// Copyright (c) 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/base/ip_address.h" #include #include #include "base/containers/stack_container.h" #include "base/strings/string_piece.h" #include "base/strings/string_split.h" #include "base/strings/stringprintf.h" #include "net/base/parse_number.h" #include "url/gurl.h" #include "url/url_canon_ip.h" namespace net { namespace { // The prefix for IPv6 mapped IPv4 addresses. // https://tools.ietf.org/html/rfc4291#section-2.5.5.2 const uint8_t kIPv4MappedPrefix[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF}; // Note that this function assumes: // * |ip_address| is at least |prefix_length_in_bits| (bits) long; // * |ip_prefix| is at least |prefix_length_in_bits| (bits) long. bool IPAddressPrefixCheck(const IPAddressBytes& ip_address, const uint8_t* ip_prefix, size_t prefix_length_in_bits) { // Compare all the bytes that fall entirely within the prefix. size_t num_entire_bytes_in_prefix = prefix_length_in_bits / 8; for (size_t i = 0; i < num_entire_bytes_in_prefix; ++i) { if (ip_address[i] != ip_prefix[i]) return false; } // In case the prefix was not a multiple of 8, there will be 1 byte // which is only partially masked. size_t remaining_bits = prefix_length_in_bits % 8; if (remaining_bits != 0) { uint8_t mask = 0xFF << (8 - remaining_bits); size_t i = num_entire_bytes_in_prefix; if ((ip_address[i] & mask) != (ip_prefix[i] & mask)) return false; } return true; } // Returns true if |ip_address| matches any of the reserved IPv4 ranges. This // method operates on a blacklist of reserved IPv4 ranges. Some ranges are // consolidated. // Sources for info: // www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml // www.iana.org/assignments/iana-ipv4-special-registry/ // iana-ipv4-special-registry.xhtml bool IsReservedIPv4(const IPAddressBytes& ip_address) { // Different IP versions have different range reservations. DCHECK_EQ(IPAddress::kIPv4AddressSize, ip_address.size()); struct { const uint8_t address[4]; size_t prefix_length_in_bits; } static const kReservedIPv4Ranges[] = { {{0, 0, 0, 0}, 8}, {{10, 0, 0, 0}, 8}, {{100, 64, 0, 0}, 10}, {{127, 0, 0, 0}, 8}, {{169, 254, 0, 0}, 16}, {{172, 16, 0, 0}, 12}, {{192, 0, 2, 0}, 24}, {{192, 88, 99, 0}, 24}, {{192, 168, 0, 0}, 16}, {{198, 18, 0, 0}, 15}, {{198, 51, 100, 0}, 24}, {{203, 0, 113, 0}, 24}, {{224, 0, 0, 0}, 3}}; for (const auto& range : kReservedIPv4Ranges) { if (IPAddressPrefixCheck(ip_address, range.address, range.prefix_length_in_bits)) { return true; } } return false; } // Returns true if |ip_address| matches any of the reserved IPv6 ranges. This // method operates on a whitelist of non-reserved IPv6 ranges. All IPv6 // addresses outside these ranges are reserved. // Sources for info: // www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml bool IsReservedIPv6(const IPAddressBytes& ip_address) { // Different IP versions have different range reservations. DCHECK_EQ(IPAddress::kIPv6AddressSize, ip_address.size()); struct { const uint8_t address_prefix[2]; size_t prefix_length_in_bits; } static const kPublicIPv6Ranges[] = { // 2000::/3 -- Global Unicast {{0x20, 0}, 3}, // ff00::/8 -- Multicast {{0xff, 0}, 8}, }; for (const auto& range : kPublicIPv6Ranges) { if (IPAddressPrefixCheck(ip_address, range.address_prefix, range.prefix_length_in_bits)) { return false; } } return true; } bool ParseIPLiteralToBytes(const base::StringPiece& ip_literal, IPAddressBytes* bytes) { // |ip_literal| could be either an IPv4 or an IPv6 literal. If it contains // a colon however, it must be an IPv6 address. if (ip_literal.find(':') != base::StringPiece::npos) { // GURL expects IPv6 hostnames to be surrounded with brackets. std::string host_brackets = "["; ip_literal.AppendToString(&host_brackets); host_brackets.push_back(']'); url::Component host_comp(0, host_brackets.size()); // Try parsing the hostname as an IPv6 literal. bytes->Resize(16); // 128 bits. return url::IPv6AddressToNumber(host_brackets.data(), host_comp, bytes->data()); } // Otherwise the string is an IPv4 address. bytes->Resize(4); // 32 bits. url::Component host_comp(0, ip_literal.size()); int num_components; url::CanonHostInfo::Family family = url::IPv4AddressToNumber( ip_literal.data(), host_comp, bytes->data(), &num_components); return family == url::CanonHostInfo::IPV4; } } // namespace IPAddressBytes::IPAddressBytes() : size_(0) {} IPAddressBytes::IPAddressBytes(const uint8_t* data, size_t data_len) { Assign(data, data_len); } IPAddressBytes::~IPAddressBytes() = default; IPAddressBytes::IPAddressBytes(IPAddressBytes const& other) = default; void IPAddressBytes::Assign(const uint8_t* data, size_t data_len) { size_ = data_len; CHECK_GE(16u, data_len); std::copy_n(data, data_len, bytes_.data()); } bool IPAddressBytes::operator<(const IPAddressBytes& other) const { if (size_ == other.size_) return std::lexicographical_compare(begin(), end(), other.begin(), other.end()); return size_ < other.size_; } bool IPAddressBytes::operator==(const IPAddressBytes& other) const { return size_ == other.size_ && std::equal(begin(), end(), other.begin()); } bool IPAddressBytes::operator!=(const IPAddressBytes& other) const { return !(*this == other); } IPAddress::IPAddress() = default; IPAddress::IPAddress(const IPAddress& other) = default; IPAddress::IPAddress(const IPAddressBytes& address) : ip_address_(address) {} IPAddress::IPAddress(const uint8_t* address, size_t address_len) : ip_address_(address, address_len) {} IPAddress::IPAddress(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) { ip_address_.push_back(b0); ip_address_.push_back(b1); ip_address_.push_back(b2); ip_address_.push_back(b3); } IPAddress::IPAddress(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5, uint8_t b6, uint8_t b7, uint8_t b8, uint8_t b9, uint8_t b10, uint8_t b11, uint8_t b12, uint8_t b13, uint8_t b14, uint8_t b15) { ip_address_.push_back(b0); ip_address_.push_back(b1); ip_address_.push_back(b2); ip_address_.push_back(b3); ip_address_.push_back(b4); ip_address_.push_back(b5); ip_address_.push_back(b6); ip_address_.push_back(b7); ip_address_.push_back(b8); ip_address_.push_back(b9); ip_address_.push_back(b10); ip_address_.push_back(b11); ip_address_.push_back(b12); ip_address_.push_back(b13); ip_address_.push_back(b14); ip_address_.push_back(b15); } IPAddress::~IPAddress() = default; bool IPAddress::IsIPv4() const { return ip_address_.size() == kIPv4AddressSize; } bool IPAddress::IsIPv6() const { return ip_address_.size() == kIPv6AddressSize; } bool IPAddress::IsValid() const { return IsIPv4() || IsIPv6(); } bool IPAddress::IsReserved() const { if (IsIPv4()) { return IsReservedIPv4(ip_address_); } else if (IsIPv6()) { return IsReservedIPv6(ip_address_); } return false; } bool IPAddress::IsZero() const { for (auto x : ip_address_) { if (x != 0) return false; } return !empty(); } bool IPAddress::IsIPv4MappedIPv6() const { return IsIPv6() && IPAddressStartsWith(*this, kIPv4MappedPrefix); } bool IPAddress::AssignFromIPLiteral(const base::StringPiece& ip_literal) { IPAddressBytes number; // TODO(rch): change the contract so ip_address_ is cleared on failure, // to avoid needing this temporary at all. if (!ParseIPLiteralToBytes(ip_literal, &number)) return false; ip_address_ = number; return true; } std::vector IPAddress::CopyBytesToVector() const { return std::vector(ip_address_.begin(), ip_address_.end()); } // static IPAddress IPAddress::IPv4Localhost() { static const uint8_t kLocalhostIPv4[] = {127, 0, 0, 1}; return IPAddress(kLocalhostIPv4); } // static IPAddress IPAddress::IPv6Localhost() { static const uint8_t kLocalhostIPv6[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; return IPAddress(kLocalhostIPv6); } // static IPAddress IPAddress::AllZeros(size_t num_zero_bytes) { CHECK_LE(num_zero_bytes, 16u); IPAddress result; for (size_t i = 0; i < num_zero_bytes; ++i) result.ip_address_.push_back(0u); return result; } // static IPAddress IPAddress::IPv4AllZeros() { return AllZeros(kIPv4AddressSize); } // static IPAddress IPAddress::IPv6AllZeros() { return AllZeros(kIPv6AddressSize); } bool IPAddress::operator==(const IPAddress& that) const { return ip_address_ == that.ip_address_; } bool IPAddress::operator!