// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/x509_certificate.h" #include #include #include #include #include #include "base/base64.h" #include "base/logging.h" #include "base/macros.h" #include "base/numerics/safe_conversions.h" #include "base/pickle.h" #include "base/stl_util.h" #include "base/strings/string_piece.h" #include "base/strings/string_util.h" #include "base/time/time.h" #include "base/trace_event/trace_event.h" #include "build/build_config.h" #include "crypto/openssl_util.h" #include "net/base/ip_address.h" #include "net/base/registry_controlled_domains/registry_controlled_domain.h" #include "net/base/url_util.h" #include "net/cert/asn1_util.h" #include "net/cert/internal/cert_errors.h" #include "net/cert/internal/name_constraints.h" #include "net/cert/internal/parsed_certificate.h" #include "net/cert/internal/signature_algorithm.h" #include "net/cert/internal/verify_name_match.h" #include "net/cert/internal/verify_signed_data.h" #include "net/cert/pem_tokenizer.h" #include "net/cert/x509_util.h" #include "net/der/parser.h" #include "third_party/boringssl/src/include/openssl/evp.h" #include "third_party/boringssl/src/include/openssl/pkcs7.h" #include "third_party/boringssl/src/include/openssl/pool.h" #include "third_party/boringssl/src/include/openssl/sha.h" #include "url/url_canon.h" namespace net { namespace { // Indicates the order to use when trying to decode binary data, which is // based on (speculation) as to what will be most common -> least common const X509Certificate::Format kFormatDecodePriority[] = { X509Certificate::FORMAT_SINGLE_CERTIFICATE, X509Certificate::FORMAT_PKCS7 }; // The PEM block header used for DER certificates const char kCertificateHeader[] = "CERTIFICATE"; // The PEM block header used for PKCS#7 data const char kPKCS7Header[] = "PKCS7"; // Utility to split |src| on the first occurrence of |c|, if any. |right| will // either be empty if |c| was not found, or will contain the remainder of the // string including the split character itself. void SplitOnChar(const base::StringPiece& src, char c, base::StringPiece* left, base::StringPiece* right) { size_t pos = src.find(c); if (pos == base::StringPiece::npos) { *left = src; right->clear(); } else { *left = src.substr(0, pos); *right = src.substr(pos); } } // Converts a GeneralizedTime struct to a base::Time, returning true on success // or false if |generalized| was invalid or cannot be represented by // base::Time. bool GeneralizedTimeToBaseTime(const der::GeneralizedTime& generalized, base::Time* result) { base::Time::Exploded exploded = {0}; exploded.year = generalized.year; exploded.month = generalized.month; exploded.day_of_month = generalized.day; exploded.hour = generalized.hours; exploded.minute = generalized.minutes; exploded.second = generalized.seconds; if (base::Time::FromUTCExploded(exploded, result)) return true; // Fail on obviously bad dates. if (!exploded.HasValidValues()) return false; // TODO(mattm): consider consolidating this with // SaturatedTimeFromUTCExploded from cookie_util.cc if (static_cast(generalized.year) > base::Time::kExplodedMaxYear) { *result = base::Time::Max(); return true; } if (static_cast(generalized.year) < base::Time::kExplodedMinYear) { *result = base::Time::Min(); return true; } return false; } // Sets |value| to the Value from a DER Sequence Tag-Length-Value and return // true, or return false if the TLV was not a valid DER Sequence. WARN_UNUSED_RESULT bool ParseSequenceValue(const der::Input& tlv, der::Input* value) { der::Parser parser(tlv); return parser.ReadTag(der::kSequence, value) && !parser.HasMore(); } // Normalize |cert|'s Issuer and store it in |out_normalized_issuer|, returning // true on success or false