// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/core/quic_connection.h" #include #include #include #include #include #include #include #include #include "base/format_macros.h" #include "base/macros.h" #include "base/metrics/histogram_macros.h" #include "net/base/net_errors.h" #include "net/quic/core/crypto/crypto_protocol.h" #include "net/quic/core/crypto/quic_decrypter.h" #include "net/quic/core/crypto/quic_encrypter.h" #include "net/quic/core/proto/cached_network_parameters.pb.h" #include "net/quic/core/quic_bandwidth.h" #include "net/quic/core/quic_config.h" #include "net/quic/core/quic_packet_generator.h" #include "net/quic/core/quic_pending_retransmission.h" #include "net/quic/core/quic_utils.h" #include "net/quic/platform/api/quic_bug_tracker.h" #include "net/quic/platform/api/quic_flag_utils.h" #include "net/quic/platform/api/quic_flags.h" #include "net/quic/platform/api/quic_logging.h" #include "net/quic/platform/api/quic_map_util.h" #include "net/quic/platform/api/quic_str_cat.h" #include "net/quic/platform/api/quic_text_utils.h" using std::string; namespace net { class QuicDecrypter; class QuicEncrypter; namespace { // The largest gap in packets we'll accept without closing the connection. // This will likely have to be tuned. const QuicPacketNumber kMaxPacketGap = 5000; // Maximum number of acks received before sending an ack in response. // TODO(fayang): Remove this constant when deprecating QUIC_VERSION_38. const QuicPacketCount kMaxPacketsReceivedBeforeAckSend = 20; // Maximum number of consecutive sent nonretransmittable packets. const QuicPacketCount kMaxConsecutiveNonRetransmittablePackets = 19; // Maximum number of retransmittable packets received before sending an ack. const QuicPacketCount kDefaultRetransmittablePacketsBeforeAck = 2; // Minimum number of packets received before ack decimation is enabled. // This intends to avoid the beginning of slow start, when CWNDs may be // rapidly increasing. const QuicPacketCount kMinReceivedBeforeAckDecimation = 100; // Wait for up to 10 retransmittable packets before sending an ack. const QuicPacketCount kMaxRetransmittablePacketsBeforeAck = 10; // One quarter RTT delay when doing ack decimation. const float kAckDecimationDelay = 0.25; // One eighth RTT delay when doing ack decimation. const float kShortAckDecimationDelay = 0.125; // Error code used in WriteResult to indicate that the packet writer rejected // the message as being too big. const int kMessageTooBigErrorCode = ERR_MSG_TOO_BIG; bool Near(QuicPacketNumber a, QuicPacketNumber b) { QuicPacketNumber delta = (a > b) ? a - b : b - a; return delta <= kMaxPacketGap; } // An alarm that is scheduled to send an ack if a timeout occurs. class AckAlarmDelegate : public QuicAlarm::Delegate { public: explicit AckAlarmDelegate(QuicConnection* connection) : connection_(connection) {} void OnAlarm() override { DCHECK(connection_->ack_frame_updated()); QuicConnection::ScopedPacketFlusher flusher(connection_, QuicConnection::SEND_ACK); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(AckAlarmDelegate); }; // This alarm will be scheduled any time a data-bearing packet is sent out. // When the alarm goes off, the connection checks to see if the oldest packets // have been acked, and retransmit them if they have not. class RetransmissionAlarmDelegate : public QuicAlarm::Delegate { public: explicit RetransmissionAlarmDelegate(QuicConnection* connection) : connection_(connection) {} void OnAlarm() override { connection_->OnRetransmissionTimeout(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(RetransmissionAlarmDelegate); }; // An alarm that is scheduled when the SentPacketManager requires a delay // before sending packets and fires when the packet may be sent. class SendAlarmDelegate : public QuicAlarm::Delegate { public: explicit SendAlarmDelegate(QuicConnection* connection) : connection_(connection) {} void OnAlarm() override { connection_->WriteAndBundleAcksIfNotBlocked(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(SendAlarmDelegate); }; class TimeoutAlarmDelegate : public QuicAlarm::Delegate { public: explicit TimeoutAlarmDelegate(QuicConnection* connection) : connection_(connection) {} void OnAlarm() override { connection_->CheckForTimeout(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(TimeoutAlarmDelegate); }; class PingAlarmDelegate : public QuicAlarm::Delegate { public: explicit PingAlarmDelegate(QuicConnection* connection) : connection_(connection) {} void OnAlarm() override { connection_->OnPingTimeout(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(PingAlarmDelegate); }; class MtuDiscoveryAlarmDelegate : public QuicAlarm::Delegate { public: explicit MtuDiscoveryAlarmDelegate(QuicConnection* connection) : connection_(connection) {} void OnAlarm() override { connection_->DiscoverMtu(); } private: QuicConnection* connection_; DISALLOW_COPY_AND_ASSIGN(MtuDiscoveryAlarmDelegate); }; } // namespace #define ENDPOINT \ (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") QuicConnection::QuicConnection( QuicConnectionId connection_id, QuicSocketAddress address, QuicConnectionHelperInterface* helper, QuicAlarmFactory* alarm_factory, QuicPacketWriter* writer, bool owns_writer, Perspective perspective, const QuicTransportVersionVector& supported_versions) : framer_(supported_versions, helper->GetClock()->ApproximateNow(), perspective), server_reply_to_connectivity_probes_( FLAGS_quic_reloadable_flag_quic_server_reply_to_connectivity_probing), current_packet_content_(NO_FRAMES_RECEIVED), current_peer_migration_type_(NO_CHANGE), helper_(helper), alarm_factory_(alarm_factory), per_packet_options_(nullptr), writer_(writer), owns_writer_(owns_writer), encryption_level_(ENCRYPTION_NONE), clock_(helper->GetClock()), random_generator_(helper->GetRandomGenerator()), connection_id_(connection_id), peer_address_(address), active_peer_migration_type_(NO_CHANGE), highest_packet_sent_before_peer_migration_(0), last_packet_decrypted_(false), last_size_(0), current_packet_data_(nullptr), last_decrypted_packet_level_(ENCRYPTION_NONE), should_last_packet_instigate_acks_(false), was_last_packet_missing_(false), largest_seen_packet_with_ack_(0), largest_seen_packet_with_stop_waiting_(0), max_undecryptable_packets_(0), pending_version_negotiation_packet_(false), save_crypto_packets_as_termination_packets_(false), idle_timeout_connection_close_behavior_( ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET), close_connection_after_five_rtos_(false), close_connection_after_three_rtos_(false), received_packet_manager_(&stats_), ack_queued_(false), num_retransmittable_packets_received_since_last_ack_sent_(0), last_ack_had_missing_packets_(false), num_packets_received_since_last_ack_sent_(0), stop_waiting_count_(0), ack_mode_(TCP_ACKING), ack_decimation_delay_(kAckDecimationDelay), unlimited_ack_decimation_(false), delay_setting_retransmission_alarm_(false), pending_retransmission_alarm_(false), defer_send_in_response_to_packets_(false), ping_timeout_(QuicTime::Delta::FromSeconds(kPingTimeoutSecs)), arena_(), ack_alarm_(alarm_factory_->CreateAlarm(arena_.New(this), &arena_)), retransmission_alarm_(alarm_factory_->CreateAlarm( arena_.New(this), &arena_)), send_alarm_( alarm_factory_->CreateAlarm(arena_.New(this), &arena_)), resume_writes_alarm_( alarm_factory_->CreateAlarm(arena_.New(this), &arena_)), timeout_alarm_( alarm_factory_->CreateAlarm(arena_.New(this), &arena_)), ping_alarm_( alarm_factory_->CreateAlarm(arena_.New(this), &arena_)), mtu_discovery_alarm_(alarm_factory_->CreateAlarm( arena_.New(this), &arena_)), visitor_(nullptr), debug_visitor_(nullptr), packet_generator_(connection_id_, &framer_, random_generator_, this), idle_network_timeout_(QuicTime::Delta::Infinite()), handshake_timeout_(QuicTime::Delta::Infinite()), time_of_last_received_packet_(clock_->ApproximateNow()), last_send_for_timeout_(clock_->ApproximateNow()), sent_packet_manager_( perspective, clock_, &stats_, FLAGS_quic_reloadable_flag_quic_default_to_bbr ? kBBR : kCubicBytes, kNack), version_negotiation_state_(START_NEGOTIATION), perspective_(perspective), connected_(true), can_truncate_connection_ids_(perspective == Perspective::IS_SERVER), mtu_discovery_target_(0), mtu_probe_count_(0), packets_between_mtu_probes_(kPacketsBetweenMtuProbesBase), next_mtu_probe_at_(kPacketsBetweenMtuProbesBase), largest_received_packet_size_(0), goaway_sent_(false), goaway_received_(false), write_error_occurred_(false), no_stop_waiting_frames_(false), consecutive_num_packets_with_no_retransmittable_frames_(0), fill_up_link_during_probing_(false), probing_retransmission_pending_(false), last_control_frame_id_(kInvalidControlFrameId) { QUIC_DLOG(INFO) << ENDPOINT << "Created connection with connection_id: " << connection_id; framer_.set_visitor(this); stats_.connection_creation_time = clock_->ApproximateNow(); // TODO(ianswett): Supply the NetworkChangeVisitor as a constructor argument // and make it required non-null, because it's always used. sent_packet_manager_.SetNetworkChangeVisitor(this); // Allow the packet writer to potentially reduce the packet size to a value // even smaller than kDefaultMaxPacketSize. SetMaxPacketLength(perspective_ == Perspective::IS_SERVER ? kDefaultServerMaxPacketSize : kDefaultMaxPacketSize); received_packet_manager_.set_max_ack_ranges(255); } QuicConnection::~QuicConnection() { if (owns_writer_) { delete writer_; } ClearQueuedPackets(); } void QuicConnection::ClearQueuedPackets() { for (QueuedPacketList::iterator it = queued_packets_.begin(); it != queued_packets_.end(); ++it) { // Delete the buffer before calling ClearSerializedPacket, which sets // encrypted_buffer to nullptr. delete[] it->encrypted_buffer; ClearSerializedPacket(&(*it)); } queued_packets_.clear(); } void QuicConnection::SetFromConfig(const QuicConfig& config) { if (config.negotiated()) { // Handshake complete, set handshake timeout to Infinite. SetNetworkTimeouts(QuicTime::Delta::Infinite(), config.IdleNetworkTimeout()); if (config.SilentClose()) { idle_timeout_connection_close_behavior_ = ConnectionCloseBehavior::SILENT_CLOSE; } } else { SetNetworkTimeouts(config.max_time_before_crypto_handshake(), config.max_idle_time_before_crypto_handshake()); } sent_packet_manager_.SetFromConfig(config); if (config.HasReceivedBytesForConnectionId() && can_truncate_connection_ids_) { packet_generator_.SetConnectionIdLength( config.ReceivedBytesForConnectionId()); } max_undecryptable_packets_ = config.max_undecryptable_packets(); if (config.HasClientSentConnectionOption(kMTUH, perspective_)) { SetMtuDiscoveryTarget(kMtuDiscoveryTargetPacketSizeHigh); } if (config.HasClientSentConnectionOption(kMTUL, perspective_)) { SetMtuDiscoveryTarget(kMtuDiscoveryTargetPacketSizeLow); } if (debug_visitor_ != nullptr) { debug_visitor_->OnSetFromConfig(config); } if (config.HasClientSentConnectionOption(kACKD, perspective_)) { ack_mode_ = ACK_DECIMATION; } if (config.HasClientSentConnectionOption(kAKD2, perspective_)) { ack_mode_ = ACK_DECIMATION_WITH_REORDERING; } if (config.HasClientSentConnectionOption(kAKD3, perspective_)) { ack_mode_ = ACK_DECIMATION; ack_decimation_delay_ = kShortAckDecimationDelay; } if (config.HasClientSentConnectionOption(kAKD4, perspective_)) { ack_mode_ = ACK_DECIMATION_WITH_REORDERING; ack_decimation_delay_ = kShortAckDecimationDelay; } if (config.HasClientSentConnectionOption(kAKDU, perspective_)) { unlimited_ack_decimation_ = true; } if (config.HasClientSentConnectionOption(k5RTO, perspective_)) { close_connection_after_five_rtos_ = true; } if (FLAGS_quic_reloadable_flag_quic_enable_3rtos && config.HasClientSentConnectionOption(k3RTO, perspective_)) { QUIC_FLAG_COUNT(quic_reloadable_flag_quic_enable_3rtos); close_connection_after_three_rtos_ = true; } if (transport_version() > QUIC_VERSION_37 && config.HasClientSentConnectionOption(kNSTP, perspective_)) { no_stop_waiting_frames_ = true; } } void QuicConnection::OnSendConnectionState( const CachedNetworkParameters& cached_network_params) { if (debug_visitor_ != nullptr) { debug_visitor_->OnSendConnectionState(cached_network_params); } } void QuicConnection::OnReceiveConnectionState( const CachedNetworkParameters& cached_network_params) { if (debug_visitor_ != nullptr) { debug_visitor_->OnReceiveConnectionState(cached_network_params); } } void QuicConnection::ResumeConnectionState( const CachedNetworkParameters& cached_network_params, bool max_bandwidth_resumption) { sent_packet_manager_.ResumeConnectionState(cached_network_params, max_bandwidth_resumption); } void QuicConnection::SetMaxPacingRate(QuicBandwidth max_pacing_rate) { sent_packet_manager_.SetMaxPacingRate(max_pacing_rate); } QuicBandwidth QuicConnection::MaxPacingRate() const { return sent_packet_manager_.MaxPacingRate(); } void QuicConnection::SetNumOpenStreams(size_t num_streams) { sent_packet_manager_.SetNumOpenStreams(num_streams); } bool QuicConnection::SelectMutualVersion( const QuicTransportVersionVector& available_versions) { // Try to find the highest mutual version by iterating over supported // versions, starting with the highest, and breaking out of the loop once we // find a matching version in the provided available_versions vector. const QuicTransportVersionVector& supported_versions = framer_.supported_versions(); for (size_t i = 0; i < supported_versions.size(); ++i) { const QuicTransportVersion& version = supported_versions[i]; if (QuicContainsValue(available_versions, version)) { framer_.set_version(version); return true; } } return false; } void QuicConnection::OnError(QuicFramer* framer) { // Packets that we can not or have not decrypted are dropped. // TODO(rch): add stats to measure this. if (!connected_ || last_packet_decrypted_ == false) { return; } CloseConnection(framer->error(), framer->detailed_error(), ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); } void QuicConnection::OnPacket() { last_packet_decrypted_ = false; } void QuicConnection::OnPublicResetPacket(const QuicPublicResetPacket& packet) { // Check that any public reset packet with a different connection ID that was // routed to this QuicConnection has been redirected before control reaches // here. (Check for a bug regression.) DCHECK_EQ(connection_id_, packet.connection_id); if (debug_visitor_ != nullptr) { debug_visitor_->OnPublicResetPacket(packet); } const string error_details = "Received public reset."; QUIC_DLOG(INFO) << ENDPOINT << error_details; TearDownLocalConnectionState(QUIC_PUBLIC_RESET, error_details, ConnectionCloseSource::FROM_PEER); } bool QuicConnection::OnProtocolVersionMismatch( QuicTransportVersion received_version) { QUIC_DLOG(INFO) << ENDPOINT << "Received packet with mismatched version " << received_version; // TODO(satyamshekhar): Implement no server state in this mode. if (perspective_ == Perspective::IS_CLIENT) { const string error_details = "Protocol version mismatch."; QUIC_BUG << ENDPOINT << error_details; TearDownLocalConnectionState(QUIC_INTERNAL_ERROR, error_details, ConnectionCloseSource::FROM_SELF); return false; } DCHECK_NE(transport_version(), received_version); if (debug_visitor_ != nullptr) { debug_visitor_->OnProtocolVersionMismatch(received_version); } switch (version_negotiation_state_) { case START_NEGOTIATION: if (!framer_.IsSupportedVersion(received_version)) { SendVersionNegotiationPacket(); version_negotiation_state_ = NEGOTIATION_IN_PROGRESS; return false; } break; case NEGOTIATION_IN_PROGRESS: if (!framer_.IsSupportedVersion(received_version)) { SendVersionNegotiationPacket(); return false; } break; case NEGOTIATED_VERSION: // Might be old packets that were sent by the client before the version // was negotiated. Drop these. return false; default: DCHECK(false); } version_negotiation_state_ = NEGOTIATED_VERSION; visitor_->OnSuccessfulVersionNegotiation(received_version); if (debug_visitor_ != nullptr) { debug_visitor_->OnSuccessfulVersionNegotiation(received_version); } QUIC_DLOG(INFO) << ENDPOINT << "version negotiated " << received_version; // Store the new version. framer_.set_version(received_version); // TODO(satyamshekhar): Store the packet number of this packet and close the // connection if we ever received a packet with incorrect version and whose // packet number is greater. return true; } // Handles version negotiation for client connection. void QuicConnection::OnVersionNegotiationPacket( const QuicVersionNegotiationPacket& packet) { // Check that any public reset packet with a different connection ID that was // routed to this QuicConnection has been redirected before control reaches // here. (Check for a bug regression.) DCHECK_EQ(connection_id_, packet.connection_id); if (perspective_ == Perspective::IS_SERVER) { const string error_details = "Server receieved version negotiation packet."; QUIC_BUG << error_details; TearDownLocalConnectionState(QUIC_INTERNAL_ERROR, error_details, ConnectionCloseSource::FROM_SELF); return; } if (debug_visitor_ != nullptr) { debug_visitor_->OnVersionNegotiationPacket(packet); } if (version_negotiation_state_ != START_NEGOTIATION) { // Possibly a duplicate version negotiation packet. return; } if (QuicContainsValue(packet.versions, transport_version())) { const string error_details = "Server already supports client's version and should have accepted the " "connection."; QUIC_DLOG(WARNING) << error_details; TearDownLocalConnectionState(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, error_details, ConnectionCloseSource::FROM_SELF); return; } server_supported_versions_ = packet.versions; if (!SelectMutualVersion(packet.versions)) { CloseConnection( QUIC_INVALID_VERSION, QuicStrCat( "No common version found. Supported versions: {", QuicTransportVersionVectorToString(framer_.supported_versions()), "}, peer supported versions: {", QuicTransportVersionVectorToString(packet.versions), "}"), ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return; } QUIC_DLOG(INFO) << ENDPOINT << "Negotiated version: " << QuicVersionToString(transport_version()); version_negotiation_state_ = NEGOTIATION_IN_PROGRESS; RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION); } bool QuicConnection::OnUnauthenticatedPublicHeader( const QuicPacketHeader& header) { if (header.connection_id == connection_id_) { return true; } ++stats_.packets_dropped; QUIC_DLOG(INFO) << ENDPOINT << "Ignoring packet from unexpected ConnectionId: " << header.connection_id << " instead of " << connection_id_; if (debug_visitor_ != nullptr) { debug_visitor_->OnIncorrectConnectionId(header.connection_id); } // If this is a server, the dispatcher routes each packet to the // QuicConnection responsible for the packet's connection ID. So if control // arrives here and this is a server, the dispatcher must be malfunctioning. DCHECK_NE(Perspective::IS_SERVER, perspective_); return false; } bool QuicConnection::OnUnauthenticatedHeader(const QuicPacketHeader& header) { if (debug_visitor_ != nullptr) { debug_visitor_->OnUnauthenticatedHeader(header); } // Check that any public reset packet with a different connection ID that was // routed to this QuicConnection has been redirected before control reaches // here. DCHECK_EQ(connection_id_, header.connection_id); if (!packet_generator_.IsPendingPacketEmpty()) { // Incoming packets may change a queued ACK frame. const string error_details = "Pending frames must be serialized before incoming packets are " "processed."; QUIC_BUG << error_details; CloseConnection(QUIC_INTERNAL_ERROR, error_details, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } // If this packet has already been seen, or the sender has told us that it // will not be retransmitted, then stop processing the packet. if (!received_packet_manager_.IsAwaitingPacket(header.packet_number)) { QUIC_DLOG(INFO) << ENDPOINT << "Packet " << header.packet_number << " no longer being waited for. Discarding."; if (debug_visitor_ != nullptr) { debug_visitor_->OnDuplicatePacket(header.packet_number); } ++stats_.packets_dropped; return false; } return true; } void QuicConnection::OnDecryptedPacket(EncryptionLevel level) { last_decrypted_packet_level_ = level; last_packet_decrypted_ = true; // Once the server receives a forward secure packet, the handshake is // confirmed. if (level == ENCRYPTION_FORWARD_SECURE && perspective_ == Perspective::IS_SERVER) { sent_packet_manager_.SetHandshakeConfirmed(); } } bool QuicConnection::OnPacketHeader(const QuicPacketHeader& header) { if (debug_visitor_ != nullptr) { debug_visitor_->OnPacketHeader(header); } // Will be decremented below if we fall through to return true. ++stats_.packets_dropped; if (!ProcessValidatedPacket(header)) { return false; } if (server_reply_to_connectivity_probes_) { QUIC_FLAG_COUNT_N( quic_reloadable_flag_quic_server_reply_to_connectivity_probing, 1, 4); // Initialize the current packet content stats. current_packet_content_ = NO_FRAMES_RECEIVED; current_peer_migration_type_ = NO_CHANGE; } PeerAddressChangeType peer_migration_type = QuicUtils::DetermineAddressChangeType(peer_address_, last_packet_source_address_); // Initiate connection migration if a non-reordered packet is received from a // new address. if (header.packet_number > received_packet_manager_.GetLargestObserved() && peer_migration_type != NO_CHANGE) { QUIC_DLOG(INFO) << ENDPOINT << "Peer's ip:port changed from " << peer_address_.ToString() << " to " << last_packet_source_address_.ToString(); if (perspective_ == Perspective::IS_CLIENT) { peer_address_ = last_packet_source_address_; } else if (active_peer_migration_type_ == NO_CHANGE) { // Only migrate connection to a new peer address if there is no // pending change underway. if (server_reply_to_connectivity_probes_) { // Cache the current migration change type, which will start peer // migration immediately if this packet is not a connectivity probing // packet. QUIC_FLAG_COUNT_N( quic_reloadable_flag_quic_server_reply_to_connectivity_probing, 2, 4); current_peer_migration_type_ = peer_migration_type; } else { StartPeerMigration(peer_migration_type); } } } --stats_.packets_dropped; QUIC_DVLOG(1) << ENDPOINT << "Received packet header: " << header; last_header_ = header; // An ack will be sent if a missing retransmittable packet was received; was_last_packet_missing_ = received_packet_manager_.IsMissing(last_header_.packet_number); // Record packet receipt to populate ack info before processing stream // frames, since the processing may result in sending a bundled