// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/cert_verify_proc_nss.h" #include #include #include #include #include #include #include #include #include #include "base/logging.h" #include "base/macros.h" #include "build/build_config.h" #include "crypto/nss_util.h" #include "crypto/scoped_nss_types.h" #include "crypto/sha2.h" #include "net/base/net_errors.h" #include "net/cert/asn1_util.h" #include "net/cert/cert_status_flags.h" #include "net/cert/cert_verifier.h" #include "net/cert/cert_verify_result.h" #include "net/cert/crl_set.h" #include "net/cert/ev_root_ca_metadata.h" #include "net/cert/known_roots_nss.h" #include "net/cert/x509_certificate.h" #include "net/cert/x509_util_nss.h" #include namespace net { namespace { typedef std::unique_ptr< CERTCertificatePolicies, crypto::NSSDestroyer> ScopedCERTCertificatePolicies; typedef std::unique_ptr< CERTCertList, crypto::NSSDestroyer> ScopedCERTCertList; // ScopedCERTValOutParam manages destruction of values in the CERTValOutParam // array that cvout points to. cvout must be initialized as passed to // CERT_PKIXVerifyCert, so that the array must be terminated with // cert_po_end type. // When it goes out of scope, it destroys values of cert_po_trustAnchor // and cert_po_certList types, but doesn't release the array itself. class ScopedCERTValOutParam { public: explicit ScopedCERTValOutParam(CERTValOutParam* cvout) : cvout_(cvout) {} ~ScopedCERTValOutParam() { Clear(); } // Free the internal resources, but do not release the array itself. void Clear() { if (cvout_ == NULL) return; for (CERTValOutParam *p = cvout_; p->type != cert_po_end; p++) { switch (p->type) { case cert_po_trustAnchor: if (p->value.pointer.cert) { CERT_DestroyCertificate(p->value.pointer.cert); p->value.pointer.cert = NULL; } break; case cert_po_certList: if (p->value.pointer.chain) { CERT_DestroyCertList(p->value.pointer.chain); p->value.pointer.chain = NULL; } break; default: break; } } } private: CERTValOutParam* cvout_; DISALLOW_COPY_AND_ASSIGN(ScopedCERTValOutParam); }; // Map PORT_GetError() return values to our network error codes. int MapSecurityError(int err) { switch (err) { case PR_DIRECTORY_LOOKUP_ERROR: // DNS lookup error. return ERR_NAME_NOT_RESOLVED; case SEC_ERROR_INVALID_ARGS: return ERR_INVALID_ARGUMENT; case SSL_ERROR_BAD_CERT_DOMAIN: return ERR_CERT_COMMON_NAME_INVALID; case SEC_ERROR_INVALID_TIME: case SEC_ERROR_EXPIRED_CERTIFICATE: case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE: return ERR_CERT_DATE_INVALID; case SEC_ERROR_UNKNOWN_ISSUER: case SEC_ERROR_UNTRUSTED_ISSUER: case SEC_ERROR_CA_CERT_INVALID: case SEC_ERROR_APPLICATION_CALLBACK_ERROR: // Rejected by // chain_verify_callback. return ERR_CERT_AUTHORITY_INVALID; // TODO(port): map ERR_CERT_NO_REVOCATION_MECHANISM. case SEC_ERROR_OCSP_BAD_HTTP_RESPONSE: case SEC_ERROR_OCSP_SERVER_ERROR: return ERR_CERT_UNABLE_TO_CHECK_REVOCATION; case SEC_ERROR_REVOKED_CERTIFICATE: case SEC_ERROR_UNTRUSTED_CERT: // Treat as revoked. return ERR_CERT_REVOKED; case SEC_ERROR_CERT_NOT_IN_NAME_SPACE: return ERR_CERT_NAME_CONSTRAINT_VIOLATION; case SEC_ERROR_BAD_DER: case SEC_ERROR_BAD_SIGNATURE: case SEC_ERROR_CERT_NOT_VALID: // TODO(port): add an ERR_CERT_WRONG_USAGE error code. case SEC_ERROR_CERT_USAGES_INVALID: case SEC_ERROR_INADEQUATE_KEY_USAGE: // Key usage. case SEC_ERROR_INADEQUATE_CERT_TYPE: // Extended key usage and whether // the certificate is a CA. case SEC_ERROR_POLICY_VALIDATION_FAILED: case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID: case SEC_ERROR_UNKNOWN_CRITICAL_EXTENSION: case SEC_ERROR_EXTENSION_VALUE_INVALID: return ERR_CERT_INVALID; case SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED: return ERR_CERT_WEAK_SIGNATURE_ALGORITHM; default: LOG(WARNING) << "Unknown error " << err << " mapped to net::ERR_FAILED"; return ERR_FAILED; } } // Map PORT_GetError() return values to our cert status flags. CertStatus MapCertErrorToCertStatus(int err) { int net_error = MapSecurityError(err); return MapNetErrorToCertStatus(net_error); } // Saves some