if there was a parsing error. bool GetNormalizedCertIssuer(CRYPTO_BUFFER* cert, std::string* out_normalized_issuer) { der::Input tbs_certificate_tlv; der::Input signature_algorithm_tlv; der::BitString signature_value; if (!ParseCertificate( der::Input(CRYPTO_BUFFER_data(cert), CRYPTO_BUFFER_len(cert)), &tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value, nullptr)) { return false; } ParsedTbsCertificate tbs; if (!ParseTbsCertificate(tbs_certificate_tlv, x509_util::DefaultParseCertificateOptions(), &tbs, nullptr)) return false; der::Input issuer_value; if (!ParseSequenceValue(tbs.issuer_tlv, &issuer_value)) return false; CertErrors errors; return NormalizeName(issuer_value, out_normalized_issuer, &errors); } // Parses certificates from a PKCS#7 SignedData structure, appending them to // |handles|. void CreateCertBuffersFromPKCS7Bytes( const char* data, size_t length, std::vector>* handles) { crypto::EnsureOpenSSLInit(); crypto::OpenSSLErrStackTracer err_cleaner(FROM_HERE); CBS der_data; CBS_init(&der_data, reinterpret_cast(data), length); STACK_OF(CRYPTO_BUFFER)* certs = sk_CRYPTO_BUFFER_new_null(); if (PKCS7_get_raw_certificates(certs, &der_data, x509_util::GetBufferPool())) { for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(certs); ++i) { handles->push_back( bssl::UniquePtr(sk_CRYPTO_BUFFER_value(certs, i))); } } // |handles| took ownership of the individual buffers, so only free the list // itself. sk_CRYPTO_BUFFER_free(certs); } } // namespace // static scoped_refptr X509Certificate::CreateFromBuffer( bssl::UniquePtr cert_buffer, std::vector> intermediates) { DCHECK(cert_buffer); scoped_refptr cert( new X509Certificate(std::move(cert_buffer), std::move(intermediates))); if (!cert->cert_buffer()) return nullptr; // Initialize() failed. return cert; } // static scoped_refptr X509Certificate::CreateFromBufferUnsafeOptions( bssl::UniquePtr cert_buffer, std::vector> intermediates, UnsafeCreateOptions options) { DCHECK(cert_buffer); scoped_refptr cert(new X509Certificate( std::move(cert_buffer), std::move(intermediates), options)); if (!cert->cert_buffer()) return nullptr; // Initialize() failed. return cert; } // static scoped_refptr X509Certificate::CreateFromDERCertChain( const std::vector& der_certs) { return CreateFromDERCertChainUnsafeOptions(der_certs, {}); } // static scoped_refptr X509Certificate::CreateFromDERCertChainUnsafeOptions( const std::vector& der_certs, UnsafeCreateOptions options) { TRACE_EVENT0("io", "X509Certificate::CreateFromDERCertChain"); if (der_certs.empty()) return nullptr; std::vector> intermediate_ca_certs; intermediate_ca_certs.reserve(der_certs.size() - 1); for (size_t i = 1; i < der_certs.size(); i++) { bssl::UniquePtr handle = CreateCertBufferFromBytes( const_cast(der_certs[i].data()), der_certs[i].size()); if (!handle) break; intermediate_ca_certs.push_back(std::move(handle)); } // Return NULL if we failed to parse any of the certs. if (der_certs.size() - 1 != intermediate_ca_certs.size()) return nullptr; bssl::UniquePtr handle = CreateCertBufferFromBytes( const_cast(der_certs[0].data()), der_certs[0].size()); if (!handle) return nullptr; return CreateFromBufferUnsafeOptions( std::move(handle), std::move(intermediate_ca_certs), options); } // static scoped_refptr X509Certificate::CreateFromBytes( const char* data, size_t length) { return CreateFromBytesUnsafeOptions(data, length, {}); } // static scoped_refptr X509Certificate::CreateFromBytesUnsafeOptions( const char* data, size_t length, UnsafeCreateOptions options) { bssl::UniquePtr cert_buffer = CreateCertBufferFromBytes(data, length); if (!cert_buffer) return NULL; scoped_refptr cert = CreateFromBufferUnsafeOptions(std::move(cert_buffer), {}, options); return