// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_loop.h" #include #include #include "base/bind.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/memory/ptr_util.h" #include "base/message_loop/message_pump_default.h" #include "base/run_loop.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "base/threading/thread_id_name_manager.h" #include "base/threading/thread_local.h" #include "base/threading/thread_task_runner_handle.h" #include "base/trace_event/trace_event.h" #if defined(OS_MACOSX) #include "base/message_loop/message_pump_mac.h" #endif #if defined(OS_POSIX) && !defined(OS_IOS) && !defined(OS_FUCHSIA) #include "base/message_loop/message_pump_libevent.h" #endif #if defined(OS_FUCHSIA) #include "base/message_loop/message_pump_fuchsia.h" #endif #if defined(OS_ANDROID) #include "base/message_loop/message_pump_android.h" #endif #if defined(USE_GLIB) #include "base/message_loop/message_pump_glib.h" #endif namespace base { namespace { // A lazily created thread local storage for quick access to a thread's message // loop, if one exists. base::ThreadLocalPointer* GetTLSMessageLoop() { static auto* lazy_tls_ptr = new base::ThreadLocalPointer(); return lazy_tls_ptr; } MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = NULL; #if defined(OS_IOS) using MessagePumpForIO = MessagePumpIOSForIO; #elif defined(OS_NACL_SFI) using MessagePumpForIO = MessagePumpDefault; #elif defined(OS_FUCHSIA) using MessagePumpForIO = MessagePumpFuchsia; #elif defined(OS_POSIX) using MessagePumpForIO = MessagePumpLibevent; #endif #if !defined(OS_NACL_SFI) MessagePumpForIO* ToPumpIO(MessagePump* pump) { return static_cast(pump); } #endif // !defined(OS_NACL_SFI) std::unique_ptr ReturnPump(std::unique_ptr pump) { return pump; } } // namespace //------------------------------------------------------------------------------ MessageLoop::TaskObserver::TaskObserver() { } MessageLoop::TaskObserver::~TaskObserver() { } MessageLoop::DestructionObserver::~DestructionObserver() { } //------------------------------------------------------------------------------ MessageLoop::MessageLoop(Type type) : MessageLoop(type, MessagePumpFactoryCallback()) { BindToCurrentThread(); } MessageLoop::MessageLoop(std::unique_ptr pump) : MessageLoop(TYPE_CUSTOM, BindOnce(&ReturnPump, Passed(&pump))) { BindToCurrentThread(); } MessageLoop::~MessageLoop() { // If |pump_| is non-null, this message loop has been bound and should be the // current one on this thread. Otherwise, this loop is being destructed before // it was bound to a thread, so a different message loop (or no loop at all) // may be current. DCHECK((pump_ && current() == this) || (!pump_ && current() != this)); // iOS just attaches to the loop, it doesn't Run it. // TODO(stuartmorgan): Consider wiring up a Detach(). #if !defined(OS_IOS) // There should be no active RunLoops on this thread, unless this MessageLoop // isn't bound to the current thread (see other condition at the top of this // method). DCHECK((!pump_ && current() != this) || !RunLoop::IsRunningOnCurrentThread()); #endif #if defined(OS_WIN) if (in_high_res_mode_) Time::ActivateHighResolutionTimer(false); #endif // Clean up any unprocessed tasks, but take care: deleting a task could // result in the addition of more tasks (e.g., via DeleteSoon). We set a // limit on the number of times we will allow a deleted task to generate more // tasks. Normally, we should only pass through this loop once or twice. If // we end up hitting the loop limit, then it is probably due to one task that // is being stubborn. Inspect the queues to see who is left. bool tasks_remain; for (int i = 0; i < 100; ++i) { DeletePendingTasks(); // If we end up with empty queues, then break out of the loop. tasks_remain = incoming_task_queue_->triage_tasks().HasTasks(); if (!tasks_remain) break; } DCHECK(!tasks_remain); // Let interested parties have one last shot at accessing this. for (auto& observer : destruction_observers_) observer.WillDestroyCurrentMessageLoop(); thread_task_runner_handle_.reset(); // Tell the incoming queue that we are dying. incoming_task_queue_->WillDestroyCurrentMessageLoop(); incoming_task_queue_ = NULL; unbound_task_runner_ = NULL; task_runner_ = NULL; // OK, now make it so that no one can find us. if (current() == this) GetTLSMessageLoop()->Set(nullptr); } // static MessageLoop* MessageLoop::current() { // TODO(darin): sadly, we cannot enable this yet since people call