ack. received_packet_manager_.RecordPacketReceived(last_header_, time_of_last_received_packet_); DCHECK(connected_); return true; } bool QuicConnection::OnStreamFrame(const QuicStreamFrame& frame) { DCHECK(connected_); // Since a stream frame was received, this is not a connectivity probe. // A probe only contains a PING and full padding. UpdatePacketContent(NOT_PADDED_PING); if (debug_visitor_ != nullptr) { debug_visitor_->OnStreamFrame(frame); } if (frame.stream_id != kCryptoStreamId && last_decrypted_packet_level_ == ENCRYPTION_NONE) { if (MaybeConsiderAsMemoryCorruption(frame)) { CloseConnection(QUIC_MAYBE_CORRUPTED_MEMORY, "Received crypto frame on non crypto stream.", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } QUIC_BUG << ENDPOINT << "Received an unencrypted data frame: closing connection" << " packet_number:" << last_header_.packet_number << " stream_id:" << frame.stream_id << " received_packets:" << received_packet_manager_.ack_frame(); CloseConnection(QUIC_UNENCRYPTED_STREAM_DATA, "Unencrypted stream data seen.", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } visitor_->OnStreamFrame(frame); visitor_->PostProcessAfterData(); stats_.stream_bytes_received += frame.data_length; should_last_packet_instigate_acks_ = true; return connected_; } bool QuicConnection::OnAckFrame(const QuicAckFrame& incoming_ack) { DCHECK(connected_); // Since an ack frame was received, this is not a connectivity probe. // A probe only contains a PING and full padding. UpdatePacketContent(NOT_PADDED_PING); if (debug_visitor_ != nullptr) { debug_visitor_->OnAckFrame(incoming_ack); } QUIC_DVLOG(1) << ENDPOINT << "OnAckFrame: " << incoming_ack; if (last_header_.packet_number <= largest_seen_packet_with_ack_) { QUIC_DLOG(INFO) << ENDPOINT << "Received an old ack frame: ignoring"; return true; } const char* error = ValidateAckFrame(incoming_ack); if (error != nullptr) { CloseConnection(QUIC_INVALID_ACK_DATA, error, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } if (send_alarm_->IsSet()) { send_alarm_->Cancel(); } largest_seen_packet_with_ack_ = last_header_.packet_number; sent_packet_manager_.OnIncomingAck(incoming_ack, time_of_last_received_packet_); if (no_stop_waiting_frames_) { received_packet_manager_.DontWaitForPacketsBefore( sent_packet_manager_.largest_packet_peer_knows_is_acked()); } // Always reset the retransmission alarm when an ack comes in, since we now // have a better estimate of the current rtt than when it was set. SetRetransmissionAlarm(); // If the incoming ack's packets set expresses missing packets: peer is still // waiting for a packet lower than a packet that we are no longer planning to // send. // If the incoming ack's packets set expresses received packets: peer is still // acking packets which we never care about. // Send an ack to raise the high water mark. if (!incoming_ack.packets.Empty() && GetLeastUnacked() > incoming_ack.packets.Min()) { ++stop_waiting_count_; } else { stop_waiting_count_ = 0; } return connected_; } bool QuicConnection::OnStopWaitingFrame(const QuicStopWaitingFrame& frame) { DCHECK(connected_); // Since a stop waiting frame was received, this is not a connectivity probe. // A probe only contains a PING and full padding. UpdatePacketContent(NOT_PADDED_PING); if (no_stop_waiting_frames_) { return true; } if (last_header_.packet_number <= largest_seen_packet_with_stop_waiting_) { QUIC_DLOG(INFO) << ENDPOINT << "Received an old stop waiting frame: ignoring"; return true; } const char* error = ValidateStopWaitingFrame(frame); if (error != nullptr) { CloseConnection(QUIC_INVALID_STOP_WAITING_DATA, error, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } if (debug_visitor_ != nullptr) { debug_visitor_->OnStopWaitingFrame(frame); } largest_seen_packet_with_stop_waiting_ = last_header_.packet_number; received_packet_manager_.DontWaitForPacketsBefore(frame.least_unacked); return connected_; } bool QuicConnection::OnPaddingFrame(const QuicPaddingFrame& frame) { DCHECK(connected_); UpdatePacketContent(SECOND_FRAME_IS_PADDING); if (debug_visitor_ != nullptr) { debug_visitor_->OnPaddingFrame(frame); } return true; } bool QuicConnection::OnPingFrame(const QuicPingFrame& frame) { DCHECK(connected_); UpdatePacketContent(FIRST_FRAME_IS_PING); if (debug_visitor_ != nullptr) { debug_visitor_->OnPingFrame(frame); } should_last_packet_instigate_acks_ = true; return true; } const char* QuicConnection::ValidateAckFrame(const QuicAckFrame& incoming_ack) { if (LargestAcked(incoming_ack) > packet_generator_.packet_number()) { QUIC_DLOG(WARNING) << ENDPOINT << "Peer's observed unsent packet:" << LargestAcked(incoming_ack) << " vs " << packet_generator_.packet_number(); // We got an error for data we have not sent. Error out. return "Largest observed too high."; } if (LargestAcked(incoming_ack) < sent_packet_manager_.GetLargestObserved()) { QUIC_LOG(INFO) << ENDPOINT << "Peer's largest_observed packet decreased:" << LargestAcked(incoming_ack) << " vs " << sent_packet_manager_.GetLargestObserved() << " packet_number:" << last_header_.packet_number << " largest seen with ack:" << largest_seen_packet_with_ack_ << " connection_id: " << connection_id_; // A new ack has a diminished largest_observed value. Error out. // If this was an old packet, we wouldn't even have checked. return "Largest observed too low."; } // TODO(wub): Remove this check along with // FLAGS_quic_reloadable_flag_quic_deprecate_largest_observed. if (!incoming_ack.packets.Empty() && incoming_ack.packets.Max() != LargestAcked(incoming_ack)) { QUIC_BUG << ENDPOINT << "Peer last received packet: " << incoming_ack.packets.Max() << " which is not equal to largest observed: " << incoming_ack.deprecated_largest_observed; return "Last received packet not equal to largest observed."; } return nullptr; } const char* QuicConnection::ValidateStopWaitingFrame( const QuicStopWaitingFrame& stop_waiting) { if (stop_waiting.least_unacked < received_packet_manager_.peer_least_packet_awaiting_ack()) { QUIC_DLOG(ERROR) << ENDPOINT << "Peer's sent low least_unacked: " << stop_waiting.least_unacked << " vs " << received_packet_manager_.peer_least_packet_awaiting_ack(); // We never process old ack frames, so this number should only increase. return "Least unacked too small."; } if (stop_waiting.least_unacked > last_header_.packet_number) { QUIC_DLOG(ERROR) << ENDPOINT << "Peer sent least_unacked:" << stop_waiting.least_unacked << " greater than the enclosing packet number:" << last_header_.packet_number; return "Least unacked too large."; } return nullptr; } bool QuicConnection::OnRstStreamFrame(const QuicRstStreamFrame& frame) { DCHECK(connected_); // Since a reset stream frame was received, this is not a connectivity probe. // A probe only contains a PING and full padding. UpdatePacketContent(NOT_PADDED_PING); if (debug_visitor_ != nullptr) { debug_visitor_->OnRstStreamFrame(frame); } QUIC_DLOG(INFO) << ENDPOINT << "RST_STREAM_FRAME received for stream: " << frame.stream_id << " with error: " << QuicRstStreamErrorCodeToString(frame.error_code); visitor_->OnRstStream(frame); visitor_->PostProcessAfterData(); should_last_packet_instigate_acks_ = true; return connected_; } bool QuicConnection::OnConnectionCloseFrame( const QuicConnectionCloseFrame& frame) { DCHECK(connected_); // Since a connection close frame was received, this is not a connectivity // probe. A probe only contains a PING and full padding. UpdatePacketContent(NOT_PADDED_PING); if (debug_visitor_ != nullptr) { debug_visitor_->OnConnectionCloseFrame(frame); } QUIC_DLOG(INFO) << ENDPOINT << "Received ConnectionClose for connection: " << connection_id() << ", with error: " << QuicErrorCodeToString(frame.error_code) << " (" << frame.error_details << ")"; if (frame.error_code == QUIC_BAD_MULTIPATH_FLAG) { QUIC_LOG_FIRST_N(ERROR, 10) << "Unexpected QUIC_BAD_MULTIPATH_FLAG error." << " last_received_header: " << last_header_ << " encryption_level: " << encryption_level_; } TearDownLocalConnectionState(frame.error_code, frame.error_details, ConnectionCloseSource::FROM_PEER); return connected_; } bool QuicConnection::OnGoAwayFrame(const QuicGoAwayFrame& frame) { DCHECK(connected_); // Since a go away frame was received, this is not a connectivity probe. // A probe only contains a PING and full padding. UpdatePacketContent(NOT_PADDED_PING); if (debug_visitor_ != nullptr) { debug_visitor_->OnGoAwayFrame(frame); } QUIC_DLOG(INFO) << ENDPOINT << "GOAWAY_FRAME received with last good stream: " << frame.last_good_stream_id << " and error: " << QuicErrorCodeToString(frame.error_code) << " and reason: " << frame.reason_phrase; goaway_received_ = true; visitor_->OnGoAway(frame); visitor_->PostProcessAfterData(); should_last_packet_instigate_acks_ = true; return connected_; } bool QuicConnection::OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame) { DCHECK(connected_); // Since a window update frame was received, this is not a connectivity probe. // A probe only contains a PING and full padding. UpdatePacketContent(NOT_PADDED_PING); if (debug_visitor_ != nullptr) { debug_visitor_->OnWindowUpdateFrame(frame, time_of_last_received_packet_); } QUIC_DLOG(INFO) << ENDPOINT << "WINDOW_UPDATE_FRAME received for stream: " << frame.stream_id << " with byte offset: " << frame.byte_offset; visitor_->OnWindowUpdateFrame(frame); visitor_->PostProcessAfterData(); should_last_packet_instigate_acks_ = true; return connected_; } bool QuicConnection::OnBlockedFrame(const QuicBlockedFrame& frame) { DCHECK(connected_); // Since a blocked frame was received, this is not a connectivity probe. // A probe only contains a PING and full padding. UpdatePacketContent(NOT_PADDED_PING); if (debug_visitor_ != nullptr) { debug_visitor_->OnBlockedFrame(frame); } QUIC_DLOG(INFO) << ENDPOINT << "BLOCKED_FRAME received for stream: " << frame.stream_id; visitor_->OnBlockedFrame(frame); visitor_->PostProcessAfterData(); stats_.blocked_frames_received++; should_last_packet_instigate_acks_ = true; return connected_; } void QuicConnection::OnPacketComplete() { // Don't do anything if this packet closed the connection. if (!connected_) { ClearLastFrames(); return; } QUIC_DVLOG(1) << ENDPOINT << "Got packet " << last_header_.packet_number << " for " << last_header_.connection_id; if (server_reply_to_connectivity_probes_) { QUIC_FLAG_COUNT_N( quic_reloadable_flag_quic_server_reply_to_connectivity_probing, 3, 4); if (perspective_ == Perspective::IS_CLIENT) { QUIC_DVLOG(1) << ENDPOINT << "Received a speculative connectivity probing packet for " << last_header_.connection_id << " frome ip:port: " << last_packet_source_address_.ToString() << " to ip:port " << last_packet_destination_address_.ToString(); // TODO(zhongyi): change the method name. visitor_->OnConnectivityProbeReceived(last_packet_destination_address_, last_packet_source_address_); } else if (current_packet_content_ == SECOND_FRAME_IS_PADDING) { QUIC_DVLOG(1) << ENDPOINT << "Received a padded PING packet"; if (last_packet_source_address_ != peer_address_ || last_packet_destination_address_ != self_address_) { // Padded PING packet associated with self/peer address change is a // connectivity probing packet. QUIC_DVLOG(1) << ENDPOINT << "Received a connectivity probing packet for " << last_header_.connection_id << " frome ip:port: " << last_packet_source_address_.ToString() << " to ip:port " << last_packet_destination_address_.ToString(); visitor_->OnConnectivityProbeReceived(last_packet_destination_address_, last_packet_source_address_); } } else if (current_peer_migration_type_ != NO_CHANGE) { StartPeerMigration(current_peer_migration_type_); } current_peer_migration_type_ = NO_CHANGE; } // An ack will be sent if a missing retransmittable packet was received; const bool was_missing = should_last_packet_instigate_acks_ && was_last_packet_missing_; // It's possible the ack frame was sent along with response data, so it // no longer needs to be sent. if (ack_frame_updated()) { MaybeQueueAck(was_missing); } ClearLastFrames(); } void QuicConnection::MaybeQueueAck(bool was_missing) { ++num_packets_received_since_last_ack_sent_; // Always send an ack every 20 packets in order to allow the peer to discard // information from the SentPacketManager and provide an RTT measurement. if (transport_version() <= QUIC_VERSION_38 && num_packets_received_since_last_ack_sent_ >= kMaxPacketsReceivedBeforeAckSend) { ack_queued_ = true; } // Determine whether the newly received packet was missing before recording // the received packet. // Ack decimation with reordering relies on the timer to send an ack, but if // missing packets we reported in the previous ack, send an ack immediately. if (was_missing && (ack_mode_ != ACK_DECIMATION_WITH_REORDERING || last_ack_had_missing_packets_)) { ack_queued_ = true; } if (should_last_packet_instigate_acks_ && !ack_queued_) { ++num_retransmittable_packets_received_since_last_ack_sent_; if (ack_mode_ != TCP_ACKING && last_header_.packet_number > kMinReceivedBeforeAckDecimation) { // Ack up to 10 packets at once unless ack decimation is unlimited. if (!unlimited_ack_decimation_ && num_retransmittable_packets_received_since_last_ack_sent_ >= kMaxRetransmittablePacketsBeforeAck) { ack_queued_ = true; } else if (!ack_alarm_->IsSet()) { // Wait for the minimum of the ack decimation delay or the delayed ack // time before sending an ack. QuicTime::Delta ack_delay = std::min( DelayedAckTime(), sent_packet_manager_.GetRttStats()->min_rtt() * ack_decimation_delay_); ack_alarm_->Set(clock_->ApproximateNow() + ack_delay); } } else { // Ack with a timer or every 2 packets by default. if (num_retransmittable_packets_received_since_last_ack_sent_ >= kDefaultRetransmittablePacketsBeforeAck) { ack_queued_ = true; } else if (!ack_alarm_->IsSet()) { ack_alarm_->Set(clock_->ApproximateNow() + DelayedAckTime()); } } // If there are new missing packets to report, send an ack immediately. if (received_packet_manager_.HasNewMissingPackets()) { if (ack_mode_ == ACK_DECIMATION_WITH_REORDERING) { // Wait the minimum of an eighth min_rtt and the existing ack time. QuicTime ack_time = clock_->ApproximateNow() + 0.125 * sent_packet_manager_.GetRttStats()->min_rtt(); if (!ack_alarm_->IsSet() || ack_alarm_->deadline() > ack_time) { ack_alarm_->Update(ack_time, QuicTime::Delta::Zero()); } } else { ack_queued_ = true; } } } if (ack_queued_) { ack_alarm_->Cancel(); } } void QuicConnection::ClearLastFrames() { should_last_packet_instigate_acks_ = false; } const QuicFrame QuicConnection::GetUpdatedAckFrame() { return received_packet_manager_.GetUpdatedAckFrame(clock_->ApproximateNow()); } void QuicConnection::PopulateStopWaitingFrame( QuicStopWaitingFrame* stop_waiting) { stop_waiting->least_unacked = GetLeastUnacked(); } QuicPacketNumber QuicConnection::GetLeastUnacked() const { return sent_packet_manager_.GetLeastUnacked(); } void QuicConnection::MaybeSendInResponseToPacket() { if (!connected_) { return; } // Now that we have received an ack, we might be able to send packets which // are queued locally, or drain streams which are blocked. if (defer_send_in_response_to_packets_) { send_alarm_->Update(clock_->ApproximateNow(), QuicTime::Delta::Zero()); } else { WriteAndBundleAcksIfNotBlocked(); } } void QuicConnection::SendVersionNegotiationPacket() { pending_version_negotiation_packet_ = true; if (writer_->IsWriteBlocked()) { visitor_->OnWriteBlocked(); return; } QUIC_DLOG(INFO) << ENDPOINT << "Sending version negotiation packet: {" << QuicTransportVersionVectorToString( framer_.supported_versions()) << "}"; std::unique_ptr version_packet( packet_generator_.SerializeVersionNegotiationPacket( framer_.supported_versions())); WriteResult result = writer_->WritePacket( version_packet->data(), version_packet->length(), self_address().host(), peer_address(), per_packet_options_); if (result.status == WRITE_STATUS_ERROR) { OnWriteError(result.error_code); return; } if (result.status == WRITE_STATUS_BLOCKED) { visitor_->OnWriteBlocked(); if (writer_->IsWriteBlockedDataBuffered()) { pending_version_negotiation_packet_ = false; } return; } pending_version_negotiation_packet_ = false; } QuicConsumedData QuicConnection::SendStreamData(QuicStreamId id, size_t write_length, QuicStreamOffset offset, StreamSendingState state) { if (state == NO_FIN && write_length == 0) { QUIC_BUG << "Attempt to send empty stream frame"; return QuicConsumedData(0, false); } // Opportunistically bundle an ack with every outgoing packet. // Particularly, we want to bundle with handshake packets since we don't know // which decrypter will be used on an ack packet following a handshake // packet (a handshake packet from client to server could result in a REJ or a // SHLO from the server, leading to two different decrypters at the server.) ScopedRetransmissionScheduler alarm_delayer(this); ScopedPacketFlusher flusher(this, SEND_ACK_IF_PENDING); return packet_generator_.ConsumeData(id, write_length, offset, state); } void QuicConnection::SendRstStream(QuicStreamId id, QuicRstStreamErrorCode error, QuicStreamOffset bytes_written) { // Opportunistically bundle an ack with this outgoing packet. ScopedPacketFlusher flusher(this, SEND_ACK_IF_PENDING); packet_generator_.AddControlFrame(QuicFrame(new QuicRstStreamFrame( ++last_control_frame_id_, id, error, bytes_written))); if (error == QUIC_STREAM_NO_ERROR) { // All data for streams which are reset with QUIC_STREAM_NO_ERROR must // be received by the peer. return; } // Flush stream frames of reset stream. if (FLAGS_quic_reloadable_flag_quic_remove_on_stream_frame_discarded && packet_generator_.HasPendingStreamFramesOfStream(id)) { QUIC_FLAG_COUNT_N( quic_reloadable_flag_quic_remove_on_stream_frame_discarded, 2, 2); packet_generator_.FlushAllQueuedFrames(); } sent_packet_manager_.CancelRetransmissionsForStream(id); // Remove all queued packets which only contain data for the reset stream. QueuedPacketList::iterator packet_iterator = queued_packets_.begin(); while (packet_iterator != queued_packets_.end()) { QuicFrames* retransmittable_frames = &packet_iterator->retransmittable_frames; if (retransmittable_frames->empty()) { ++packet_iterator; continue; } RemoveFramesForStream(retransmittable_frames, id); if (!retransmittable_frames->empty()) { ++packet_iterator; continue; } delete[] packet_iterator->encrypted_buffer; ClearSerializedPacket(&(*packet_iterator)); packet_iterator = queued_packets_.erase(packet_iterator); } // TODO(ianswett): Consider checking for 3 RTOs when the last stream is // cancelled as well. } void QuicConnection::SendWindowUpdate(QuicStreamId id, QuicStreamOffset byte_offset) { // Opportunistically bundle an ack with this outgoing packet. ScopedPacketFlusher flusher(this, SEND_ACK_IF_PENDING); packet_generator_.AddControlFrame(QuicFrame( new QuicWindowUpdateFrame(++last_control_frame_id_, id, byte_offset))); } void QuicConnection::SendBlocked(QuicStreamId id) { // Opportunistically bundle an ack with this outgoing packet. ScopedPacketFlusher flusher(this, SEND_ACK_IF_PENDING); packet_generator_.AddControlFrame( QuicFrame(new QuicBlockedFrame(++last_control_frame_id_, id))); stats_.blocked_frames_sent++; } const QuicConnectionStats& QuicConnection::GetStats() { const RttStats* rtt_stats = sent_packet_manager_.GetRttStats(); // Update rtt and estimated bandwidth. QuicTime::Delta min_rtt = rtt_stats->min_rtt(); if (min_rtt.IsZero()) { // If min RTT has not been set, use initial RTT instead. min_rtt = QuicTime::Delta::FromMicroseconds(rtt_stats->initial_rtt_us()); } stats_.min_rtt_us = min_rtt.ToMicroseconds(); QuicTime::Delta srtt = rtt_stats->smoothed_rtt(); if (srtt.IsZero()) { // If SRTT has not been set, use initial RTT instead. srtt = QuicTime::Delta::FromMicroseconds(rtt_stats->initial_rtt_us()); } stats_.srtt_us = srtt.ToMicroseconds(); stats_.estimated_bandwidth = sent_packet_manager_.BandwidthEstimate(); stats_.max_packet_size = packet_generator_.GetCurrentMaxPacketLength(); stats_.max_received_packet_size = largest_received_packet_size_; return stats_; } void QuicConnection::ProcessUdpPacket(const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, const QuicReceivedPacket& packet) { if (!connected_) { return; } if (debug_visitor_ != nullptr) { debug_visitor_->OnPacketReceived(self_address, peer_address, packet); } last_size_ = packet.length(); current_packet_data_ = packet.data(); last_packet_destination_address_ = self_address; last_packet_source_address_ = peer_address; if (!self_address_.IsInitialized()) { self_address_ = last_packet_destination_address_; } if (!peer_address_.IsInitialized()) { peer_address_ = last_packet_source_address_; } stats_.bytes_received += packet.length(); ++stats_.packets_received; // Ensure the time coming from the packet reader is within a minute of now. if (std::abs((packet.receipt_time() - clock_->ApproximateNow()).ToSeconds()) > 60) { QUIC_BUG << "Packet receipt time:" << packet.receipt_time().ToDebuggingValue() << " too far from current time:" << clock_->ApproximateNow().ToDebuggingValue(); } time_of_last_received_packet_ = packet.receipt_time(); QUIC_DVLOG(1) << ENDPOINT << "time of last received packet: " << time_of_last_received_packet_.ToDebuggingValue(); ScopedRetransmissionScheduler alarm_delayer(this); if (!framer_.ProcessPacket(packet)) { // If we are unable to decrypt this packet, it might be // because the CHLO or SHLO packet was lost. if (framer_.error() == QUIC_DECRYPTION_FAILURE) { if (encryption_level_ != ENCRYPTION_FORWARD_SECURE && undecryptable_packets_.size() < max_undecryptable_packets_) { QueueUndecryptablePacket(packet); } else if (debug_visitor_ != nullptr) { debug_visitor_->OnUndecryptablePacket(); } } QUIC_DVLOG(1) << ENDPOINT << "Unable to process packet. Last packet processed: " << last_header_.packet_number; current_packet_data_ = nullptr; return; } ++stats_.packets_processed; if (active_peer_migration_type_ != NO_CHANGE && sent_packet_manager_.GetLargestObserved() > highest_packet_sent_before_peer_migration_) { if (perspective_ == Perspective::IS_SERVER) { OnPeerMigrationValidated(); } } MaybeProcessUndecryptablePackets(); MaybeSendInResponseToPacket(); SetPingAlarm(); current_packet_data_ = nullptr; } void QuicConnection::OnBlockedWriterCanWrite() { OnCanWrite(); } void QuicConnection::OnCanWrite() { DCHECK(!writer_->IsWriteBlocked()); WriteQueuedPackets(); WritePendingRetransmissions(); // Sending queued packets may have caused the socket to become write blocked, // or the congestion manager to prohibit sending. If we've sent everything // we had queued and we're still