// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/socket/socket_test_util.h" #include // For SCNx64 #include #include #include #include #include #include #include "base/bind.h" #include "base/bind_helpers.h" #include "base/callback_helpers.h" #include "base/compiler_specific.h" #include "base/files/file_util.h" #include "base/location.h" #include "base/logging.h" #include "base/rand_util.h" #include "base/run_loop.h" #include "base/single_thread_task_runner.h" #include "base/stl_util.h" #include "base/threading/thread_task_runner_handle.h" #include "base/time/time.h" #include "net/base/address_family.h" #include "net/base/address_list.h" #include "net/base/auth.h" #include "net/base/hex_utils.h" #include "net/base/ip_address.h" #include "net/base/load_timing_info.h" #include "net/http/http_network_session.h" #include "net/http/http_request_headers.h" #include "net/http/http_response_headers.h" #include "net/log/net_log_source.h" #include "net/log/net_log_source_type.h" #include "net/socket/socket.h" #include "net/socket/websocket_endpoint_lock_manager.h" #include "net/ssl/ssl_cert_request_info.h" #include "net/ssl/ssl_connection_status_flags.h" #include "net/ssl/ssl_info.h" #include "net/traffic_annotation/network_traffic_annotation_test_helper.h" #include "testing/gtest/include/gtest/gtest.h" #define NET_TRACE(level, s) VLOG(level) << s << __FUNCTION__ << "() " namespace net { namespace { inline char AsciifyHigh(char x) { char nybble = static_cast((x >> 4) & 0x0F); return nybble + ((nybble < 0x0A) ? '0' : 'A' - 10); } inline char AsciifyLow(char x) { char nybble = static_cast((x >> 0) & 0x0F); return nybble + ((nybble < 0x0A) ? '0' : 'A' - 10); } inline char Asciify(char x) { if ((x < 0) || !isprint(x)) return '.'; return x; } void DumpData(const char* data, int data_len) { if (logging::LOG_INFO < logging::GetMinLogLevel()) return; DVLOG(1) << "Length: " << data_len; const char* pfx = "Data: "; if (!data || (data_len <= 0)) { DVLOG(1) << pfx << ""; } else { int i; for (i = 0; i <= (data_len - 4); i += 4) { DVLOG(1) << pfx << AsciifyHigh(data[i + 0]) << AsciifyLow(data[i + 0]) << AsciifyHigh(data[i + 1]) << AsciifyLow(data[i + 1]) << AsciifyHigh(data[i + 2]) << AsciifyLow(data[i + 2]) << AsciifyHigh(data[i + 3]) << AsciifyLow(data[i + 3]) << " '" << Asciify(data[i + 0]) << Asciify(data[i + 1]) << Asciify(data[i + 2]) << Asciify(data[i + 3]) << "'"; pfx = " "; } // Take care of any 'trailing' bytes, if data_len was not a multiple of 4. switch (data_len - i) { case 3: DVLOG(1) << pfx << AsciifyHigh(data[i + 0]) << AsciifyLow(data[i + 0]) << AsciifyHigh(data[i + 1]) << AsciifyLow(data[i + 1]) << AsciifyHigh(data[i + 2]) << AsciifyLow(data[i + 2]) << " '" << Asciify(data[i + 0]) << Asciify(data[i + 1]) << Asciify(data[i + 2]) << " '"; break; case 2: DVLOG(1) << pfx << AsciifyHigh(data[i + 0]) << AsciifyLow(data[i + 0]) << AsciifyHigh(data[i + 1]) << AsciifyLow(data[i + 1]) << " '" << Asciify(data[i + 0]) << Asciify(data[i + 1]) << " '"; break; case 1: DVLOG(1) << pfx << AsciifyHigh(data[i + 0]) << AsciifyLow(data[i + 0]) << " '" << Asciify(data[i + 0]) << " '"; break; } } } template void DumpMockReadWrite(const MockReadWrite& r) { if (logging::LOG_INFO < logging::GetMinLogLevel()) return; DVLOG(1) << "Async: " << (r.mode == ASYNC) << "\nResult: " << r.result; DumpData(r.data, r.data_len); const char* stop = (r.sequence_number & MockRead::STOPLOOP) ? " (STOP)" : ""; DVLOG(1) << "Stage: " << (r.sequence_number & ~MockRead::STOPLOOP) << stop; } } // namespace MockConnect::MockConnect() : mode(ASYNC), result(OK) { peer_addr = IPEndPoint(IPAddress(192, 0, 2, 33), 0); } MockConnect::MockConnect(IoMode io_mode, int r) : mode(io_mode), result(r) { peer_addr = IPEndPoint(IPAddress(192, 0, 2, 33), 0); } MockConnect::MockConnect(IoMode io_mode, int r, IPEndPoint addr) : mode(io_mode), result(r), peer_addr(addr) { } MockConnect::~MockConnect() = default; void SocketDataProvider::OnEnableTCPFastOpenIfSupported() {} bool SocketDataProvider::IsIdle() const { return true; } void SocketDataProvider::Initialize(AsyncSocket* socket) { CHECK(!socket_); CHECK(socket); socket_ = socket; Reset(); } void SocketDataProvider::DetachSocket() { CHECK(socket_); socket_ = nullptr; } SocketDataProvider::SocketDataProvider() : socket_(nullptr) {} SocketDataProvider::~SocketDataProvider() { if (socket_) socket_->OnDataProviderDestroyed(); } StaticSocketDataHelper::StaticSocketDataHelper( base::span reads, base::span writes) : reads_(reads), read_index_(0), writes_(writes), write_index_(0) {} StaticSocketDataHelper::~StaticSocketDataHelper() = default; const MockRead& StaticSocketDataHelper::PeekRead() const { CHECK(!AllReadDataConsumed()); return reads_[read_index_]; } const MockWrite& StaticSocketDataHelper::PeekWrite() const { CHECK(!AllWriteDataConsumed()); return writes_[write_index_]; } const MockRead& StaticSocketDataHelper::AdvanceRead() { CHECK(!AllReadDataConsumed()); return reads_[read_index_++]; } const MockWrite& StaticSocketDataHelper::AdvanceWrite() { CHECK(!AllWriteDataConsumed()); return writes_[write_index_++]; } void StaticSocketDataHelper::Reset() { read_index_ = 0; write_index_ = 0; } bool StaticSocketDataHelper::VerifyWriteData(const std::string& data) { CHECK(!AllWriteDataConsumed()); // Check that the actual data matches the expectations, skipping over any // pause events. const MockWrite& next_write = PeekRealWrite(); if (!next_write.data) return true; // Note: Partial writes are supported here. If the expected data // is a match, but shorter than the write actually written, that is legal. // Example: // Application writes "foobarbaz" (9 bytes) // Expected write was "foo" (3 bytes) // This is a success, and the function returns true. std::string expected_data(next_write.data, next_write.data_len); std::string actual_data(data.substr(0, next_write.data_len)); EXPECT_GE(data.length(), expected_data.length()); EXPECT_TRUE(actual_data == expected_data) << "Actual write data:\n" << HexDump(data) << "Expected write data:\n" << HexDump(expected_data); return expected_data == actual_data; } const MockWrite& StaticSocketDataHelper::PeekRealWrite() const { for (size_t i = write_index_; i < write_count(); i++) { if (writes_[i].mode != ASYNC || writes_[i].result != ERR_IO_PENDING) return writes_[i]; } CHECK(false) << "No write data available."; return writes_[0]; // Avoid warning about unreachable missing return. } StaticSocketDataProvider::StaticSocketDataProvider() : StaticSocketDataProvider(base::span(), base::span()) {} StaticSocketDataProvider::StaticSocketDataProvider( base::span reads, base::span writes) : helper_(reads, writes) {} StaticSocketDataProvider::~StaticSocketDataProvider() = default; MockRead StaticSocketDataProvider::OnRead() { CHECK(!helper_.AllReadDataConsumed()); return helper_.AdvanceRead(); } MockWriteResult StaticSocketDataProvider::OnWrite(const std::string& data) { if (helper_.write_count() == 0) { // Not using mock writes; succeed synchronously. return MockWriteResult(SYNCHRONOUS, data.length()); } EXPECT_FALSE(helper_.AllWriteDataConsumed()) << "No more mock data to match write:\n" << HexDump(data); if (helper_.AllWriteDataConsumed()) { return MockWriteResult(SYNCHRONOUS, ERR_UNEXPECTED); } // Check that what we are writing matches the expectation. // Then give the mocked return value. if (!helper_.VerifyWriteData(data)) return MockWriteResult(SYNCHRONOUS, ERR_UNEXPECTED); const MockWrite& next_write = helper_.AdvanceWrite(); // In the case that the write was successful, return the number of bytes // written. Otherwise return the error code. int result = next_write.result == OK ? next_write.data_len : next_write.result; return MockWriteResult(next_write.mode, result); } bool StaticSocketDataProvider::AllReadDataConsumed() const { return helper_.AllReadDataConsumed(); } bool StaticSocketDataProvider::AllWriteDataConsumed() const { return helper_.AllWriteDataConsumed(); } void