us even // when they have no intention of using us. // DCHECK(loop) << "Ouch, did you forget to initialize me?"; return GetTLSMessageLoop()->Get(); } // static bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) { if (message_pump_for_ui_factory_) return false; message_pump_for_ui_factory_ = factory; return true; } // static std::unique_ptr MessageLoop::CreateMessagePumpForType(Type type) { // TODO(rvargas): Get rid of the OS guards. #if defined(USE_GLIB) && !defined(OS_NACL) using MessagePumpForUI = MessagePumpGlib; #elif (defined(OS_LINUX) && !defined(OS_NACL)) || defined(OS_BSD) using MessagePumpForUI = MessagePumpLibevent; #elif defined(OS_FUCHSIA) using MessagePumpForUI = MessagePumpFuchsia; #endif #if defined(OS_IOS) || defined(OS_MACOSX) #define MESSAGE_PUMP_UI std::unique_ptr(MessagePumpMac::Create()) #elif defined(OS_NACL) || defined(OS_AIX) // Currently NaCl and AIX don't have a UI MessageLoop. // TODO(abarth): Figure out if we need this. #define MESSAGE_PUMP_UI std::unique_ptr() #else #define MESSAGE_PUMP_UI std::unique_ptr(new MessagePumpForUI()) #endif #if defined(OS_MACOSX) // Use an OS native runloop on Mac to support timer coalescing. #define MESSAGE_PUMP_DEFAULT \ std::unique_ptr(new MessagePumpCFRunLoop()) #else #define MESSAGE_PUMP_DEFAULT \ std::unique_ptr(new MessagePumpDefault()) #endif if (type == MessageLoop::TYPE_UI) { if (message_pump_for_ui_factory_) return message_pump_for_ui_factory_(); return MESSAGE_PUMP_UI; } if (type == MessageLoop::TYPE_IO) return std::unique_ptr(new MessagePumpForIO()); #if defined(OS_ANDROID) if (type == MessageLoop::TYPE_JAVA) return std::unique_ptr(new MessagePumpForUI()); #endif DCHECK_EQ(MessageLoop::TYPE_DEFAULT, type); return MESSAGE_PUMP_DEFAULT; } void MessageLoop::AddDestructionObserver( DestructionObserver* destruction_observer) { DCHECK_EQ(this, current()); destruction_observers_.AddObserver(destruction_observer); } void MessageLoop::RemoveDestructionObserver( DestructionObserver* destruction_observer) { DCHECK_EQ(this, current()); destruction_observers_.RemoveObserver(destruction_observer); } bool MessageLoop::IsType(Type type) const { return type_ == type; } // static Closure MessageLoop::QuitWhenIdleClosure() { return Bind(&RunLoop::QuitCurrentWhenIdleDeprecated); } void MessageLoop::SetNestableTasksAllowed(bool allowed) { if (allowed) { CHECK(RunLoop::IsNestingAllowedOnCurrentThread()); // Kick the native pump just in case we enter a OS-driven nested message // loop that does not go through RunLoop::Run(). pump_->ScheduleWork(); } task_execution_allowed_ = allowed; } bool MessageLoop::NestableTasksAllowed() const { return task_execution_allowed_; } // TODO(gab): Migrate TaskObservers to RunLoop as part of separating concerns // between MessageLoop and RunLoop and making MessageLoop a swappable // implementation detail. http://crbug.com/703346 void MessageLoop::AddTaskObserver(TaskObserver* task_observer) { DCHECK_EQ(this, current()); CHECK(allow_task_observers_); task_observers_.AddObserver(task_observer); } void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) { DCHECK_EQ(this, current()); CHECK(allow_task_observers_); task_observers_.RemoveObserver(task_observer); } bool MessageLoop::IsIdleForTesting() { // We only check the incoming queue, since we don't want to lock the work // queue. return incoming_task_queue_->IsIdleForTesting(); } //------------------------------------------------------------------------------ // static std::unique_ptr MessageLoop::CreateUnbound( Type type, MessagePumpFactoryCallback pump_factory) { return WrapUnique(new MessageLoop(type, std::move(pump_factory))); } MessageLoop::MessageLoop(Type type, MessagePumpFactoryCallback pump_factory) : type_(type), pump_factory_(std::move(pump_factory)), incoming_task_queue_(new internal::IncomingTaskQueue(this)), unbound_task_runner_( new internal::MessageLoopTaskRunner(incoming_task_queue_)), task_runner_(unbound_task_runner_) { // If type is TYPE_CUSTOM non-null pump_factory must be given. DCHECK(type_ != TYPE_CUSTOM || !pump_factory_.is_null()); } void MessageLoop::BindToCurrentThread() { DCHECK(!pump_); if (!pump_factory_.is_null()) pump_ = std::move(pump_factory_).Run(); else pump_ = CreateMessagePumpForType(type_); DCHECK(!current()) << "should only have one message loop per thread"; GetTLSMessageLoop()->Set(this); incoming_task_queue_->StartScheduling(); unbound_task_runner_->BindToCurrentThread(); unbound_task_runner_ = nullptr; SetThreadTaskRunnerHandle(); thread_id_ = PlatformThread::CurrentId(); scoped_set_sequence_local_storage_map_for_current_thread_ = std::make_unique< internal::ScopedSetSequenceLocalStorageMapForCurrentThread>( &sequence_local_storage_map_); run_loop_client_ = RunLoop::RegisterDelegateForCurrentThread(this); } std::string MessageLoop::GetThreadName() const { DCHECK_NE(kInvalidThreadId, thread_id_) << "GetThreadName() must only be called after BindToCurrentThread()'s " << "side-effects have been synchronized with this thread."; return ThreadIdNameManager::GetInstance()->GetName(thread_id_); } void MessageLoop::SetTaskRunner( scoped_refptr task_runner) { DCHECK_EQ(this, current()); DCHECK(task_runner); DCHECK(task_runner->BelongsToCurrentThread()); DCHECK(!unbound_task_runner_); task_runner_ = std::move(task_runner); SetThreadTaskRunnerHandle(); } void MessageLoop::ClearTaskRunnerForTesting() { DCHECK_EQ(this, current()); DCHECK(!unbound_task_runner_); task_runner_ = nullptr; thread_task_runner_handle_.reset(); } void MessageLoop::Run(bool application_tasks_allowed) { DCHECK_EQ(this, current()); if (application_tasks_allowed && !task_execution_allowed_) { // Allow nested task execution as explicitly requested. DCHECK(run_loop_client_->IsNested()); task_execution_allowed_ = true; pump_->Run(this); task_execution_allowed_ = false; } else { pump_->Run(this); } } void MessageLoop::Quit() { DCHECK_EQ(this, current()); pump_->Quit(); } void MessageLoop::EnsureWorkScheduled() { DCHECK_EQ(this, current()); if (incoming_task_queue_->triage_tasks().HasTasks()) pump_->ScheduleWork(); } void MessageLoop::SetThreadTaskRunnerHandle() { DCHECK_EQ(this, current()); // Clear the previous thread task runner first, because only one can exist at // a time. thread_task_runner_handle_.reset(); thread_task_runner_handle_.reset(new ThreadTaskRunnerHandle(task_runner_)); } bool MessageLoop::ProcessNextDelayedNonNestableTask() { if (run_loop_client_->IsNested()) return false; while (incoming_task_queue_->deferred_tasks().HasTasks()) { PendingTask pending_task = incoming_task_queue_->deferred_tasks().Pop(); if (!pending_task.task.IsCancelled()) { RunTask(&pending_task); return true; } } return false; } void MessageLoop::RunTask(PendingTask* pending_task) { DCHECK(task_execution_allowed_); current_pending_task_ = pending_task; // Execute the task and assume the worst: It is probably not reentrant. task_execution_allowed_ = false; TRACE_TASK_EXECUTION("MessageLoop::RunTask", *pending_task); for (auto& observer : task_observers_) observer.WillProcessTask(*pending_task); incoming_task_queue_->RunTask(pending_task); for (auto& observer : task_observers_) observer.DidProcessTask(*pending_task); task_execution_allowed_ = true; current_pending_task_ = nullptr; } bool MessageLoop::DeferOrRunPendingTask(PendingTask pending_task) { if (pending_task.nestable == Nestable::kNestable || !run_loop_client_->IsNested()) { RunTask(&pending_task); // Show that we ran a task (Note: a new one might arrive as a // consequence!). return true; } // We couldn't run the task now because we're in a nested run loop // and the task isn't nestable. incoming_task_queue_->deferred_tasks().Push(std::move(pending_task)); return false; } void MessageLoop::DeletePendingTasks() { incoming_task_queue_->triage_tasks().Clear(); incoming_task_queue_->deferred_tasks().Clear(); // TODO(robliao): Determine if we can move delayed task destruction before // deferred tasks to maintain the MessagePump DoWork, DoDelayedWork, and // DoIdleWork processing order. incoming_task_queue_->delayed_tasks().Clear(); } void MessageLoop::ScheduleWork() { pump_->ScheduleWork(); } bool MessageLoop::DoWork() { if (!task_execution_allowed_) return false; // Execute oldest task. while (incoming_task_queue_->triage_tasks().HasTasks()) { PendingTask pending_task = incoming_task_queue_->triage_tasks().Pop(); if (pending_task.task.IsCancelled()) continue; if (!pending_task.delayed_run_time.is_null()) { int sequence_num = pending_task.sequence_num; TimeTicks delayed_run_time = pending_task.delayed_run_time; incoming_task_queue_->delayed_tasks().Push(std::move(pending_task)); // If we changed the topmost task, then it is time to reschedule. if (incoming_task_queue_->delayed_tasks().Peek().sequence_num == sequence_num) { pump_->ScheduleDelayedWork(delayed_run_time); } } else if (DeferOrRunPendingTask(std::move(pending_task))) { return