cert; } // static scoped_refptr X509Certificate::CreateFromPickle( base::PickleIterator* pickle_iter) { return CreateFromPickleUnsafeOptions(pickle_iter, {}); } // static scoped_refptr X509Certificate::CreateFromPickleUnsafeOptions( base::PickleIterator* pickle_iter, UnsafeCreateOptions options) { int chain_length = 0; if (!pickle_iter->ReadLength(&chain_length)) return nullptr; std::vector cert_chain; const char* data = nullptr; int data_length = 0; for (int i = 0; i < chain_length; ++i) { if (!pickle_iter->ReadData(&data, &data_length)) return nullptr; cert_chain.push_back(base::StringPiece(data, data_length)); } return CreateFromDERCertChainUnsafeOptions(cert_chain, options); } // static CertificateList X509Certificate::CreateCertificateListFromBytes( const char* data, size_t length, int format) { std::vector> certificates; // Check to see if it is in a PEM-encoded form. This check is performed // first, as both OS X and NSS will both try to convert if they detect // PEM encoding, except they don't do it consistently between the two. base::StringPiece data_string(data, length); std::vector pem_headers; // To maintain compatibility with NSS/Firefox, CERTIFICATE is a universally // valid PEM block header for any format. pem_headers.push_back(kCertificateHeader); if (format & FORMAT_PKCS7) pem_headers.push_back(kPKCS7Header); PEMTokenizer pem_tokenizer(data_string, pem_headers); while (pem_tokenizer.GetNext()) { std::string decoded(pem_tokenizer.data()); bssl::UniquePtr handle; if (format & FORMAT_PEM_CERT_SEQUENCE) handle = CreateCertBufferFromBytes(decoded.c_str(), decoded.size()); if (handle) { // Parsed a DER encoded certificate. All PEM blocks that follow must // also be DER encoded certificates wrapped inside of PEM blocks. format = FORMAT_PEM_CERT_SEQUENCE; certificates.push_back(std::move(handle)); continue; } // If the first block failed to parse as a DER certificate, and // formats other than PEM are acceptable, check to see if the decoded // data is one of the accepted formats. if (format & ~FORMAT_PEM_CERT_SEQUENCE) { for (size_t i = 0; certificates.empty() && i < base::size(kFormatDecodePriority); ++i) { if (format & kFormatDecodePriority[i]) { certificates = CreateCertBuffersFromBytes( decoded.c_str(), decoded.size(), kFormatDecodePriority[i]); } } } // Stop parsing after the first block for any format but a sequence of // PEM-encoded DER certificates. The case of FORMAT_PEM_CERT_SEQUENCE // is handled above, and continues processing until a certificate fails // to parse. break; } // Try each of the formats, in order of parse preference, to see if |data| // contains the binary representation of a Format, if it failed to parse // as a PEM certificate/chain. for (size_t i = 0; certificates.empty() && i < base::size(kFormatDecodePriority); ++i) { if (format & kFormatDecodePriority[i]) certificates = CreateCertBuffersFromBytes(data, length, kFormatDecodePriority[i]); } CertificateList results; // No certificates parsed. if (certificates.empty()) return results; for (auto& it : certificates) { scoped_refptr cert = CreateFromBuffer(std::move(it), {}); if (cert) results.push_back(std::move(cert)); } return results; } void X509Certificate::Persist(base::Pickle* pickle) { DCHECK(cert_buffer_); // This would be an absolutely insane number of intermediates. if (intermediate_ca_certs_.size() > static_cast(INT_MAX) - 1) { NOTREACHED(); return; } pickle->WriteInt(static_cast(intermediate_ca_certs_.size() + 1)); pickle->WriteString(x509_util::CryptoBufferAsStringPiece(cert_buffer_.get())); for (const auto& intermediate : intermediate_ca_certs_) { pickle->WriteString( x509_util::CryptoBufferAsStringPiece(intermediate.get())); } } bool