// Copyright 2011 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/rand_util.h" #include #include #include #include #include #include "base/check_op.h" #include "base/strings/string_util.h" #include "base/time/time.h" namespace base { namespace { bool g_subsampling_enabled = true; } // namespace uint64_t RandUint64() { uint64_t number; RandBytes(&number, sizeof(number)); return number; } int RandInt(int min, int max) { DCHECK_LE(min, max); uint64_t range = static_cast(max) - static_cast(min) + 1; // |range| is at most UINT_MAX + 1, so the result of RandGenerator(range) // is at most UINT_MAX. Hence it's safe to cast it from uint64_t to int64_t. int result = static_cast(min + static_cast(base::RandGenerator(range))); DCHECK_GE(result, min); DCHECK_LE(result, max); return result; } double RandDouble() { return BitsToOpenEndedUnitInterval(base::RandUint64()); } float RandFloat() { return BitsToOpenEndedUnitIntervalF(base::RandUint64()); } TimeDelta RandTimeDelta(TimeDelta start, TimeDelta limit) { // We must have a finite, non-empty, non-reversed interval. CHECK_LT(start, limit); CHECK(!start.is_min()); CHECK(!limit.is_max()); const int64_t range = (limit - start).InMicroseconds(); // Because of the `CHECK_LT()` above, range > 0, so this cast is safe. const uint64_t delta_us = base::RandGenerator(static_cast(range)); // ...and because `range` fit in an `int64_t`, so will `delta_us`. return start + Microseconds(static_cast(delta_us)); } TimeDelta RandTimeDeltaUpTo(TimeDelta limit) { return RandTimeDelta(TimeDelta(), limit); } double BitsToOpenEndedUnitInterval(uint64_t bits) { // We try to get maximum precision by masking out as many bits as will fit // in the target type's mantissa, and raising it to an appropriate power to // produce output in the range [0, 1). For IEEE 754 doubles, the mantissa // is expected to accommodate 53 bits (including the implied bit). static_assert(std::numeric_limits::radix == 2, "otherwise use scalbn"); constexpr int kBits = std::numeric_limits::digits; return ldexp(bits & ((UINT64_C(1) << kBits) - 1u), -kBits); } float BitsToOpenEndedUnitIntervalF(uint64_t bits) { // We try to get maximum precision by masking out as many bits as will fit // in the target type's mantissa, and raising it to an appropriate power to // produce output in the range [0, 1). For IEEE 754 floats, the mantissa is // expected to accommodate 12 bits (including the implied bit). static_assert(std::numeric_limits::radix == 2, "otherwise use scalbn"); constexpr int kBits = std::numeric_limits::digits; return ldexpf(bits & ((UINT64_C(1) << kBits) - 1u), -kBits); } uint64_t RandGenerator(uint64_t range) { DCHECK_GT(range, 0u); // We must discard random results above this number, as they would // make the random generator non-uniform (consider e.g. if // MAX_UINT64 was 7 and |range| was 5, then a result of 1 would be twice // as likely as a result of 3 or 4). uint64_t max_acceptable_value = (std::numeric_limits::max() / range) * range - 1; uint64_t value; do { value = base::RandUint64(); } while (value > max_acceptable_value); return value % range; } std::string RandBytesAsString(size_t length) { DCHECK_GT(length, 0u); std::string result; RandBytes(WriteInto(&result, length + 1), length); return result; } std::vector RandBytesAsVector(size_t length) { std::vector result(length); if (result.size()) { RandBytes(result); } return result; } InsecureRandomGenerator::InsecureRandomGenerator() { a_ = base::RandUint64(); b_ = base::RandUint64(); } void InsecureRandomGenerator::ReseedForTesting(uint64_t seed) { a_ = seed; b_ = seed; } uint64_t InsecureRandomGenerator::RandUint64() { // Using XorShift128+, which is simple and widely used. See // https://en.wikipedia.org/wiki/Xorshift#xorshift+ for details. uint64_t t = a_; const uint64_t s = b_; a_ = s; t ^= t << 23; t ^= t >> 17; t ^= s ^ (s >> 26); b_ = t; return t + s; } uint32_t InsecureRandomGenerator::RandUint32() { // The generator usually returns an uint64_t, truncate it. // // It is noted in this paper (https://arxiv.org/abs/1810.05313) that the // lowest 32 bits fail some statistical tests from the Big Crush // suite. Use the higher ones instead. return this->RandUint64() >> 32; } double InsecureRandomGenerator::RandDouble() { uint64_t x = RandUint64(); // From https://vigna.di.unimi.it/xorshift/. // 53 bits of mantissa, hence the "hexadecimal exponent" 1p-53. return (x >> 11) * 0x1.0p-53; } MetricsSubSampler::MetricsSubSampler() = default; bool MetricsSubSampler::ShouldSample(double probability) { return !g_subsampling_enabled || generator_.RandDouble() < probability; } MetricsSubSampler::ScopedDisableForTesting::ScopedDisableForTesting() { DCHECK(g_subsampling_enabled); g_subsampling_enabled = false; } MetricsSubSampler::ScopedDisableForTesting::~ScopedDisableForTesting() { DCHECK(!g_subsampling_enabled); g_subsampling_enabled = true; } } // namespace base