StaticSocketDataProvider::Reset() { helper_.Reset(); } ProxyClientSocketDataProvider::ProxyClientSocketDataProvider(IoMode mode, int result) : connect(mode, result) {} ProxyClientSocketDataProvider::ProxyClientSocketDataProvider( const ProxyClientSocketDataProvider& other) = default; ProxyClientSocketDataProvider::~ProxyClientSocketDataProvider() = default; SSLSocketDataProvider::SSLSocketDataProvider(IoMode mode, int result) : connect(mode, result), next_proto(kProtoUnknown), cert_request_info(NULL), channel_id_service(NULL), expected_ssl_version_min(kDefaultSSLVersionMin), expected_ssl_version_max(kDefaultSSLVersionMax) { SSLConnectionStatusSetVersion(SSL_CONNECTION_VERSION_TLS1_2, &ssl_info.connection_status); // Set to TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 SSLConnectionStatusSetCipherSuite(0xcca9, &ssl_info.connection_status); } SSLSocketDataProvider::SSLSocketDataProvider( const SSLSocketDataProvider& other) = default; SSLSocketDataProvider::~SSLSocketDataProvider() = default; SequencedSocketData::SequencedSocketData() : SequencedSocketData(base::span(), base::span()) {} SequencedSocketData::SequencedSocketData(base::span reads, base::span writes) : helper_(reads, writes), sequence_number_(0), read_state_(IDLE), write_state_(IDLE), busy_before_sync_reads_(false), is_using_tcp_fast_open_(false), weak_factory_(this) { // Check that reads and writes have a contiguous set of sequence numbers // starting from 0 and working their way up, with no repeats and skipping // no values. int next_sequence_number = 0; bool last_event_was_pause = false; auto* next_read = reads.begin(); auto* next_write = writes.begin(); while (next_read != reads.end() || next_write != writes.end()) { if (next_read != reads.end() && next_read->sequence_number == next_sequence_number) { // Check if this is a pause. if (next_read->mode == ASYNC && next_read->result == ERR_IO_PENDING) { CHECK(!last_event_was_pause) << "Two pauses in a row are not allowed: " << next_sequence_number; last_event_was_pause = true; } else if (last_event_was_pause) { CHECK_EQ(ASYNC, next_read->mode) << "A sync event after a pause makes no sense: " << next_sequence_number; CHECK_NE(ERR_IO_PENDING, next_read->result) << "A pause event after a pause makes no sense: " << next_sequence_number; last_event_was_pause = false; } ++next_read; ++next_sequence_number; continue; } if (next_write != writes.end() && next_write->sequence_number == next_sequence_number) { // Check if this is a pause. if (next_write->mode == ASYNC && next_write->result == ERR_IO_PENDING) { CHECK(!last_event_was_pause) << "Two pauses in a row are not allowed: " << next_sequence_number; last_event_was_pause = true; } else if (last_event_was_pause) { CHECK_EQ(ASYNC, next_write->mode) << "A sync event after a pause makes no sense: " << next_sequence_number; CHECK_NE(ERR_IO_PENDING, next_write->result) << "A pause event after a pause makes no sense: " << next_sequence_number; last_event_was_pause = false; } ++next_write; ++next_sequence_number; continue; } CHECK(false) << "Sequence number not found where expected: " << next_sequence_number; return; } // Last event must not be a pause. For the final event to indicate the // operation never completes, it should be SYNCHRONOUS and return // ERR_IO_PENDING. CHECK(!last_event_was_pause); CHECK_EQ(next_read, reads.end()); CHECK_EQ(next_write, writes.end()); } SequencedSocketData::SequencedSocketData(const MockConnect& connect, base::span reads, base::span writes) : SequencedSocketData(reads, writes) { set_connect_data(connect); } MockRead SequencedSocketData::OnRead() { CHECK_EQ(IDLE, read_state_); CHECK(!helper_.AllReadDataConsumed()); NET_TRACE(1, " *** ") << "sequence_number: " << sequence_number_; const MockRead& next_read = helper_.PeekRead(); NET_TRACE(1, " *** ") << "next_read: " << next_read.sequence_number; CHECK_GE(next_read.sequence_number, sequence_number_); if (next_read.sequence_number <= sequence_number_) { if (next_read.mode == SYNCHRONOUS) { NET_TRACE(1, " *** ") << "Returning synchronously"; DumpMockReadWrite(next_read); helper_.AdvanceRead(); ++sequence_number_; MaybePostWriteCompleteTask(); return next_read; } // If the result is ERR_IO_PENDING, then pause. if (next_read.result == ERR_IO_PENDING) { NET_TRACE(1, " *** ") << "Pausing read at: " << sequence_number_; read_state_ = PAUSED; if (run_until_paused_run_loop_) run_until_paused_run_loop_->Quit(); return MockRead(SYNCHRONOUS, ERR_IO_PENDING); } base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&SequencedSocketData::OnReadComplete, weak_factory_.GetWeakPtr())); CHECK_NE(COMPLETING, write_state_); read_state_ = COMPLETING; } else if (next_read.mode == SYNCHRONOUS) { ADD_FAILURE() << "Unable to perform synchronous IO while stopped"; return MockRead(SYNCHRONOUS, ERR_UNEXPECTED); } else { NET_TRACE(1, " *** ") << "Waiting for write to trigger read"; read_state_ = PENDING; } return MockRead(SYNCHRONOUS, ERR_IO_PENDING); } MockWriteResult SequencedSocketData::OnWrite(const std::string& data) { CHECK_EQ(IDLE, write_state_); CHECK(!helper_.AllWriteDataConsumed()) << "\nNo more mock data to match write:\n" << HexDump(data); NET_TRACE(1, " *** ") << "sequence_number: " << sequence_number_; const MockWrite& next_write = helper_.PeekWrite(); NET_TRACE(1, " *** ") << "next_write: " << next_write.sequence_number; CHECK_GE(next_write.sequence_number, sequence_number_); if (!helper_.VerifyWriteData(data)) return MockWriteResult(SYNCHRONOUS, ERR_UNEXPECTED); if (next_write.sequence_number <= sequence_number_) { if (next_write.mode == SYNCHRONOUS) { helper_.AdvanceWrite(); ++sequence_number_; MaybePostReadCompleteTask(); // In the case that the write was successful, return the number of bytes // written. Otherwise return the error code. int rv = next_write.result != OK ? next_write.result : next_write.data_len; NET_TRACE(1, " *** ") << "Returning synchronously"; return MockWriteResult(SYNCHRONOUS, rv); } // If the result is ERR_IO_PENDING, then pause. if (next_write.result == ERR_IO_PENDING) { NET_TRACE(1, " *** ") << "Pausing write at: " << sequence_number_; write_state_ = PAUSED; if (run_until_paused_run_loop_) run_until_paused_run_loop_->Quit(); return MockWriteResult(SYNCHRONOUS, ERR_IO_PENDING); } NET_TRACE(1, " *** ") << "Posting task to complete write"; base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&SequencedSocketData::OnWriteComplete, weak_factory_.GetWeakPtr())); CHECK_NE(COMPLETING, read_state_); write_state_ = COMPLETING; } else if (next_write.mode == SYNCHRONOUS) { ADD_FAILURE() << "Unable to perform synchronous IO while stopped"; return MockWriteResult(SYNCHRONOUS, ERR_UNEXPECTED); } else { NET_TRACE(1, " *** ") << "Waiting for read to trigger write"; write_state_ = PENDING; } return MockWriteResult(SYNCHRONOUS, ERR_IO_PENDING); } bool SequencedSocketData::AllReadDataConsumed() const { return helper_.AllReadDataConsumed(); } void SequencedSocketData::CancelPendingRead() { DCHECK_EQ(PENDING, read_state_); read_state_ = IDLE; } bool SequencedSocketData::AllWriteDataConsumed() const { return helper_.AllWriteDataConsumed(); } void SequencedSocketData::OnEnableTCPFastOpenIfSupported() { is_using_tcp_fast_open_ = true; } bool SequencedSocketData::IsIdle() const { // If |busy_before_sync_reads_| is not set, always considered idle. If // no reads left, or the next operation is a write, also consider it idle. if (!busy_before_sync_reads_ || helper_.AllReadDataConsumed() || helper_.PeekRead().sequence_number != sequence_number_) { return true; } // If the next operation is synchronous read, treat the socket as not idle. if (helper_.PeekRead().mode == SYNCHRONOUS) return false; return true; } bool SequencedSocketData::IsPaused() const { // Both states should not be paused. DCHECK(read_state_ != PAUSED || write_state_ != PAUSED); return write_state_ == PAUSED || read_state_ == PAUSED; } void SequencedSocketData::Resume() { if (!IsPaused()) { ADD_FAILURE() << "Unable to Resume when not paused."; return; } sequence_number_++; if (read_state_ == PAUSED) { read_state_ = PENDING; helper_.AdvanceRead(); } else { // write_state_ == PAUSED write_state_ = PENDING; helper_.AdvanceWrite(); } if (!helper_.AllWriteDataConsumed() && helper_.PeekWrite().sequence_number == sequence_number_) { // The next event hasn't even started yet. Pausing isn't really needed in // that case, but may as well support it. if (write_state_ != PENDING) return; write_state_ = COMPLETING; OnWriteComplete(); return; } CHECK(!helper_.AllReadDataConsumed()); // The next event hasn't even started yet. Pausing isn't really needed in // that case, but may as well support it. if (read_state_ != PENDING) return; read_state_ = COMPLETING; OnReadComplete(); } void SequencedSocketData::RunUntilPaused() { CHECK(!run_until_paused_run_loop_); if (IsPaused()) return; run_until_paused_run_loop_.reset(new base::RunLoop()); run_until_paused_run_loop_->Run(); run_until_paused_run_loop_.reset(); DCHECK(IsPaused()); } void SequencedSocketData::MaybePostReadCompleteTask() { NET_TRACE(1, " ****** ") << " current: " << sequence_number_; // Only trigger the next read to complete if there is already a read pending // which should complete at the current sequence number. if (read_state_ != PENDING || helper_.PeekRead().sequence_number != sequence_number_) { return; } // If the result is ERR_IO_PENDING, then pause. if (helper_.PeekRead().result == ERR_IO_PENDING) { NET_TRACE(1, " *** ") << "Pausing read at: " << sequence_number_; read_state_ = PAUSED; if (run_until_paused_run_loop_) run_until_paused_run_loop_->Quit(); return; } NET_TRACE(1, " ****** ") << "Posting task to complete read: " << sequence_number_; base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&SequencedSocketData::OnReadComplete, weak_factory_.GetWeakPtr())); CHECK_NE(COMPLETING, write_state_); read_state_ = COMPLETING; } bool SequencedSocketData::IsUsingTCPFastOpen() const { return is_using_tcp_fast_open_; } void SequencedSocketData::MaybePostWriteCompleteTask() { NET_TRACE(1, " ****** ") << " current: " << sequence_number_; // Only trigger the next write to complete if there is already a write pending // which should complete at the current sequence number. if (write_state_ != PENDING || helper_.PeekWrite().sequence_number != sequence_number_) { return; } // If the result is ERR_IO_PENDING, then pause. if (helper_.PeekWrite().result == ERR_IO_PENDING) { NET_TRACE(1, " *** ") << "Pausing write at: " << sequence_number_; write_state_ = PAUSED; if (run_until_paused_run_loop_) run_until_paused_run_loop_->Quit(); return; } NET_TRACE(1, " ****** ") << "Posting task to complete write: " << sequence_number_; base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::Bind(&SequencedSocketData::OnWriteComplete, weak_factory_.GetWeakPtr())); CHECK_NE(COMPLETING, read_state_); write_state_ = COMPLETING; } void SequencedSocketData::Reset() { helper_.Reset(); sequence_number_ = 0; read_state_ = IDLE; write_state_ = IDLE; is_using_tcp_fast_open_ = false; weak_factory_.InvalidateWeakPtrs(); } void SequencedSocketData::OnReadComplete() { CHECK_EQ(COMPLETING, read_state_); NET_TRACE(1, " *** ") << "Completing read for: " << sequence_number_; MockRead data = helper_.AdvanceRead(); DCHECK_EQ(sequence_number_, data.sequence_number); sequence_number_++; read_state_ = IDLE; // The result of this read completing might trigger the completion // of a pending write. If so, post a task to complete the write later. // Since the socket may call back into the SequencedSocketData // from socket()->OnReadComplete(), trigger the write task to be posted // before calling that. MaybePostWriteCompleteTask(); if (!socket()) { NET_TRACE(1, " *** ") << "No socket available to complete read"; return; } NET_TRACE(1, " *** ") << "Completing socket read for: " << data.sequence_number; DumpMockReadWrite(data); socket()->OnReadComplete(data); NET_TRACE(1, " *** ") << "Done"; } void SequencedSocketData::OnWriteComplete() { CHECK_EQ(COMPLETING, write_state_); NET_TRACE(1, " *** ") << " Completing write for: " << sequence_number_; const MockWrite& data = helper_.AdvanceWrite(); DCHECK_EQ(sequence_number_, data.sequence_number); sequence_number_++; write_state_ = IDLE; int rv = data.result == OK ? data.data_len : data.result; // The result of this write completing might trigger the completion // of a pending read. If so, post a task to complete the read later. // Since the socket may call back into the SequencedSocketData // from socket()->OnWriteComplete(), trigger the write task to be posted // before calling that. MaybePostReadCompleteTask(); if (!socket()) { NET_TRACE(1, " *** ") << "No socket available to complete write"; return; } NET_TRACE(1, " *** ") << " Completing socket write for: " << data.sequence_number; socket()->OnWriteComplete(rv); NET_TRACE(1, " *** ") << "Done"; } SequencedSocketData::~SequencedSocketData() = default; MockClientSocketFactory::MockClientSocketFactory() : enable_read_if_ready_(false) {} MockClientSocketFactory::~MockClientSocketFactory() = default; void MockClientSocketFactory::AddSocketDataProvider( SocketDataProvider* data) { mock_data_.Add(data); } void MockClientSocketFactory::AddSSLSocketDataProvider( SSLSocketDataProvider* data) { mock_ssl_data_.Add(data); } void MockClientSocketFactory::AddProxyClientSocketDataProvider( ProxyClientSocketDataProvider* data) { mock_proxy_data_.Add(data); } void MockClientSocketFactory::ResetNextMockIndexes() { mock_data_.ResetNextIndex(); mock_ssl_data_.ResetNextIndex(); } std::unique_ptr MockClientSocketFactory::CreateDatagramClientSocket( DatagramSocket::BindType bind_type, NetLog* net_log, const NetLogSource& source) { SocketDataProvider* data_provider = mock_data_.GetNext(); std::unique_ptr socket( new MockUDPClientSocket(data_provider, net_log)); if (bind_type == DatagramSocket::RANDOM_BIND) socket->set_source_port(static_cast(base::RandInt(1025, 65535))); udp_client_socket_ports_.push_back(socket->source_port()); return std::move(socket); } std::unique_ptr MockClientSocketFactory::CreateTransportClientSocket( const AddressList& addresses, std::unique_ptr socket_performance_watcher, NetLog* net_log, const NetLogSource& source) { SocketDataProvider* data_provider = mock_data_.GetNext(); std::unique_ptr socket( new MockTCPClientSocket(addresses, net_log, data_provider)); if (enable_read_if_ready_) socket->set_enable_read_if_ready(enable_read_if_ready_); return std::move(socket); } std::unique_ptr MockClientSocketFactory::CreateSSLClientSocket( std::unique_ptr transport_socket, const HostPortPair& host_and_port, const SSLConfig& ssl_config, const SSLClientSocketContext& context) { SSLSocketDataProvider* next_ssl_data = mock_ssl_data_.GetNext(); if (next_ssl_data->next_protos_expected_in_ssl_config.has_value()) { EXPECT_EQ(next_ssl_data->next_protos_expected_in_ssl_config.value().size(), ssl_config.alpn_protos.size()); EXPECT_TRUE(std::equal( next_ssl_data->next_protos_expected_in_ssl_config.value().begin(), next_ssl_data->next_protos_expected_in_ssl_config.value().end(), ssl_config.alpn_protos.begin())); } EXPECT_EQ(next_ssl_data->expected_ssl_version_min, ssl_config.version_min); EXPECT_EQ(next_ssl_data->expected_ssl_version_max, ssl_config.version_max); return std::unique_ptr(new MockSSLClientSocket( std::move(transport_socket), host_and_port, ssl_config, next_ssl_data)); } std::unique_ptr MockClientSocketFactory::CreateProxyClientSocket( std::unique_ptr transport_socket, const std::string& user_agent, const HostPortPair& endpoint, HttpAuthController* http_auth_controller, bool tunnel, bool using_spdy, NextProto negotiated_protocol, bool is_https_proxy, const NetworkTrafficAnnotationTag& traffic_annotation) { if (use_mock_proxy_client_sockets_) { ProxyClientSocketDataProvider* next_proxy_data = mock_proxy_data_.GetNext(); return