// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/core/quic_utils.h" #include #include #include #include "base/containers/adapters.h" #include "base/logging.h" #include "net/quic/core/quic_constants.h" #include "net/quic/platform/api/quic_bug_tracker.h" #include "net/quic/platform/api/quic_flags.h" using std::string; namespace net { namespace { // We know that >= GCC 4.8 and Clang have a __uint128_t intrinsic. Other // compilers don't necessarily, notably MSVC. #if defined(__x86_64__) && \ ((defined(__GNUC__) && \ (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) || \ defined(__clang__)) #define QUIC_UTIL_HAS_UINT128 1 #endif #ifdef QUIC_UTIL_HAS_UINT128 uint128 IncrementalHashFast(uint128 uhash, QuicStringPiece data) { // This code ends up faster than the naive implementation for 2 reasons: // 1. uint128 from base/int128.h is sufficiently complicated that the compiler // cannot transform the multiplication by kPrime into a shift-multiply-add; // it has go through all of the instructions for a 128-bit multiply. // 2. Because there are so fewer instructions (around 13), the hot loop fits // nicely in the instruction queue of many Intel CPUs. // kPrime = 309485009821345068724781371 static const __uint128_t kPrime = (static_cast<__uint128_t>(16777216) << 64) + 315; __uint128_t xhash = (static_cast<__uint128_t>(Uint128High64(uhash)) << 64) + Uint128Low64(uhash); const uint8_t* octets = reinterpret_cast(data.data()); for (size_t i = 0; i < data.length(); ++i) { xhash = (xhash ^ octets[i]) * kPrime; } return MakeUint128( static_cast(xhash >> 64), static_cast(xhash & UINT64_C(0xFFFFFFFFFFFFFFFF))); } #endif #ifndef QUIC_UTIL_HAS_UINT128 // Slow implementation of IncrementalHash. In practice, only used by Chromium. uint128 IncrementalHashSlow(uint128 hash, QuicStringPiece data) { // kPrime = 309485009821345068724781371 static const uint128 kPrime = MakeUint128(16777216, 315); const uint8_t* octets = reinterpret_cast(data.data()); for (size_t i = 0; i < data.length(); ++i) { hash = hash ^ MakeUint128(0, octets[i]); hash = hash * kPrime; } return hash; } #endif uint128 IncrementalHash(uint128 hash, QuicStringPiece data) { #ifdef QUIC_UTIL_HAS_UINT128 return IncrementalHashFast(hash, data); #else return IncrementalHashSlow(hash, data); #endif } } // namespace // static uint64_t QuicUtils::FNV1a_64_Hash(QuicStringPiece data) { static const uint64_t kOffset = UINT64_C(14695981039346656037); static const uint64_t kPrime = UINT64_C(1099511628211); const uint8_t* octets = reinterpret_cast(data.data()); uint64_t hash = kOffset; for (size_t i = 0; i < data.length(); ++i) { hash = hash ^ octets[i]; hash = hash * kPrime; } return hash; } // static uint128 QuicUtils::FNV1a_128_Hash(QuicStringPiece data) { return FNV1a_128_Hash_Three(data, QuicStringPiece(), QuicStringPiece()); } // static uint128 QuicUtils::FNV1a_128_Hash_Two(QuicStringPiece data1, QuicStringPiece data2) { return FNV1a_128_Hash_Three(data1, data2, QuicStringPiece()); } // static uint128 QuicUtils::FNV1a_128_Hash_Three(QuicStringPiece data1, QuicStringPiece data2, QuicStringPiece data3) { // The two constants are defined as part of the hash algorithm. // see http://www.isthe.com/chongo/tech/comp/fnv/ // kOffset = 144066263297769815596495629667062367629 const uint128 kOffset = MakeUint128(UINT64_C(7809847782465536322), UINT64_C(7113472399480571277)); uint128 hash = IncrementalHash(kOffset, data1); if (data2.empty()) { return hash; } hash = IncrementalHash(hash, data2); if (data3.empty()) { return hash; } return IncrementalHash(hash, data3); } // static void QuicUtils::SerializeUint128Short(uint128 v, uint8_t* out) { const uint64_t lo = Uint128Low64(v); const uint64_t hi = Uint128High64(v); // This assumes that the system is little-endian. memcpy(out, &lo, sizeof(lo)); memcpy(out + sizeof(lo), &hi, sizeof(hi) / 2); } #define RETURN_STRING_LITERAL(x) \ case x: \ return #x; // static const char* QuicUtils::EncryptionLevelToString(EncryptionLevel level) { switch (level) { RETURN_STRING_LITERAL(ENCRYPTION_NONE); RETURN_STRING_LITERAL(ENCRYPTION_INITIAL); RETURN_STRING_LITERAL(ENCRYPTION_FORWARD_SECURE); RETURN_STRING_LITERAL(NUM_ENCRYPTION_LEVELS); } return "INVALID_ENCRYPTION_LEVEL"; } // static const char* QuicUtils::TransmissionTypeToString(TransmissionType type) { switch (type) { RETURN_STRING_LITERAL(NOT_RETRANSMISSION); RETURN_STRING_LITERAL(HANDSHAKE_RETRANSMISSION); RETURN_STRING_LITERAL(LOSS_RETRANSMISSION); RETURN_STRING_LITERAL(ALL_UNACKED_RETRANSMISSION); RETURN_STRING_LITERAL(ALL_INITIAL_RETRANSMISSION); RETURN_STRING_LITERAL(RTO_RETRANSMISSION); RETURN_STRING_LITERAL(TLP_RETRANSMISSION); } return "INVALID_TRANSMISSION_TYPE"; } string QuicUtils::PeerAddressChangeTypeToString(PeerAddressChangeType type) { switch (type) { RETURN_STRING_LITERAL(NO_CHANGE); RETURN_STRING_LITERAL(PORT_CHANGE); RETURN_STRING_LITERAL(IPV4_SUBNET_CHANGE); RETURN_STRING_LITERAL(IPV4_TO_IPV6_CHANGE); RETURN_STRING_LITERAL(IPV6_TO_IPV4_CHANGE); RETURN_STRING_LITERAL(IPV6_TO_IPV6_CHANGE); RETURN_STRING_LITERAL(IPV4_TO_IPV4_CHANGE); } return "INVALID_PEER_ADDRESS_CHANGE_TYPE"; } // static PeerAddressChangeType QuicUtils::DetermineAddressChangeType( const QuicSocketAddress& old_address, const QuicSocketAddress& new_address) { if (!old_address.IsInitialized() || !new_address.IsInitialized() || old_address == new_address) { return NO_CHANGE; } if (old_address.host() == new_address.host()) { return PORT_CHANGE; } bool old_ip_is_ipv4 = old_address.host().IsIPv4() ? true : false; bool migrating_ip_is_ipv4 = new_address.host().IsIPv4() ? true : false; if (old_ip_is_ipv4 && !migrating_ip_is_ipv4) { return IPV4_TO_IPV6_CHANGE; } if (!old_ip_is_ipv4) { return migrating_ip_is_ipv4 ? IPV6_TO_IPV4_CHANGE : IPV6_TO_IPV6_CHANGE; } const int kSubnetMaskLength = 24; if (old_address.host().InSameSubnet(new_address.host(), kSubnetMaskLength)) { // Subnet part does not change (here, we use /24), which is considered to be // caused by NATs. return IPV4_SUBNET_CHANGE; } return IPV4_TO_IPV4_CHANGE; } // static void QuicUtils::CopyToBuffer(QuicIOVector iov, size_t iov_offset, size_t length, char* buffer) { int iovnum = 0; while (iovnum < iov.iov_count && iov_offset >= iov.iov[iovnum].iov_len) { iov_offset -= iov.iov[iovnum].iov_len; ++iovnum; } DCHECK_LE(iovnum, iov.iov_count); DCHECK_LE(iov_offset, iov.iov[iovnum].iov_len); if (iovnum >= iov.iov_count || length == 0) { return; } // Unroll the first iteration that handles iov_offset. const size_t iov_available = iov.iov[iovnum].iov_len - iov_offset; size_t copy_len = std::min(length, iov_available); // Try to prefetch the next iov if there is at least one more after the // current. Otherwise, it looks like an irregular access that the hardware // prefetcher won't speculatively prefetch. Only prefetch one iov because // generally, the iov_offset is not 0, input iov consists of 2K buffers and // the output buffer is ~1.4K. if (copy_len == iov_available && iovnum + 1 < iov.iov_count) { // TODO(ckrasic) - this is unused without prefetch() // char* next_base = static_cast(iov.iov[iovnum + 1].iov_base); // char* next_base = static_cast(iov.iov[iovnum + 1].iov_base); // Prefetch 2 cachelines worth of data to get the prefetcher started; leave // it to the hardware prefetcher after that. // TODO(ckrasic) - investigate what to do about prefetch directives. // prefetch(next_base, PREFETCH_HINT_T0); if (iov.iov[iovnum + 1].iov_len >= 64) { // TODO(ckrasic) - investigate what to do about prefetch directives. // prefetch(next_base + ABSL_CACHELINE_SIZE, PREFETCH_HINT_T0); } } const char* src = static_cast(iov.iov[iovnum].iov_base) + iov_offset; while (true) { memcpy(buffer, src, copy_len); length -= copy_len; buffer += copy_len; if (length == 0 || ++iovnum >= iov.iov_count) { break; } src = static_cast(iov.iov[iovnum].iov_base); copy_len = std::min(length, iov.iov[iovnum].iov_len); } QUIC_BUG_IF(length > 0) << "Failed to copy entire length to buffer."; } } // namespace net