// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/simple/simple_index.h" #include #include #include #include #include "base/bind.h" #include "base/bind_helpers.h" #include "base/files/file_enumerator.h" #include "base/files/file_util.h" #include "base/logging.h" #include "base/metrics/field_trial.h" #include "base/numerics/safe_conversions.h" #include "base/pickle.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_tokenizer.h" #include "base/task_runner.h" #include "base/time/time.h" #include "base/trace_event/memory_usage_estimator.h" #include "net/base/net_errors.h" #include "net/disk_cache/backend_cleanup_tracker.h" #include "net/disk_cache/simple/simple_entry_format.h" #include "net/disk_cache/simple/simple_histogram_macros.h" #include "net/disk_cache/simple/simple_index_delegate.h" #include "net/disk_cache/simple/simple_index_file.h" #include "net/disk_cache/simple/simple_synchronous_entry.h" #include "net/disk_cache/simple/simple_util.h" #if defined(OS_POSIX) #include #include #endif namespace { // How many milliseconds we delay writing the index to disk since the last cache // operation has happened. const int kWriteToDiskDelayMSecs = 20000; const int kWriteToDiskOnBackgroundDelayMSecs = 100; // Divides the cache space into this amount of parts to evict when only one part // is left. const uint32_t kEvictionMarginDivisor = 20; const uint32_t kBytesInKb = 1024; // This is added to the size of each entry before using the size // to determine which entries to evict first. It's basically an // estimate of the filesystem overhead, but it also serves to flatten // the curve so that 1-byte entries and 2-byte entries are basically // treated the same. static const int kEstimatedEntryOverhead = 512; } // namespace namespace disk_cache { const base::Feature kSimpleCacheEvictionWithSize = { "SimpleCacheEvictionWithSize", base::FEATURE_ENABLED_BY_DEFAULT}; EntryMetadata::EntryMetadata() : last_used_time_seconds_since_epoch_(0), entry_size_256b_chunks_(0), in_memory_data_(0) {} EntryMetadata::EntryMetadata(base::Time last_used_time, base::StrictNumeric entry_size) : last_used_time_seconds_since_epoch_(0), entry_size_256b_chunks_(0), in_memory_data_(0) { SetEntrySize(entry_size); // to round/pack properly. SetLastUsedTime(last_used_time); } base::Time EntryMetadata::GetLastUsedTime() const { // Preserve nullity. if (last_used_time_seconds_since_epoch_ == 0) return base::Time(); return base::Time::UnixEpoch() + base::TimeDelta::FromSeconds(last_used_time_seconds_since_epoch_); } void EntryMetadata::SetLastUsedTime(const base::Time& last_used_time) { // Preserve nullity. if (last_used_time.is_null()) { last_used_time_seconds_since_epoch_ = 0; return; } last_used_time_seconds_since_epoch_ = base::saturated_cast( (last_used_time - base::Time::UnixEpoch()).InSeconds()); // Avoid accidental nullity. if (last_used_time_seconds_since_epoch_ == 0) last_used_time_seconds_since_epoch_ = 1; } uint32_t EntryMetadata::GetEntrySize() const { return entry_size_256b_chunks_ << 8; } void EntryMetadata::SetEntrySize(base::StrictNumeric entry_size) { // This should not overflow since we limit entries to 1/8th of the cache. entry_size_256b_chunks_ = (static_cast(entry_size) + 255) >> 8; } void EntryMetadata::Serialize(base::Pickle* pickle) const { DCHECK(pickle); int64_t internal_last_used_time = GetLastUsedTime().ToInternalValue(); // If you modify the size of the size of the pickle, be sure to update // kOnDiskSizeBytes. uint32_t packed_entry_info = (entry_size_256b_chunks_ << 8) | in_memory_data_; pickle->WriteInt64(internal_last_used_time); pickle->WriteUInt64(packed_entry_info); } bool