not blocked, let the visitor know it can // write more. if (!CanWrite(HAS_RETRANSMITTABLE_DATA)) { return; } { ScopedPacketFlusher flusher(this, SEND_ACK_IF_QUEUED); visitor_->OnCanWrite(); visitor_->PostProcessAfterData(); } // After the visitor writes, it may have caused the socket to become write // blocked or the congestion manager to prohibit sending, so check again. if (visitor_->WillingAndAbleToWrite() && !resume_writes_alarm_->IsSet() && CanWrite(HAS_RETRANSMITTABLE_DATA)) { // We're not write blocked, but some stream didn't write out all of its // bytes. Register for 'immediate' resumption so we'll keep writing after // other connections and events have had a chance to use the thread. resume_writes_alarm_->Set(clock_->ApproximateNow()); } } void QuicConnection::WriteIfNotBlocked() { if (!writer_->IsWriteBlocked()) { OnCanWrite(); } } void QuicConnection::WriteAndBundleAcksIfNotBlocked() { if (!writer_->IsWriteBlocked()) { ScopedPacketFlusher flusher(this, SEND_ACK_IF_QUEUED); OnCanWrite(); } } bool QuicConnection::ProcessValidatedPacket(const QuicPacketHeader& header) { if (perspective_ == Perspective::IS_SERVER && self_address_.IsInitialized() && last_packet_destination_address_.IsInitialized() && self_address_ != last_packet_destination_address_) { // Allow change between pure IPv4 and equivalent mapped IPv4 address. if (self_address_.port() != last_packet_destination_address_.port() || self_address_.host().Normalized() != last_packet_destination_address_.host().Normalized()) { if (!FLAGS_quic_reloadable_flag_quic_allow_address_change_for_udp_proxy || !visitor_->AllowSelfAddressChange()) { CloseConnection( QUIC_ERROR_MIGRATING_ADDRESS, "Self address migration is not supported at the server.", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } } self_address_ = last_packet_destination_address_; } if (FLAGS_quic_restart_flag_quic_enable_accept_random_ipn) { QUIC_FLAG_COUNT_N(quic_restart_flag_quic_enable_accept_random_ipn, 2, 2); // Configured to accept any packet number in range 1...0x7fffffff // as initial packet number. if (last_header_.packet_number != 0) { // The last packet's number is not 0. Ensure that this packet // is reasonably close to where it should be. if (!Near(header.packet_number, last_header_.packet_number)) { QUIC_DLOG(INFO) << ENDPOINT << "Packet " << header.packet_number << " out of bounds. Discarding"; CloseConnection(QUIC_INVALID_PACKET_HEADER, "Packet number out of bounds.", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } } else { // The "last packet's number" is 0, meaning that this packet is the first // one received. Ensure it is in range 1..kMaxRandomInitialPacketNumber, // inclusive. if ((header.packet_number == 0) || (header.packet_number > kMaxRandomInitialPacketNumber)) { // packet number is bad. QUIC_DLOG(INFO) << ENDPOINT << "Initial packet " << header.packet_number << " out of bounds. Discarding"; CloseConnection(QUIC_INVALID_PACKET_HEADER, "Initial packet number out of bounds.", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } } } else { // if (FLAGS_quic_reloadable_flag_quic_accept_random_ipn) { // Count those that would have been accepted if FLAGS..random_ipn // were true -- to detect/diagnose potential issues prior to // enabling the flag. if ((header.packet_number > 1) && (header.packet_number <= kMaxRandomInitialPacketNumber)) { QUIC_CODE_COUNT_N(had_possibly_random_ipn, 2, 2); } if (!Near(header.packet_number, last_header_.packet_number)) { QUIC_DLOG(INFO) << ENDPOINT << "Packet " << header.packet_number << " out of bounds. Discarding"; CloseConnection(QUIC_INVALID_PACKET_HEADER, "Packet number out of bounds.", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } } if (version_negotiation_state_ != NEGOTIATED_VERSION) { if (perspective_ == Perspective::IS_SERVER) { if (!header.version_flag) { // Packets should have the version flag till version negotiation is // done. string error_details = QuicStrCat(ENDPOINT, "Packet ", header.packet_number, " without version flag before version negotiated."); QUIC_DLOG(WARNING) << error_details; CloseConnection(QUIC_INVALID_VERSION, error_details, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } else { DCHECK_EQ(header.version, transport_version()); version_negotiation_state_ = NEGOTIATED_VERSION; visitor_->OnSuccessfulVersionNegotiation(transport_version()); if (debug_visitor_ != nullptr) { debug_visitor_->OnSuccessfulVersionNegotiation(transport_version()); } } } else { DCHECK(!header.version_flag); // If the client gets a packet without the version flag from the server // it should stop sending version since the version negotiation is done. packet_generator_.StopSendingVersion(); version_negotiation_state_ = NEGOTIATED_VERSION; visitor_->OnSuccessfulVersionNegotiation(transport_version()); if (debug_visitor_ != nullptr) { debug_visitor_->OnSuccessfulVersionNegotiation(transport_version()); } } } DCHECK_EQ(NEGOTIATED_VERSION, version_negotiation_state_); if (last_size_ > largest_received_packet_size_) { largest_received_packet_size_ = last_size_; } if (perspective_ == Perspective::IS_SERVER && encryption_level_ == ENCRYPTION_NONE && last_size_ > packet_generator_.GetCurrentMaxPacketLength()) { SetMaxPacketLength(last_size_); } return true; } void QuicConnection::WriteQueuedPackets() { DCHECK(!writer_->IsWriteBlocked()); if (pending_version_negotiation_packet_) { SendVersionNegotiationPacket(); } QueuedPacketList::iterator packet_iterator = queued_packets_.begin(); while (packet_iterator != queued_packets_.end() && WritePacket(&(*packet_iterator))) { delete[] packet_iterator->encrypted_buffer; ClearSerializedPacket(&(*packet_iterator)); packet_iterator = queued_packets_.erase(packet_iterator); } } void QuicConnection::WritePendingRetransmissions() { // Keep writing as long as there's a pending retransmission which can be // written. while (sent_packet_manager_.HasPendingRetransmissions()) { const QuicPendingRetransmission pending = sent_packet_manager_.NextPendingRetransmission(); if (!CanWrite(HAS_RETRANSMITTABLE_DATA)) { break; } // Re-packetize the frames with a new packet number for retransmission. // Retransmitted packets use the same packet number length as the // original. // Flush the packet generator before making a new packet. // TODO(ianswett): Implement ReserializeAllFrames as a separate path that // does not require the creator to be flushed. // TODO(fayang): FlushAllQueuedFrames should only be called once, and should // be moved outside of the loop. Also, CanWrite is not checked after the // generator is flushed. { ScopedPacketFlusher flusher(this, NO_ACK); packet_generator_.FlushAllQueuedFrames(); } char buffer[kMaxPacketSize]; packet_generator_.ReserializeAllFrames(pending, buffer, kMaxPacketSize); } } void QuicConnection::SendProbingRetransmissions() { while (CanWrite(HAS_RETRANSMITTABLE_DATA)) { const bool can_retransmit = sent_packet_manager_.MaybeRetransmitOldestPacket( PROBING_RETRANSMISSION); if (!can_retransmit) { QUIC_DVLOG(1) << "Cannot send probing retransmissions: nothing to retransmit."; break; } DCHECK(sent_packet_manager_.HasPendingRetransmissions()); WritePendingRetransmissions(); } } void QuicConnection::RetransmitUnackedPackets( TransmissionType retransmission_type) { sent_packet_manager_.RetransmitUnackedPackets(retransmission_type); WriteIfNotBlocked(); } void QuicConnection::NeuterUnencryptedPackets() { sent_packet_manager_.NeuterUnencryptedPackets(); // This may have changed the retransmission timer, so re-arm it. SetRetransmissionAlarm(); } bool QuicConnection::ShouldGeneratePacket( HasRetransmittableData retransmittable, IsHandshake handshake) { // We should serialize handshake packets immediately to ensure that they // end up sent at the right encryption level. if (handshake == IS_HANDSHAKE) { return true; } return CanWrite(retransmittable); } bool QuicConnection::CanWrite(HasRetransmittableData retransmittable) { if (!connected_) { return false; } if (writer_->IsWriteBlocked()) { visitor_->OnWriteBlocked(); return false; } // Allow acks to be sent immediately. if (retransmittable == NO_RETRANSMITTABLE_DATA) { return true; } // If the send alarm is set, wait for it to fire. if (send_alarm_->IsSet()) { return false; } QuicTime now = clock_->Now(); QuicTime::Delta delay = sent_packet_manager_.TimeUntilSend(now); if (delay.IsInfinite()) { send_alarm_->Cancel(); return false; } // If the scheduler requires a delay, then we can not send this packet now. if (!delay.IsZero()) { send_alarm_->Update(now + delay, QuicTime::Delta::FromMilliseconds(1)); QUIC_DVLOG(1) << ENDPOINT << "Delaying sending " << delay.ToMilliseconds() << "ms"; return false; } return true; } bool QuicConnection::WritePacket(SerializedPacket* packet) { if (packet->packet_number < sent_packet_manager_.GetLargestSentPacket()) { QUIC_BUG << "Attempt to write packet:" << packet->packet_number << " after:" << sent_packet_manager_.GetLargestSentPacket(); CloseConnection(QUIC_INTERNAL_ERROR, "Packet written out of order.", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return true; } if (ShouldDiscardPacket(*packet)) { ++stats_.packets_discarded; return true; } // Termination packets are encrypted and saved, so don't exit early. const bool is_termination_packet = IsTerminationPacket(*packet); if (writer_->IsWriteBlocked() && !is_termination_packet) { return false; } QuicPacketNumber packet_number = packet->packet_number; QuicPacketLength encrypted_length = packet->encrypted_length; // Termination packets are eventually owned by TimeWaitListManager. // Others are deleted at the end of this call. if (is_termination_packet) { if (termination_packets_ == nullptr) { termination_packets_.reset( new std::vector>); } // Copy the buffer so it's owned in the future. char* buffer_copy = CopyBuffer(*packet); termination_packets_->push_back(std::unique_ptr( new QuicEncryptedPacket(buffer_copy, encrypted_length, true))); // This assures we won't try to write *forced* packets when blocked. // Return true to stop processing. if (writer_->IsWriteBlocked()) { visitor_->OnWriteBlocked(); return true; } } DCHECK_LE(encrypted_length, kMaxPacketSize); DCHECK_LE(encrypted_length, packet_generator_.GetCurrentMaxPacketLength()); QUIC_DVLOG(1) << ENDPOINT << "Sending packet " << packet_number << " : " << (IsRetransmittable(*packet) == HAS_RETRANSMITTABLE_DATA ? "data bearing " : " ack only ") << ", encryption level: " << QuicUtils::EncryptionLevelToString(packet->encryption_level) << ", encrypted length:" << encrypted_length; QUIC_DVLOG(2) << ENDPOINT << "packet(" << packet_number << "): " << std::endl << QuicTextUtils::HexDump(QuicStringPiece( packet->encrypted_buffer, encrypted_length)); // Measure the RTT from before the write begins to avoid underestimating the // min_rtt_, especially in cases where the thread blocks or gets swapped out // during the WritePacket below. QuicTime packet_send_time = clock_->Now(); WriteResult result = writer_->WritePacket( packet->encrypted_buffer, encrypted_length, self_address().host(), peer_address(), per_packet_options_); if (result.error_code == ERR_IO_PENDING) { DCHECK_EQ(WRITE_STATUS_BLOCKED, result.status); } if (result.status == WRITE_STATUS_BLOCKED) { // Ensure the writer is still write