std::make_unique( std::move(transport_socket), http_auth_controller, next_proxy_data); } else { return GetDefaultFactory()->CreateProxyClientSocket( std::move(transport_socket), user_agent, endpoint, http_auth_controller, tunnel, using_spdy, negotiated_protocol, is_https_proxy, traffic_annotation); } } void MockClientSocketFactory::ClearSSLSessionCache() { } MockClientSocket::MockClientSocket(const NetLogWithSource& net_log) : connected_(false), net_log_(net_log), weak_factory_(this) { local_addr_ = IPEndPoint(IPAddress(192, 0, 2, 33), 123); peer_addr_ = IPEndPoint(IPAddress(192, 0, 2, 33), 0); } int MockClientSocket::SetReceiveBufferSize(int32_t size) { return OK; } int MockClientSocket::SetSendBufferSize(int32_t size) { return OK; } int MockClientSocket::Bind(const net::IPEndPoint& local_addr) { local_addr_ = local_addr; return net::OK; } bool MockClientSocket::SetNoDelay(bool no_delay) { return true; } bool MockClientSocket::SetKeepAlive(bool enable, int delay) { return true; } void MockClientSocket::Disconnect() { connected_ = false; } bool MockClientSocket::IsConnected() const { return connected_; } bool MockClientSocket::IsConnectedAndIdle() const { return connected_; } int MockClientSocket::GetPeerAddress(IPEndPoint* address) const { if (!IsConnected()) return ERR_SOCKET_NOT_CONNECTED; *address = peer_addr_; return OK; } int MockClientSocket::GetLocalAddress(IPEndPoint* address) const { *address = local_addr_; return OK; } const NetLogWithSource& MockClientSocket::NetLog() const { return net_log_; } bool MockClientSocket::WasAlpnNegotiated() const { return false; } NextProto MockClientSocket::GetNegotiatedProtocol() const { return kProtoUnknown; } void MockClientSocket::GetConnectionAttempts(ConnectionAttempts* out) const { out->clear(); } MockClientSocket::~MockClientSocket() = default; void MockClientSocket::RunCallbackAsync(CompletionOnceCallback callback, int result) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::BindOnce(&MockClientSocket::RunCallback, weak_factory_.GetWeakPtr(), std::move(callback), result)); } void MockClientSocket::RunCallback(CompletionOnceCallback callback, int result) { std::move(callback).Run(result); } MockTCPClientSocket::MockTCPClientSocket(const AddressList& addresses, net::NetLog* net_log, SocketDataProvider* data) : MockClientSocket(NetLogWithSource::Make(net_log, NetLogSourceType::NONE)), addresses_(addresses), data_(data), read_offset_(0), read_data_(SYNCHRONOUS, ERR_UNEXPECTED), need_read_data_(true), peer_closed_connection_(false), pending_read_buf_(NULL), pending_read_buf_len_(0), was_used_to_convey_data_(false), enable_read_if_ready_(false) { DCHECK(data_); peer_addr_ = data->connect_data().peer_addr; data_->Initialize(this); } MockTCPClientSocket::~MockTCPClientSocket() { if (data_) data_->DetachSocket(); } int MockTCPClientSocket::Read(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { // If the buffer is already in use, a read is already in progress! DCHECK(!pending_read_buf_); // Use base::Unretained() is safe because MockClientSocket::RunCallbackAsync() // takes a weak ptr of the base class, MockClientSocket. int rv = ReadIfReadyImpl( buf, buf_len, base::Bind(&MockTCPClientSocket::RetryRead, base::Unretained(this))); if (rv == ERR_IO_PENDING) { DCHECK(callback); pending_read_buf_ = buf; pending_read_buf_len_ = buf_len; pending_read_callback_ = std::move(callback); } return rv; } int MockTCPClientSocket::ReadIfReady(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { DCHECK(!pending_read_if_ready_callback_); if (!enable_read_if_ready_) return ERR_READ_IF_READY_NOT_IMPLEMENTED; return ReadIfReadyImpl(buf, buf_len, std::move(callback)); } int MockTCPClientSocket::CancelReadIfReady() { DCHECK(pending_read_if_ready_callback_); pending_read_if_ready_callback_.Reset(); data_->CancelPendingRead(); return OK; }; int MockTCPClientSocket::Write( IOBuffer* buf, int buf_len, CompletionOnceCallback callback, const NetworkTrafficAnnotationTag& /* traffic_annotation */) { DCHECK(buf); DCHECK_GT(buf_len, 0); if (!connected_ || !data_) return ERR_UNEXPECTED; std::string data(buf->data(), buf_len); MockWriteResult write_result = data_->OnWrite(data); was_used_to_convey_data_ = true; if (write_result.result == ERR_CONNECTION_CLOSED) { // This MockWrite is just a marker to instruct us to set // peer_closed_connection_. peer_closed_connection_ = true; } // ERR_IO_PENDING is a signal that the socket data will call back // asynchronously later. if (write_result.result == ERR_IO_PENDING) { pending_write_callback_ = std::move(callback); return ERR_IO_PENDING; } if (write_result.mode == ASYNC) { RunCallbackAsync(std::move(callback), write_result.result); return ERR_IO_PENDING; } return write_result.result; } void MockTCPClientSocket::GetConnectionAttempts(ConnectionAttempts* out) const { *out = connection_attempts_; } void MockTCPClientSocket::ClearConnectionAttempts() { connection_attempts_.clear(); } void MockTCPClientSocket::AddConnectionAttempts( const ConnectionAttempts& attempts) { connection_attempts_.insert(connection_attempts_.begin(), attempts.begin(), attempts.end()); } int MockTCPClientSocket::Connect(CompletionOnceCallback callback) { if (!data_) return ERR_UNEXPECTED; if (connected_) return OK; connected_ = true; peer_closed_connection_ = false; int result = data_->connect_data().result; IoMode mode = data_->connect_data().mode; if (result != OK && result != ERR_IO_PENDING) { IPEndPoint address; if (GetPeerAddress(&address) == OK) connection_attempts_.push_back(ConnectionAttempt(address, result)); } if (mode == SYNCHRONOUS) return result; DCHECK(callback); if (result == ERR_IO_PENDING) pending_connect_callback_ = std::move(callback); else RunCallbackAsync(std::move(callback), result); return ERR_IO_PENDING; } void MockTCPClientSocket::Disconnect() { MockClientSocket::Disconnect(); pending_connect_callback_.Reset(); pending_read_callback_.Reset(); } bool MockTCPClientSocket::IsConnected() const { if (!data_) return false; return connected_ && !peer_closed_connection_; } bool MockTCPClientSocket::IsConnectedAndIdle() const { if (!data_) return false; return IsConnected() && data_->IsIdle(); } int MockTCPClientSocket::GetPeerAddress(IPEndPoint* address) const { if (addresses_.empty()) return MockClientSocket::GetPeerAddress(address); *address = addresses_[0]; return OK; } bool MockTCPClientSocket::WasEverUsed() const { return was_used_to_convey_data_; } void MockTCPClientSocket::EnableTCPFastOpenIfSupported() { EXPECT_FALSE(IsConnected()) << "Can't enable fast open after connect."; data_->OnEnableTCPFastOpenIfSupported(); } bool MockTCPClientSocket::GetSSLInfo(SSLInfo* ssl_info) { return false; } void MockTCPClientSocket::OnReadComplete(const MockRead& data) { // If |data_| has been destroyed, safest to just do nothing. if (!data_) return; // There must be a read pending. DCHECK(pending_read_if_ready_callback_); // You can't complete a read with another ERR_IO_PENDING status code. DCHECK_NE(ERR_IO_PENDING, data.result); // Since we've been waiting for data, need_read_data_ should be true. DCHECK(need_read_data_); read_data_ = data; need_read_data_ = false; // The caller is simulating that this IO completes right now. Don't // let CompleteRead() schedule a callback. read_data_.mode = SYNCHRONOUS; RunCallback(std::move(pending_read_if_ready_callback_), read_data_.result > 0 ? OK : read_data_.result); } void MockTCPClientSocket::OnWriteComplete(int rv) { // If |data_| has been destroyed, safest to just do nothing. if (!data_) return; // There must be a read pending. DCHECK(!pending_write_callback_.is_null()); RunCallback(std::move(pending_write_callback_), rv); } void MockTCPClientSocket::OnConnectComplete(const MockConnect& data) { // If |data_| has been destroyed, safest to just do nothing. if (!data_) return; RunCallback(std::move(pending_connect_callback_), data.result); } void MockTCPClientSocket::OnDataProviderDestroyed() { data_ = nullptr; } void