information about the certificate chain cert_list in // *verify_result. The caller MUST initialize *verify_result before calling // this function. // Note that cert_list[0] is the end entity certificate. void GetCertChainInfo(CERTCertList* cert_list, CERTCertificate* root_cert, CertVerifyResult* verify_result) { DCHECK(cert_list); CERTCertificate* verified_cert = NULL; std::vector verified_chain; size_t i = 0; for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list); !CERT_LIST_END(node, cert_list); node = CERT_LIST_NEXT(node), ++i) { if (i == 0) { verified_cert = node->cert; } else { // Because of an NSS bug, CERT_PKIXVerifyCert may chain a self-signed // certificate of a root CA to another certificate of the same root CA // key. Detect that error and ignore the root CA certificate. // See https://bugzilla.mozilla.org/show_bug.cgi?id=721288. if (node->cert->isRoot) { // NOTE: isRoot doesn't mean the certificate is a trust anchor. It // means the certificate is self-signed. Here we assume isRoot only // implies the certificate is self-issued. CERTCertListNode* next_node = CERT_LIST_NEXT(node); CERTCertificate* next_cert; if (!CERT_LIST_END(next_node, cert_list)) { next_cert = next_node->cert; } else { next_cert = root_cert; } // Test that |node->cert| is actually a self-signed certificate // whose key is equal to |next_cert|, and not a self-issued // certificate signed by another key of the same CA. if (next_cert && SECITEM_ItemsAreEqual(&node->cert->derPublicKey, &next_cert->derPublicKey)) { continue; } } verified_chain.push_back(node->cert); } } if (root_cert) verified_chain.push_back(root_cert); scoped_refptr verified_cert_with_chain = x509_util::CreateX509CertificateFromCERTCertificate(verified_cert, verified_chain); if (verified_cert_with_chain) verify_result->verified_cert = std::move(verified_cert_with_chain); else verify_result->cert_status |= CERT_STATUS_INVALID; } // Returns true if the given certificate is one of the additional trust anchors. bool IsAdditionalTrustAnchor(CERTCertList* additional_trust_anchors, CERTCertificate* root) { if (!additional_trust_anchors || !root) return false; for (CERTCertListNode* node = CERT_LIST_HEAD(additional_trust_anchors); !CERT_LIST_END(node, additional_trust_anchors); node = CERT_LIST_NEXT(node)) { if (CERT_CompareCerts(node->cert, root)) return true; } return false; } enum CRLSetResult { kCRLSetOk, kCRLSetRevoked, kCRLSetUnknown, }; // CheckRevocationWithCRLSet attempts to check each element of |cert_list| // against |crl_set|. It returns: // kCRLSetRevoked: if any element of the chain is known to have been revoked. // kCRLSetUnknown: if there is no fresh information about the leaf // certificate in the chain or if the CRLSet has expired. // // Only the leaf certificate is considered for coverage because some // intermediates have CRLs with no revocations (after filtering) and // those CRLs are pruned from the CRLSet at generation time. This means // that some EV sites would otherwise take the hit of an OCSP lookup for // no reason. // kCRLSetOk: otherwise. CRLSetResult CheckRevocationWithCRLSet(const CERTCertList* cert_list, CERTCertificate* root, CRLSet* crl_set) { std::vector certs; if (cert_list) { for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list); !CERT_LIST_END(node, cert_list); node = CERT_LIST_NEXT(node)) { certs.push_back(node->cert); } } if (root) certs.push_back(root); // Set to true if any errors are found, which will cause such chains to not be // treated as covered by the CRLSet. bool error = false; // Set to the coverage state of the previous certificate. As the certificates // are iterated over from root to leaf, at the end of the iteration, this // indicates the coverage state of the leaf certificate. bool last_covered = false; // We iterate from the root certificate down to the leaf, keeping track of // the issuer's SPKI at each step. std::string issuer_spki_hash; for (std::vector::reverse_iterator i = certs.rbegin(); i != certs.rend(); ++i) { CERTCertificate* cert = *i; base::StringPiece