X509Certificate::GetSubjectAltName( std::vector* dns_names, std::vector* ip_addrs) const { if (dns_names) dns_names->clear(); if (ip_addrs) ip_addrs->clear(); der::Input tbs_certificate_tlv; der::Input signature_algorithm_tlv; der::BitString signature_value; if (!ParseCertificate(der::Input(CRYPTO_BUFFER_data(cert_buffer_.get()), CRYPTO_BUFFER_len(cert_buffer_.get())), &tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value, nullptr)) { return false; } ParsedTbsCertificate tbs; if (!ParseTbsCertificate(tbs_certificate_tlv, x509_util::DefaultParseCertificateOptions(), &tbs, nullptr)) return false; if (!tbs.has_extensions) return false; std::map extensions; if (!ParseExtensions(tbs.extensions_tlv, &extensions)) return false; ParsedExtension subject_alt_names_extension; if (!ConsumeExtension(SubjectAltNameOid(), &extensions, &subject_alt_names_extension)) { return false; } CertErrors errors; std::unique_ptr subject_alt_names = GeneralNames::Create(subject_alt_names_extension.value, &errors); if (!subject_alt_names) return false; if (dns_names) { for (const auto& dns_name : subject_alt_names->dns_names) dns_names->push_back(dns_name.as_string()); } if (ip_addrs) { for (const IPAddress& addr : subject_alt_names->ip_addresses) { ip_addrs->push_back( std::string(reinterpret_cast(addr.bytes().data()), addr.bytes().size())); } } return !subject_alt_names->dns_names.empty() || !subject_alt_names->ip_addresses.empty(); } bool X509Certificate::HasExpired() const { return base::Time::Now() > valid_expiry(); } bool X509Certificate::EqualsExcludingChain(const X509Certificate* other) const { return x509_util::CryptoBufferEqual(cert_buffer_.get(), other->cert_buffer_.get()); } bool X509Certificate::EqualsIncludingChain(const X509Certificate* other) const { if (intermediate_ca_certs_.size() != other->intermediate_ca_certs_.size() || !EqualsExcludingChain(other)) { return false; } for (size_t i = 0; i < intermediate_ca_certs_.size(); ++i) { if (!x509_util::CryptoBufferEqual(intermediate_ca_certs_[i].get(), other->intermediate_ca_certs_[i].get())) { return false; } } return true; } bool X509Certificate::IsIssuedByEncoded( const std::vector& valid_issuers) { std::vector normalized_issuers; CertErrors errors; for (const auto& raw_issuer : valid_issuers) { der::Input issuer_value; std::string normalized_issuer; if (!ParseSequenceValue(der::Input(&raw_issuer), &issuer_value) || !NormalizeName(issuer_value, &normalized_issuer, &errors)) { continue; } normalized_issuers.push_back(std::move(normalized_issuer)); } std::string normalized_cert_issuer; if (!GetNormalizedCertIssuer(cert_buffer_.get(), &normalized_cert_issuer)) return false; if (base::ContainsValue(normalized_issuers, normalized_cert_issuer)) return true; for (const auto& intermediate : intermediate_ca_certs_) { if (!GetNormalizedCertIssuer(intermediate.get(), &normalized_cert_issuer)) return false; if (base::ContainsValue(normalized_issuers, normalized_cert_issuer)) return true; } return false; } // static bool X509Certificate::VerifyHostname( const std::string& hostname, const std::vector& cert_san_dns_names, const std::vector& cert_san_ip_addrs) { DCHECK(!hostname.empty()); if (cert_san_dns_names.empty() && cert_san_ip_addrs.empty()) { // Either a dNSName or iPAddress subjectAltName MUST be present in order // to match, so fail quickly if not. return false; } // Perform name verification following http://tools.ietf.org/html/rfc6125. // The terminology used in this method is as per that RFC:- // Reference identifier == the host the local user/agent is intending to // access, i.e. the thing displayed in the URL bar. // Presented identifier(s) == name(s) the server knows itself as, in its cert. // CanonicalizeHost requires surrounding brackets