//===------------------------- UnwindCursor.hpp ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // // // C++ interface to lower levels of libunwind //===----------------------------------------------------------------------===// #ifndef __UNWINDCURSOR_HPP__ #define __UNWINDCURSOR_HPP__ #include #include #include #include #include #ifdef __APPLE__ #include #endif #include "config.h" #include "AddressSpace.hpp" #include "CompactUnwinder.hpp" #include "config.h" #include "DwarfInstructions.hpp" #include "EHHeaderParser.hpp" #include "libunwind.h" #include "Registers.hpp" #include "RWMutex.hpp" #include "Unwind-EHABI.h" namespace libunwind { #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) /// Cache of recently found FDEs. template class _LIBUNWIND_HIDDEN DwarfFDECache { typedef typename A::pint_t pint_t; public: static pint_t findFDE(pint_t mh, pint_t pc); static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); static void removeAllIn(pint_t mh); static void iterateCacheEntries(void (*func)(unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)); private: struct entry { pint_t mh; pint_t ip_start; pint_t ip_end; pint_t fde; }; // These fields are all static to avoid needing an initializer. // There is only one instance of this class per process. static RWMutex _lock; #ifdef __APPLE__ static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); static bool _registeredForDyldUnloads; #endif // Can't use std::vector<> here because this code is below libc++. static entry *_buffer; static entry *_bufferUsed; static entry *_bufferEnd; static entry _initialBuffer[64]; }; template typename DwarfFDECache::entry * DwarfFDECache::_buffer = _initialBuffer; template typename DwarfFDECache::entry * DwarfFDECache::_bufferUsed = _initialBuffer; template typename DwarfFDECache::entry * DwarfFDECache::_bufferEnd = &_initialBuffer[64]; template typename DwarfFDECache::entry DwarfFDECache::_initialBuffer[64]; template RWMutex DwarfFDECache::_lock; #ifdef __APPLE__ template bool DwarfFDECache::_registeredForDyldUnloads = false; #endif template typename A::pint_t DwarfFDECache::findFDE(pint_t mh, pint_t pc) { pint_t result = 0; _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); for (entry *p = _buffer; p < _bufferUsed; ++p) { if ((mh == p->mh) || (mh == 0)) { if ((p->ip_start <= pc) && (pc < p->ip_end)) { result = p->fde; break; } } } _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); return result; } template void DwarfFDECache::add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde) { #if !defined(_LIBUNWIND_NO_HEAP) _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); if (_bufferUsed >= _bufferEnd) { size_t oldSize = (size_t)(_bufferEnd - _buffer); size_t newSize = oldSize * 4; // Can't use operator new (we are below it). entry *newBuffer = (entry *)malloc(newSize * sizeof(entry)); memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); if (_buffer != _initialBuffer) free(_buffer); _buffer = newBuffer; _bufferUsed = &newBuffer[oldSize]; _bufferEnd = &newBuffer[newSize]; } _bufferUsed->mh = mh; _bufferUsed->ip_start = ip_start; _bufferUsed->ip_end = ip_end; _bufferUsed->fde = fde; ++_bufferUsed; #ifdef __APPLE__ if (!_registeredForDyldUnloads) { _dyld_register_func_for_remove_image(&dyldUnloadHook); _registeredForDyldUnloads = true; } #endif _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); #endif } template void DwarfFDECache::removeAllIn(pint_t mh) { _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); entry *d = _buffer; for (const entry *s = _buffer; s < _bufferUsed; ++s) { if (s->mh != mh) { if (d != s) *d = *s; ++d; } } _bufferUsed = d; _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); } #ifdef __APPLE__ template void DwarfFDECache::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { removeAllIn((pint_t) mh); } #endif template void DwarfFDECache::iterateCacheEntries(void (*func)( unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); for (entry *p = _buffer; p < _bufferUsed; ++p) { (*func)(p->ip_start, p->ip_end, p->fde, p->mh); } _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); } #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field)) #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) template class UnwindSectionHeader { public: UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) : _addressSpace(addressSpace), _addr(addr) {} uint32_t version() const { return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, version)); } uint32_t commonEncodingsArraySectionOffset() const { return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, commonEncodingsArraySectionOffset)); } uint32_t commonEncodingsArrayCount() const { return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, commonEncodingsArrayCount)); } uint32_t personalityArraySectionOffset() const { return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, personalityArraySectionOffset)); } uint32_t personalityArrayCount() const { return _addressSpace.get32( _addr + offsetof(unwind_info_section_header, personalityArrayCount)); } uint32_t indexSectionOffset() const { return _addressSpace.get32( _addr + offsetof(unwind_info_section_header, indexSectionOffset)); } uint32_t indexCount() const { return _addressSpace.get32( _addr + offsetof(unwind_info_section_header, indexCount)); } private: A &_addressSpace; typename A::pint_t _addr; }; template class UnwindSectionIndexArray { public: UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) : _addressSpace(addressSpace), _addr(addr) {} uint32_t functionOffset(uint32_t index) const { return _addressSpace.get32( _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, functionOffset)); } uint32_t secondLevelPagesSectionOffset(uint32_t index) const { return _addressSpace.get32( _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, secondLevelPagesSectionOffset)); } uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { return _addressSpace.get32( _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, lsdaIndexArraySectionOffset)); } private: A &_addressSpace; typename A::pint_t _addr; }; template class UnwindSectionRegularPageHeader { public: UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) : _addressSpace(addressSpace), _addr(addr) {} uint32_t kind() const { return _addressSpace.get32( _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); } uint16_t entryPageOffset() const { return _addressSpace.get16( _addr + offsetof(unwind_info_regular_second_level_page_header, entryPageOffset)); } uint16_t entryCount() const { return _addressSpace.get16( _addr + offsetof(unwind_info_regular_second_level_page_header, entryCount)); } private: A &_addressSpace; typename A::pint_t _addr; }; template class UnwindSectionRegularArray { public: UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) : _addressSpace(addressSpace), _addr(addr) {} uint32_t functionOffset(uint32_t index) const { return _addressSpace.get32( _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, functionOffset)); } uint32_t encoding(uint32_t index) const { return _addressSpace.get32( _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); } private: A &_addressSpace; typename A::pint_t _addr; }; template class UnwindSectionCompressedPageHeader { public: UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) : _addressSpace(addressSpace), _addr(addr) {} uint32_t kind() const { return _addressSpace.get32( _addr + offsetof(unwind_info_compressed_second_level_page_header, kind)); } uint16_t entryPageOffset() const { return _addressSpace.get16( _addr + offsetof(unwind_info_compressed_second_level_page_header, entryPageOffset)); } uint16_t entryCount() const { return _addressSpace.get16( _addr + offsetof(unwind_info_compressed_second_level_page_header, entryCount)); } uint16_t encodingsPageOffset() const { return _addressSpace.get16( _addr + offsetof(unwind_info_compressed_second_level_page_header, encodingsPageOffset)); } uint16_t encodingsCount() const { return _addressSpace.get16( _addr + offsetof(unwind_info_compressed_second_level_page_header, encodingsCount)); } private: A &_addressSpace; typename A::pint_t _addr; }; template class UnwindSectionCompressedArray { public: UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) : _addressSpace(addressSpace), _addr(addr) {} uint32_t functionOffset(uint32_t index) const { return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( _addressSpace.get32(_addr + index * sizeof(uint32_t))); } uint16_t encodingIndex(uint32_t index) const { return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( _addressSpace.get32(_addr + index * sizeof(uint32_t))); } private: A &_addressSpace; typename A::pint_t _addr; }; template class UnwindSectionLsdaArray { public: UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) : _addressSpace(addressSpace), _addr(addr) {} uint32_t functionOffset(uint32_t index) const { return _addressSpace.get32( _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, index, functionOffset)); } uint32_t lsdaOffset(uint32_t index) const { return _addressSpace.get32( _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, index, lsdaOffset)); } private: A &_addressSpace; typename A::pint_t _addr; }; #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) class _LIBUNWIND_HIDDEN AbstractUnwindCursor { public: // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) // This avoids an unnecessary dependency to libc++abi. void operator delete(void *, size_t) {} virtual ~AbstractUnwindCursor() {} virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } virtual void setReg(int, unw_word_t) { _LIBUNWIND_ABORT("setReg not implemented"); } virtual