// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_CONTAINERS_SMALL_MAP_H_ #define BASE_CONTAINERS_SMALL_MAP_H_ #include #include #include #include #include #include #include "base/containers/hash_tables.h" #include "base/logging.h" namespace { constexpr size_t kUsingFullMapSentinel = std::numeric_limits::max(); } // namespace namespace base { // small_map is a container with a std::map-like interface. It starts out backed // by an unsorted array but switches to some other container type if it grows // beyond this fixed size. // // Please see //base/containers/README.md for an overview of which container // to select. // // PROS // // - Good memory locality and low overhead for smaller maps. // - Handles large maps without the degenerate performance of flat_map. // // CONS // // - Larger code size than the alternatives. // // IMPORTANT NOTES // // - Iterators are invalidated across mutations. // // DETAILS // // base::small_map will pick up the comparator from the underlying map type. In // std::map only a "less" operator is defined, which requires us to do two // comparisons per element when doing the brute-force search in the simple // array. std::unordered_map has a key_equal function which will be used. // // We define default overrides for the common map types to avoid this // double-compare, but you should be aware of this if you use your own operator< // for your map and supply yor own version of == to the small_map. You can use // regular operator== by just doing: // // base::small_map, 4, std::equal_to> // // // USAGE // ----- // // NormalMap: The map type to fall back to. This also defines the key and value // types for the small_map. // kArraySize: The size of the initial array of results. This will be allocated // with the small_map object rather than separately on the heap. // Once the map grows beyond this size, the map type will be used // instead. // EqualKey: A functor which tests two keys for equality. If the wrapped map // type has a "key_equal" member (hash_map does), then that will be // used by default. If the wrapped map type has a strict weak // ordering "key_compare" (std::map does), that will be used to // implement equality by default. // MapInit: A functor that takes a NormalMap* and uses it to initialize the map. // This functor will be called at most once per small_map, when the map // exceeds the threshold of kArraySize and we are about to copy values // from the array to the map. The functor *must* initialize the // NormalMap* argument with placement new, since after it runs we // assume that the NormalMap has been initialized. // // Example: // base::small_map> days; // days["sunday" ] = 0; // days["monday" ] = 1; // days["tuesday" ] = 2; // days["wednesday"] = 3; // days["thursday" ] = 4; // days["friday" ] = 5; // days["saturday" ] = 6; namespace internal { template class small_map_default_init { public: void operator()(NormalMap* map) const { new (map) NormalMap(); } }; // has_key_equal::value is true iff there exists a type M::key_equal. This is // used to dispatch to one of the select_equal_key<> metafunctions below. template struct has_key_equal { typedef char sml; // "small" is sometimes #defined so we use an abbreviation. typedef struct { char dummy[2]; } big; // Two functions, one accepts types that have a key_equal member, and one that // accepts anything. They each return a value of a different size, so we can // determine at compile-time which function would have been called. template static big test(typename U::key_equal*); template static sml test(...); // Determines if M::key_equal exists by looking at the size of the return // type of the compiler-chosen test() function. static const bool value = (sizeof(test(0)) == sizeof(big)); }; template const bool has_key_equal::value; // Base template used for map types that do NOT have an M::key_equal member, // e.g., std::map<>. These maps have a strict weak ordering comparator rather // than an equality functor, so equality will be implemented in terms of that // comparator. // // There's a partial specialization of this template below for map types that do // have an M::key_equal member. template struct select_equal_key { struct equal_key { bool operator()(const typename M::key_type& left, const typename M::key_type& right) { // Implements equality in terms of a strict weak ordering comparator. typename M::key_compare comp; return !comp(left, right) && !comp(right, left); } }; }; // Provide overrides to use operator== for key compare for the "normal" map and // hash map types. If you override the default comparator or allocator for a // map or hash_map, or use another type of map, this won't get used. // // If we switch to using std::unordered_map for base::hash_map, then the // hash_map specialization can be removed. template struct select_equal_key, false> { struct equal_key { bool operator()(const KeyType& left, const KeyType& right) { return left == right; } }; }; template struct select_equal_key, false> { struct equal_key { bool operator()(const KeyType& left, const KeyType& right) { return left == right; } }; }; // Partial template specialization handles case where M::key_equal exists, e.g., // hash_map<>. template struct select_equal_key { typedef typename M::key_equal equal_key; }; } // namespace internal template ::value>::equal_key, typename MapInit = internal::small_map_default_init> class