to parse an IPv6 address. const std::string host_or_ip = hostname.find(':') != std::string::npos ? "[" + hostname + "]" : hostname; url::CanonHostInfo host_info; std::string reference_name = CanonicalizeHost(host_or_ip, &host_info); // CanonicalizeHost does not normalize absolute vs relative DNS names. If // the input name was absolute (included trailing .), normalize it as if it // was relative. if (!reference_name.empty() && *reference_name.rbegin() == '.') reference_name.resize(reference_name.size() - 1); if (reference_name.empty()) return false; // Fully handle all cases where |hostname| contains an IP address. if (host_info.IsIPAddress()) { base::StringPiece ip_addr_string( reinterpret_cast(host_info.address), host_info.AddressLength()); return base::ContainsValue(cert_san_ip_addrs, ip_addr_string); } // |reference_domain| is the remainder of |host| after the leading host // component is stripped off, but includes the leading dot e.g. // "www.f.com" -> ".f.com". // If there is no meaningful domain part to |host| (e.g. it contains no dots) // then |reference_domain| will be empty. base::StringPiece reference_host, reference_domain; SplitOnChar(reference_name, '.', &reference_host, &reference_domain); bool allow_wildcards = false; if (!reference_domain.empty()) { DCHECK(reference_domain.starts_with(".")); // Do not allow wildcards for public/ICANN registry controlled domains - // that is, prevent *.com or *.co.uk as valid presented names, but do not // prevent *.appspot.com (a private registry controlled domain). // In addition, unknown top-level domains (such as 'intranet' domains or // new TLDs/gTLDs not yet added to the registry controlled domain dataset) // are also implicitly prevented. // Because |reference_domain| must contain at least one name component that // is not registry controlled, this ensures that all reference domains // contain at least three domain components when using wildcards. size_t registry_length = registry_controlled_domains::GetCanonicalHostRegistryLength( reference_name, registry_controlled_domains::INCLUDE_UNKNOWN_REGISTRIES, registry_controlled_domains::EXCLUDE_PRIVATE_REGISTRIES); // Because |reference_name| was already canonicalized, the following // should never happen. CHECK_NE(std::string::npos, registry_length); // Account for the leading dot in |reference_domain|. bool is_registry_controlled = registry_length != 0 && registry_length == (reference_domain.size() - 1); // Additionally, do not attempt wildcard matching for purely numeric // hostnames. allow_wildcards = !is_registry_controlled && reference_name.find_first_not_of("0123456789.") != std::string::npos; } // Now step through the DNS names doing wild card comparison (if necessary) // on each against the reference name. for (const auto& cert_san_dns_name : cert_san_dns_names) { // Catch badly corrupt cert names up front. if (cert_san_dns_name.empty() || cert_san_dns_name.find('\0') != std::string::npos) { DVLOG(1) << "Bad name in cert: " << cert_san_dns_name; continue; } std::string presented_name(base::ToLowerASCII(cert_san_dns_name)); // Remove trailing dot, if any. if (*presented_name.rbegin() == '.') presented_name.resize(presented_name.length() - 1); // The hostname must be at least as long as the cert name it is matching, // as we require the wildcard (if present) to match at least one character. if (presented_name.length() > reference_name.length()) continue; base::StringPiece presented_host, presented_domain; SplitOnChar(presented_name, '.', &presented_host, &presented_domain); if (presented_domain != reference_domain) continue; if (presented_host != "*") { if (presented_host == reference_host) return true; continue; } if (!allow_wildcards) continue; return