// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/supports_user_data.h" #include "base/feature_list.h" #include "base/features.h" #include "base/sequence_checker.h" namespace base { std::unique_ptr SupportsUserData::Data::Clone() { return nullptr; } SupportsUserData::SupportsUserData() : user_data_(FeatureList::IsEnabled(features::kSupportsUserDataFlatHashMap) ? MapVariants(FlatDataMap()) : MapVariants(DataMap())) { // Harmless to construct on a different execution sequence to subsequent // usage. DETACH_FROM_SEQUENCE(sequence_checker_); } SupportsUserData::SupportsUserData(SupportsUserData&&) = default; SupportsUserData& SupportsUserData::operator=(SupportsUserData&&) = default; SupportsUserData::Data* SupportsUserData::GetUserData(const void* key) const { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); // Avoid null keys; they are too vulnerable to collision. DCHECK(key); return absl::visit( [key](const auto& map) -> Data* { auto found = map.find(key); if (found != map.end()) { return found->second.get(); } return nullptr; }, user_data_); } std::unique_ptr SupportsUserData::TakeUserData( const void* key) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); // Null keys are too vulnerable to collision. CHECK(key); return absl::visit( [key](auto& map) -> std::unique_ptr { auto found = map.find(key); if (found != map.end()) { std::unique_ptr deowned; deowned.swap(found->second); map.erase(key); return deowned; } return nullptr; }, user_data_); } void SupportsUserData::SetUserData(const void* key, std::unique_ptr data) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); // Avoid null keys; they are too vulnerable to collision. DCHECK(key); if (data.get()) { absl::visit([key, &data](auto& map) { map[key] = std::move(data); }, user_data_); } else { RemoveUserData(key); } } void SupportsUserData::RemoveUserData(const void* key) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); absl::visit( [key](auto& map) { auto it = map.find(key); if (it != map.end()) { // Remove the entry from the map before deleting `owned_data` to avoid // reentrancy issues when `owned_data` owns `this`. Otherwise: // // 1. `RemoveUserData()` calls `erase()`. // 2. `erase()` deletes `owned_data`. // 3. `owned_data` deletes `this`. // // At this point, `erase()` is still on the stack even though the // backing map (owned by `this`) has already been destroyed, and it // may simply crash, cause a use-after-free, or any other number of // interesting things. auto owned_data = std::move(it->second); map.erase(it); } }, user_data_); } void SupportsUserData::DetachFromSequence() { DETACH_FROM_SEQUENCE(sequence_checker_); } void SupportsUserData::CloneDataFrom(const SupportsUserData& other) { absl::visit( [this](const auto& other_map) { for (const auto& data_pair : other_map) { auto cloned_data = data_pair.second->Clone(); if (cloned_data) { SetUserData(data_pair.first, std::move(cloned_data)); } } }, other.user_data_); } SupportsUserData::~SupportsUserData() { if (!absl::visit([](const auto& map) { return map.empty(); }, user_data_)) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); } MapVariants local_user_data; user_data_.swap(local_user_data); // Now this->user_data_ is empty, and any destructors called transitively from // the destruction of |local_user_data| will see it that way instead of // examining a being-destroyed object. } void SupportsUserData::ClearAllUserData() { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); absl::visit([](auto& map) { map.clear(); }, user_data_); } } // namespace base