der(reinterpret_cast(cert->derCert.data), cert->derCert.len); base::StringPiece spki; if (!asn1::ExtractSPKIFromDERCert(der, &spki)) { NOTREACHED(); error = true; continue; } const std::string spki_hash = crypto::SHA256HashString(spki); base::StringPiece serial_number = base::StringPiece( reinterpret_cast(cert->serialNumber.data), cert->serialNumber.len); CRLSet::Result result = crl_set->CheckSPKI(spki_hash); if (result != CRLSet::REVOKED && !issuer_spki_hash.empty()) result = crl_set->CheckSerial(serial_number, issuer_spki_hash); issuer_spki_hash = spki_hash; switch (result) { case CRLSet::REVOKED: return kCRLSetRevoked; case CRLSet::UNKNOWN: last_covered = false; continue; case CRLSet::GOOD: last_covered = true; continue; default: NOTREACHED(); error = true; continue; } } if (error || !last_covered || crl_set->IsExpired()) return kCRLSetUnknown; return kCRLSetOk; } // Arguments for CheckChainRevocationWithCRLSet that are curried within the // CERTChainVerifyCallback's isChainValidArg. struct CheckChainRevocationArgs { // The CRLSet to evaluate against. CRLSet* crl_set = nullptr; // The next callback to invoke, if the CRLSet does not report any errors. CERTChainVerifyCallback* next_callback = nullptr; // Indicates that the application callback failure was due to a CRLSet // revocation, rather than due to |next_callback| rejecting it. This is // used to map the error back to the proper caller-visible error code. bool was_revoked = false; }; SECStatus CheckChainRevocationWithCRLSet(void* is_chain_valid_arg, const CERTCertList* current_chain, PRBool* chain_ok) { CHECK(is_chain_valid_arg); CheckChainRevocationArgs* args = static_cast(is_chain_valid_arg); CRLSetResult crlset_result = kCRLSetUnknown; if (args->crl_set) { crlset_result = CheckRevocationWithCRLSet(current_chain, nullptr, args->crl_set); } if (crlset_result == kCRLSetRevoked) { args->was_revoked = true; *chain_ok = PR_FALSE; return SECSuccess; } args->was_revoked = false; *chain_ok = PR_TRUE; if (!args->next_callback || !args->next_callback->isChainValid) return SECSuccess; return (*args->next_callback->isChainValid)( args->next_callback->isChainValidArg, current_chain, chain_ok); } // Forward declarations. SECStatus RetryPKIXVerifyCertWithWorkarounds( CERTCertificate* cert_handle, int num_policy_oids, bool cert_io_enabled, std::vector* cvin, CERTValOutParam* cvout); SECOidTag GetFirstCertPolicy(CERTCertificate* cert_handle); // Call CERT_PKIXVerifyCert for the cert_handle. // Verification results are stored in an array of CERTValOutParam. // If |hard_fail| is true, and no policy_oids are supplied (eg: EV is NOT being // checked), then the failure to obtain valid CRL/OCSP information for all // certificates that contain CRL/OCSP URLs will cause the certificate to be // treated as if it was revoked. Since failures may be caused by transient // network failures or by malicious attackers, in general, hard_fail should be // false. // If policy_oids is not NULL and num_policy_oids is positive, policies // are also checked. // additional_trust_anchors is an optional list of certificates that can be // trusted as anchors when building a certificate chain. // Caller must initialize cvout before calling this function. SECStatus PKIXVerifyCert(CERTCertificate* cert_handle, bool check_revocation, bool hard_fail, bool cert_io_enabled, const SECOidTag* policy_oids, int num_policy_oids, CERTCertList* additional_trust_anchors, CERTChainVerifyCallback* chain_verify_callback, CERTValOutParam* cvout) { bool use_crl = check_revocation; bool use_ocsp = check_revocation; PRUint64 revocation_method_flags = CERT_REV_M_DO_NOT_TEST_USING_THIS_METHOD | CERT_REV_M_ALLOW_NETWORK_FETCHING | CERT_REV_M_IGNORE_IMPLICIT_DEFAULT_SOURCE | CERT_REV_M_IGNORE_MISSING_FRESH_INFO | CERT_REV_M_STOP_TESTING_ON_FRESH_INFO; PRUint64 revocation_method_independent_flags = CERT_REV_MI_TEST_ALL_LOCAL_INFORMATION_FIRST; if (check_revocation && policy_oids && num_policy_oids > 0) { // EV verification requires revocation checking. Consider the certificate // revoked if we don't have revocation info. // TODO(wtc): Add a bool parameter to expressly specify we're doing EV // verification or we want strict revocation flags. revocation_method_flags |= CERT_REV_M_REQUIRE_INFO_ON_MISSING_SOURCE; revocation_method_independent_flags |= CERT_REV_MI_REQUIRE_SOME_FRESH_INFO_AVAILABLE; } else if (check_revocation && hard_fail) { revocation_method_flags |= CERT_REV_M_FAIL_ON_MISSING_FRESH_INFO; revocation_method_independent_flags |= CERT_REV_MI_REQUIRE_SOME_FRESH_INFO_AVAILABLE; } else { revocation_method_flags |= CERT_REV_M_SKIP_TEST_ON_MISSING_SOURCE; revocation_method_independent_flags |= CERT_REV_MI_NO_OVERALL_INFO_REQUIREMENT; } PRUint64 method_flags[2]; method_flags[cert_revocation_method_crl] = revocation_method_flags; method_flags[cert_revocation_method_ocsp] = revocation_method_flags; if (use_crl) { method_flags[cert_revocation_method_crl] |= CERT_REV_M_TEST_USING_THIS_METHOD; } if (use_ocsp) { method_flags[cert_revocation_method_ocsp] |= CERT_REV_M_TEST_USING_THIS_METHOD; } CERTRevocationMethodIndex preferred_revocation_methods[1]; if (use_ocsp) { preferred_revocation_methods[0] = cert_revocation_method_ocsp; } else { preferred_revocation_methods[0] = cert_revocation_method_crl; } CERTRevocationFlags revocation_flags; revocation_flags.leafTests.number_of_defined_methods = arraysize(method_flags); revocation_flags.leafTests.cert_rev_flags_per_method = method_flags; revocation_flags.leafTests.number_of_preferred_methods = arraysize(preferred_revocation_methods); revocation_flags.leafTests.preferred_methods = preferred_revocation_methods; revocation_flags.leafTests.cert_rev_method_independent_flags = revocation_method_independent_flags; revocation_flags.chainTests.number_of_defined_methods = arraysize(method_flags); revocation_flags.chainTests.cert_rev_flags_per_method = method_flags; revocation_flags.chainTests.number_of_preferred_methods = arraysize(preferred_revocation_methods); revocation_flags.chainTests.preferred_methods = preferred_revocation_methods; revocation_flags.chainTests.cert_rev_method_independent_flags = revocation_method_independent_flags; std::vector cvin; cvin.reserve(7); CERTValInParam in_param; in_param.type = cert_pi_revocationFlags; in_param.value.pointer.revocation = &revocation_flags; cvin.push_back(in_param); if (policy_oids && num_policy_oids > 0) { in_param.type = cert_pi_policyOID; in_param.value.arraySize = num_policy_oids; in_param.value.array.oids = policy_oids; cvin.push_back(in_param); } if (additional_trust_anchors) { in_param.type = cert_pi_trustAnchors; in_param.value.pointer.chain = additional_trust_anchors; cvin.push_back(in_param); in_param.type = cert_pi_useOnlyTrustAnchors; in_param.value.scalar.b = PR_FALSE; cvin.push_back(in_param); } if (chain_verify_callback) { in_param.type = cert_pi_chainVerifyCallback; in_param.value.pointer.chainVerifyCallback = chain_verify_callback; cvin.push_back(in_param); } in_param.type = cert_pi_end; cvin.push_back(in_param); SECStatus rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer, &cvin[0], cvout, NULL); if (rv != SECSuccess) { rv = RetryPKIXVerifyCertWithWorkarounds(cert_handle, num_policy_oids, cert_io_enabled, &cvin, cvout); } return rv; } // PKIXVerifyCert calls this function to work around some bugs in // CERT_PKIXVerifyCert. All the arguments of this function are either the // arguments or local variables of PKIXVerifyCert. SECStatus RetryPKIXVerifyCertWithWorkarounds( CERTCertificate* cert_handle, int num_policy_oids, bool cert_io_enabled, std::vector* cvin, CERTValOutParam* cvout) { // We call this function when the first CERT_PKIXVerifyCert call in // PKIXVerifyCert failed, so we initialize |rv| to SECFailure. SECStatus rv = SECFailure; int nss_error = PORT_GetError(); CERTValInParam in_param; // If we get SEC_ERROR_UNKNOWN_ISSUER, we may be missing an intermediate // CA certificate, so we retry with cert_pi_useAIACertFetch. // cert_pi_useAIACertFetch has several bugs in its error handling and // error reporting (NSS bug 528743), so