EntryMetadata::Deserialize(base::PickleIterator* it, bool has_entry_in_memory_data) { DCHECK(it); int64_t tmp_last_used_time; uint64_t tmp_entry_size; if (!it->ReadInt64(&tmp_last_used_time) || !it->ReadUInt64(&tmp_entry_size) || tmp_entry_size > std::numeric_limits::max()) return false; SetLastUsedTime(base::Time::FromInternalValue(tmp_last_used_time)); if (has_entry_in_memory_data) { // tmp_entry_size actually packs entry_size_256b_chunks_ and // in_memory_data_. SetEntrySize(static_cast(tmp_entry_size & 0xFFFFFF00)); SetInMemoryData(static_cast(tmp_entry_size & 0xFF)); } else { SetEntrySize(static_cast(tmp_entry_size)); SetInMemoryData(0); } return true; } SimpleIndex::SimpleIndex( const scoped_refptr& io_thread, scoped_refptr cleanup_tracker, SimpleIndexDelegate* delegate, net::CacheType cache_type, std::unique_ptr index_file) : cleanup_tracker_(std::move(cleanup_tracker)), delegate_(delegate), cache_type_(cache_type), cache_size_(0), max_size_(0), high_watermark_(0), low_watermark_(0), eviction_in_progress_(false), initialized_(false), init_method_(INITIALIZE_METHOD_MAX), index_file_(std::move(index_file)), io_thread_(io_thread), // Creating the callback once so it is reused every time // write_to_disk_timer_.Start() is called. write_to_disk_cb_(base::Bind(&SimpleIndex::WriteToDisk, AsWeakPtr(), INDEX_WRITE_REASON_IDLE)), app_on_background_(false) {} SimpleIndex::~SimpleIndex() { DCHECK(io_thread_checker_.CalledOnValidThread()); // Fail all callbacks waiting for the index to come up. for (CallbackList::iterator it = to_run_when_initialized_.begin(), end = to_run_when_initialized_.end(); it != end; ++it) { std::move(*it).Run(net::ERR_ABORTED); } } void SimpleIndex::Initialize(base::Time cache_mtime) { DCHECK(io_thread_checker_.CalledOnValidThread()); #if defined(OS_ANDROID) if (base::android::IsVMInitialized()) { app_status_listener_.reset(new base::android::ApplicationStatusListener( base::Bind(&SimpleIndex::OnApplicationStateChange, AsWeakPtr()))); } #endif SimpleIndexLoadResult* load_result = new SimpleIndexLoadResult(); std::unique_ptr load_result_scoped(load_result); base::Closure reply = base::Bind( &SimpleIndex::MergeInitializingSet, AsWeakPtr(), base::Passed(&load_result_scoped)); index_file_->LoadIndexEntries(cache_mtime, reply, load_result); } void SimpleIndex::SetMaxSize(uint64_t max_bytes) { // Zero size means use the default. if (max_bytes) { max_size_ = max_bytes; high_watermark_ = max_size_ - max_size_ / kEvictionMarginDivisor; low_watermark_ = max_size_ - 2 * (max_size_ / kEvictionMarginDivisor); } } int SimpleIndex::ExecuteWhenReady(net::CompletionOnceCallback task) { DCHECK(io_thread_checker_.CalledOnValidThread()); if (initialized_) io_thread_->PostTask(FROM_HERE, base::BindOnce(std::move(task), net::OK)); else to_run_when_initialized_.push_back(std::move(task)); return net::ERR_IO_PENDING; } std::unique_ptr SimpleIndex::GetEntriesBetween( base::Time initial_time, base::Time end_time) { DCHECK_EQ(true, initialized_); if (!initial_time.is_null()) initial_time -= EntryMetadata::GetLowerEpsilonForTimeComparisons(); if (end_time.is_null()) end_time = base::Time::Max(); else end_time += EntryMetadata::GetUpperEpsilonForTimeComparisons(); DCHECK(end_time >= initial_time); std::unique_ptr ret_hashes(new HashList()); for (const auto& entry : entries_set_) { const EntryMetadata& metadata = entry.second; base::Time entry_time = metadata.GetLastUsedTime(); if (initial_time <= entry_time && entry_time < end_time) ret_hashes->push_back(entry.first); } return ret_hashes; } std::unique_ptr SimpleIndex::GetAllHashes() { return GetEntriesBetween(base::Time(), base::Time()); } int32_t