blocked, otherwise QUIC may continue // trying to write when it will not be able to. DCHECK(writer_->IsWriteBlocked()); visitor_->OnWriteBlocked(); // If the socket buffers the data, then the packet should not // be queued and sent again, which would result in an unnecessary // duplicate packet being sent. The helper must call OnCanWrite // when the write completes, and OnWriteError if an error occurs. if (!writer_->IsWriteBlockedDataBuffered()) { return false; } } // In some cases, an MTU probe can cause EMSGSIZE. This indicates that the // MTU discovery is permanently unsuccessful. if (result.status == WRITE_STATUS_ERROR && result.error_code == kMessageTooBigErrorCode && packet->retransmittable_frames.empty() && packet->encrypted_length > long_term_mtu_) { mtu_discovery_target_ = 0; mtu_discovery_alarm_->Cancel(); // The write failed, but the writer is not blocked, so return true. return true; } if (result.status == WRITE_STATUS_ERROR) { OnWriteError(result.error_code); QUIC_LOG_FIRST_N(ERROR, 10) << ENDPOINT << "failed writing " << encrypted_length << " bytes from host " << self_address().host().ToString() << " to address " << peer_address().ToString() << " with error code " << result.error_code; return false; } if (result.status != WRITE_STATUS_ERROR && debug_visitor_ != nullptr) { // Pass the write result to the visitor. debug_visitor_->OnPacketSent(*packet, packet->original_packet_number, packet->transmission_type, packet_send_time); } // Only adjust the last sent time (for the purpose of tracking the idle // timeout) if this is the first retransmittable packet sent after a // packet is received. If it were updated on every sent packet, then // sending into a black hole might never timeout. if (IsRetransmittable(*packet) == HAS_RETRANSMITTABLE_DATA && last_send_for_timeout_ <= time_of_last_received_packet_) { last_send_for_timeout_ = packet_send_time; } SetPingAlarm(); MaybeSetMtuAlarm(packet_number); QUIC_DVLOG(1) << ENDPOINT << "time we began writing last sent packet: " << packet_send_time.ToDebuggingValue(); bool reset_retransmission_alarm = sent_packet_manager_.OnPacketSent( packet, packet->original_packet_number, packet_send_time, packet->transmission_type, IsRetransmittable(*packet)); if (reset_retransmission_alarm || !retransmission_alarm_->IsSet()) { SetRetransmissionAlarm(); } // The packet number length must be updated after OnPacketSent, because it // may change the packet number length in packet. packet_generator_.UpdatePacketNumberLength( sent_packet_manager_.GetLeastUnacked(), sent_packet_manager_.EstimateMaxPacketsInFlight(max_packet_length())); stats_.bytes_sent += result.bytes_written; ++stats_.packets_sent; if (packet->transmission_type != NOT_RETRANSMISSION) { stats_.bytes_retransmitted += result.bytes_written; ++stats_.packets_retransmitted; } return true; } bool QuicConnection::ShouldDiscardPacket(const SerializedPacket& packet) { if (!connected_) { QUIC_DLOG(INFO) << ENDPOINT << "Not sending packet as connection is disconnected."; return true; } QuicPacketNumber packet_number = packet.packet_number; if (encryption_level_ == ENCRYPTION_FORWARD_SECURE && packet.encryption_level == ENCRYPTION_NONE) { // Drop packets that are NULL encrypted since the peer won't accept them // anymore. QUIC_DLOG(INFO) << ENDPOINT << "Dropping NULL encrypted packet: " << packet_number << " since the connection is forward secure."; return true; } return false; } void QuicConnection::OnWriteError(int error_code) { if (write_error_occurred_) { // A write error already occurred. The connection is being closed. return; } write_error_occurred_ = true; const string error_details = QuicStrCat( "Write failed with error: ", error_code, " (", strerror(error_code), ")"); QUIC_LOG_FIRST_N(ERROR, 2) << ENDPOINT << error_details; switch (error_code) { case kMessageTooBigErrorCode: CloseConnection( QUIC_PACKET_WRITE_ERROR, error_details, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET_WITH_NO_ACK); break; default: // We can't send an error as the socket is presumably borked. TearDownLocalConnectionState(QUIC_PACKET_WRITE_ERROR, error_details, ConnectionCloseSource::FROM_SELF); } } void QuicConnection::OnSerializedPacket(SerializedPacket* serialized_packet) { if (serialized_packet->encrypted_buffer == nullptr) { // We failed to serialize the packet, so close the connection. // TearDownLocalConnectionState does not send close packet, so no infinite // loop here. // TODO(ianswett): This is actually an internal error, not an // encryption failure. TearDownLocalConnectionState( QUIC_ENCRYPTION_FAILURE, "Serialized packet does not have an encrypted buffer.", ConnectionCloseSource::FROM_SELF); return; } if (transport_version() > QUIC_VERSION_38) { if (serialized_packet->retransmittable_frames.empty() && serialized_packet->original_packet_number == 0) { // Increment consecutive_num_packets_with_no_retransmittable_frames_ if // this packet is a new transmission with no retransmittable frames. ++consecutive_num_packets_with_no_retransmittable_frames_; } else { consecutive_num_packets_with_no_retransmittable_frames_ = 0; } } SendOrQueuePacket(serialized_packet); } void QuicConnection::OnUnrecoverableError(QuicErrorCode error, const string& error_details, ConnectionCloseSource source) { // The packet creator or generator encountered an unrecoverable error: tear // down local connection state immediately. TearDownLocalConnectionState(error, error_details, source); } void QuicConnection::OnCongestionChange() { visitor_->OnCongestionWindowChange(clock_->ApproximateNow()); // Uses the connection's smoothed RTT. If zero, uses initial_rtt. QuicTime::Delta rtt = sent_packet_manager_.GetRttStats()->smoothed_rtt(); if (rtt.IsZero()) { rtt = QuicTime::Delta::FromMicroseconds( sent_packet_manager_.GetRttStats()->initial_rtt_us()); } if (debug_visitor_ != nullptr) { debug_visitor_->OnRttChanged(rtt); } } void QuicConnection::OnPathDegrading() { visitor_->OnPathDegrading(); } void QuicConnection::OnPathMtuIncreased(QuicPacketLength packet_size) { if (packet_size > max_packet_length()) { SetMaxPacketLength(packet_size); } } void QuicConnection::OnHandshakeComplete() { sent_packet_manager_.SetHandshakeConfirmed(); // The client should immediately ack the SHLO to confirm the handshake is // complete with the server. if (perspective_ == Perspective::IS_CLIENT && !ack_queued_ && ack_frame_updated()) { ack_alarm_->Update(clock_->ApproximateNow(), QuicTime::Delta::Zero()); } } void QuicConnection::SendOrQueuePacket(SerializedPacket* packet) { // The caller of this function is responsible for checking CanWrite(). if (packet->encrypted_buffer == nullptr) { QUIC_BUG << "packet.encrypted_buffer == nullptr in to SendOrQueuePacket"; return; } // If there are already queued packets, queue this one immediately to ensure // it's written in sequence number order. if (!queued_packets_.empty() || !WritePacket(packet)) { // Take ownership of the underlying encrypted packet. packet->encrypted_buffer = CopyBuffer(*packet); queued_packets_.push_back(*packet); packet->retransmittable_frames.clear(); } ClearSerializedPacket(packet); } void QuicConnection::OnPingTimeout() { if (!retransmission_alarm_->IsSet()) { SendPing(); } } void QuicConnection::SendPing() { ScopedPacketFlusher flusher(this, SEND_ACK_IF_QUEUED); packet_generator_.AddControlFrame( QuicFrame(QuicPingFrame(++last_control_frame_id_))); // Send PING frame immediately, without checking for congestion window bounds. packet_generator_.FlushAllQueuedFrames(); if (debug_visitor_ != nullptr) { debug_visitor_->OnPingSent(); } } void QuicConnection::SendAck() { ack_alarm_->Cancel(); ack_queued_ = false; stop_waiting_count_ = 0; num_retransmittable_packets_received_since_last_ack_sent_ = 0; last_ack_had_missing_packets_ = received_packet_manager_.HasMissingPackets(); num_packets_received_since_last_ack_sent_ = 0; packet_generator_.SetShouldSendAck(!no_stop_waiting_frames_); if (consecutive_num_packets_with_no_retransmittable_frames_ < kMaxConsecutiveNonRetransmittablePackets) { return; } consecutive_num_packets_with_no_retransmittable_frames_ = 0; if (packet_generator_.HasRetransmittableFrames()) { // There is pending retransmittable frames. return; } visitor_->OnAckNeedsRetransmittableFrame(); if (!packet_generator_.HasRetransmittableFrames()) { // Visitor did not add a retransmittable frame, add a ping frame. packet_generator_.AddControlFrame( QuicFrame(QuicPingFrame(++last_control_frame_id_))); } } void QuicConnection::OnRetransmissionTimeout() { DCHECK(sent_packet_manager_.HasUnackedPackets()); if (close_connection_after_three_rtos_ && sent_packet_manager_.GetConsecutiveRtoCount() >= 2 && !visitor_->HasOpenDynamicStreams()) { // Close on the 3rd consecutive RTO, so after 2 previous RTOs have occurred. CloseConnection(QUIC_TOO_MANY_RTOS, "3 consecutive retransmission timeouts", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return; } if (close_connection_after_five_rtos_ && sent_packet_manager_.GetConsecutiveRtoCount() >= 4) { // Close on the 5th consecutive RTO, so after 4 previous RTOs have occurred. CloseConnection(QUIC_TOO_MANY_RTOS, "5 consecutive retransmission timeouts", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return; } sent_packet_manager_.OnRetransmissionTimeout(); WriteIfNotBlocked(); // A write failure can result in the connection being closed, don't attempt to // write further packets, or to set alarms. if (!connected_) { return; } // In the TLP case, the SentPacketManager gives the connection the opportunity // to send new data before retransmitting. if (sent_packet_manager_.MaybeRetransmitTailLossProbe()) { // Send the pending retransmission now that it's been queued. WriteIfNotBlocked(); } // Ensure the retransmission alarm is always set if there are unacked packets // and nothing waiting to be sent. // This happens if the loss algorithm invokes a timer based loss, but the // packet doesn't need to be retransmitted. if (!HasQueuedData() && !retransmission_alarm_->IsSet()) { SetRetransmissionAlarm(); } } void QuicConnection::SetEncrypter(EncryptionLevel level, QuicEncrypter* encrypter) { packet_generator_.SetEncrypter(level, encrypter); } void QuicConnection::SetDiversificationNonce( const DiversificationNonce& nonce) { DCHECK_EQ(Perspective::IS_SERVER, perspective_); packet_generator_.SetDiversificationNonce(nonce); } void QuicConnection::SetDefaultEncryptionLevel(EncryptionLevel level) { encryption_level_ = level; packet_generator_.set_encryption_level(level); } void QuicConnection::SetDecrypter(EncryptionLevel level, QuicDecrypter* decrypter) { framer_.SetDecrypter(level, decrypter); } void QuicConnection::SetAlternativeDecrypter(EncryptionLevel level, QuicDecrypter* decrypter, bool latch_once_used) { framer_.SetAlternativeDecrypter(level, decrypter, latch_once_used); } const QuicDecrypter* QuicConnection::decrypter() const { return framer_.decrypter(); } const QuicDecrypter* QuicConnection::alternative_decrypter() const { return framer_.alternative_decrypter(); } void QuicConnection::QueueUndecryptablePacket( const QuicEncryptedPacket& packet) { QUIC_DVLOG(1) << ENDPOINT << "Queueing undecryptable packet."; undecryptable_packets_.push_back(packet.Clone()); } void