small_map { static_assert(kArraySize > 0, "Initial size must be greater than 0"); static_assert(kArraySize != kUsingFullMapSentinel, "Initial size out of range"); public: typedef typename NormalMap::key_type key_type; typedef typename NormalMap::mapped_type data_type; typedef typename NormalMap::mapped_type mapped_type; typedef typename NormalMap::value_type value_type; typedef EqualKey key_equal; small_map() : size_(0), functor_(MapInit()) {} explicit small_map(const MapInit& functor) : size_(0), functor_(functor) {} // Allow copy-constructor and assignment, since STL allows them too. small_map(const small_map& src) { // size_ and functor_ are initted in InitFrom() InitFrom(src); } void operator=(const small_map& src) { if (&src == this) return; // This is not optimal. If src and dest are both using the small array, we // could skip the teardown and reconstruct. One problem to be resolved is // that the value_type itself is pair, and const K is not // assignable. Destroy(); InitFrom(src); } ~small_map() { Destroy(); } class const_iterator; class iterator { public: typedef typename NormalMap::iterator::iterator_category iterator_category; typedef typename NormalMap::iterator::value_type value_type; typedef typename NormalMap::iterator::difference_type difference_type; typedef typename NormalMap::iterator::pointer pointer; typedef typename NormalMap::iterator::reference reference; inline iterator() : array_iter_(nullptr) {} inline iterator& operator++() { if (array_iter_ != nullptr) { ++array_iter_; } else { ++map_iter_; } return *this; } inline iterator operator++(int /*unused*/) { iterator result(*this); ++(*this); return result; } inline iterator& operator--() { if (array_iter_ != nullptr) { --array_iter_; } else { --map_iter_; } return *this; } inline iterator operator--(int /*unused*/) { iterator result(*this); --(*this); return result; } inline value_type* operator->() const { return array_iter_ ? array_iter_ : map_iter_.operator->(); } inline value_type& operator*() const { return array_iter_ ? *array_iter_ : *map_iter_; } inline bool operator==(const iterator& other) const { if (array_iter_ != nullptr) { return array_iter_ == other.array_iter_; } else { return other.array_iter_ == nullptr && map_iter_ == other.map_iter_; } } inline bool operator!=(const iterator& other) const { return !(*this == other); } bool operator==(const const_iterator& other) const; bool operator!=(const const_iterator& other) const; private: friend class small_map; friend class const_iterator; inline explicit iterator(value_type* init) : array_iter_(init) {} inline explicit iterator(const typename NormalMap::iterator& init) : array_iter_(nullptr), map_iter_(init) {} value_type* array_iter_; typename NormalMap::iterator map_iter_; }; class const_iterator { public: typedef typename NormalMap::const_iterator::iterator_category iterator_category; typedef typename NormalMap::const_iterator::value_type value_type; typedef typename NormalMap::const_iterator::difference_type difference_type; typedef typename NormalMap::const_iterator::pointer pointer; typedef typename NormalMap::const_iterator::reference reference; inline const_iterator() : array_iter_(nullptr) {} // Non-explicit constructor lets us convert regular iterators to const // iterators. inline const_iterator(const iterator& other) : array_iter_(other.array_iter_), map_iter_(other.map_iter_) {} inline const_iterator& operator++() { if (array_iter_ != nullptr) { ++array_iter_; } else { ++map_iter_; } return *this; } inline const_iterator operator++(int /*unused*/) { const_iterator result(*this); ++(*this); return result; } inline const_iterator& operator--() { if (array_iter_ != nullptr) { --array_iter_; } else { --map_iter_; } return *this; } inline const_iterator operator--(int /*unused*/) { const_iterator result(*this); --(*this); return result; } inline const value_type* operator->() const { return array_iter_ ? array_iter_ : map_iter_.operator->(); } inline const value_type& operator*() const { return array_iter_ ? *array_iter_ : *map_iter_; } inline bool operator==(const const_iterator& other) const { if (array_iter_ != nullptr) { return array_iter_ == other.array_iter_; } return other.array_iter_ == nullptr && map_iter_ == other.map_iter_; } inline bool operator!=(const const_iterator& other) const { return !(*this == other); } private: friend class small_map; inline explicit const_iterator(const value_type* init) : array_iter_(init) {} inline explicit const_iterator( const typename NormalMap::const_iterator& init) : array_iter_(nullptr), map_iter_(init) {} const value_type* array_iter_; typename NormalMap::const_iterator map_iter_; }; iterator find(const key_type& key) { key_equal compare; if (UsingFullMap()) { return iterator(map()->find(key)); } for (size_t i = 0; i < size_; ++i) { if (compare(array_[i].first, key)) { return iterator(array_ + i); } } return iterator(array_ + size_); } const_iterator find(const key_type& key) const { key_equal compare; if (UsingFullMap()) { return const_iterator(map()->find(key)); } for (size_t i = 0; i < size_; ++i) { if (compare(array_[i].first, key)) { return const_iterator(array_ + i); } } return const_iterator(array_ + size_); } // Invalidates iterators. data_type& operator[](const key_type& key) { key_equal compare; if (UsingFullMap()) { return map_[key]; } // Search backwards to favor recently-added elements. for (size_t