// Copyright 2016 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/metrics/persistent_histogram_allocator.h" #include #include "base/atomicops.h" #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/files/important_file_writer.h" #include "base/files/memory_mapped_file.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/memory/ptr_util.h" #include "base/metrics/histogram.h" #include "base/metrics/histogram_base.h" #include "base/metrics/histogram_samples.h" #include "base/metrics/metrics_hashes.h" #include "base/metrics/persistent_sample_map.h" #include "base/metrics/sparse_histogram.h" #include "base/metrics/statistics_recorder.h" #include "base/numerics/safe_conversions.h" #include "base/pickle.h" #include "base/process/process_handle.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/strings/stringprintf.h" #include "base/synchronization/lock.h" namespace base { namespace { // Type identifiers used when storing in persistent memory so they can be // identified during extraction; the first 4 bytes of the SHA1 of the name // is used as a unique integer. A "version number" is added to the base // so that, if the structure of that object changes, stored older versions // will be safely ignored. enum : uint32_t { kTypeIdRangesArray = 0xBCEA225A + 1, // SHA1(RangesArray) v1 kTypeIdCountsArray = 0x53215530 + 1, // SHA1(CountsArray) v1 }; // The current globally-active persistent allocator for all new histograms. // The object held here will obviously not be destructed at process exit // but that's best since PersistentMemoryAllocator objects (that underlie // GlobalHistogramAllocator objects) are explicitly forbidden from doing // anything essential at exit anyway due to the fact that they depend on data // managed elsewhere and which could be destructed first. An AtomicWord is // used instead of std::atomic because the latter can create global ctors // and dtors. subtle::AtomicWord g_histogram_allocator = 0; // Take an array of range boundaries and create a proper BucketRanges object // which is returned to the caller. A return of nullptr indicates that the // passed boundaries are invalid. std::unique_ptr CreateRangesFromData( HistogramBase::Sample* ranges_data, uint32_t ranges_checksum, size_t count) { // To avoid racy destruction at shutdown, the following may be leaked. std::unique_ptr ranges(new BucketRanges(count)); DCHECK_EQ(count, ranges->size()); for (size_t i = 0; i < count; ++i) { if (i > 0 && ranges_data[i] <= ranges_data[i - 1]) return nullptr; ranges->set_range(i, ranges_data[i]); } ranges->ResetChecksum(); if (ranges->checksum() != ranges_checksum) return nullptr; return ranges; } // Calculate the number of bytes required to store all of a histogram's // "counts". This will return zero (0) if |bucket_count| is not valid. size_t CalculateRequiredCountsBytes(size_t bucket_count) { // 2 because each "sample count" also requires a backup "logged count" // used for calculating the delta during snapshot operations. const size_t kBytesPerBucket = 2 * sizeof(HistogramBase::AtomicCount); // If the |bucket_count| is such that it would overflow the return type, // perhaps as the result of a malicious actor, then return zero to // indicate the problem to the caller. if (bucket_count > std::numeric_limits::max() / kBytesPerBucket) return 0; return bucket_count * kBytesPerBucket; } } // namespace const Feature kPersistentHistogramsFeature{ "PersistentHistograms", FEATURE_DISABLED_BY_DEFAULT }; PersistentSparseHistogramDataManager::PersistentSparseHistogramDataManager( PersistentMemoryAllocator* allocator) : allocator_(allocator), record_iterator_(allocator) {} PersistentSparseHistogramDataManager::~PersistentSparseHistogramDataManager() = default; PersistentSampleMapRecords* PersistentSparseHistogramDataManager::UseSampleMapRecords(uint64_t id, const void* user) { base::AutoLock auto_lock(lock_); return GetSampleMapRecordsWhileLocked(id)->Acquire(user); } PersistentSampleMapRecords* PersistentSparseHistogramDataManager::GetSampleMapRecordsWhileLocked( uint64_t id) { lock_.AssertAcquired(); auto found = sample_records_.find(id); if (found != sample_records_.end()) return found->second.get(); std::unique_ptr& samples = sample_records_[id]; samples = std::make_unique(this, id); return samples.get(); } bool PersistentSparseHistogramDataManager::LoadRecords( PersistentSampleMapRecords* sample_map_records) { // DataManager must be locked in order to access the found_ field of any // PersistentSampleMapRecords object. base::AutoLock auto_lock(lock_); bool found = false; // If there are already "found" entries for the passed object, move them. if (!sample_map_records->found_.empty()) { sample_map_records->records_.reserve(sample_map_records->records_.size() + sample_map_records->found_.size()); sample_map_records->records_.insert(sample_map_records->records_.end(), sample_map_records->found_.begin(), sample_map_records->found_.end()); sample_map_records->found_.clear(); found = true; } // Acquiring a lock is a semi-expensive operation so load some records with // each call. More than this number may be loaded