// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef NET_WEBSOCKETS_WEBSOCKET_STREAM_H_ #define NET_WEBSOCKETS_WEBSOCKET_STREAM_H_ #include #include #include #include "base/callback_forward.h" #include "base/macros.h" #include "base/memory/scoped_refptr.h" #include "base/time/time.h" #include "net/base/completion_callback.h" #include "net/base/net_export.h" #include "net/websockets/websocket_event_interface.h" #include "net/websockets/websocket_handshake_request_info.h" #include "net/websockets/websocket_handshake_response_info.h" class GURL; namespace base { class Timer; } namespace url { class Origin; } // namespace url namespace net { class HttpRequestHeaders; class NetLogWithSource; class URLRequest; class URLRequestContext; struct WebSocketFrame; class WebSocketHandshakeStreamBase; class WebSocketHandshakeStreamCreateHelper; // WebSocketStreamRequest is the caller's handle to the process of creation of a // WebSocketStream. Deleting the object before the OnSuccess or OnFailure // callbacks are called will cancel the request (and neither callback will be // called). After OnSuccess or OnFailure have been called, this object may be // safely deleted without side-effects. class NET_EXPORT_PRIVATE WebSocketStreamRequest { public: virtual ~WebSocketStreamRequest(); virtual void OnHandshakeStreamCreated( WebSocketHandshakeStreamBase* handshake_stream) = 0; virtual void OnFailure(const std::string& message) = 0; }; // WebSocketStream is a transport-agnostic interface for reading and writing // WebSocket frames. This class provides an abstraction for WebSocket streams // based on various transport layers, such as normal WebSocket connections // (WebSocket protocol upgraded from HTTP handshake), SPDY transports, or // WebSocket connections with multiplexing extension. Subtypes of // WebSocketStream are responsible for managing the underlying transport // appropriately. // // All functions except Close() can be asynchronous. If an operation cannot // be finished synchronously, the function returns ERR_IO_PENDING, and // |callback| will be called when the operation is finished. Non-null |callback| // must be provided to these functions. // // Please update the traffic annotations in the websocket_basic_stream.cc and // websocket_stream.cc if the class is used for any communication with Google. // In such a case, annotation should be passed from the callers to this class // and a local annotation can not be used anymore. class NET_EXPORT_PRIVATE WebSocketStream { public: // A concrete object derived from ConnectDelegate is supplied by the caller to // CreateAndConnectStream() to receive the result of the connection. class NET_EXPORT_PRIVATE ConnectDelegate { public: virtual ~ConnectDelegate(); // Called when the URLRequest is created. virtual void OnCreateRequest(URLRequest* url_request) = 0; // Called on successful connection. The parameter is an object derived from // WebSocketStream. virtual void OnSuccess(std::unique_ptr stream) = 0; // Called on failure to connect. // |message| contains defails of the failure. virtual void OnFailure(const std::string& message) = 0; // Called when the WebSocket Opening Handshake starts. virtual void OnStartOpeningHandshake( std::unique_ptr request) = 0; // Called when the WebSocket Opening Handshake ends. virtual void OnFinishOpeningHandshake( std::unique_ptr response) = 0; // Called when there is an SSL certificate error. Should call // ssl_error_callbacks->ContinueSSLRequest() or // ssl_error_callbacks->CancelSSLRequest(). virtual void OnSSLCertificateError( std::unique_ptr ssl_error_callbacks, const SSLInfo& ssl_info, bool fatal) = 0; }; // Create and connect a WebSocketStream of an appropriate type. The actual // concrete type returned depends on whether multiplexing or SPDY are being // used to communicate with the remote server. If the handshake completed // successfully, then connect_delegate->OnSuccess() is called with a // WebSocketStream instance. If it failed, then connect_delegate->OnFailure() // is called with a WebSocket result code corresponding to the error. Deleting // the returned WebSocketStreamRequest object will cancel the connection, in // which case the |connect_delegate| object that the caller passed will be // deleted without any of its methods being called. Unless cancellation is // required, the caller should keep the WebSocketStreamRequest object alive // until connect_delegate->OnSuccess() or OnFailure() have been called, then // it is safe to delete. static std::unique_ptr CreateAndConnectStream( const GURL& socket_url, std::unique_ptr create_helper, const url::Origin& origin, const GURL& site_for_cookies, const HttpRequestHeaders& additional_headers, URLRequestContext* url_request_context, const NetLogWithSource& net_log, std::unique_ptr connect_delegate); // Alternate version of CreateAndConnectStream() for testing use only. It // takes |timer| as the