true; } return false; } bool X509Certificate::VerifyNameMatch(const std::string& hostname) const { std::vector dns_names, ip_addrs; GetSubjectAltName(&dns_names, &ip_addrs); return VerifyHostname(hostname, dns_names, ip_addrs); } // static bool X509Certificate::GetPEMEncodedFromDER(base::StringPiece der_encoded, std::string* pem_encoded) { if (der_encoded.empty()) return false; std::string b64_encoded; base::Base64Encode(der_encoded, &b64_encoded); *pem_encoded = "-----BEGIN CERTIFICATE-----\n"; // Divide the Base-64 encoded data into 64-character chunks, as per // 4.3.2.4 of RFC 1421. static const size_t kChunkSize = 64; size_t chunks = (b64_encoded.size() + (kChunkSize - 1)) / kChunkSize; for (size_t i = 0, chunk_offset = 0; i < chunks; ++i, chunk_offset += kChunkSize) { pem_encoded->append(b64_encoded, chunk_offset, kChunkSize); pem_encoded->append("\n"); } pem_encoded->append("-----END CERTIFICATE-----\n"); return true; } // static bool X509Certificate::GetPEMEncoded(const CRYPTO_BUFFER* cert_buffer, std::string* pem_encoded) { return GetPEMEncodedFromDER(x509_util::CryptoBufferAsStringPiece(cert_buffer), pem_encoded); } bool X509Certificate::GetPEMEncodedChain( std::vector* pem_encoded) const { std::vector encoded_chain; std::string pem_data; if (!GetPEMEncoded(cert_buffer(), &pem_data)) return false; encoded_chain.push_back(pem_data); for (size_t i = 0; i < intermediate_ca_certs_.size(); ++i) { if (!GetPEMEncoded(intermediate_ca_certs_[i].get(), &pem_data)) return false; encoded_chain.push_back(pem_data); } pem_encoded->swap(encoded_chain); return true; } // static void X509Certificate::GetPublicKeyInfo(const CRYPTO_BUFFER* cert_buffer, size_t* size_bits, PublicKeyType* type) { *type = kPublicKeyTypeUnknown; *size_bits = 0; base::StringPiece spki; if (!asn1::ExtractSPKIFromDERCert( base::StringPiece( reinterpret_cast(CRYPTO_BUFFER_data(cert_buffer)), CRYPTO_BUFFER_len(cert_buffer)), &spki)) { return; } bssl::UniquePtr pkey; crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE); CBS cbs; CBS_init(&cbs, reinterpret_cast(spki.data()), spki.size()); pkey.reset(EVP_parse_public_key(&cbs)); if (!pkey) return; switch (pkey->type) { case EVP_PKEY_RSA: *type = kPublicKeyTypeRSA; break; case EVP_PKEY_DSA: *type = kPublicKeyTypeDSA; break; case EVP_PKEY_EC: *type = kPublicKeyTypeECDSA; break; case EVP_PKEY_DH: *type = kPublicKeyTypeDH; break; } *size_bits = base::saturated_cast(EVP_PKEY_bits(pkey.get())); } // static bssl::UniquePtr X509Certificate::CreateCertBufferFromBytes( const char* data, size_t length) { der::Input tbs_certificate_tlv; der::Input signature_algorithm_tlv; der::BitString signature_value; // Do a bare minimum of DER parsing here to make sure the input is not // completely crazy. (This is required for at least // CreateCertificateListFromBytes with FORMAT_AUTO, if not more.) if (!ParseCertificate( der::Input(reinterpret_cast(data), length), &tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value, nullptr)) { return nullptr; } return x509_util::CreateCryptoBuffer(reinterpret_cast(data), length); } // static std::vector> X509Certificate::CreateCertBuffersFromBytes(const char* data, size_t length, Format format) { std::vector> results; switch (format) { case FORMAT_SINGLE_CERTIFICATE: { bssl::UniquePtr handle = CreateCertBufferFromBytes(data, length); if (handle) results.push_back(std::move(handle)); break; } case FORMAT_PKCS7: { CreateCertBuffersFromPKCS7Bytes(data, length, &results); break; } default: { NOTREACHED() << "Certificate format " << format << " unimplemented"; break; } } return results; } // static SHA256HashValue X509Certificate::CalculateFingerprint256( const CRYPTO_BUFFER* cert) { SHA256HashValue