we don't use it by default. // Note: When building a certificate chain, CERT_PKIXVerifyCert may // incorrectly pick a CA certificate with the same subject name as the // missing intermediate CA certificate, and fail with the // SEC_ERROR_BAD_SIGNATURE error (NSS bug 524013), so we also retry with // cert_pi_useAIACertFetch on SEC_ERROR_BAD_SIGNATURE. if (cert_io_enabled && (nss_error == SEC_ERROR_UNKNOWN_ISSUER || nss_error == SEC_ERROR_BAD_SIGNATURE)) { DCHECK_EQ(cvin->back().type, cert_pi_end); cvin->pop_back(); in_param.type = cert_pi_useAIACertFetch; in_param.value.scalar.b = PR_TRUE; cvin->push_back(in_param); in_param.type = cert_pi_end; cvin->push_back(in_param); rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer, &(*cvin)[0], cvout, NULL); if (rv == SECSuccess) return rv; int new_nss_error = PORT_GetError(); if (new_nss_error == SEC_ERROR_INVALID_ARGS || new_nss_error == SEC_ERROR_UNKNOWN_AIA_LOCATION_TYPE || new_nss_error == SEC_ERROR_BAD_INFO_ACCESS_LOCATION || new_nss_error == SEC_ERROR_BAD_HTTP_RESPONSE || new_nss_error == SEC_ERROR_BAD_LDAP_RESPONSE || !IS_SEC_ERROR(new_nss_error)) { // Use the original error code because of cert_pi_useAIACertFetch's // bad error reporting. PORT_SetError(nss_error); return rv; } nss_error = new_nss_error; } // If an intermediate CA certificate has requireExplicitPolicy in its // policyConstraints extension, CERT_PKIXVerifyCert fails with // SEC_ERROR_POLICY_VALIDATION_FAILED because we didn't specify any // certificate policy (NSS bug 552775). So we retry with the certificate // policy found in the server certificate. if (nss_error == SEC_ERROR_POLICY_VALIDATION_FAILED && num_policy_oids == 0) { SECOidTag policy = GetFirstCertPolicy(cert_handle); if (policy != SEC_OID_UNKNOWN) { DCHECK_EQ(cvin->back().type, cert_pi_end); cvin->pop_back(); in_param.type = cert_pi_policyOID; in_param.value.arraySize = 1; in_param.value.array.oids = &policy; cvin->push_back(in_param); in_param.type = cert_pi_end; cvin->push_back(in_param); rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer, &(*cvin)[0], cvout, NULL); if (rv != SECSuccess) { // Use the original error code. PORT_SetError(nss_error); } } } return rv; } // Decodes the certificatePolicies extension of the certificate. Returns // NULL if the certificate doesn't have the extension or the extension can't // be decoded. The returned value must be freed with a // CERT_DestroyCertificatePoliciesExtension call. CERTCertificatePolicies* DecodeCertPolicies( CERTCertificate* cert_handle) { SECItem policy_ext; SECStatus rv = CERT_FindCertExtension(cert_handle, SEC_OID_X509_CERTIFICATE_POLICIES, &policy_ext); if (rv != SECSuccess) return NULL; CERTCertificatePolicies* policies = CERT_DecodeCertificatePoliciesExtension(&policy_ext); SECITEM_FreeItem(&policy_ext, PR_FALSE); return policies; } // Returns the OID tag for the first certificate policy in the certificate's // certificatePolicies extension. Returns SEC_OID_UNKNOWN if the certificate // has no certificate policy. SECOidTag GetFirstCertPolicy(CERTCertificate* cert_handle) { ScopedCERTCertificatePolicies policies(DecodeCertPolicies(cert_handle)); if (!policies.get()) return SEC_OID_UNKNOWN; CERTPolicyInfo* policy_info = policies->policyInfos[0]; if (!policy_info) return SEC_OID_UNKNOWN; if (policy_info->oid != SEC_OID_UNKNOWN) return policy_info->oid; // The certificate policy is unknown to NSS. We need to create a dynamic // OID tag for the policy. SECOidData od; od.oid.len = policy_info->policyID.len; od.oid.data = policy_info->policyID.data; od.offset = SEC_OID_UNKNOWN; // NSS doesn't allow us to pass an empty description, so I use a hardcoded, // default description here. The description doesn't need to be unique for // each OID. od.desc = "a certificate policy"; od.mechanism = CKM_INVALID_MECHANISM; od.supportedExtension = INVALID_CERT_EXTENSION; return SECOID_AddEntry(&od); } HashValue CertPublicKeyHashSHA256(CERTCertificate* cert) { HashValue hash(HASH_VALUE_SHA256); SECStatus rv = HASH_HashBuf(HASH_AlgSHA256, hash.data(), cert->derPublicKey.data, cert->derPublicKey.len); DCHECK_EQ(rv, SECSuccess); return hash; } void AppendPublicKeyHashes(CERTCertList* cert_list, CERTCertificate* root_cert, HashValueVector* hashes) { for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list); !CERT_LIST_END(node, cert_list); node = CERT_LIST_NEXT(node)) { hashes->push_back(CertPublicKeyHashSHA256(node->cert)); } if (root_cert) { hashes->push_back(CertPublicKeyHashSHA256(root_cert)); } } // Returns true if |cert_handle| contains a policy OID that is an EV policy // OID according to |metadata|, storing the resulting policy OID in // |*ev_policy_oid|. A true return is not sufficient to establish that a // certificate is EV, but a false return is sufficient to establish the // certificate cannot be EV. bool IsEVCandidate(EVRootCAMetadata* metadata, CERTCertificate* cert_handle, SECOidTag* ev_policy_oid) { *ev_policy_oid = SEC_OID_UNKNOWN; DCHECK(cert_handle); ScopedCERTCertificatePolicies policies(DecodeCertPolicies(cert_handle)); if (!policies.get()) return false; CERTPolicyInfo** policy_infos = policies->policyInfos; while (*policy_infos != NULL) { CERTPolicyInfo* policy_info = *policy_infos++; // If the Policy OID is unknown, that implicitly means it has not been // registered as an EV policy. if (policy_info->oid == SEC_OID_UNKNOWN) continue; if (metadata->IsEVPolicyOID(policy_info->oid)) { *ev_policy_oid = policy_info->oid; // De-prioritize the CA/Browser forum Extended Validation policy // (2.23.140.1.1). See crbug.com/705285. if (!EVRootCAMetadata::IsCaBrowserForumEvOid(policy_info->oid)) break; } } return *ev_policy_oid != SEC_OID_UNKNOWN; } // Studied Mozilla's code (esp. security/manager/ssl/src/nsIdentityChecking.cpp // and nsNSSCertHelper.cpp) to learn how to verify EV certificate. // TODO(wtc): A possible optimization is that we get the trust anchor from // the first PKIXVerifyCert call. We look up the EV policy for the trust // anchor. If the trust anchor has no EV policy, we know the cert isn't EV. // Otherwise, we pass just that EV policy (as opposed to all the EV policies) // to the second PKIXVerifyCert call. bool VerifyEV(CERTCertificate* cert_handle, int flags, CRLSet* crl_set, bool rev_checking_enabled, EVRootCAMetadata* metadata, SECOidTag ev_policy_oid, CERTCertList* additional_trust_anchors, CERTChainVerifyCallback* chain_verify_callback) { CERTValOutParam cvout[3]; int cvout_index = 0; cvout[cvout_index].type = cert_po_certList; cvout[cvout_index].value.pointer.chain = NULL; int cvout_cert_list_index = cvout_index; cvout_index++; cvout[cvout_index].type = cert_po_trustAnchor; cvout[cvout_index].value.pointer.cert = NULL; int cvout_trust_anchor_index = cvout_index; cvout_index++; cvout[cvout_index].type = cert_po_end; ScopedCERTValOutParam scoped_cvout(cvout); SECStatus status = PKIXVerifyCert( cert_handle, rev_checking_enabled, true, /* hard fail is implied in EV. */ flags & CertVerifier::VERIFY_CERT_IO_ENABLED, &ev_policy_oid, 1, additional_trust_anchors, chain_verify_callback, cvout); if (status != SECSuccess) return false; CERTCertificate* root_ca = cvout[cvout_trust_anchor_index].value.pointer.cert; if (root_ca == NULL) return false; // This second PKIXVerifyCert call could have found a different certification // path and one or more of the certificates on this new path, that weren't on // the old path, might have been revoked. if (crl_set) { CRLSetResult crl_set_result = CheckRevocationWithCRLSet( cvout[cvout_cert_list_index].value.pointer.chain, cvout[cvout_trust_anchor_index].value.pointer.cert, crl_set); if (crl_set_result == kCRLSetRevoked) return false; } SHA256HashValue fingerprint; crypto::SHA256HashString( base::StringPiece(reinterpret_cast(root_ca->derCert.data), root_ca->derCert.len), fingerprint.data, sizeof(fingerprint.data)); return metadata->HasEVPolicyOID(fingerprint, ev_policy_oid); } // Convert a CertificateList to an NSS CERTCertList. If any certs couldn't be // converted, they are silently ignored. ScopedCERTCertList CertificateListToCERTCertListIgnoringErrors( const