MockTCPClientSocket::RetryRead(int rv) { DCHECK(pending_read_callback_); DCHECK(pending_read_buf_.get()); DCHECK_LT(0, pending_read_buf_len_); if (rv == OK) { rv = ReadIfReadyImpl( pending_read_buf_.get(), pending_read_buf_len_, base::Bind(&MockTCPClientSocket::RetryRead, base::Unretained(this))); if (rv == ERR_IO_PENDING) return; } pending_read_buf_ = nullptr; pending_read_buf_len_ = 0; RunCallback(std::move(pending_read_callback_), rv); } int MockTCPClientSocket::ReadIfReadyImpl(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { if (!connected_ || !data_) return ERR_UNEXPECTED; DCHECK(!pending_read_if_ready_callback_); if (need_read_data_) { read_data_ = data_->OnRead(); if (read_data_.result == ERR_CONNECTION_CLOSED) { // This MockRead is just a marker to instruct us to set // peer_closed_connection_. peer_closed_connection_ = true; } if (read_data_.result == ERR_TEST_PEER_CLOSE_AFTER_NEXT_MOCK_READ) { // This MockRead is just a marker to instruct us to set // peer_closed_connection_. Skip it and get the next one. read_data_ = data_->OnRead(); peer_closed_connection_ = true; } // ERR_IO_PENDING means that the SocketDataProvider is taking responsibility // to complete the async IO manually later (via OnReadComplete). if (read_data_.result == ERR_IO_PENDING) { // We need to be using async IO in this case. DCHECK(!callback.is_null()); pending_read_if_ready_callback_ = std::move(callback); return ERR_IO_PENDING; } need_read_data_ = false; } int result = read_data_.result; DCHECK_NE(ERR_IO_PENDING, result); if (read_data_.mode == ASYNC) { DCHECK(!callback.is_null()); read_data_.mode = SYNCHRONOUS; RunCallbackAsync(std::move(callback), result); return ERR_IO_PENDING; } was_used_to_convey_data_ = true; if (read_data_.data) { if (read_data_.data_len - read_offset_ > 0) { result = std::min(buf_len, read_data_.data_len - read_offset_); memcpy(buf->data(), read_data_.data + read_offset_, result); read_offset_ += result; if (read_offset_ == read_data_.data_len) { need_read_data_ = true; read_offset_ = 0; } } else { result = 0; // EOF } } return result; } MockProxyClientSocket::MockProxyClientSocket( std::unique_ptr transport_socket, HttpAuthController* auth_controller, ProxyClientSocketDataProvider* data) : net_log_(transport_socket->socket()->NetLog()), transport_(std::move(transport_socket)), data_(data), auth_controller_(auth_controller), weak_factory_(this) { DCHECK(data_); } MockProxyClientSocket::~MockProxyClientSocket() { Disconnect(); } const HttpResponseInfo* MockProxyClientSocket::GetConnectResponseInfo() const { return nullptr; } std::unique_ptr MockProxyClientSocket::CreateConnectResponseStream() { return nullptr; } const scoped_refptr& MockProxyClientSocket::GetAuthController() const { return auth_controller_; } int MockProxyClientSocket::RestartWithAuth(CompletionOnceCallback callback) { return net::ERR_NOT_IMPLEMENTED; } bool MockProxyClientSocket::IsUsingSpdy() const { return false; } NextProto MockProxyClientSocket::GetProxyNegotiatedProtocol() const { return kProtoUnknown; } int MockProxyClientSocket::Read(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { return transport_->socket()->Read(buf, buf_len, std::move(callback)); } int MockProxyClientSocket::ReadIfReady(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { return transport_->socket()->ReadIfReady(buf, buf_len, std::move(callback)); } int MockProxyClientSocket::Write( IOBuffer* buf, int buf_len, CompletionOnceCallback callback, const NetworkTrafficAnnotationTag& traffic_annotation) { return transport_->socket()->Write(buf, buf_len, std::move(callback), traffic_annotation); } int MockProxyClientSocket::Connect(CompletionOnceCallback callback) { DCHECK(transport_->socket()->IsConnected()); if (data_->connect.mode == ASYNC) { RunCallbackAsync(std::move(callback), data_->connect.result); return ERR_IO_PENDING; } return data_->connect.result; } void MockProxyClientSocket::Disconnect() { if (transport_->socket() != NULL) transport_->socket()->Disconnect(); } bool MockProxyClientSocket::IsConnected() const { return transport_->socket()->IsConnected(); } bool MockProxyClientSocket::IsConnectedAndIdle() const { return transport_->socket()->IsConnectedAndIdle(); } bool MockProxyClientSocket::WasEverUsed() const { return transport_->socket()->WasEverUsed(); } int MockProxyClientSocket::GetLocalAddress(IPEndPoint* address) const { *address = IPEndPoint(IPAddress(192, 0, 2, 33), 123); return OK; } int MockProxyClientSocket::GetPeerAddress(IPEndPoint* address) const { return transport_->socket()->GetPeerAddress(address); } bool MockProxyClientSocket::WasAlpnNegotiated() const { return false; } NextProto MockProxyClientSocket::GetNegotiatedProtocol() const { NOTIMPLEMENTED(); return kProtoUnknown; } bool MockProxyClientSocket::GetSSLInfo(SSLInfo* requested_ssl_info) { NOTIMPLEMENTED(); return false; } void MockProxyClientSocket::ApplySocketTag(const SocketTag& tag) { return transport_->socket()->ApplySocketTag(tag); } const NetLogWithSource& MockProxyClientSocket::NetLog() const { return net_log_; } void MockProxyClientSocket::GetConnectionAttempts( ConnectionAttempts* out) const { NOTIMPLEMENTED(); out->clear(); } int64_t MockProxyClientSocket::GetTotalReceivedBytes() const { NOTIMPLEMENTED(); return 0; } int MockProxyClientSocket::SetReceiveBufferSize(int32_t size) { return OK; } int MockProxyClientSocket::SetSendBufferSize(int32_t size) { return OK; } void MockProxyClientSocket::OnReadComplete(const MockRead& data) { NOTIMPLEMENTED(); } void MockProxyClientSocket::OnWriteComplete(int rv) { NOTIMPLEMENTED(); } void MockProxyClientSocket::OnConnectComplete(const MockConnect& data) { NOTIMPLEMENTED(); } void MockProxyClientSocket::RunCallbackAsync(CompletionOnceCallback callback, int result) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::BindOnce(&MockProxyClientSocket::RunCallback, weak_factory_.GetWeakPtr(), std::move(callback), result)); } void MockProxyClientSocket::RunCallback(CompletionOnceCallback callback, int result) { std::move(callback).Run(result); } // static void MockSSLClientSocket::ConnectCallback( MockSSLClientSocket* ssl_client_socket, CompletionOnceCallback callback, int rv) { if (rv == OK) ssl_client_socket->connected_ = true; std::move(callback).Run(rv); } MockSSLClientSocket::MockSSLClientSocket( std::unique_ptr transport_socket, const HostPortPair& host_port_pair, const SSLConfig& ssl_config, SSLSocketDataProvider* data) : net_log_(transport_socket->socket()->NetLog()), transport_(std::move(transport_socket)), data_(data), weak_factory_(this) { DCHECK(data_); peer_addr_ = data->connect.peer_addr; } MockSSLClientSocket::~MockSSLClientSocket() { Disconnect(); } int MockSSLClientSocket::Read(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { return transport_->socket()->Read(buf, buf_len, std::move(callback)); } int MockSSLClientSocket::ReadIfReady(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { return transport_->socket()->ReadIfReady(buf, buf_len, std::move(callback)); } int MockSSLClientSocket::Write( IOBuffer* buf, int buf_len, CompletionOnceCallback callback, const NetworkTrafficAnnotationTag& traffic_annotation) { return transport_->socket()->Write(buf, buf_len, std::move(callback), traffic_annotation); } int MockSSLClientSocket::CancelReadIfReady() { return transport_->socket()->CancelReadIfReady(); } int MockSSLClientSocket::Connect(CompletionOnceCallback callback) { DCHECK(transport_->socket()->IsConnected()); data_->is_connect_data_consumed = true; if (data_->connect.result == OK) connected_ = true; if (data_->connect.mode == ASYNC) { RunCallbackAsync(std::move(callback), data_->connect.result); return ERR_IO_PENDING; } return data_->connect.result; } void MockSSLClientSocket::Disconnect() { if (transport_->socket() != NULL) transport_->socket()->Disconnect(); } bool MockSSLClientSocket::IsConnected() const { return transport_->socket()->IsConnected(); } bool