// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/rand_util.h" #include #include #include #include #include #include "base/check_op.h" #include "base/strings/string_util.h" namespace base { uint64_t RandUint64() { uint64_t number; RandBytes(&number, sizeof(number)); return number; } int RandInt(int min, int max) { DCHECK_LE(min, max); uint64_t range = static_cast(max) - min + 1; // |range| is at most UINT_MAX + 1, so the result of RandGenerator(range) // is at most UINT_MAX. Hence it's safe to cast it from uint64_t to int64_t. int result = static_cast(min + static_cast(base::RandGenerator(range))); DCHECK_GE(result, min); DCHECK_LE(result, max); return result; } double RandDouble() { return BitsToOpenEndedUnitInterval(base::RandUint64()); } double BitsToOpenEndedUnitInterval(uint64_t bits) { // We try to get maximum precision by masking out as many bits as will fit // in the target type's mantissa, and raising it to an appropriate power to // produce output in the range [0, 1). For IEEE 754 doubles, the mantissa // is expected to accommodate 53 bits. static_assert(std::numeric_limits::radix == 2, "otherwise use scalbn"); static const int kBits = std::numeric_limits::digits; uint64_t random_bits = bits & ((UINT64_C(1) << kBits) - 1); double result = ldexp(static_cast(random_bits), -1 * kBits); DCHECK_GE(result, 0.0); DCHECK_LT(result, 1.0); return result; } uint64_t RandGenerator(uint64_t range) { DCHECK_GT(range, 0u); // We must discard random results above this number, as they would // make the random generator non-uniform (consider e.g. if // MAX_UINT64 was 7 and |range| was 5, then a result of 1 would be twice // as likely as a result of 3 or 4). uint64_t max_acceptable_value = (std::numeric_limits::max() / range) * range - 1; uint64_t value; do { value = base::RandUint64(); } while (value > max_acceptable_value); return value % range; } std::string RandBytesAsString(size_t length) { DCHECK_GT(length, 0u); std::string result; RandBytes(WriteInto(&result, length + 1), length); return result; } InsecureRandomGenerator::InsecureRandomGenerator() { a_ = base::RandUint64(); b_ = base::RandUint64(); } void InsecureRandomGenerator::ReseedForTesting(uint64_t seed) { a_ = seed; b_ = seed; } uint64_t InsecureRandomGenerator::RandUint64() { // Using XorShift128+, which is simple and widely used. See // https://en.wikipedia.org/wiki/Xorshift#xorshift+ for details. uint64_t t = a_; const uint64_t s = b_; a_ = s; t ^= t << 23; t ^= t >> 17; t ^= s ^ (s >> 26); b_ = t; return t + s; } uint32_t InsecureRandomGenerator::RandUint32() { // The generator usually returns an uint64_t, truncate it. // // It is noted in this paper (https://arxiv.org/abs/1810.05313) that the // lowest 32 bits fail some statistical tests from the Big Crush // suite. Use the higher ones instead. return this->RandUint64() >> 32; } double InsecureRandomGenerator::RandDouble() { uint64_t x = RandUint64(); // From https://vigna.di.unimi.it/xorshift/. // 53 bits of mantissa, hence the "hexadecimal exponent" 1p-53. return (x >> 11) * 0x1.0p-53; } } // namespace base