CertificateList& list) { ScopedCERTCertList result(CERT_NewCertList()); for (size_t i = 0; i < list.size(); ++i) { ScopedCERTCertificate cert = x509_util::CreateCERTCertificateFromX509Certificate(list[i].get()); if (cert) CERT_AddCertToListTail(result.get(), cert.release()); else LOG(WARNING) << "ignoring cert: " << list[i]->subject().GetDisplayName(); } return result; } } // namespace CertVerifyProcNSS::CertVerifyProcNSS() : cache_ocsp_response_from_side_channel_( reinterpret_cast( dlsym(RTLD_DEFAULT, "CERT_CacheOCSPResponseFromSideChannel"))) { } CertVerifyProcNSS::~CertVerifyProcNSS() {} bool CertVerifyProcNSS::SupportsAdditionalTrustAnchors() const { return true; } bool CertVerifyProcNSS::SupportsOCSPStapling() const { return cache_ocsp_response_from_side_channel_; } int CertVerifyProcNSS::VerifyInternalImpl( X509Certificate* cert, const std::string& hostname, const std::string& ocsp_response, int flags, CRLSet* crl_set, const CertificateList& additional_trust_anchors, CERTChainVerifyCallback* chain_verify_callback, CertVerifyResult* verify_result) { // Convert the whole input chain into NSS certificates. Even though only the // target cert is explicitly referred to in this function, creating NSS // certificates for the intermediates is required for PKIXVerifyCert to find // them during chain building. ScopedCERTCertificateList input_chain = x509_util::CreateCERTCertificateListFromX509Certificate( cert, x509_util::InvalidIntermediateBehavior::kIgnore); if (input_chain.empty()) { verify_result->cert_status |= CERT_STATUS_INVALID; return ERR_CERT_INVALID; } CERTCertificate* cert_handle = input_chain[0].get(); if (!ocsp_response.empty() && cache_ocsp_response_from_side_channel_) { // Note: NSS uses a thread-safe global hash table, so this call will // affect any concurrent verification operations on |cert| or copies of // the same certificate. This is an unavoidable limitation of NSS's OCSP // API. SECItem ocsp_response_item; ocsp_response_item.data = reinterpret_cast( const_cast(ocsp_response.data())); ocsp_response_item.len = ocsp_response.size(); cache_ocsp_response_from_side_channel_(CERT_GetDefaultCertDB(), cert_handle, PR_Now(), &ocsp_response_item, nullptr); } // Setup a callback to call into CheckChainRevocationWithCRLSet with the // current CRLSet. If the CRLSet revokes a given chain, |was_revoked| // will be set to true. // The same callback and args are used for every invocation of // PKIXVerifyCert, as CheckChainRevocationWithCRLSet handles resetting // |was_revoked| as necessary. CheckChainRevocationArgs check_chain_revocation_args; check_chain_revocation_args.crl_set = crl_set; check_chain_revocation_args.next_callback = chain_verify_callback; CERTChainVerifyCallback crlset_callback; memset(&crlset_callback, 0, sizeof(crlset_callback)); crlset_callback.isChainValid = &CheckChainRevocationWithCRLSet; crlset_callback.isChainValidArg = static_cast(&check_chain_revocation_args); // Make sure that the cert is valid now. SECCertTimeValidity validity = CERT_CheckCertValidTimes( cert_handle, PR_Now(), PR_TRUE); if (validity != secCertTimeValid) verify_result->cert_status |= CERT_STATUS_DATE_INVALID; CERTValOutParam cvout[3]; int cvout_index = 0; cvout[cvout_index].type = cert_po_certList; cvout[cvout_index].value.pointer.chain = NULL; int cvout_cert_list_index = cvout_index; cvout_index++; cvout[cvout_index].type = cert_po_trustAnchor; cvout[cvout_index].value.pointer.cert = NULL; int cvout_trust_anchor_index = cvout_index; cvout_index++; cvout[cvout_index].type = cert_po_end; ScopedCERTValOutParam scoped_cvout(cvout); EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); SECOidTag ev_policy_oid = SEC_OID_UNKNOWN; bool is_ev_candidate = (flags & CertVerifier::VERIFY_EV_CERT) && IsEVCandidate(metadata, cert_handle, &ev_policy_oid); bool cert_io_enabled = flags & CertVerifier::VERIFY_CERT_IO_ENABLED; bool check_revocation = cert_io_enabled && (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED); if (check_revocation) verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; ScopedCERTCertList trust_anchors; if (!additional_trust_anchors.empty()) { trust_anchors = CertificateListToCERTCertListIgnoringErrors(additional_trust_anchors); } SECStatus status = PKIXVerifyCert(cert_handle, check_revocation, false, cert_io_enabled, NULL, 0, trust_anchors.get(), &crlset_callback, cvout); if (status == SECSuccess && (flags & CertVerifier::VERIFY_REV_CHECKING_REQUIRED_LOCAL_ANCHORS) && !IsKnownRoot(cvout[cvout_trust_anchor_index].value.pointer.cert)) { // TODO(rsleevi): Optimize this by supplying the constructed chain to // libpkix via cvin. Omitting for now, due to lack of coverage in upstream // NSS tests for that feature. scoped_cvout.Clear(); verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; status = PKIXVerifyCert(cert_handle, true, true, cert_io_enabled, NULL, 0, trust_anchors.get(), &crlset_callback, cvout); } if (status == SECSuccess) { AppendPublicKeyHashes(cvout[cvout_cert_list_index].value.pointer.chain, cvout[cvout_trust_anchor_index].value.pointer.cert, &verify_result->public_key_hashes); verify_result->is_issued_by_known_root = IsKnownRoot(cvout[cvout_trust_anchor_index].value.pointer.cert); verify_result->is_issued_by_additional_trust_anchor = IsAdditionalTrustAnchor( trust_anchors.get(), cvout[cvout_trust_anchor_index].value.pointer.cert); GetCertChainInfo(cvout[cvout_cert_list_index].value.pointer.chain, cvout[cvout_trust_anchor_index].value.pointer.cert, verify_result); } CRLSetResult crl_set_result = kCRLSetUnknown; if (crl_set) { if (status == SECSuccess) { // Reverify the returned chain; NSS should have already called // CheckChainRevocationWithCRLSet prior to returning, but given the // edge cases (self-signed certs that are trusted; cached chains; // unreadable code), this is more about defense in depth than // functional necessity. crl_set_result = CheckRevocationWithCRLSet( cvout[cvout_cert_list_index].value.pointer.chain, cvout[cvout_trust_anchor_index].value.pointer.cert, crl_set); if (crl_set_result == kCRLSetRevoked) { PORT_SetError(SEC_ERROR_REVOKED_CERTIFICATE); status = SECFailure; } } else if (PORT_GetError() == SEC_ERROR_APPLICATION_CALLBACK_ERROR && check_chain_revocation_args.was_revoked) { // If a CRLSet was supplied, and the error was an application callback // error, then it was directed through the CRLSet code and that // particular chain was revoked. PORT_SetError(SEC_ERROR_REVOKED_CERTIFICATE); } } if (status != SECSuccess) { int err = PORT_GetError(); LOG(ERROR) << "CERT_PKIXVerifyCert for " << hostname << " failed err=" << err; // CERT_PKIXVerifyCert rerports the wrong error code for // expired certificates (NSS bug 491174) if (err == SEC_ERROR_CERT_NOT_VALID && (verify_result->cert_status & CERT_STATUS_DATE_INVALID)) err = SEC_ERROR_EXPIRED_CERTIFICATE; CertStatus cert_status = MapCertErrorToCertStatus(err); if (cert_status) { verify_result->cert_status |= cert_status; return MapCertStatusToNetError(verify_result->cert_status); } // |err| is not a certificate error. return MapSecurityError(err); } if (IsCertStatusError(verify_result->cert_status)) return MapCertStatusToNetError(verify_result->cert_status); if ((flags & CertVerifier::VERIFY_EV_CERT) && is_ev_candidate) { check_revocation |= crl_set_result != kCRLSetOk && cert_io_enabled && (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED_EV_ONLY); if (check_revocation) verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; if (VerifyEV(cert_handle, flags, crl_set, check_revocation, metadata, ev_policy_oid, trust_anchors.get(), &crlset_callback)) { verify_result->cert_status |= CERT_STATUS_IS_EV; } } return OK; } int CertVerifyProcNSS::VerifyInternal( X509Certificate* cert, const std::string& hostname, const std::string& ocsp_response, int flags, CRLSet* crl_set, const CertificateList& additional_trust_anchors, CertVerifyResult* verify_result) { return VerifyInternalImpl(cert, hostname, ocsp_response, flags, crl_set, additional_trust_anchors, NULL, // chain_verify_callback verify_result); } } // namespace net