MockSSLClientSocket::IsConnectedAndIdle() const { return transport_->socket()->IsConnectedAndIdle(); } bool MockSSLClientSocket::WasEverUsed() const { return transport_->socket()->WasEverUsed(); } int MockSSLClientSocket::GetLocalAddress(IPEndPoint* address) const { *address = IPEndPoint(IPAddress(192, 0, 2, 33), 123); return OK; } int MockSSLClientSocket::GetPeerAddress(IPEndPoint* address) const { return transport_->socket()->GetPeerAddress(address); } bool MockSSLClientSocket::WasAlpnNegotiated() const { return data_->next_proto != kProtoUnknown; } NextProto MockSSLClientSocket::GetNegotiatedProtocol() const { return data_->next_proto; } bool MockSSLClientSocket::GetSSLInfo(SSLInfo* requested_ssl_info) { requested_ssl_info->Reset(); *requested_ssl_info = data_->ssl_info; return true; } void MockSSLClientSocket::ApplySocketTag(const SocketTag& tag) { return transport_->socket()->ApplySocketTag(tag); } const NetLogWithSource& MockSSLClientSocket::NetLog() const { return net_log_; } void MockSSLClientSocket::GetConnectionAttempts(ConnectionAttempts* out) const { out->clear(); } int64_t MockSSLClientSocket::GetTotalReceivedBytes() const { NOTIMPLEMENTED(); return 0; } int64_t MockClientSocket::GetTotalReceivedBytes() const { NOTIMPLEMENTED(); return 0; } int MockSSLClientSocket::SetReceiveBufferSize(int32_t size) { return OK; } int MockSSLClientSocket::SetSendBufferSize(int32_t size) { return OK; } void MockSSLClientSocket::GetSSLCertRequestInfo( SSLCertRequestInfo* cert_request_info) const { DCHECK(cert_request_info); if (data_->cert_request_info) { cert_request_info->host_and_port = data_->cert_request_info->host_and_port; cert_request_info->is_proxy = data_->cert_request_info->is_proxy; cert_request_info->cert_authorities = data_->cert_request_info->cert_authorities; cert_request_info->cert_key_types = data_->cert_request_info->cert_key_types; } else { cert_request_info->Reset(); } } ChannelIDService* MockSSLClientSocket::GetChannelIDService() const { return data_->channel_id_service; } Error MockSSLClientSocket::GetTokenBindingSignature(crypto::ECPrivateKey* key, TokenBindingType tb_type, std::vector* out) { out->push_back('A'); return OK; } int MockSSLClientSocket::ExportKeyingMaterial(const base::StringPiece& label, bool has_context, const base::StringPiece& context, unsigned char* out, unsigned int outlen) { memset(out, 'A', outlen); return OK; } crypto::ECPrivateKey* MockSSLClientSocket::GetChannelIDKey() const { NOTREACHED(); return NULL; } void MockSSLClientSocket::RunCallbackAsync(CompletionOnceCallback callback, int result) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::BindOnce(&MockSSLClientSocket::RunCallback, weak_factory_.GetWeakPtr(), std::move(callback), result)); } void MockSSLClientSocket::RunCallback(CompletionOnceCallback callback, int result) { std::move(callback).Run(result); } void MockSSLClientSocket::OnReadComplete(const MockRead& data) { NOTIMPLEMENTED(); } void MockSSLClientSocket::OnWriteComplete(int rv) { NOTIMPLEMENTED(); } void MockSSLClientSocket::OnConnectComplete(const MockConnect& data) { NOTIMPLEMENTED(); } MockUDPClientSocket::MockUDPClientSocket(SocketDataProvider* data, net::NetLog* net_log) : connected_(false), data_(data), read_offset_(0), read_data_(SYNCHRONOUS, ERR_UNEXPECTED), need_read_data_(true), source_port_(123), network_(NetworkChangeNotifier::kInvalidNetworkHandle), pending_read_buf_(NULL), pending_read_buf_len_(0), net_log_(NetLogWithSource::Make(net_log, NetLogSourceType::NONE)), weak_factory_(this) { DCHECK(data_); data_->Initialize(this); peer_addr_ = data->connect_data().peer_addr; } MockUDPClientSocket::~MockUDPClientSocket() { if (data_) data_->DetachSocket(); } int MockUDPClientSocket::Read(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { DCHECK(callback); if (!connected_ || !data_) return ERR_UNEXPECTED; data_transferred_ = true; // If the buffer is already in use, a read is already in progress! DCHECK(!pending_read_buf_); // Store our async IO data. pending_read_buf_ = buf; pending_read_buf_len_ = buf_len; pending_read_callback_ = std::move(callback); if (need_read_data_) { read_data_ = data_->OnRead(); // ERR_IO_PENDING means that the SocketDataProvider is taking responsibility // to complete the async IO manually later (via OnReadComplete). if (read_data_.result == ERR_IO_PENDING) { // We need to be using async IO in this case. DCHECK(!pending_read_callback_.is_null()); return ERR_IO_PENDING; } need_read_data_ = false; } return CompleteRead(); } int MockUDPClientSocket::Write( IOBuffer* buf, int buf_len, CompletionOnceCallback callback, const NetworkTrafficAnnotationTag& /* traffic_annotation */) { DCHECK(buf); DCHECK_GT(buf_len, 0); DCHECK(callback); if (!connected_ || !data_) return ERR_UNEXPECTED; data_transferred_ = true; std::string data(buf->data(), buf_len); MockWriteResult write_result = data_->OnWrite(data); // ERR_IO_PENDING is a signal that the socket data will call back // asynchronously. if (write_result.result == ERR_IO_PENDING) { pending_write_callback_ = std::move(callback); return ERR_IO_PENDING; } if (write_result.mode == ASYNC) { RunCallbackAsync(std::move(callback), write_result.result); return ERR_IO_PENDING; } return write_result.result; } int MockUDPClientSocket::WriteAsync( const char* buffer, size_t buf_len, CompletionOnceCallback callback, const NetworkTrafficAnnotationTag& /* traffic_annotation */) { DCHECK(buffer); DCHECK_GT(buf_len, 0u); DCHECK(callback); if (!connected_ || !data_) return ERR_UNEXPECTED; data_transferred_ = true; std::string data(buffer, buf_len); MockWriteResult write_result = data_->OnWrite(data); // ERR_IO_PENDING is a signal that the socket data will call back // asynchronously. if (write_result.result == ERR_IO_PENDING) { pending_write_callback_ = std::move(callback); return ERR_IO_PENDING; } if (write_result.mode == ASYNC) { RunCallbackAsync(std::move(callback), write_result.result); return ERR_IO_PENDING; } return write_result.result; } int MockUDPClientSocket::WriteAsync( DatagramBuffers buffers, CompletionOnceCallback callback, const NetworkTrafficAnnotationTag& /* traffic_annotation */) { DCHECK(!buffers.empty()); DCHECK(callback); if (!connected_ || !data_) return ERR_UNEXPECTED; unwritten_buffers_ = std::move(buffers); int rv = 0; size_t buf_len = 0; do { auto& buf = unwritten_buffers_.front(); buf_len = buf->length(); std::string data(buf->data(), buf_len); MockWriteResult write_result = data_->OnWrite(data); rv = write_result.result; // ERR_IO_PENDING is a signal that the socket data will call back // asynchronously. if (write_result.result == ERR_IO_PENDING) { pending_write_callback_ = std::move(callback); return ERR_IO_PENDING; } if (write_result.mode == ASYNC) { RunCallbackAsync(std::move(callback), write_result.result); return ERR_IO_PENDING; } if (rv < 0) { return rv; } unwritten_buffers_.pop_front(); } while (!unwritten_buffers_.empty()); return buf_len; } DatagramBuffers MockUDPClientSocket::GetUnwrittenBuffers() { return std::move(unwritten_buffers_); } int MockUDPClientSocket::SetReceiveBufferSize(int32_t size) { return OK; } int MockUDPClientSocket::SetSendBufferSize(int32_t size) { return OK; } int MockUDPClientSocket::SetDoNotFragment() { return OK; } void MockUDPClientSocket::Close() { connected_ = false; } int MockUDPClientSocket::GetPeerAddress(IPEndPoint* address) const { *address = peer_addr_; return OK; } int MockUDPClientSocket::GetLocalAddress(IPEndPoint* address) const { *address = IPEndPoint(IPAddress(192, 0, 2, 33), source_port_); return OK; } void MockUDPClientSocket::UseNonBlockingIO() {} void MockUDPClientSocket::SetWriteAsyncEnabled(bool enabled) {} bool MockUDPClientSocket::WriteAsyncEnabled() { return false; } void MockUDPClientSocket::SetMaxPacketSize(size_t max_packet_size) {} void MockUDPClientSocket::SetWriteMultiCoreEnabled(bool enabled) {} void MockUDPClientSocket::SetSendmmsgEnabled(bool enabled) {} void