QuicConnection::MaybeProcessUndecryptablePackets() { if (undecryptable_packets_.empty() || encryption_level_ == ENCRYPTION_NONE) { return; } while (connected_ && !undecryptable_packets_.empty()) { QUIC_DVLOG(1) << ENDPOINT << "Attempting to process undecryptable packet"; QuicEncryptedPacket* packet = undecryptable_packets_.front().get(); if (!framer_.ProcessPacket(*packet) && framer_.error() == QUIC_DECRYPTION_FAILURE) { QUIC_DVLOG(1) << ENDPOINT << "Unable to process undecryptable packet..."; break; } QUIC_DVLOG(1) << ENDPOINT << "Processed undecryptable packet!"; ++stats_.packets_processed; undecryptable_packets_.pop_front(); } // Once forward secure encryption is in use, there will be no // new keys installed and hence any undecryptable packets will // never be able to be decrypted. if (encryption_level_ == ENCRYPTION_FORWARD_SECURE) { if (debug_visitor_ != nullptr) { // TODO(rtenneti): perhaps more efficient to pass the number of // undecryptable packets as the argument to OnUndecryptablePacket so that // we just need to call OnUndecryptablePacket once? for (size_t i = 0; i < undecryptable_packets_.size(); ++i) { debug_visitor_->OnUndecryptablePacket(); } } undecryptable_packets_.clear(); } } void QuicConnection::CloseConnection( QuicErrorCode error, const string& error_details, ConnectionCloseBehavior connection_close_behavior) { DCHECK(!error_details.empty()); if (!connected_) { QUIC_DLOG(INFO) << "Connection is already closed."; return; } QUIC_DLOG(INFO) << ENDPOINT << "Closing connection: " << connection_id() << ", with error: " << QuicErrorCodeToString(error) << " (" << error << "), and details: " << error_details; if (connection_close_behavior == ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET) { SendConnectionClosePacket(error, error_details, SEND_ACK); } else if (connection_close_behavior == ConnectionCloseBehavior:: SEND_CONNECTION_CLOSE_PACKET_WITH_NO_ACK) { SendConnectionClosePacket(error, error_details, NO_ACK); } ConnectionCloseSource source = ConnectionCloseSource::FROM_SELF; if (perspective_ == Perspective::IS_CLIENT && error == QUIC_CRYPTO_HANDSHAKE_STATELESS_REJECT) { // Regard stateless rejected connection as closed by server. source = ConnectionCloseSource::FROM_PEER; } TearDownLocalConnectionState(error, error_details, source); } void QuicConnection::SendConnectionClosePacket(QuicErrorCode error, const string& details, AckBundling ack_mode) { QUIC_DLOG(INFO) << ENDPOINT << "Sending connection close packet."; ClearQueuedPackets(); ScopedPacketFlusher flusher(this, ack_mode); QuicConnectionCloseFrame* frame = new QuicConnectionCloseFrame(); frame->error_code = error; frame->error_details = details; packet_generator_.AddControlFrame(QuicFrame(frame)); packet_generator_.FlushAllQueuedFrames(); } void QuicConnection::TearDownLocalConnectionState( QuicErrorCode error, const string& error_details, ConnectionCloseSource source) { if (!connected_) { QUIC_DLOG(INFO) << "Connection is already closed."; return; } connected_ = false; DCHECK(visitor_ != nullptr); // TODO(rtenneti): crbug.com/546668. A temporary fix. Added a check for null // |visitor_| to fix crash bug. Delete |visitor_| check and histogram after // fix is merged. if (visitor_ != nullptr) { visitor_->OnConnectionClosed(error, error_details, source); } else { UMA_HISTOGRAM_BOOLEAN("Net.QuicCloseConnection.NullVisitor", true); } if (debug_visitor_ != nullptr) { debug_visitor_->OnConnectionClosed(error, error_details, source); } // Cancel the alarms so they don't trigger any action now that the // connection is closed. CancelAllAlarms(); } void QuicConnection::CancelAllAlarms() { QUIC_DVLOG(1) << "Cancelling all QuicConnection alarms."; ack_alarm_->Cancel(); ping_alarm_->Cancel(); resume_writes_alarm_->Cancel(); retransmission_alarm_->Cancel(); send_alarm_->Cancel(); timeout_alarm_->Cancel(); mtu_discovery_alarm_->Cancel(); } void QuicConnection::SendGoAway(QuicErrorCode error, QuicStreamId last_good_stream_id, const string& reason) { if (goaway_sent_) { return; } goaway_sent_ = true; QUIC_DLOG(INFO) << ENDPOINT << "Going away with error " << QuicErrorCodeToString(error) << " (" << error << ")"; // Opportunistically bundle an ack with this outgoing packet. ScopedPacketFlusher flusher(this, SEND_ACK_IF_PENDING); packet_generator_.AddControlFrame(QuicFrame(new QuicGoAwayFrame( ++last_control_frame_id_, error, last_good_stream_id, reason))); } QuicByteCount QuicConnection::max_packet_length() const { return packet_generator_.GetCurrentMaxPacketLength(); } void QuicConnection::SetMaxPacketLength(QuicByteCount length) { long_term_mtu_ = length; packet_generator_.SetMaxPacketLength(GetLimitedMaxPacketSize(length)); } bool QuicConnection::HasQueuedData() const { return pending_version_negotiation_packet_ || !queued_packets_.empty() || packet_generator_.HasQueuedFrames(); } void QuicConnection::EnableSavingCryptoPackets() { save_crypto_packets_as_termination_packets_ = true; } bool QuicConnection::CanWriteStreamData() { // Don't write stream data if there are negotiation or queued data packets // to send. Otherwise, continue and bundle as many frames as possible. if (pending_version_negotiation_packet_ || !queued_packets_.empty()) { return false; } IsHandshake pending_handshake = visitor_->HasPendingHandshake() ? IS_HANDSHAKE : NOT_HANDSHAKE; // Sending queued packets may have caused the socket to become write blocked, // or the congestion manager to prohibit sending. If we've sent everything // we had queued and we're still not blocked, let the visitor know it can // write more. return ShouldGeneratePacket(HAS_RETRANSMITTABLE_DATA, pending_handshake); } void QuicConnection::SetNetworkTimeouts(QuicTime::Delta handshake_timeout, QuicTime::Delta idle_timeout) { QUIC_BUG_IF(idle_timeout > handshake_timeout) << "idle_timeout:" << idle_timeout.ToMilliseconds() << " handshake_timeout:" << handshake_timeout.ToMilliseconds(); // Adjust the idle timeout on client and server to prevent clients from // sending requests to servers which have already closed the connection. if (perspective_ == Perspective::IS_SERVER) { idle_timeout = idle_timeout + QuicTime::Delta::FromSeconds(3); } else if (idle_timeout > QuicTime::Delta::FromSeconds(1)) { idle_timeout = idle_timeout - QuicTime::Delta::FromSeconds(1); } handshake_timeout_ = handshake_timeout; idle_network_timeout_ = idle_timeout; SetTimeoutAlarm(); } void QuicConnection::CheckForTimeout() { QuicTime now = clock_->ApproximateNow(); QuicTime time_of_last_packet = std::max(time_of_last_received_packet_, last_send_for_timeout_); // |delta| can be < 0 as |now| is approximate time but |time_of_last_packet| // is accurate time. However, this should not change the behavior of // timeout handling. QuicTime::Delta idle_duration = now - time_of_last_packet; QUIC_DVLOG(1) << ENDPOINT << "last packet " << time_of_last_packet.ToDebuggingValue() << " now:" << now.ToDebuggingValue() << " idle_duration:" << idle_duration.ToMicroseconds() << " idle_network_timeout: " << idle_network_timeout_.ToMicroseconds(); if (idle_duration >= idle_network_timeout_) { const string error_details = "No recent network activity."; QUIC_DVLOG(1) << ENDPOINT << error_details; if (FLAGS_quic_reloadable_flag_quic_explicit_close_after_tlp && (sent_packet_manager_.GetConsecutiveTlpCount() > 0 || sent_packet_manager_.GetConsecutiveRtoCount() > 0 || visitor_->HasOpenDynamicStreams())) { QUIC_FLAG_COUNT(quic_reloadable_flag_quic_explicit_close_after_tlp); CloseConnection(QUIC_NETWORK_IDLE_TIMEOUT, error_details, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); } else { CloseConnection(QUIC_NETWORK_IDLE_TIMEOUT, error_details, idle_timeout_connection_close_behavior_); } return; } if (!handshake_timeout_.IsInfinite()) { QuicTime::Delta connected_duration = now - stats_.connection_creation_time; QUIC_DVLOG(1) << ENDPOINT << "connection time: " << connected_duration.ToMicroseconds() << " handshake timeout: " << handshake_timeout_.ToMicroseconds(); if (connected_duration >= handshake_timeout_) { const string error_details = "Handshake timeout expired."; QUIC_DVLOG(1) << ENDPOINT << error_details; CloseConnection(QUIC_HANDSHAKE_TIMEOUT, error_details, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return; } } SetTimeoutAlarm(); } void QuicConnection::SetTimeoutAlarm() { QuicTime time_of_last_packet = std::max(time_of_last_received_packet_, last_send_for_timeout_); QuicTime deadline = time_of_last_packet + idle_network_timeout_; if (!handshake_timeout_.IsInfinite()) { deadline = std::min(deadline, stats_.connection_creation_time + handshake_timeout_); } timeout_alarm_->Update(deadline, QuicTime::Delta::Zero()); } void QuicConnection::SetPingAlarm() { if (perspective_ == Perspective::IS_SERVER) { // Only clients send pings. return; } if (!visitor_->HasOpenDynamicStreams()) { ping_alarm_->Cancel(); // Don't send a ping unless there are open streams. return; } ping_alarm_->Update(clock_->ApproximateNow() + ping_timeout_, QuicTime::Delta::FromSeconds(1)); } void QuicConnection::SetRetransmissionAlarm() { if (delay_setting_retransmission_alarm_) { pending_retransmission_alarm_ = true; return; } QuicTime retransmission_time = sent_packet_manager_.GetRetransmissionTime(); retransmission_alarm_->Update(retransmission_time, QuicTime::Delta::FromMilliseconds(1)); } void QuicConnection::MaybeSetMtuAlarm(QuicPacketNumber sent_packet_number) { // Do not set the alarm if the target size is less than the current size. // This covers the case when |mtu_discovery_target_| is at its default value, // zero. if (mtu_discovery_target_ <= max_packet_length()) { return; } if (mtu_probe_count_ >= kMtuDiscoveryAttempts) { return; } if (mtu_discovery_alarm_->IsSet()) { return; } if (sent_packet_number >= next_mtu_probe_at_) { // Use an alarm to send the MTU probe to ensure that no ScopedPacketFlushers // are active. mtu_discovery_alarm_->Set(clock_->ApproximateNow()); } } QuicConnection::ScopedPacketFlusher::ScopedPacketFlusher( QuicConnection* connection, AckBundling ack_mode) : connection_(connection), flush_on_delete_(false) { if (connection_ == nullptr) { return; } if (!connection_->packet_generator_.PacketFlusherAttached()) { flush_on_delete_ = true; connection->packet_generator_.AttachPacketFlusher(); } // If caller wants us to include an ack, check the delayed-ack timer to see if // there's ack info to be sent. if (ShouldSendAck(ack_mode)) { QUIC_DVLOG(1) << "Bundling ack with outgoing packet."; DCHECK(ack_mode == SEND_ACK || connection_->ack_frame_updated() || connection_->stop_waiting_count_ > 1); connection_->SendAck(); } } bool QuicConnection::ScopedPacketFlusher::ShouldSendAck( AckBundling ack_mode) const { switch (ack_mode) { case SEND_ACK: return true; case SEND_ACK_IF_QUEUED: return connection_->ack_queued(); case SEND_ACK_IF_PENDING: return connection_->ack_alarm_->IsSet() || connection_->stop_waiting_count_ > 1; case NO_ACK: return false; default: QUIC_BUG << "Unsupported ack_mode."; return true; } } QuicConnection::ScopedPacketFlusher::~ScopedPacketFlusher() { if (connection_ == nullptr) { return; } if (flush_on_delete_) { connection_->packet_generator_.Flush(); // Once all transmissions are done, check if there is any outstanding data // to send and notify the congestion