SimpleIndex::GetEntryCount() const { // TODO(pasko): return a meaningful initial estimate before initialized. return entries_set_.size(); } uint64_t SimpleIndex::GetCacheSize() const { DCHECK(initialized_); return cache_size_; } uint64_t SimpleIndex::GetCacheSizeBetween(base::Time initial_time, base::Time end_time) const { DCHECK_EQ(true, initialized_); if (!initial_time.is_null()) initial_time -= EntryMetadata::GetLowerEpsilonForTimeComparisons(); if (end_time.is_null()) end_time = base::Time::Max(); else end_time += EntryMetadata::GetUpperEpsilonForTimeComparisons(); DCHECK(end_time >= initial_time); uint64_t size = 0; for (const auto& entry : entries_set_) { const EntryMetadata& metadata = entry.second; base::Time entry_time = metadata.GetLastUsedTime(); if (initial_time <= entry_time && entry_time < end_time) size += metadata.GetEntrySize(); } return size; } size_t SimpleIndex::EstimateMemoryUsage() const { return base::trace_event::EstimateMemoryUsage(entries_set_) + base::trace_event::EstimateMemoryUsage(removed_entries_); } void SimpleIndex::SetLastUsedTimeForTest(uint64_t entry_hash, const base::Time last_used) { EntrySet::iterator it = entries_set_.find(entry_hash); DCHECK(it != entries_set_.end()); it->second.SetLastUsedTime(last_used); } void SimpleIndex::Insert(uint64_t entry_hash) { DCHECK(io_thread_checker_.CalledOnValidThread()); // Upon insert we don't know yet the size of the entry. // It will be updated later when the SimpleEntryImpl finishes opening or // creating the new entry, and then UpdateEntrySize will be called. InsertInEntrySet(entry_hash, EntryMetadata(base::Time::Now(), 0u), &entries_set_); if (!initialized_) removed_entries_.erase(entry_hash); PostponeWritingToDisk(); } void SimpleIndex::Remove(uint64_t entry_hash) { DCHECK(io_thread_checker_.CalledOnValidThread()); EntrySet::iterator it = entries_set_.find(entry_hash); if (it != entries_set_.end()) { UpdateEntryIteratorSize(&it, 0u); entries_set_.erase(it); } if (!initialized_) removed_entries_.insert(entry_hash); PostponeWritingToDisk(); } bool SimpleIndex::Has(uint64_t hash) const { DCHECK(io_thread_checker_.CalledOnValidThread()); // If not initialized, always return true, forcing it to go to the disk. return !initialized_ || entries_set_.count(hash) > 0; } uint8_t SimpleIndex::GetEntryInMemoryData(uint64_t entry_hash) const { DCHECK(io_thread_checker_.CalledOnValidThread()); EntrySet::const_iterator it = entries_set_.find(entry_hash); if (it == entries_set_.end()) return 0; return it->second.GetInMemoryData(); } void SimpleIndex::SetEntryInMemoryData(uint64_t entry_hash, uint8_t value) { DCHECK(io_thread_checker_.CalledOnValidThread()); EntrySet::iterator it = entries_set_.find(entry_hash); if (it == entries_set_.end()) return; return it->second.SetInMemoryData(value); } bool SimpleIndex::UseIfExists(uint64_t entry_hash) { DCHECK(io_thread_checker_.CalledOnValidThread()); // Always update the last used time, even if it is during initialization. // It will be merged later. EntrySet::iterator it = entries_set_.find(entry_hash); if (it == entries_set_.end()) // If not initialized, always return true, forcing it to go to the disk. return !initialized_; it->second.SetLastUsedTime(base::Time::Now()); PostponeWritingToDisk(); return true; } void SimpleIndex::StartEvictionIfNeeded() { DCHECK(io_thread_checker_.CalledOnValidThread()); if (eviction_in_progress_ || cache_size_ <= high_watermark_) return; // Take all live key hashes from the index and sort them by time. eviction_in_progress_ = true; eviction_start_time_ = base::TimeTicks::Now(); SIMPLE_CACHE_UMA( MEMORY_KB, "Eviction.CacheSizeOnStart2", cache_type_, static_cast(cache_size_ / kBytesInKb)); SIMPLE_CACHE_UMA( MEMORY_KB, "Eviction.MaxCacheSizeOnStart2", cache_type_, static_cast(max_size_ / kBytesInKb)); // Flatten for sorting. std::vector> entries; entries.reserve(entries_set_.size()); uint32_t now = (base::Time::Now() - base::Time::UnixEpoch()).InSeconds(); bool use_size = base::FeatureList::IsEnabled(kSimpleCacheEvictionWithSize); for (EntrySet::const_iterator i = entries_set_.begin(); i != entries_set_.end(); ++i) { uint64_t sort_value = now - i->second.RawTimeForSorting(); if (use_size) { // Will not overflow since we're multiplying two 32-bit values and storing // them in a 64-bit variable. sort_value *= i->second.GetEntrySize() + kEstimatedEntryOverhead; } // Subtract so we don't need a custom comparator. entries.emplace_back(std::numeric_limits::max() - sort_value, &*i); } uint64_t evicted_so_far_size = 0; const uint64_t amount_to_evict = cache_size_ - low_watermark_; std::vector entry_hashes; std::sort(entries.begin(), entries.end()); for (const auto& score_metadata_pair : entries) { if (evicted_so_far_size >= amount_to_evict) break; evicted_so_far_size += score_metadata_pair.second->second.GetEntrySize(); entry_hashes.push_back(score_metadata_pair.second->first); } SIMPLE_CACHE_UMA(COUNTS_1M, "Eviction.EntryCount", cache_type_, entry_hashes.size()); SIMPLE_CACHE_UMA(TIMES, "Eviction.TimeToSelectEntries", cache_type_, base::TimeTicks::Now() - eviction_start_time_); SIMPLE_CACHE_UMA( MEMORY_KB, "Eviction.SizeOfEvicted2", cache_type_, static_cast( evicted_so_far_size / kBytesInKb)); delegate_->DoomEntries(&entry_hashes, base::Bind(&SimpleIndex::EvictionDone, AsWeakPtr())); } bool SimpleIndex::UpdateEntrySize(uint64_t entry_hash, base::StrictNumeric entry_size) { DCHECK(io_thread_checker_.CalledOnValidThread()); EntrySet::iterator it = entries_set_.find(entry_hash); if (it == entries_set_.end()) return false; UpdateEntryIteratorSize(&it, entry_size); PostponeWritingToDisk(); StartEvictionIfNeeded(); return true; } void SimpleIndex::EvictionDone(int result) { DCHECK(io_thread_checker_.CalledOnValidThread()); // Ignore the result of eviction. We did our best. eviction_in_progress_ = false; SIMPLE_CACHE_UMA(BOOLEAN, "Eviction.Result", cache_type_, result == net::OK); SIMPLE_CACHE_UMA(TIMES, "Eviction.TimeToDone", cache_type_, base::TimeTicks::Now() - eviction_start_time_); SIMPLE_CACHE_UMA( MEMORY_KB, "Eviction.SizeWhenDone2", cache_type_, static_cast(cache_size_ / kBytesInKb)); } // static void SimpleIndex::InsertInEntrySet( uint64_t entry_hash, const disk_cache::EntryMetadata& entry_metadata, EntrySet* entry_set) { DCHECK(entry_set); entry_set->insert(std::make_pair(entry_hash, entry_metadata)); } void SimpleIndex::InsertEntryForTesting(uint64_t entry_hash, const EntryMetadata& entry_metadata) { DCHECK(entries_set_.find(entry_hash) == entries_set_.end()); InsertInEntrySet(entry_hash, entry_metadata, &entries_set_); cache_size_ += entry_metadata.GetEntrySize(); } void SimpleIndex::PostponeWritingToDisk() { if (!initialized_) return; const int delay = app_on_background_ ? kWriteToDiskOnBackgroundDelayMSecs : kWriteToDiskDelayMSecs; // If the timer is already active, Start() will just Reset it, postponing it. write_to_disk_timer_.Start( FROM_HERE, base::TimeDelta::FromMilliseconds(delay), write_to_disk_cb_); } void SimpleIndex::UpdateEntryIteratorSize( EntrySet::iterator* it, base::StrictNumeric entry_size) { // Update the total cache size with the new entry size. DCHECK(io_thread_checker_.CalledOnValidThread()); DCHECK_GE(cache_size_, (*it)->second.GetEntrySize()); cache_size_ -= (*it)->second.GetEntrySize(); (*it)->second.SetEntrySize(entry_size); // We