MockUDPClientSocket::SetWriteBatchingActive(bool active) {} const NetLogWithSource& MockUDPClientSocket::NetLog() const { return net_log_; } int MockUDPClientSocket::Connect(const IPEndPoint& address) { if (!data_) return ERR_UNEXPECTED; connected_ = true; peer_addr_ = address; return data_->connect_data().result; } int MockUDPClientSocket::ConnectUsingNetwork( NetworkChangeNotifier::NetworkHandle network, const IPEndPoint& address) { DCHECK(!connected_); if (!data_) return ERR_UNEXPECTED; network_ = network; connected_ = true; peer_addr_ = address; return data_->connect_data().result; } int MockUDPClientSocket::ConnectUsingDefaultNetwork(const IPEndPoint& address) { DCHECK(!connected_); if (!data_) return ERR_UNEXPECTED; network_ = kDefaultNetworkForTests; connected_ = true; peer_addr_ = address; return data_->connect_data().result; } NetworkChangeNotifier::NetworkHandle MockUDPClientSocket::GetBoundNetwork() const { return network_; } void MockUDPClientSocket::ApplySocketTag(const SocketTag& tag) { tagged_before_data_transferred_ &= !data_transferred_ || tag == tag_; tag_ = tag; } void MockUDPClientSocket::OnReadComplete(const MockRead& data) { if (!data_) return; // There must be a read pending. DCHECK(pending_read_buf_.get()); DCHECK(pending_read_callback_); // You can't complete a read with another ERR_IO_PENDING status code. DCHECK_NE(ERR_IO_PENDING, data.result); // Since we've been waiting for data, need_read_data_ should be true. DCHECK(need_read_data_); read_data_ = data; need_read_data_ = false; // The caller is simulating that this IO completes right now. Don't // let CompleteRead() schedule a callback. read_data_.mode = SYNCHRONOUS; CompletionOnceCallback callback = std::move(pending_read_callback_); int rv = CompleteRead(); RunCallback(std::move(callback), rv); } void MockUDPClientSocket::OnWriteComplete(int rv) { if (!data_) return; // There must be a read pending. DCHECK(!pending_write_callback_.is_null()); RunCallback(std::move(pending_write_callback_), rv); } void MockUDPClientSocket::OnConnectComplete(const MockConnect& data) { NOTIMPLEMENTED(); } void MockUDPClientSocket::OnDataProviderDestroyed() { data_ = nullptr; } int MockUDPClientSocket::CompleteRead() { DCHECK(pending_read_buf_.get()); DCHECK(pending_read_buf_len_ > 0); // Save the pending async IO data and reset our |pending_| state. scoped_refptr buf = pending_read_buf_; int buf_len = pending_read_buf_len_; CompletionOnceCallback callback = std::move(pending_read_callback_); pending_read_buf_ = NULL; pending_read_buf_len_ = 0; int result = read_data_.result; DCHECK(result != ERR_IO_PENDING); if (read_data_.data) { if (read_data_.data_len - read_offset_ > 0) { result = std::min(buf_len, read_data_.data_len - read_offset_); memcpy(buf->data(), read_data_.data + read_offset_, result); read_offset_ += result; if (read_offset_ == read_data_.data_len) { need_read_data_ = true; read_offset_ = 0; } } else { result = 0; // EOF } } if (read_data_.mode == ASYNC) { DCHECK(!callback.is_null()); RunCallbackAsync(std::move(callback), result); return ERR_IO_PENDING; } return result; } void MockUDPClientSocket::RunCallbackAsync(CompletionOnceCallback callback, int result) { base::ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::BindOnce(&MockUDPClientSocket::RunCallback, weak_factory_.GetWeakPtr(), std::move(callback), result)); } void MockUDPClientSocket::RunCallback(CompletionOnceCallback callback, int result) { std::move(callback).Run(result); } TestSocketRequest::TestSocketRequest( std::vector* request_order, size_t* completion_count) : request_order_(request_order), completion_count_(completion_count) { DCHECK(request_order); DCHECK(completion_count); } TestSocketRequest::~TestSocketRequest() = default; void TestSocketRequest::OnComplete(int result) { SetResult(result); (*completion_count_)++; request_order_->push_back(this); } // static const int ClientSocketPoolTest::kIndexOutOfBounds = -1; // static const int ClientSocketPoolTest::kRequestNotFound = -2; ClientSocketPoolTest::ClientSocketPoolTest() : completion_count_(0) {} ClientSocketPoolTest::~ClientSocketPoolTest() = default; int ClientSocketPoolTest::GetOrderOfRequest(size_t index) const { index--; if (index >= requests_.size()) return kIndexOutOfBounds; for (size_t i = 0; i < request_order_.size(); i++) if (requests_[index].get() == request_order_[i]) return i + 1; return kRequestNotFound; } bool ClientSocketPoolTest::ReleaseOneConnection(KeepAlive keep_alive) { for (std::unique_ptr& it : requests_) { if (it->handle()->is_initialized()) { if (keep_alive == NO_KEEP_ALIVE) it->handle()->socket()->Disconnect(); it->handle()->Reset(); base::RunLoop().RunUntilIdle(); return true; } } return false; } void ClientSocketPoolTest::ReleaseAllConnections(KeepAlive keep_alive) { bool released_one; do { released_one = ReleaseOneConnection(keep_alive); } while (released_one); } MockTransportClientSocketPool::MockConnectJob::MockConnectJob( std::unique_ptr socket, ClientSocketHandle* handle, const SocketTag& socket_tag, CompletionOnceCallback callback) : socket_(std::move(socket)), handle_(handle), socket_tag_(socket_tag), user_callback_(std::move(callback)) {} MockTransportClientSocketPool::MockConnectJob::~MockConnectJob() = default; int MockTransportClientSocketPool::MockConnectJob::Connect() { socket_->ApplySocketTag(socket_tag_); int rv = socket_->Connect(base::Bind(&MockConnectJob::OnConnect, base::Unretained(this))); if (rv != ERR_IO_PENDING) { user_callback_.Reset(); OnConnect(rv); } return rv; } bool MockTransportClientSocketPool::MockConnectJob::CancelHandle( const ClientSocketHandle* handle) { if (handle != handle_) return false; socket_.reset(); handle_ = NULL; user_callback_.Reset(); return true; } void MockTransportClientSocketPool::MockConnectJob::OnConnect(int rv) { if (!socket_.get()) return; if (rv == OK) { handle_->SetSocket(std::move(socket_)); // Needed for socket pool tests that layer other sockets on top of mock // sockets. LoadTimingInfo::ConnectTiming connect_timing; base::TimeTicks now = base::TimeTicks::Now(); connect_timing.dns_start = now; connect_timing.dns_end = now; connect_timing.connect_start = now; connect_timing.connect_end = now; handle_->set_connect_timing(connect_timing); } else { socket_.reset(); // Needed to test copying of ConnectionAttempts in SSL ConnectJob. ConnectionAttempts attempts; attempts.push_back(ConnectionAttempt(IPEndPoint(), rv)); handle_->set_connection_attempts(attempts); } handle_ = NULL; if (!user_callback_.is_null()) { std::move(user_callback_).Run(rv); } } MockTransportClientSocketPool::MockTransportClientSocketPool( int max_sockets, int max_sockets_per_group, ClientSocketFactory* socket_factory) : TransportClientSocketPool(max_sockets, max_sockets_per_group, nullptr /* host_resolver */, socket_factory, nullptr /* socket_performance_watcher_factory*/, nullptr /* netlog */), client_socket_factory_(socket_factory), last_request_priority_(DEFAULT_PRIORITY), release_count_(0), cancel_count_(0) {} MockTransportClientSocketPool::~MockTransportClientSocketPool() = default; int MockTransportClientSocketPool::RequestSocket( const std::string& group_name, const void* socket_params, RequestPriority priority, const SocketTag& socket_tag, RespectLimits respect_limits, ClientSocketHandle* handle, CompletionOnceCallback callback, const NetLogWithSource& net_log) { last_request_priority_ = priority; std::unique_ptr socket = client_socket_factory_->CreateTransportClientSocket( AddressList(), NULL, net_log.net_log(), NetLogSource()); MockConnectJob* job = new MockConnectJob(std::move(socket), handle, socket_tag, std::move(callback)); job_list_.push_back(base::WrapUnique(job)); handle->set_pool_id(1); return job->Connect(); } void MockTransportClientSocketPool::SetPriority(const std::string& group_name, ClientSocketHandle* handle, RequestPriority priority) { // TODO: Implement. } void MockTransportClientSocketPool::CancelRequest(const