=(const IPAddress& that) const { return ip_address_ != that.ip_address_; } bool IPAddress::operator<(const IPAddress& that) const { // Sort IPv4 before IPv6. if (ip_address_.size() != that.ip_address_.size()) { return ip_address_.size() < that.ip_address_.size(); } return ip_address_ < that.ip_address_; } std::string IPAddress::ToString() const { std::string str; url::StdStringCanonOutput output(&str); if (IsIPv4()) { url::AppendIPv4Address(ip_address_.data(), &output); } else if (IsIPv6()) { url::AppendIPv6Address(ip_address_.data(), &output); } output.Complete(); return str; } std::string IPAddressToStringWithPort(const IPAddress& address, uint16_t port) { std::string address_str = address.ToString(); if (address_str.empty()) return address_str; if (address.IsIPv6()) { // Need to bracket IPv6 addresses since they contain colons. return base::StringPrintf("[%s]:%d", address_str.c_str(), port); } return base::StringPrintf("%s:%d", address_str.c_str(), port); } std::string IPAddressToPackedString(const IPAddress& address) { return std::string(reinterpret_cast(address.bytes().data()), address.size()); } IPAddress ConvertIPv4ToIPv4MappedIPv6(const IPAddress& address) { DCHECK(address.IsIPv4()); // IPv4-mapped addresses are formed by: // <80 bits of zeros> + <16 bits of ones> + <32-bit IPv4 address>. base::StackVector bytes; bytes->insert(bytes->end(), std::begin(kIPv4MappedPrefix), std::end(kIPv4MappedPrefix)); bytes->insert(bytes->end(), address.bytes().begin(), address.bytes().end()); return IPAddress(bytes->data(), bytes->size()); } IPAddress ConvertIPv4MappedIPv6ToIPv4(const IPAddress& address) { DCHECK(address.IsIPv4MappedIPv6()); base::StackVector bytes; bytes->insert(bytes->end(), address.bytes().begin() + arraysize(kIPv4MappedPrefix), address.bytes().end()); return IPAddress(bytes->data(), bytes->size()); } bool IPAddressMatchesPrefix(const IPAddress& ip_address, const IPAddress& ip_prefix, size_t prefix_length_in_bits) { // Both the input IP address and the prefix IP address should be either IPv4 // or IPv6. DCHECK(ip_address.IsValid()); DCHECK(ip_prefix.IsValid()); DCHECK_LE(prefix_length_in_bits, ip_prefix.size() * 8); // In case we have an IPv6 / IPv4 mismatch, convert the IPv4 addresses to // IPv6 addresses in order to do the comparison. if (ip_address.size() != ip_prefix.size()) { if (ip_address.IsIPv4()) { return IPAddressMatchesPrefix(ConvertIPv4ToIPv4MappedIPv6(ip_address), ip_prefix, prefix_length_in_bits); } return IPAddressMatchesPrefix(ip_address, ConvertIPv4ToIPv4MappedIPv6(ip_prefix), 96 + prefix_length_in_bits); } return IPAddressPrefixCheck(ip_address.bytes(), ip_prefix.bytes().data(), prefix_length_in_bits); } bool ParseCIDRBlock(const std::string& cidr_literal, IPAddress* ip_address, size_t* prefix_length_in_bits) { // We expect CIDR notation to match one of these two templates: // "/" // "/" std::vector parts = base::SplitStringPiece( cidr_literal, "/", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL); if (parts.size() != 2) return false; // Parse the IP address. if (!ip_address->AssignFromIPLiteral(parts[0])) return false; // Parse the prefix length. uint32_t number_of_bits; if (!ParseUint32(parts[1], &number_of_bits)) return false; // Make sure the prefix length is in a valid range. if (number_of_bits > ip_address->size() * 8) return false; *prefix_length_in_bits = number_of_bits; return true; } bool ParseURLHostnameToAddress(const base::StringPiece& hostname, IPAddress* ip_address) { if (hostname.size() >= 2 && hostname.front() == '[' && hostname.back() == ']') { // Strip the square brackets that surround IPv6 literals. auto ip_literal = base::StringPiece(hostname).substr(1, hostname.size() - 2); return ip_address->AssignFromIPLiteral(ip_literal) && ip_address->IsIPv6(); } return ip_address->AssignFromIPLiteral(hostname) && ip_address->IsIPv4(); } unsigned CommonPrefixLength(const IPAddress& a1, const IPAddress& a2) { DCHECK_EQ(a1.size(), a2.size()); for (size_t i = 0; i < a1.size(); ++i) { unsigned diff = a1.bytes()[i] ^ a2.bytes()[i]; if (!diff) continue; for (unsigned j = 0; j < CHAR_BIT; ++j) { if (diff & (1 << (CHAR_BIT - 1))) return i * CHAR_BIT + j; diff <<= 1; } NOTREACHED(); } return a1.size() * CHAR_BIT; } unsigned MaskPrefixLength(const IPAddress& mask) { base::StackVector all_ones; all_ones->resize(mask.size(), 0xFF); return CommonPrefixLength(mask, IPAddress(all_ones->data(), all_ones->size())); } } // namespace net