controller if not. // // Note that this means that the application limited check will happen as // soon as the last flusher gets destroyed, which is typically after a // single stream write is finished. This means that if all the data from a // single write goes through the connection, the application-limited signal // will fire even if the caller does a write operation immediately after. // There are two important approaches to remedy this situation: // (1) Instantiate ScopedPacketFlusher before performing multiple subsequent // writes, thus deferring this check until all writes are done. // (2) Write data in chunks sufficiently large so that they cause the // connection to be limited by the congestion control. Typically, this // would mean writing chunks larger than the product of the current // pacing rate and the pacer granularity. So, for instance, if the // pacing rate of the connection is 1 Gbps, and the pacer granularity is // 1 ms, the caller should send at least 125k bytes in order to not // be marked as application-limited. connection_->CheckIfApplicationLimited(); } DCHECK_EQ(flush_on_delete_, !connection_->packet_generator_.PacketFlusherAttached()); } QuicConnection::ScopedRetransmissionScheduler::ScopedRetransmissionScheduler( QuicConnection* connection) : connection_(connection), already_delayed_(connection_->delay_setting_retransmission_alarm_) { connection_->delay_setting_retransmission_alarm_ = true; } QuicConnection::ScopedRetransmissionScheduler:: ~ScopedRetransmissionScheduler() { if (already_delayed_) { return; } connection_->delay_setting_retransmission_alarm_ = false; if (connection_->pending_retransmission_alarm_) { connection_->SetRetransmissionAlarm(); connection_->pending_retransmission_alarm_ = false; } } HasRetransmittableData QuicConnection::IsRetransmittable( const SerializedPacket& packet) { // Retransmitted packets retransmittable frames are owned by the unacked // packet map, but are not present in the serialized packet. if (packet.transmission_type != NOT_RETRANSMISSION || !packet.retransmittable_frames.empty()) { return HAS_RETRANSMITTABLE_DATA; } else { return NO_RETRANSMITTABLE_DATA; } } bool QuicConnection::IsTerminationPacket(const SerializedPacket& packet) { if (packet.retransmittable_frames.empty()) { return false; } for (const QuicFrame& frame : packet.retransmittable_frames) { if (frame.type == CONNECTION_CLOSE_FRAME) { return true; } if (save_crypto_packets_as_termination_packets_ && frame.type == STREAM_FRAME && frame.stream_frame->stream_id == kCryptoStreamId) { return true; } } return false; } void QuicConnection::SetMtuDiscoveryTarget(QuicByteCount target) { mtu_discovery_target_ = GetLimitedMaxPacketSize(target); } QuicByteCount QuicConnection::GetLimitedMaxPacketSize( QuicByteCount suggested_max_packet_size) { if (!peer_address_.IsInitialized()) { QUIC_BUG << "Attempted to use a connection without a valid peer address"; return suggested_max_packet_size; } const QuicByteCount writer_limit = writer_->GetMaxPacketSize(peer_address()); QuicByteCount max_packet_size = suggested_max_packet_size; if (max_packet_size > writer_limit) { max_packet_size = writer_limit; } if (max_packet_size > kMaxPacketSize) { max_packet_size = kMaxPacketSize; } return max_packet_size; } void QuicConnection::SendMtuDiscoveryPacket(QuicByteCount target_mtu) { // Currently, this limit is ensured by the caller. DCHECK_EQ(target_mtu, GetLimitedMaxPacketSize(target_mtu)); // Send the probe. packet_generator_.GenerateMtuDiscoveryPacket(target_mtu); } // TODO(zhongyi): change this method to generate a connectivity probing packet // and let the caller to call writer to write the packet and handle write // status. bool QuicConnection::SendConnectivityProbingPacket( QuicPacketWriter* probing_writer, const QuicSocketAddress& peer_address) { DCHECK(peer_address.IsInitialized()); if (perspective_ == Perspective::IS_SERVER && probing_writer == nullptr) { // Server can use default packet writer to write probing packet. probing_writer = writer_; } DCHECK(probing_writer); if (probing_writer->IsWriteBlocked()) { QUIC_DLOG(INFO) << "Writer blocked when send connectivity probing packet"; return true; } QUIC_DLOG(INFO) << ENDPOINT << "Sending connectivity probing packet for " << "connection_id = " << connection_id_; std::unique_ptr probing_packet( packet_generator_.SerializeConnectivityProbingPacket()); WriteResult result = probing_writer->WritePacket( probing_packet->data(), probing_packet->length(), self_address().host(), peer_address, per_packet_options_); if (result.status == WRITE_STATUS_ERROR) { QUIC_DLOG(INFO) << "Write probing packet not finished with error = " << result.error_code; return false; } return true; } void QuicConnection::DiscoverMtu() { DCHECK(!mtu_discovery_alarm_->IsSet()); // Check if the MTU has been already increased. if (mtu_discovery_target_ <= max_packet_length()) { return; } // Calculate the packet number of the next probe *before* sending the current // one. Otherwise, when SendMtuDiscoveryPacket() is called, // MaybeSetMtuAlarm() will not realize that the probe has been just sent, and // will reschedule this probe again. packets_between_mtu_probes_ *= 2; next_mtu_probe_at_ = sent_packet_manager_.GetLargestSentPacket() + packets_between_mtu_probes_ + 1; ++mtu_probe_count_; QUIC_DVLOG(2) << "Sending a path MTU discovery packet #" << mtu_probe_count_; SendMtuDiscoveryPacket(mtu_discovery_target_); DCHECK(!mtu_discovery_alarm_->IsSet()); } void QuicConnection::OnPeerMigrationValidated() { if (active_peer_migration_type_ == NO_CHANGE) { QUIC_BUG << "No migration underway."; return; } highest_packet_sent_before_peer_migration_ = 0; active_peer_migration_type_ = NO_CHANGE; } // TODO(jri): Modify method to start migration whenever a new IP address is seen // from a packet with sequence number > the one that triggered the previous // migration. This should happen even if a migration is underway, since the // most recent migration is the one that we should pay attention to. void QuicConnection::StartPeerMigration( PeerAddressChangeType peer_migration_type) { // TODO(fayang): Currently, all peer address change type are allowed. Need to // add a method ShouldAllowPeerAddressChange(PeerAddressChangeType type) to // determine whether |type| is allowed. if (active_peer_migration_type_ != NO_CHANGE || peer_migration_type == NO_CHANGE) { QUIC_BUG << "Migration underway or no new migration started."; return; } QUIC_DLOG(INFO) << ENDPOINT << "Peer's ip:port changed from " << peer_address_.ToString() << " to " << last_packet_source_address_.ToString() << ", migrating connection."; highest_packet_sent_before_peer_migration_ = sent_packet_manager_.GetLargestSentPacket(); peer_address_ = last_packet_source_address_; active_peer_migration_type_ = peer_migration_type; // TODO(jri): Move these calls to OnPeerMigrationValidated. Rename // OnConnectionMigration methods to OnPeerMigration. visitor_->OnConnectionMigration(peer_migration_type); sent_packet_manager_.OnConnectionMigration(peer_migration_type); } bool QuicConnection::ack_frame_updated() const { return received_packet_manager_.ack_frame_updated(); } QuicStringPiece QuicConnection::GetCurrentPacket() { if (current_packet_data_ == nullptr) { return QuicStringPiece(); } return QuicStringPiece(current_packet_data_, last_size_); } bool QuicConnection::MaybeConsiderAsMemoryCorruption( const QuicStreamFrame& frame) { if (frame.stream_id == kCryptoStreamId || last_decrypted_packet_level_ != ENCRYPTION_NONE) { return false; } if (perspective_ == Perspective::IS_SERVER && frame.data_length >= sizeof(kCHLO) && strncmp(frame.data_buffer, reinterpret_cast(&kCHLO), sizeof(kCHLO)) == 0) { return true; } if (perspective_ == Perspective::IS_CLIENT && frame.data_length >= sizeof(kREJ) && strncmp(frame.data_buffer, reinterpret_cast(&kREJ), sizeof(kREJ)) == 0) { return true; } return false; } // Uses a 25ms delayed ack timer. Also helps with better signaling // in low-bandwidth (< ~384 kbps), where an ack is sent per packet. // Ensures that the Delayed Ack timer is always set to a value lesser // than the retransmission timer's minimum value (MinRTO). We want the // delayed ack to get back to the QUIC peer before the sender's // retransmission timer triggers. Since we do not know the // reverse-path one-way delay, we assume equal delays for forward and // reverse paths, and ensure that the timer is set to less than half // of the MinRTO. // There may be a value in making this delay adaptive with the help of // the sender and a signaling mechanism -- if the sender uses a // different MinRTO, we may get spurious retransmissions. May not have // any benefits, but if the delayed ack becomes a significant source // of (likely, tail) latency, then consider such a mechanism. const QuicTime::Delta QuicConnection::DelayedAckTime() { return QuicTime::Delta::FromMilliseconds( std::min(kMaxDelayedAckTimeMs, kMinRetransmissionTimeMs / 2)); } void QuicConnection::MaybeSendProbingRetransmissions() { DCHECK(fill_up_link_during_probing_); if (!sent_packet_manager_.handshake_confirmed()) { return; } if (!sent_packet_manager_.GetSendAlgorithm()->IsProbingForMoreBandwidth()) { return; } if (probing_retransmission_pending_) { QUIC_BUG << "MaybeSendProbingRetransmissions is called while another call " "to it is already in progress"; return; } probing_retransmission_pending_ = true; SendProbingRetransmissions(); probing_retransmission_pending_ = false; } void QuicConnection::CheckIfApplicationLimited() { bool application_limited = queued_packets_.empty() && !sent_packet_manager_.HasPendingRetransmissions() && !visitor_->WillingAndAbleToWrite(); if (!application_limited) { return; } if (fill_up_link_during_probing_) { MaybeSendProbingRetransmissions(); if (!CanWrite(HAS_RETRANSMITTABLE_DATA)) { return; } } sent_packet_manager_.OnApplicationLimited(); } void QuicConnection::UpdatePacketContent(PacketContent type) { if (!server_reply_to_connectivity_probes_) { return; } QUIC_FLAG_COUNT_N( quic_reloadable_flag_quic_server_reply_to_connectivity_probing, 4, 4); if (current_packet_content_ == NOT_PADDED_PING) { // We have already learned the current packet is not a connectivity // probing packet. Peer migration should have already been started earlier // if needed. return; } if (type == NO_FRAMES_RECEIVED) { return; } if (type == FIRST_FRAME_IS_PING) { if (current_packet_content_ == NO_FRAMES_RECEIVED) { current_packet_content_ = FIRST_FRAME_IS_PING; return; } } if (type == SECOND_FRAME_IS_PADDING) { if (current_packet_content_ == FIRST_FRAME_IS_PING) { current_packet_content_ = SECOND_FRAME_IS_PADDING; return; } } current_packet_content_ = NOT_PADDED_PING; if (current_peer_migration_type_ == NO_CHANGE) { return; } // Start peer migration immediately when the current packet is confirmed not // a connectivity probing packet. StartPeerMigration(current_peer_migration_type_); current_peer_migration_type_ = NO_CHANGE; } void QuicConnection::SetStreamNotifier( StreamNotifierInterface* stream_notifier) { sent_packet_manager_.SetStreamNotifier(stream_notifier); } void QuicConnection::SetDataProducer( QuicStreamFrameDataProducer* data_producer) { framer_.set_data_producer(data_producer); } } // namespace net