std::string& group_name, ClientSocketHandle* handle) { for (std::unique_ptr& it : job_list_) { if (it->CancelHandle(handle)) { cancel_count_++; break; } } } void MockTransportClientSocketPool::ReleaseSocket( const std::string& group_name, std::unique_ptr socket, int id) { EXPECT_EQ(1, id); release_count_++; } MockSOCKSClientSocketPool::MockSOCKSClientSocketPool( int max_sockets, int max_sockets_per_group, TransportClientSocketPool* transport_pool) : SOCKSClientSocketPool(max_sockets, max_sockets_per_group, NULL, transport_pool, NULL, NULL), transport_pool_(transport_pool) {} MockSOCKSClientSocketPool::~MockSOCKSClientSocketPool() = default; int MockSOCKSClientSocketPool::RequestSocket(const std::string& group_name, const void* socket_params, RequestPriority priority, const SocketTag& socket_tag, RespectLimits respect_limits, ClientSocketHandle* handle, CompletionOnceCallback callback, const NetLogWithSource& net_log) { return transport_pool_->RequestSocket(group_name, socket_params, priority, socket_tag, respect_limits, handle, std::move(callback), net_log); } void MockSOCKSClientSocketPool::SetPriority(const std::string& group_name, ClientSocketHandle* handle, RequestPriority priority) { transport_pool_->SetPriority(group_name, handle, priority); } void MockSOCKSClientSocketPool::CancelRequest( const std::string& group_name, ClientSocketHandle* handle) { return transport_pool_->CancelRequest(group_name, handle); } void MockSOCKSClientSocketPool::ReleaseSocket( const std::string& group_name, std::unique_ptr socket, int id) { return transport_pool_->ReleaseSocket(group_name, std::move(socket), id); } WrappedStreamSocket::WrappedStreamSocket( std::unique_ptr transport) : transport_(std::move(transport)) {} WrappedStreamSocket::~WrappedStreamSocket() {} int WrappedStreamSocket::Bind(const net::IPEndPoint& local_addr) { NOTREACHED(); return ERR_FAILED; } int WrappedStreamSocket::Connect(CompletionOnceCallback callback) { return transport_->Connect(std::move(callback)); } void WrappedStreamSocket::Disconnect() { transport_->Disconnect(); } bool WrappedStreamSocket::IsConnected() const { return transport_->IsConnected(); } bool WrappedStreamSocket::IsConnectedAndIdle() const { return transport_->IsConnectedAndIdle(); } int WrappedStreamSocket::GetPeerAddress(IPEndPoint* address) const { return transport_->GetPeerAddress(address); } int WrappedStreamSocket::GetLocalAddress(IPEndPoint* address) const { return transport_->GetLocalAddress(address); } const NetLogWithSource& WrappedStreamSocket::NetLog() const { return transport_->NetLog(); } bool WrappedStreamSocket::WasEverUsed() const { return transport_->WasEverUsed(); } bool WrappedStreamSocket::WasAlpnNegotiated() const { return transport_->WasAlpnNegotiated(); } NextProto WrappedStreamSocket::GetNegotiatedProtocol() const { return transport_->GetNegotiatedProtocol(); } bool WrappedStreamSocket::GetSSLInfo(SSLInfo* ssl_info) { return transport_->GetSSLInfo(ssl_info); } void WrappedStreamSocket::GetConnectionAttempts(ConnectionAttempts* out) const { transport_->GetConnectionAttempts(out); } void WrappedStreamSocket::ClearConnectionAttempts() { transport_->ClearConnectionAttempts(); } void WrappedStreamSocket::AddConnectionAttempts( const ConnectionAttempts& attempts) { transport_->AddConnectionAttempts(attempts); } int64_t WrappedStreamSocket::GetTotalReceivedBytes() const { return transport_->GetTotalReceivedBytes(); } void WrappedStreamSocket::ApplySocketTag(const SocketTag& tag) { transport_->ApplySocketTag(tag); } int WrappedStreamSocket::Read(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { return transport_->Read(buf, buf_len, std::move(callback)); } int WrappedStreamSocket::ReadIfReady(IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { return transport_->ReadIfReady(buf, buf_len, std::move((callback))); } int WrappedStreamSocket::Write( IOBuffer* buf, int buf_len, CompletionOnceCallback callback, const NetworkTrafficAnnotationTag& traffic_annotation) { return transport_->Write(buf, buf_len, std::move(callback), TRAFFIC_ANNOTATION_FOR_TESTS); } int WrappedStreamSocket::SetReceiveBufferSize(int32_t size) { return transport_->SetReceiveBufferSize(size); } int WrappedStreamSocket::SetSendBufferSize(int32_t size) { return transport_->SetSendBufferSize(size); } int MockTaggingStreamSocket::Connect(CompletionOnceCallback callback) { connected_ = true; return WrappedStreamSocket::Connect(std::move(callback)); } void MockTaggingStreamSocket::ApplySocketTag(const SocketTag& tag) { tagged_before_connected_ &= !connected_ || tag == tag_; tag_ = tag; transport_->ApplySocketTag(tag); } std::unique_ptr MockTaggingClientSocketFactory::CreateTransportClientSocket( const AddressList& addresses, std::unique_ptr socket_performance_watcher, NetLog* net_log, const NetLogSource& source) { std::unique_ptr socket(new MockTaggingStreamSocket( MockClientSocketFactory::CreateTransportClientSocket( addresses, std::move(socket_performance_watcher), net_log, source))); tcp_socket_ = socket.get(); return std::move(socket); } std::unique_ptr MockTaggingClientSocketFactory::CreateDatagramClientSocket( DatagramSocket::BindType bind_type, NetLog* net_log, const NetLogSource& source) { std::unique_ptr socket( MockClientSocketFactory::CreateDatagramClientSocket(bind_type, net_log, source)); udp_socket_ = static_cast(socket.get()); return socket; } const char kSOCKS4OkRequestLocalHostPort80[] = {0x04, 0x01, 0x00, 0x50, 127, 0, 0, 1, 0}; const int kSOCKS4OkRequestLocalHostPort80Length = base::size(kSOCKS4OkRequestLocalHostPort80); const char kSOCKS4OkReply[] = {0x00, 0x5A, 0x00, 0x00, 0, 0, 0, 0}; const int kSOCKS4OkReplyLength = base::size(kSOCKS4OkReply); const char kSOCKS5GreetRequest[] = { 0x05, 0x01, 0x00 }; const int kSOCKS5GreetRequestLength = base::size(kSOCKS5GreetRequest); const char kSOCKS5GreetResponse[] = { 0x05, 0x00 }; const int kSOCKS5GreetResponseLength = base::size(kSOCKS5GreetResponse); const char kSOCKS5OkRequest[] = { 0x05, 0x01, 0x00, 0x03, 0x04, 'h', 'o', 's', 't', 0x00, 0x50 }; const int kSOCKS5OkRequestLength = base::size(kSOCKS5OkRequest); const char kSOCKS5OkResponse[] = { 0x05, 0x00, 0x00, 0x01, 127, 0, 0, 1, 0x00, 0x50 }; const int kSOCKS5OkResponseLength = base::size(kSOCKS5OkResponse); int64_t CountReadBytes(base::span reads) { int64_t total = 0; for (const MockRead& read : reads) total += read.data_len; return total; } int64_t CountWriteBytes(base::span writes) { int64_t total = 0; for (const MockWrite& write : writes) total += write.data_len; return total; } #if defined(OS_ANDROID) uint64_t GetTaggedBytes(int32_t expected_tag) { // To determine how many bytes the system saw with a particular tag read // the /proc/net/xt_qtaguid/stats file which contains the kernel's // dump of all the UIDs and their tags sent and received bytes. uint64_t bytes = 0; std::string contents; EXPECT_TRUE(base::ReadFileToString( base::FilePath::FromUTF8Unsafe("/proc/net/xt_qtaguid/stats"), &contents)); for (size_t i = contents.find('\n'); // Skip first line which is headers. i != std::string::npos && i < contents.length();) { uint64_t tag, rx_bytes; uid_t uid; int n; // Parse out the numbers we care about. For reference here's the column // headers: // idx iface acct_tag_hex uid_tag_int cnt_set rx_bytes rx_packets tx_bytes // tx_packets rx_tcp_bytes rx_tcp_packets rx_udp_bytes rx_udp_packets // rx_other_bytes rx_other_packets tx_tcp_bytes tx_tcp_packets tx_udp_bytes // tx_udp_packets tx_other_bytes tx_other_packets EXPECT_EQ(sscanf(contents.c_str() + i, "%*d %*s 0x%" SCNx64 " %d %*d %" SCNu64 " %*d %*d %*d %*d %*d %*d %*d %*d " "%*d %*d %*d %*d %*d %*d %*d%n", &tag, &uid, &rx_bytes, &n), 3); // If this line matches our UID and |expected_tag| then add it to the total. if (uid == getuid() && (int32_t)(tag >> 32) == expected_tag) { bytes += rx_bytes; } // Move |i| to the next line. i += n + 1; } return bytes; } #endif } // namespace net