlert. if (![NSApp modalWindow]) g_app_pump->SetModeMask(kAllModesMask); } ScopedPumpMessagesInPrivateModes::~ScopedPumpMessagesInPrivateModes() { DCHECK(g_app_pump); g_app_pump->SetModeMask(kNSApplicationModalSafeModeMask); } int ScopedPumpMessagesInPrivateModes::GetModeMaskForTest() { return g_app_pump ? g_app_pump->GetModeMask() : -1; } MessagePumpNSApplication::MessagePumpNSApplication() : MessagePumpCFRunLoopBase(kNSApplicationModalSafeModeMask), keep_running_(true), running_own_loop_(false) { DCHECK_EQ(nullptr, g_app_pump); g_app_pump = this; } MessagePumpNSApplication::~MessagePumpNSApplication() { DCHECK_EQ(this, g_app_pump); g_app_pump = nullptr; } void MessagePumpNSApplication::DoRun(Delegate* delegate) { AutoReset auto_reset_keep_running(&keep_running_, true); bool last_running_own_loop_ = running_own_loop_; // NSApp must be initialized by calling: // [{some class which implements CrAppProtocol} sharedApplication] // Most likely candidates are CrApplication or BrowserCrApplication. // These can be initialized from C++ code by calling // RegisterCrApp() or RegisterBrowserCrApp(). CHECK(NSApp); if (![NSApp isRunning]) { running_own_loop_ = false; // NSApplication manages autorelease pools itself when run this way. [NSApp run]; } else { running_own_loop_ = true; NSDate* distant_future = [NSDate distantFuture]; while (keep_running_) { MessagePumpScopedAutoreleasePool autorelease_pool(this); NSEvent* event = [NSApp nextEventMatchingMask:NSAnyEventMask untilDate:distant_future inMode:NSDefaultRunLoopMode dequeue:YES]; if (event) { [NSApp sendEvent:event]; } } } running_own_loop_ = last_running_own_loop_; } void MessagePumpNSApplication::Quit() { if (!running_own_loop_) { [[NSApplication sharedApplication] stop:nil]; } else { keep_running_ = false; } // Send a fake event to wake the loop up. [NSApp postEvent:[NSEvent otherEventWithType:NSApplicationDefined location:NSZeroPoint modifierFlags:0 timestamp:0 windowNumber:0 context:NULL subtype:0 data1:0 data2:0] atStart:NO]; } MessagePumpCrApplication::MessagePumpCrApplication() { } MessagePumpCrApplication::~MessagePumpCrApplication() { } // Prevents an autorelease pool from being created if the app is in the midst of // handling a UI event because various parts of AppKit depend on objects that // are created while handling a UI event to be autoreleased in the event loop. // An example of this is NSWindowController. When a window with a window // controller is closed it goes through a stack like this: // (Several stack frames elided for clarity) // // #0 [NSWindowController autorelease] // #1 DoAClose // #2 MessagePumpCFRunLoopBase::DoWork() // #3 [NSRunLoop run] // #4 [NSButton performClick:] // #5 [NSWindow sendEvent:] // #6 [NSApp sendEvent:] // #7 [NSApp run] // // -performClick: spins a nested run loop. If the pool created in DoWork was a // standard NSAutoreleasePool, it would release the objects that were // autoreleased into it once DoWork released it. This would cause the window // controller, which autoreleased itself in frame #0, to release itself, and // possibly free itself. Unfortunately this window controller controls the // window in frame #5. When the stack is unwound to frame #5, the window would // no longer exists and crashes may occur. Apple gets around this by never // releasing the pool it creates in frame #4, and letting frame #7 clean it up // when it cleans up the pool that wraps frame #7. When an autorelease pool is // released it releases all other pools that were created after it on the // autorelease pool stack. // // CrApplication is responsible for setting handlingSendEvent to true just // before it sends the event through the event handling mechanism, and // returning it to its previous value once the event has been sent. AutoreleasePoolType* MessagePumpCrApplication::CreateAutoreleasePool() { if (MessagePumpMac::IsHandlingSendEvent()) return nil; return MessagePumpNSApplication::CreateAutoreleasePool(); } // static bool MessagePumpMac::UsingCrApp() { DCHECK([NSThread isMainThread]); // If NSApp is still not initialized, then the subclass used cannot // be determined. DCHECK(NSApp); // The pump was created using MessagePumpNSApplication. if (g_not_using_cr_app) return false; return [NSApp conformsToProtocol:@protocol(CrAppProtocol)]; } // static bool MessagePumpMac::IsHandlingSendEvent() { DCHECK([NSApp conformsToProtocol:@protocol(CrAppProtocol)]); NSObject* app = static_cast*>(NSApp); return [app isHandlingSendEvent]; } #endif // !defined(OS_IOS) // static std::unique_ptr MessagePumpMac::Create() { if ([NSThread isMainThread]) { #if defined(OS_IOS) return std::make_unique(); #else if ([NSApp conformsToProtocol:@protocol(CrAppProtocol)]) return std::make_unique(); // The main-thread MessagePump implementations REQUIRE an NSApp. // Executables which have specific requirements for their // NSApplication subclass should initialize appropriately before // creating an event loop. [NSApplication sharedApplication]; g_not_using_cr_app = true; return std::make_unique(); #endif } return std::make_unique(); } } // namespace base