true; } } // Nothing happened. return false; } bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) { if (!task_execution_allowed_ || !incoming_task_queue_->delayed_tasks().HasTasks()) { recent_time_ = *next_delayed_work_time = TimeTicks(); return false; } // When we "fall behind", there will be a lot of tasks in the delayed work // queue that are ready to run. To increase efficiency when we fall behind, // we will only call Time::Now() intermittently, and then process all tasks // that are ready to run before calling it again. As a result, the more we // fall behind (and have a lot of ready-to-run delayed tasks), the more // efficient we'll be at handling the tasks. TimeTicks next_run_time = incoming_task_queue_->delayed_tasks().Peek().delayed_run_time; if (next_run_time > recent_time_) { recent_time_ = TimeTicks::Now(); // Get a better view of Now(); if (next_run_time > recent_time_) { *next_delayed_work_time = next_run_time; return false; } } PendingTask pending_task = incoming_task_queue_->delayed_tasks().Pop(); if (incoming_task_queue_->delayed_tasks().HasTasks()) { *next_delayed_work_time = incoming_task_queue_->delayed_tasks().Peek().delayed_run_time; } return DeferOrRunPendingTask(std::move(pending_task)); } bool MessageLoop::DoIdleWork() { if (ProcessNextDelayedNonNestableTask()) return true; if (run_loop_client_->ShouldQuitWhenIdle()) pump_->Quit(); // When we return we will do a kernel wait for more tasks. #if defined(OS_WIN) // On Windows we activate the high resolution timer so that the wait // _if_ triggered by the timer happens with good resolution. If we don't // do this the default resolution is 15ms which might not be acceptable // for some tasks. bool high_res = incoming_task_queue_->HasPendingHighResolutionTasks(); if (high_res != in_high_res_mode_) { in_high_res_mode_ = high_res; Time::ActivateHighResolutionTimer(in_high_res_mode_); } #endif return false; } #if !defined(OS_NACL) //------------------------------------------------------------------------------ // MessageLoopForUI MessageLoopForUI::MessageLoopForUI(std::unique_ptr pump) : MessageLoop(TYPE_UI, BindOnce(&ReturnPump, std::move(pump))) {} #if defined(OS_ANDROID) void MessageLoopForUI::Start() { // No Histogram support for UI message loop as it is managed by Java side static_cast(pump_.get())->Start(this); } void MessageLoopForUI::StartForTesting( base::android::JavaMessageHandlerFactory* factory, WaitableEvent* test_done_event) { // No Histogram support for UI message loop as it is managed by Java side static_cast(pump_.get()) ->StartForUnitTest(this, factory, test_done_event); } void MessageLoopForUI::Abort() { static_cast(pump_.get())->Abort(); } #endif #if defined(OS_IOS) void MessageLoopForUI::Attach() { static_cast(pump_.get())->Attach(this); } #endif #if (defined(USE_OZONE) && !defined(OS_FUCHSIA)) || \ (defined(USE_X11) && !defined(USE_GLIB)) bool MessageLoopForUI::WatchFileDescriptor( int fd, bool persistent, MessagePumpLibevent::Mode mode, MessagePumpLibevent::FileDescriptorWatcher *controller, MessagePumpLibevent::Watcher *delegate) { return static_cast(pump_.get())->WatchFileDescriptor( fd, persistent, mode, controller, delegate); } #endif #endif // !defined(OS_NACL) //------------------------------------------------------------------------------ // MessageLoopForIO #if !defined(OS_NACL_SFI) #if defined(OS_WIN) void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) { ToPumpIO(pump_.get())->RegisterIOHandler(file, handler); } bool MessageLoopForIO::RegisterJobObject(HANDLE job, IOHandler* handler) { return ToPumpIO(pump_.get())->RegisterJobObject(job, handler); } bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { return ToPumpIO(pump_.get())->WaitForIOCompletion(timeout, filter); } #elif defined(OS_POSIX) bool MessageLoopForIO::WatchFileDescriptor(int fd, bool persistent, Mode mode, FileDescriptorWatcher* controller, Watcher* delegate) { return ToPumpIO(pump_.get())->WatchFileDescriptor( fd, persistent, mode, controller, delegate); } #endif #endif // !defined(OS_NACL_SFI) #if defined(OS_FUCHSIA) // Additional watch API for native platform resources. bool MessageLoopForIO::WatchZxHandle(zx_handle_t handle, bool persistent, zx_signals_t signals, ZxHandleWatchController* controller, ZxHandleWatcher* delegate) { return ToPumpIO(pump_.get()) ->WatchZxHandle(handle, persistent, signals, controller, delegate); } #endif } // namespace base