bool validFloatReg(int) { _LIBUNWIND_ABORT("validFloatReg not implemented"); } virtual unw_fpreg_t getFloatReg(int) { _LIBUNWIND_ABORT("getFloatReg not implemented"); } virtual void setFloatReg(int, unw_fpreg_t) { _LIBUNWIND_ABORT("setFloatReg not implemented"); } virtual int step() { _LIBUNWIND_ABORT("step not implemented"); } virtual void getInfo(unw_proc_info_t *) { _LIBUNWIND_ABORT("getInfo not implemented"); } virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } virtual bool isSignalFrame() { _LIBUNWIND_ABORT("isSignalFrame not implemented"); } virtual bool getFunctionName(char *, size_t, unw_word_t *) { _LIBUNWIND_ABORT("getFunctionName not implemented"); } virtual void setInfoBasedOnIPRegister(bool = false) { _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); } virtual const char *getRegisterName(int) { _LIBUNWIND_ABORT("getRegisterName not implemented"); } #ifdef __arm__ virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } #endif }; /// UnwindCursor contains all state (including all register values) during /// an unwind. This is normally stack allocated inside a unw_cursor_t. template class UnwindCursor : public AbstractUnwindCursor{ typedef typename A::pint_t pint_t; public: UnwindCursor(unw_context_t *context, A &as); UnwindCursor(A &as, void *threadArg); virtual ~UnwindCursor() {} virtual bool validReg(int); virtual unw_word_t getReg(int); virtual void setReg(int, unw_word_t); virtual bool validFloatReg(int); virtual unw_fpreg_t getFloatReg(int); virtual void setFloatReg(int, unw_fpreg_t); virtual int step(); virtual void getInfo(unw_proc_info_t *); virtual void jumpto(); virtual bool isSignalFrame(); virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); virtual const char *getRegisterName(int num); #ifdef __arm__ virtual void saveVFPAsX(); #endif private: #if defined(_LIBUNWIND_ARM_EHABI) bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); int stepWithEHABI() { size_t len = 0; size_t off = 0; // FIXME: Calling decode_eht_entry() here is violating the libunwind // abstraction layer. const uint32_t *ehtp = decode_eht_entry(reinterpret_cast(_info.unwind_info), &off, &len); if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != _URC_CONTINUE_UNWIND) return UNW_STEP_END; return UNW_STEP_SUCCESS; } #endif #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, uint32_t fdeSectionOffsetHint=0); int stepWithDwarfFDE() { return DwarfInstructions::stepWithDwarf(_addressSpace, (pint_t)this->getReg(UNW_REG_IP), (pint_t)_info.unwind_info, _registers); } #endif #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) bool getInfoFromCompactEncodingSection(pint_t pc, const UnwindInfoSections §s); int stepWithCompactEncoding() { #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) if ( compactSaysUseDwarf() ) return stepWithDwarfFDE(); #endif R dummy; return stepWithCompactEncoding(dummy); } #if defined(_LIBUNWIND_TARGET_X86_64) int stepWithCompactEncoding(Registers_x86_64 &) { return CompactUnwinder_x86_64::stepWithCompactEncoding( _info.format, _info.start_ip, _addressSpace, _registers); } #endif #if defined(_LIBUNWIND_TARGET_I386) int stepWithCompactEncoding(Registers_x86 &) { return CompactUnwinder_x86::stepWithCompactEncoding( _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); } #endif #if defined(_LIBUNWIND_TARGET_PPC) int stepWithCompactEncoding(Registers_ppc &) { return UNW_EINVAL; } #endif #if defined(_LIBUNWIND_TARGET_PPC64) int stepWithCompactEncoding(Registers_ppc64 &) { return UNW_EINVAL; } #endif #if defined(_LIBUNWIND_TARGET_AARCH64) int stepWithCompactEncoding(Registers_arm64 &) { return CompactUnwinder_arm64::stepWithCompactEncoding( _info.format, _info.start_ip, _addressSpace, _registers); } #endif #if defined(_LIBUNWIND_TARGET_MIPS_O32) int stepWithCompactEncoding(Registers_mips_o32 &) { return UNW_EINVAL; } #endif #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) int stepWithCompactEncoding(Registers_mips_newabi &) { return UNW_EINVAL; } #endif bool compactSaysUseDwarf(uint32_t *offset=NULL) const { R dummy; return compactSaysUseDwarf(dummy, offset); } #if defined(_LIBUNWIND_TARGET_X86_64) bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { if (offset) *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); return true; } return false; } #endif #if defined(_LIBUNWIND_TARGET_I386) bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { if (offset) *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); return true; } return false; } #endif #if defined(_LIBUNWIND_TARGET_PPC) bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { return true; } #endif #if defined(_LIBUNWIND_TARGET_PPC64) bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { return true; } #endif #if defined(_LIBUNWIND_TARGET_AARCH64) bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { if (offset) *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); return true; } return false; } #endif #if defined(_LIBUNWIND_TARGET_MIPS_O32) bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { return true; } #endif #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { return true; } #endif #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) compact_unwind_encoding_t dwarfEncoding() const { R dummy; return dwarfEncoding(dummy); } #if defined(_LIBUNWIND_TARGET_X86_64) compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { return UNWIND_X86_64_MODE_DWARF; } #endif #if defined(_LIBUNWIND_TARGET_I386) compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { return UNWIND_X86_MODE_DWARF; } #endif #if defined(_LIBUNWIND_TARGET_PPC) compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { return 0; } #endif #if defined(_LIBUNWIND_TARGET_PPC64) compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { return 0; } #endif #if defined(_LIBUNWIND_TARGET_AARCH64) compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { return UNWIND_ARM64_MODE_DWARF; } #endif #if defined(_LIBUNWIND_TARGET_ARM) compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { return 0; } #endif #if defined (_LIBUNWIND_TARGET_OR1K) compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { return 0; } #endif #if defined (_LIBUNWIND_TARGET_MIPS_O32) compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { return 0; } #endif #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { return 0; } #endif #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) A &_addressSpace; R _registers; unw_proc_info_t _info; bool _unwindInfoMissing; bool _isSignalFrame; }; template UnwindCursor::UnwindCursor(unw_context_t *context, A &as) : _addressSpace(as), _registers(context), _unwindInfoMissing(false), _isSignalFrame(false) { static_assert((check_fit, unw_cursor_t>::does_fit), "UnwindCursor<> does not fit in unw_cursor_t"); memset(&_info, 0, sizeof(_info)); } template UnwindCursor::UnwindCursor(A &as, void *) : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { memset(&_info, 0, sizeof(_info)); // FIXME // fill in _registers from thread arg } template bool UnwindCursor::validReg(int regNum) { return _registers.validRegister(regNum); } template unw_word_t UnwindCursor::getReg(int regNum) { return _registers.getRegister(regNum); } template void UnwindCursor::setReg(int regNum, unw_word_t value) { _registers.setRegister(regNum, (typename A::pint_t)value); } template bool UnwindCursor::validFloatReg(int regNum) { return _registers.validFloatRegister(regNum); } template unw_fpreg_t UnwindCursor::getFloatReg(int regNum) { return _registers.getFloatRegister(regNum); } template void UnwindCursor::setFloatReg(int regNum, unw_fpreg_t value) { _registers.setFloatRegister(regNum, value); } template void UnwindCursor::jumpto() { _registers.jumpto(); } #ifdef __arm__ template void UnwindCursor::saveVFPAsX() { _registers.saveVFPAsX(); } #endif template const char *UnwindCursor::getRegisterName(int regNum) { return _registers.getRegisterName(regNum); } template bool UnwindCursor::isSignalFrame() { return _isSignalFrame; } #if defined(_LIBUNWIND_ARM_EHABI) struct EHABIIndexEntry { uint32_t functionOffset; uint32_t data; }; template struct EHABISectionIterator { typedef EHABISectionIterator _Self; typedef std::random_access_iterator_tag iterator_category; typedef typename A::pint_t value_type; typedef typename A::pint_t* pointer; typedef typename A::pint_t& reference; typedef size_t size_type; typedef size_t difference_type; static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { return _Self(addressSpace, sects, 0); } static _Self end(A& addressSpace, const UnwindInfoSections& sects) { return _Self(addressSpace, sects, sects.arm_section_length / sizeof(EHABIIndexEntry)); } EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) : _i(i), _addressSpace(&addressSpace), _sects(§s) {} _Self& operator++() { ++_i; return *this; } _Self& operator+=(size_t a) { _i += a; return *this; } _Self& operator--() { assert(_i > 0); --_i; return *this; } _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } size_t operator-(const _Self& other) { return _i - other._i; } bool operator==(const _Self& other) const { assert(_addressSpace == other._addressSpace); assert(_sects == other._sects); return _i == other._i; } typename A::pint_t operator*() const { return functionAddress(); } typename A::pint_t functionAddress() const { typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( EHABIIndexEntry, _i, functionOffset); return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); } typename A::pint_t dataAddress() { typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( EHABIIndexEntry, _i, data); return indexAddr; } private: size_t _i; A* _addressSpace; const