handshake timeout timer. static std::unique_ptr CreateAndConnectStreamForTesting( const GURL& socket_url, std::unique_ptr create_helper, const url::Origin& origin, const GURL& site_for_cookies, const HttpRequestHeaders& additional_headers, URLRequestContext* url_request_context, const NetLogWithSource& net_log, std::unique_ptr connect_delegate, std::unique_ptr timer); // Derived classes must make sure Close() is called when the stream is not // closed on destruction. virtual ~WebSocketStream(); // Reads WebSocket frame data. This operation finishes when new frame data // becomes available. // // |frames| remains owned by the caller and must be valid until the // operation completes or Close() is called. |frames| must be empty on // calling. // // This function should not be called while the previous call of ReadFrames() // is still pending. // // Returns net::OK or one of the net::ERR_* codes. // // frames->size() >= 1 if the result is OK. // // Only frames with complete header information are inserted into |frames|. If // the currently available bytes of a new frame do not form a complete frame // header, then the implementation will buffer them until all the fields in // the WebSocketFrameHeader object can be filled. If ReadFrames() is freshly // called in this situation, it will return ERR_IO_PENDING exactly as if no // data was available. // // Original frame boundaries are not preserved. In particular, if only part of // a frame is available, then the frame will be split, and the available data // will be returned immediately. // // When the socket is closed on the remote side, this method will return // ERR_CONNECTION_CLOSED. It will not return OK with an empty vector. // // If the connection is closed in the middle of receiving an incomplete frame, // ReadFrames may discard the incomplete frame. Since the renderer will // discard any incomplete messages when the connection is closed, this makes // no difference to the overall semantics. // // Implementations of ReadFrames() must be able to handle being deleted during // the execution of callback.Run(). In practice this means that the method // calling callback.Run() (and any calling methods in the same object) must // return immediately without any further method calls or access to member // variables. Implementors should write test(s) for this case. // // Extensions which use reserved header bits should clear them when they are // set correctly. If the reserved header bits are set incorrectly, it is okay // to leave it to the caller to report the error. virtual int ReadFrames(std::vector>* frames, const CompletionCallback& callback) = 0; // Writes WebSocket frame data. // // |frames| must be valid until the operation completes or Close() is called. // // This function must not be called while a previous call of WriteFrames() is // still pending. // // This method will only return OK if all frames were written completely. // Otherwise it will return an appropriate net error code. // // The callback implementation is permitted to delete this // object. Implementations of WriteFrames() should be robust against // this. This generally means returning to the event loop immediately after // calling the callback. virtual int WriteFrames(std::vector>* frames, const CompletionCallback& callback) = 0; // Closes the stream. All pending I/O operations (if any) are cancelled // at this point, so |frames| can be freed. virtual void Close() = 0; // The subprotocol that was negotiated for the stream. If no protocol was // negotiated, then the empty string is returned. virtual std::string GetSubProtocol() const = 0; // The extensions that were negotiated for the stream. Since WebSocketStreams // can be layered, this may be different from what this particular // WebSocketStream implements. The primary purpose of this accessor is to make // the data available to Javascript. The format of the string is identical to // the contents of the Sec-WebSocket-Extensions header supplied by the server, // with some canonicalisations applied (leading and trailing whitespace // removed, multiple headers concatenated into one comma-separated list). See // RFC6455 section 9.1 for the exact format specification. If no // extensions were negotiated, the empty string is returned. virtual std::string GetExtensions() const = 0; protected: WebSocketStream(); private: DISALLOW_COPY_AND_ASSIGN(WebSocketStream); }; // A helper function used in the implementation of CreateAndConnectStream() and // WebSocketBasicHandshakeStream. It creates a WebSocketHandshakeResponseInfo // object and dispatches it to the OnFinishOpeningHandshake() method of the // supplied |connect_delegate|. void WebSocketDispatchOnFinishOpeningHandshake( WebSocketStream::ConnectDelegate* connect_delegate, const GURL& gurl, const scoped_refptr& headers, base::Time response_time); } // namespace net #endif // NET_WEBSOCKETS_WEBSOCKET_STREAM_H_