use GetEntrySize to get consistent rounding. cache_size_ += (*it)->second.GetEntrySize(); } void SimpleIndex::MergeInitializingSet( std::unique_ptr load_result) { DCHECK(io_thread_checker_.CalledOnValidThread()); EntrySet* index_file_entries = &load_result->entries; for (std::unordered_set::const_iterator it = removed_entries_.begin(); it != removed_entries_.end(); ++it) { index_file_entries->erase(*it); } removed_entries_.clear(); for (EntrySet::const_iterator it = entries_set_.begin(); it != entries_set_.end(); ++it) { const uint64_t entry_hash = it->first; std::pair insert_result = index_file_entries->insert(EntrySet::value_type(entry_hash, EntryMetadata())); EntrySet::iterator& possibly_inserted_entry = insert_result.first; possibly_inserted_entry->second = it->second; } uint64_t merged_cache_size = 0; for (EntrySet::iterator it = index_file_entries->begin(); it != index_file_entries->end(); ++it) { merged_cache_size += it->second.GetEntrySize(); } entries_set_.swap(*index_file_entries); cache_size_ = merged_cache_size; initialized_ = true; init_method_ = load_result->init_method; // The actual IO is asynchronous, so calling WriteToDisk() shouldn't slow the // merge down much. if (load_result->flush_required) WriteToDisk(INDEX_WRITE_REASON_STARTUP_MERGE); SIMPLE_CACHE_UMA(CUSTOM_COUNTS, "IndexInitializationWaiters", cache_type_, to_run_when_initialized_.size(), 0, 100, 20); SIMPLE_CACHE_UMA(CUSTOM_COUNTS, "IndexNumEntriesOnInit", cache_type_, entries_set_.size(), 0, 100000, 50); SIMPLE_CACHE_UMA( MEMORY_KB, "CacheSizeOnInit", cache_type_, static_cast(cache_size_ / kBytesInKb)); SIMPLE_CACHE_UMA( MEMORY_KB, "MaxCacheSizeOnInit", cache_type_, static_cast(max_size_ / kBytesInKb)); if (max_size_ > 0) { SIMPLE_CACHE_UMA(PERCENTAGE, "PercentFullOnInit", cache_type_, static_cast( (cache_size_ * 100) / max_size_)); } // Run all callbacks waiting for the index to come up. for (CallbackList::iterator it = to_run_when_initialized_.begin(), end = to_run_when_initialized_.end(); it != end; ++it) { io_thread_->PostTask(FROM_HERE, base::BindOnce(std::move(*it), net::OK)); } to_run_when_initialized_.clear(); } #if defined(OS_ANDROID) void SimpleIndex::OnApplicationStateChange( base::android::ApplicationState state) { DCHECK(io_thread_checker_.CalledOnValidThread()); // For more info about android activities, see: // developer.android.com/training/basics/activity-lifecycle/pausing.html if (state == base::android::APPLICATION_STATE_HAS_RUNNING_ACTIVITIES) { app_on_background_ = false; } else if (state == base::android::APPLICATION_STATE_HAS_STOPPED_ACTIVITIES) { app_on_background_ = true; WriteToDisk(INDEX_WRITE_REASON_ANDROID_STOPPED); } } #endif void SimpleIndex::WriteToDisk(IndexWriteToDiskReason reason) { DCHECK(io_thread_checker_.CalledOnValidThread()); if (!initialized_) return; SIMPLE_CACHE_UMA(CUSTOM_COUNTS, "IndexNumEntriesOnWrite", cache_type_, entries_set_.size(), 0, 100000, 50); const base::TimeTicks start = base::TimeTicks::Now(); if (!last_write_to_disk_.is_null()) { if (app_on_background_) { SIMPLE_CACHE_UMA(MEDIUM_TIMES, "IndexWriteInterval.Background", cache_type_, start - last_write_to_disk_); } else { SIMPLE_CACHE_UMA(MEDIUM_TIMES, "IndexWriteInterval.Foreground", cache_type_, start - last_write_to_disk_); } } last_write_to_disk_ = start; base::Closure after_write; if (cleanup_tracker_) { // Make anyone synchronizing with our cleanup wait for the index to be // written back. after_write = base::Bind( base::DoNothing::Repeatedly>(), cleanup_tracker_); } index_file_->WriteToDisk(reason, entries_set_, cache_size_, start, app_on_background_, after_write); } } // namespace disk_cache