UnwindInfoSections* _sects; }; template bool UnwindCursor::getInfoFromEHABISection( pint_t pc, const UnwindInfoSections §s) { EHABISectionIterator begin = EHABISectionIterator::begin(_addressSpace, sects); EHABISectionIterator end = EHABISectionIterator::end(_addressSpace, sects); if (begin == end) return false; EHABISectionIterator itNextPC = std::upper_bound(begin, end, pc); if (itNextPC == begin) return false; EHABISectionIterator itThisPC = itNextPC - 1; pint_t thisPC = itThisPC.functionAddress(); // If an exception is thrown from a function, corresponding to the last entry // in the table, we don't really know the function extent and have to choose a // value for nextPC. Choosing max() will allow the range check during trace to // succeed. pint_t nextPC = (itNextPC == end) ? std::numeric_limits::max() : itNextPC.functionAddress(); pint_t indexDataAddr = itThisPC.dataAddress(); if (indexDataAddr == 0) return false; uint32_t indexData = _addressSpace.get32(indexDataAddr); if (indexData == UNW_EXIDX_CANTUNWIND) return false; // If the high bit is set, the exception handling table entry is inline inside // the index table entry on the second word (aka |indexDataAddr|). Otherwise, // the table points at an offset in the exception handling table (section 5 EHABI). pint_t exceptionTableAddr; uint32_t exceptionTableData; bool isSingleWordEHT; if (indexData & 0x80000000) { exceptionTableAddr = indexDataAddr; // TODO(ajwong): Should this data be 0? exceptionTableData = indexData; isSingleWordEHT = true; } else { exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); exceptionTableData = _addressSpace.get32(exceptionTableAddr); isSingleWordEHT = false; } // Now we know the 3 things: // exceptionTableAddr -- exception handler table entry. // exceptionTableData -- the data inside the first word of the eht entry. // isSingleWordEHT -- whether the entry is in the index. unw_word_t personalityRoutine = 0xbadf00d; bool scope32 = false; uintptr_t lsda; // If the high bit in the exception handling table entry is set, the entry is // in compact form (section 6.3 EHABI). if (exceptionTableData & 0x80000000) { // Grab the index of the personality routine from the compact form. uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; uint32_t extraWords = 0; switch (choice) { case 0: personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; extraWords = 0; scope32 = false; lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); break; case 1: personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; extraWords = (exceptionTableData & 0x00ff0000) >> 16; scope32 = false; lsda = exceptionTableAddr + (extraWords + 1) * 4; break; case 2: personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; extraWords = (exceptionTableData & 0x00ff0000) >> 16; scope32 = true; lsda = exceptionTableAddr + (extraWords + 1) * 4; break; default: _LIBUNWIND_ABORT("unknown personality routine"); return false; } if (isSingleWordEHT) { if (extraWords != 0) { _LIBUNWIND_ABORT("index inlined table detected but pr function " "requires extra words"); return false; } } } else { pint_t personalityAddr = exceptionTableAddr + signExtendPrel31(exceptionTableData); personalityRoutine = personalityAddr; // ARM EHABI # 6.2, # 9.2 // // +---- ehtp // v // +--------------------------------------+ // | +--------+--------+--------+-------+ | // | |0| prel31 to personalityRoutine | | // | +--------+--------+--------+-------+ | // | | N | unwind opcodes | | <-- UnwindData // | +--------+--------+--------+-------+ | // | | Word 2 unwind opcodes | | // | +--------+--------+--------+-------+ | // | ... | // | +--------+--------+--------+-------+ | // | | Word N unwind opcodes | | // | +--------+--------+--------+-------+ | // | | LSDA | | <-- lsda // | | ... | | // | +--------+--------+--------+-------+ | // +--------------------------------------+ uint32_t *UnwindData = reinterpret_cast(exceptionTableAddr) + 1; uint32_t FirstDataWord = *UnwindData; size_t N = ((FirstDataWord >> 24) & 0xff); size_t NDataWords = N + 1; lsda = reinterpret_cast(UnwindData + NDataWords); } _info.start_ip = thisPC; _info.end_ip = nextPC; _info.handler = personalityRoutine; _info.unwind_info = exceptionTableAddr; _info.lsda = lsda; // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0; // Use enum? return true; } #endif #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) template bool UnwindCursor::getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, uint32_t fdeSectionOffsetHint) { typename CFI_Parser::FDE_Info fdeInfo; typename CFI_Parser::CIE_Info cieInfo; bool foundFDE = false; bool foundInCache = false; // If compact encoding table gave offset into dwarf section, go directly there if (fdeSectionOffsetHint != 0) { foundFDE = CFI_Parser::findFDE(_addressSpace, pc, sects.dwarf_section, (uint32_t)sects.dwarf_section_length, sects.dwarf_section + fdeSectionOffsetHint, &fdeInfo, &cieInfo); } #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) if (!foundFDE && (sects.dwarf_index_section != 0)) { foundFDE = EHHeaderParser::findFDE( _addressSpace, pc, sects.dwarf_index_section, (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); } #endif if (!foundFDE) { // otherwise, search cache of previously found FDEs. pint_t cachedFDE = DwarfFDECache::findFDE(sects.dso_base, pc); if (cachedFDE != 0) { foundFDE = CFI_Parser::findFDE(_addressSpace, pc, sects.dwarf_section, (uint32_t)sects.dwarf_section_length, cachedFDE, &fdeInfo, &cieInfo); foundInCache = foundFDE; } } if (!foundFDE) { // Still not found, do full scan of __eh_frame section. foundFDE = CFI_Parser::findFDE(_addressSpace, pc, sects.dwarf_section, (uint32_t)sects.dwarf_section_length, 0, &fdeInfo, &cieInfo); } if (foundFDE) { typename CFI_Parser::PrologInfo prolog; if (CFI_Parser::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, &prolog)) { // Save off parsed FDE info _info.start_ip = fdeInfo.pcStart; _info.end_ip = fdeInfo.pcEnd; _info.lsda = fdeInfo.lsda; _info.handler = cieInfo.personality; _info.gp = prolog.spExtraArgSize; _info.flags = 0; _info.format = dwarfEncoding(); _info.unwind_info = fdeInfo.fdeStart; _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; _info.extra = (unw_word_t) sects.dso_base; // Add to cache (to make next lookup faster) if we had no hint // and there was no index. if (!foundInCache && (fdeSectionOffsetHint == 0)) { #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) if (sects.dwarf_index_section == 0) #endif DwarfFDECache::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, fdeInfo.fdeStart); } return true; } } //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); return false; } #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) template bool UnwindCursor::getInfoFromCompactEncodingSection(pint_t pc, const UnwindInfoSections §s) { const bool log = false; if (log) fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", (uint64_t)pc, (uint64_t)sects.dso_base); const UnwindSectionHeader sectionHeader(_addressSpace, sects.compact_unwind_section); if (sectionHeader.version() != UNWIND_SECTION_VERSION) return false; // do a binary search of top level index to find page with unwind info pint_t targetFunctionOffset = pc - sects.dso_base; const UnwindSectionIndexArray topIndex(_addressSpace, sects.compact_unwind_section + sectionHeader.indexSectionOffset()); uint32_t low = 0; uint32_t high = sectionHeader.indexCount(); uint32_t last = high - 1; while (low < high) { uint32_t mid = (low + high) / 2; //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", //mid, low, high, topIndex.functionOffset(mid)); if (topIndex.functionOffset(mid) <= targetFunctionOffset) { if ((mid == last) || (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { low = mid; break; } else { low = mid + 1; } } else { high = mid; } } const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); const uint32_t firstLevelNextPageFunctionOffset = topIndex.functionOffset(low + 1); const pint_t secondLevelAddr = sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); const pint_t lsdaArrayStartAddr = sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); const pint_t lsdaArrayEndAddr = sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); if (log) fprintf(stderr, "\tfirst level search for result index=%d " "to secondLevelAddr=0x%llX\n", low, (uint64_t) secondLevelAddr); // do a binary search of second level page index uint32_t encoding = 0; pint_t funcStart = 0; pint_t funcEnd = 0; pint_t lsda = 0; pint_t personality = 0; uint32_t pageKind = _addressSpace.get32(secondLevelAddr); if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { // regular page UnwindSectionRegularPageHeader pageHeader(_addressSpace, secondLevelAddr); UnwindSectionRegularArray pageIndex( _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); // binary search looks for entry with e where index[e].offset <= pc < // index[e+1].offset if (log) fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " "regular page starting at secondLevelAddr=0x%llX\n", (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); low = 0; high = pageHeader.entryCount(); while (low < high) { uint32_t mid = (low + high) / 2; if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { // at end of table low = mid; funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; break; } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { // next is too big, so we found it low = mid; funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; break; } else { low = mid + 1; } } else { high = mid; } } encoding = pageIndex.encoding(low); funcStart = pageIndex.functionOffset(low) + sects.dso_base; if (pc < funcStart) { if (log) fprintf( stderr, "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); return false; } if (pc > funcEnd) { if (log) fprintf( stderr, "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); return false; } } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { // compressed page UnwindSectionCompressedPageHeader pageHeader(_addressSpace, secondLevelAddr); UnwindSectionCompressedArray pageIndex( _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); const uint32_t targetFunctionPageOffset = (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); // binary search looks for entry with e where index[e].offset <= pc < // index[e+1].offset if (log) fprintf(stderr, "\tbinary search of compressed page starting at " "secondLevelAddr=0x%llX\n", (uint64_t) secondLevelAddr); low = 0; last = pageHeader.entryCount() - 1; high = pageHeader.entryCount(); while (low < high) { uint32_t mid = (low + high) / 2; if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { if ((mid == last) || (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { low = mid; break; } else { low = mid + 1; } } else { high = mid; } } funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset + sects.dso_base; if (low < last) funcEnd = pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset + sects.dso_base; else funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; if (pc < funcStart) { _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " "level compressed unwind table. funcStart=0x%llX", (uint64_t) pc, (uint64_t) funcStart); return false; } if (pc > funcEnd) { _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " "level compressed unwind table. funcEnd=0x%llX", (uint64_t) pc, (uint64_t) funcEnd); return false; } uint16_t encodingIndex = pageIndex.encodingIndex(low); if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { // encoding is in common table in section header encoding = _addressSpace.get32( sects.compact_unwind_section + sectionHeader.commonEncodingsArraySectionOffset() + encodingIndex * sizeof(uint32_t)); } else { // encoding is in page specific table uint16_t pageEncodingIndex = encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); encoding = _addressSpace.get32(secondLevelAddr + pageHeader.encodingsPageOffset() + pageEncodingIndex * sizeof(uint32_t)); } } else { _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second " "level page", (uint64_t) sects.compact_unwind_section); return false; } // look up LSDA, if encoding says function has one if (encoding & UNWIND_HAS_LSDA) { UnwindSectionLsdaArray lsdaIndex(_addressSpace, lsdaArrayStartAddr); uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); low = 0; high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / sizeof(unwind_info_section_header_lsda_index_entry); // binary search looks for entry with exact match for functionOffset if (log) fprintf(stderr, "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", funcStartOffset); while (low < high) { uint32_t mid = (low + high) / 2; if (lsdaIndex.functionOffset(mid) == funcStartOffset) { lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; break; } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { low = mid + 1; } else { high = mid; } } if (lsda == 0) { _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " "pc=0x%0llX, but lsda table has no entry", encoding, (uint64_t) pc); return false; } } // extact personality routine, if encoding says function has one uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> (__builtin_ctz(UNWIND_PERSONALITY_MASK)); if (personalityIndex != 0) { --personalityIndex; // change 1-based to zero-based index if (personalityIndex > sectionHeader.personalityArrayCount()) { _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " "but personality table has only %d entires", encoding, personalityIndex, sectionHeader.personalityArrayCount()); return false; } int32_t personalityDelta = (int32_t)_addressSpace.get32( sects.compact_unwind_section + sectionHeader.personalityArraySectionOffset() + personalityIndex * sizeof(uint32_t)); pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; personality = _addressSpace.getP(personalityPointer); if (log) fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " "personalityDelta=0x%08X, personality=0x%08llX\n", (uint64_t) pc, personalityDelta, (uint64_t) personality); } if (log) fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); _info.start_ip = funcStart; _info.end_ip = funcEnd; _info.lsda = lsda; _info.handler = personality; _info.gp = 0; _info.flags = 0; _info.format = encoding; _info.unwind_info = 0; _info.unwind_info_size = 0; _info.extra = sects.dso_base; return true; } #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) template void UnwindCursor::setInfoBasedOnIPRegister(bool isReturnAddress) { pint_t pc = (pint_t)this->getReg(UNW_REG_IP); #if defined(_LIBUNWIND_ARM_EHABI) // Remove the thumb bit so the IP represents the actual instruction address. // This matches the behaviour of _Unwind_GetIP on arm. pc &= (pint_t)~0x1; #endif // If the last line of a function is a "throw" the compiler sometimes // emits no instructions after the call to __cxa_throw. This means // the return address is actually the start of the next function. // To disambiguate this, back up the pc when we know it is a return // address. if (isReturnAddress) --pc; // Ask address space object to find unwind sections for this pc. UnwindInfoSections sects; if (_addressSpace.findUnwindSections(pc, sects)) { #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) // If there is a compact unwind encoding table, look there first. if (sects.compact_unwind_section != 0) { if (this->getInfoFromCompactEncodingSection(pc, sects)) { #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) // Found info in table, done unless encoding says to use dwarf. uint32_t dwarfOffset; if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { // found info in dwarf, done return; } } #endif // If unwind table has entry, but entry says there is no unwind info, // record that we have no unwind info. if (_info.format == 0) _unwindInfoMissing = true; return; } } #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) // If there is dwarf unwind info, look there next. if (sects.dwarf_section != 0) { if (this->getInfoFromDwarfSection(pc, sects)) { // found info in dwarf, done return; } } #endif #if defined(_LIBUNWIND_ARM_EHABI) // If there is ARM EHABI unwind info, look there next. if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) return; #endif } #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) // There is no static unwind info for this pc. Look to see if an FDE was // dynamically registered for it. pint_t cachedFDE = DwarfFDECache::findFDE(0, pc); if (cachedFDE != 0) { CFI_Parser::FDE_Info fdeInfo; CFI_Parser::CIE_Info cieInfo; const char *msg = CFI_Parser::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo); if (msg == NULL) { typename CFI_Parser::PrologInfo prolog; if (CFI_Parser::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, &prolog)) { // save off parsed FDE info _info.start_ip = fdeInfo.pcStart; _info.end_ip = fdeInfo.pcEnd; _info.lsda = fdeInfo.lsda; _info.handler = cieInfo.personality; _info.gp = prolog.spExtraArgSize; // Some frameless functions need SP // altered when resuming in function. _info.flags = 0; _info.format = dwarfEncoding(); _info.unwind_info = fdeInfo.fdeStart; _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; _info.extra = 0; return; } } } // Lastly, ask AddressSpace object about platform specific ways to locate // other FDEs. pint_t fde; if (_addressSpace.findOtherFDE(pc, fde)) { CFI_Parser::FDE_Info fdeInfo; CFI_Parser::CIE_Info cieInfo; if (!CFI_Parser::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { // Double check this FDE is for a function that includes the pc. if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) { typename CFI_Parser::PrologInfo prolog; if (CFI_Parser::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, &prolog)) { // save off parsed FDE info _info.start_ip = fdeInfo.pcStart; _info.end_ip = fdeInfo.pcEnd; _info.lsda = fdeInfo.lsda; _info.handler = cieInfo.personality; _info.gp = prolog.spExtraArgSize; _info.flags = 0; _info.format = dwarfEncoding(); _info.unwind_info = fdeInfo.fdeStart; _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; _info.extra = 0; return; } } } } #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) // no unwind info, flag that we can't reliably unwind _unwindInfoMissing = true; } template int UnwindCursor::step() { // Bottom of stack is defined is when unwind info cannot be found. if (_unwindInfoMissing) return UNW_STEP_END; // Use unwinding info to modify register set as if function returned. int result; #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) result = this->stepWithCompactEncoding(); #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) result = this->stepWithDwarfFDE(); #elif defined(_LIBUNWIND_ARM_EHABI) result = this->stepWithEHABI(); #else #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ _LIBUNWIND_ARM_EHABI #endif // update info based on new PC if (result == UNW_STEP_SUCCESS) { this->setInfoBasedOnIPRegister(true); if (_unwindInfoMissing) return UNW_STEP_END; if (_info.gp) setReg(UNW_REG_SP, getReg(UNW_REG_SP) + _info.gp); } return result; } template void UnwindCursor::getInfo(unw_proc_info_t *info) { *info = _info; } template bool UnwindCursor::getFunctionName(char *buf, size_t bufLen, unw_word_t *offset) { return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), buf, bufLen, offset); } } // namespace libunwind #endif // __UNWINDCURSOR_HPP__