i = size_; i > 0; --i) { const size_t index = i - 1; if (compare(array_[index].first, key)) { return array_[index].second; } } if (size_ == kArraySize) { ConvertToRealMap(); return map_[key]; } DCHECK(size_ < kArraySize); new (&array_[size_]) value_type(key, data_type()); return array_[size_++].second; } // Invalidates iterators. std::pair insert(const value_type& x) { key_equal compare; if (UsingFullMap()) { std::pair ret = map_.insert(x); return std::make_pair(iterator(ret.first), ret.second); } for (size_t i = 0; i < size_; ++i) { if (compare(array_[i].first, x.first)) { return std::make_pair(iterator(array_ + i), false); } } if (size_ == kArraySize) { ConvertToRealMap(); // Invalidates all iterators! std::pair ret = map_.insert(x); return std::make_pair(iterator(ret.first), ret.second); } DCHECK(size_ < kArraySize); new (&array_[size_]) value_type(x); return std::make_pair(iterator(array_ + size_++), true); } // Invalidates iterators. template void insert(InputIterator f, InputIterator l) { while (f != l) { insert(*f); ++f; } } // Invalidates iterators. template std::pair emplace(Args&&... args) { key_equal compare; if (UsingFullMap()) { std::pair ret = map_.emplace(std::forward(args)...); return std::make_pair(iterator(ret.first), ret.second); } value_type x(std::forward(args)...); for (size_t i = 0; i < size_; ++i) { if (compare(array_[i].first, x.first)) { return std::make_pair(iterator(array_ + i), false); } } if (size_ == kArraySize) { ConvertToRealMap(); // Invalidates all iterators! std::pair ret = map_.emplace(std::move(x)); return std::make_pair(iterator(ret.first), ret.second); } DCHECK(size_ < kArraySize); new (&array_[size_]) value_type(std::move(x)); return std::make_pair(iterator(array_ + size_++), true); } iterator begin() { return UsingFullMap() ? iterator(map_.begin()) : iterator(array_); } const_iterator begin() const { return UsingFullMap() ? const_iterator(map_.begin()) : const_iterator(array_); } iterator end() { return UsingFullMap() ? iterator(map_.end()) : iterator(array_ + size_); } const_iterator end() const { return UsingFullMap() ? const_iterator(map_.end()) : const_iterator(array_ + size_); } void clear() { if (UsingFullMap()) { map_.~NormalMap(); } else { for (size_t i = 0; i < size_; ++i) { array_[i].~value_type(); } } size_ = 0; } // Invalidates iterators. Returns iterator following the last removed element. iterator erase(const iterator& position) { if (UsingFullMap()) { return iterator(map_.erase(position.map_iter_)); } size_t i = position.array_iter_ - array_; // TODO(crbug.com/817982): When we have a checked iterator, this CHECK might // not be necessary. CHECK_LE(i, size_); array_[i].~value_type(); --size_; if (i != size_) { new (&array_[i]) value_type(std::move(array_[size_])); array_[size_].~value_type(); return iterator(array_ + i); } return end(); } size_t erase(const key_type& key) { iterator iter = find(key); if (iter == end()) { return 0; } erase(iter); return 1; } size_t count(const key_type& key) const { return (find(key) == end()) ? 0 : 1; } size_t size() const { return UsingFullMap() ? map_.size() : size_; } bool empty() const { return UsingFullMap() ? map_.empty() : size_ == 0; } // Returns true if we have fallen back to using the underlying map // representation. bool UsingFullMap() const { return size_ == kUsingFullMapSentinel; } inline NormalMap* map() { CHECK(UsingFullMap()); return &map_; } inline const NormalMap* map() const { CHECK(UsingFullMap()); return &map_; } private: // When `size_ == kUsingFullMapSentinel`, we have switched storage strategies // from `array_[kArraySize] to `NormalMap map_`. See ConvertToRealMap and // UsingFullMap. size_t size_; MapInit functor_; // We want to call constructors and destructors manually, but we don't want // to allocate and deallocate the memory used for them separately. Since // array_ and map_ are mutually exclusive, we'll put them in a union. union { value_type array_[kArraySize]; NormalMap map_; }; void ConvertToRealMap() { // Storage for the elements in the temporary array. This is intentionally // declared as a union to avoid having to default-construct |kArraySize| // elements, only to move construct over them in the initial loop. union Storage { Storage() {} ~Storage() {} value_type array[kArraySize]; } temp; // Move the current elements into a temporary array. for (size_t i = 0; i < kArraySize; ++i) { new (&temp.array[i]) value_type(std::move(array_[i])); array_[i].~value_type(); } // Initialize the map. size_ = kUsingFullMapSentinel; functor_(&map_); // Insert elements into it. for (size_t i = 0; i < kArraySize; ++i) { map_.insert(std::move(temp.array[i])); temp.array[i].~value_type(); } } // Helpers for constructors and destructors. void InitFrom(const small_map& src) { functor_ = src.functor_; size_ = src.size_; if (src.UsingFullMap()) { functor_(&map_); map_ = src.map_; } else { for (size_t i = 0; i < size_; ++i) { new (&array_[i]) value_type(src.array_[i]); } } } void Destroy() { if (UsingFullMap()) { map_.~NormalMap(); } else { for (size_t i = 0; i < size_; ++i) { array_[i].~value_type(); } } } }; template inline bool small_map::iterator:: operator==(const const_iterator& other) const { return other == *this; } template inline bool small_map::iterator:: operator!=(const const_iterator& other) const { return other != *this; } } // namespace base #endif // BASE_CONTAINERS_SMALL_MAP_H_