sha256; SHA256(CRYPTO_BUFFER_data(cert), CRYPTO_BUFFER_len(cert), sha256.data); return sha256; } SHA256HashValue X509Certificate::CalculateChainFingerprint256() const { SHA256HashValue sha256; memset(sha256.data, 0, sizeof(sha256.data)); SHA256_CTX sha256_ctx; SHA256_Init(&sha256_ctx); SHA256_Update(&sha256_ctx, CRYPTO_BUFFER_data(cert_buffer_.get()), CRYPTO_BUFFER_len(cert_buffer_.get())); for (const auto& cert : intermediate_ca_certs_) { SHA256_Update(&sha256_ctx, CRYPTO_BUFFER_data(cert.get()), CRYPTO_BUFFER_len(cert.get())); } SHA256_Final(sha256.data, &sha256_ctx); return sha256; } // static bool X509Certificate::IsSelfSigned(const CRYPTO_BUFFER* cert_buffer) { der::Input tbs_certificate_tlv; der::Input signature_algorithm_tlv; der::BitString signature_value; if (!ParseCertificate(der::Input(CRYPTO_BUFFER_data(cert_buffer), CRYPTO_BUFFER_len(cert_buffer)), &tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value, nullptr)) { return false; } ParsedTbsCertificate tbs; if (!ParseTbsCertificate(tbs_certificate_tlv, x509_util::DefaultParseCertificateOptions(), &tbs, nullptr)) { return false; } der::Input subject_value; CertErrors errors; std::string normalized_subject; if (!ParseSequenceValue(tbs.subject_tlv, &subject_value) || !NormalizeName(subject_value, &normalized_subject, &errors)) { return false; } der::Input issuer_value; std::string normalized_issuer; if (!ParseSequenceValue(tbs.issuer_tlv, &issuer_value) || !NormalizeName(issuer_value, &normalized_issuer, &errors)) { return false; } if (normalized_subject != normalized_issuer) return false; std::unique_ptr signature_algorithm = SignatureAlgorithm::Create(signature_algorithm_tlv, nullptr /* errors */); if (!signature_algorithm) return false; // Don't enforce any minimum key size or restrict the algorithm, since when // self signed not very relevant. return VerifySignedData(*signature_algorithm, tbs_certificate_tlv, signature_value, tbs.spki_tlv); } X509Certificate::X509Certificate( bssl::UniquePtr cert_buffer, std::vector> intermediates) : X509Certificate(std::move(cert_buffer), std::move(intermediates), {}) {} X509Certificate::X509Certificate( bssl::UniquePtr cert_buffer, std::vector> intermediates, UnsafeCreateOptions options) : cert_buffer_(std::move(cert_buffer)), intermediate_ca_certs_(std::move(intermediates)) { // Platform-specific initialization. if (!Initialize(options) && cert_buffer_) { // Signal initialization failure by clearing cert_buffer_. cert_buffer_.reset(); } } X509Certificate::~X509Certificate() = default; bool X509Certificate::Initialize(UnsafeCreateOptions options) { der::Input tbs_certificate_tlv; der::Input signature_algorithm_tlv; der::BitString signature_value; if (!ParseCertificate(der::Input(CRYPTO_BUFFER_data(cert_buffer_.get()), CRYPTO_BUFFER_len(cert_buffer_.get())), &tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value, nullptr)) { return false; } ParsedTbsCertificate tbs; if (!ParseTbsCertificate(tbs_certificate_tlv, x509_util::DefaultParseCertificateOptions(), &tbs, nullptr)) return false; CertPrincipal::PrintableStringHandling printable_string_handling = options.printable_string_is_utf8 ? CertPrincipal::PrintableStringHandling::kAsUTF8Hack : CertPrincipal::PrintableStringHandling::kDefault; if (!subject_.ParseDistinguishedName(tbs.subject_tlv.UnsafeData(), tbs.subject_tlv.Length(), printable_string_handling) || !issuer_.ParseDistinguishedName(tbs.issuer_tlv.UnsafeData(), tbs.issuer_tlv.Length(), printable_string_handling)) { return false; } if (!GeneralizedTimeToBaseTime(tbs.validity_not_before, &valid_start_) || !GeneralizedTimeToBaseTime(tbs.validity_not_after, &valid_expiry_)) { return false; } serial_number_ = tbs.serial_number.AsString(); return true; } } // namespace net