if it takes longer to // find at least one matching record for the passed object. const int kMinimumNumberToLoad = 10; const uint64_t match_id = sample_map_records->sample_map_id_; // Loop while no enty is found OR we haven't yet loaded the minimum number. // This will continue reading even after a match is found. for (int count = 0; !found || count < kMinimumNumberToLoad; ++count) { // Get the next sample-record. The iterator will always resume from where // it left off even if it previously had nothing further to return. uint64_t found_id; PersistentMemoryAllocator::Reference ref = PersistentSampleMap::GetNextPersistentRecord(record_iterator_, &found_id); // Stop immediately if there are none. if (!ref) break; // The sample-record could be for any sparse histogram. Add the reference // to the appropriate collection for later use. if (found_id == match_id) { sample_map_records->records_.push_back(ref); found = true; } else { PersistentSampleMapRecords* samples = GetSampleMapRecordsWhileLocked(found_id); DCHECK(samples); samples->found_.push_back(ref); } } return found; } PersistentSampleMapRecords::PersistentSampleMapRecords( PersistentSparseHistogramDataManager* data_manager, uint64_t sample_map_id) : data_manager_(data_manager), sample_map_id_(sample_map_id) {} PersistentSampleMapRecords::~PersistentSampleMapRecords() = default; PersistentSampleMapRecords* PersistentSampleMapRecords::Acquire( const void* user) { DCHECK(!user_); user_ = user; seen_ = 0; return this; } void PersistentSampleMapRecords::Release(const void* user) { DCHECK_EQ(user_, user); user_ = nullptr; } PersistentMemoryAllocator::Reference PersistentSampleMapRecords::GetNext() { DCHECK(user_); // If there are no unseen records, lock and swap in all the found ones. if (records_.size() == seen_) { if (!data_manager_->LoadRecords(this)) return false; } // Return the next record. Records *must* be returned in the same order // they are found in the persistent memory in order to ensure that all // objects using this data always have the same state. Race conditions // can cause duplicate records so using the "first found" is the only // guarantee that all objects always access the same one. DCHECK_LT(seen_, records_.size()); return records_[seen_++]; } PersistentMemoryAllocator::Reference PersistentSampleMapRecords::CreateNew( HistogramBase::Sample value) { return PersistentSampleMap::CreatePersistentRecord(data_manager_->allocator_, sample_map_id_, value); } // This data will be held in persistent memory in order for processes to // locate and use histograms created elsewhere. struct PersistentHistogramAllocator::PersistentHistogramData { // SHA1(Histogram): Increment this if structure changes! static constexpr uint32_t kPersistentTypeId = 0xF1645910 + 3; // Expected size for 32/64-bit check. static constexpr size_t kExpectedInstanceSize = 40 + 2 * HistogramSamples::Metadata::kExpectedInstanceSize; int32_t histogram_type; int32_t flags; int32_t minimum; int32_t maximum; uint32_t bucket_count; PersistentMemoryAllocator::Reference ranges_ref; uint32_t ranges_checksum; subtle::Atomic32 counts_ref; // PersistentMemoryAllocator::Reference HistogramSamples::Metadata samples_metadata; HistogramSamples::Metadata logged_metadata; // Space for the histogram name will be added during the actual allocation // request. This must be the last field of the structure. A zero-size array // or a "flexible" array would be preferred but is not (yet) valid C++. char name[sizeof(uint64_t)]; // Force 64-bit alignment on 32-bit builds. }; PersistentHistogramAllocator::Iterator::Iterator( PersistentHistogramAllocator* allocator) : allocator_(allocator), memory_iter_(allocator->memory_allocator()) {} std::unique_ptr PersistentHistogramAllocator::Iterator::GetNextWithIgnore(Reference ignore) { PersistentMemoryAllocator::Reference ref; while ((ref = memory_iter_.GetNextOfType()) != 0) { if (ref != ignore) return allocator_->GetHistogram(ref); } return nullptr; } PersistentHistogramAllocator::PersistentHistogramAllocator( std::unique_ptr memory) : memory_allocator_(std::move(memory)), sparse_histogram_data_manager_(memory_allocator_.get()) {} PersistentHistogramAllocator::~PersistentHistogramAllocator() = default; std::unique_ptr PersistentHistogramAllocator::GetHistogram( Reference ref) { // Unfortunately, the histogram "pickle" methods cannot be used as part of // the persistance because the deserialization methods always create local // count data (while these must reference the persistent counts) and always // add it to the local list of known histograms (while these may be simple // references to histograms in other processes). PersistentHistogramData* data = memory_allocator_->GetAsObject(ref); const size_t length = memory_allocator_->GetAllocSize(ref); // Check that metadata is reasonable: name is null-terminated and non-empty, // ID fields have been loaded with a hash of the name (0 is considered // unset/invalid). if (!data || data->name[0] == '\0' || reinterpret_cast(data)[length - 1] != '\0' || data->samples_metadata.id == 0 || data->logged_metadata.id == 0 || // Note: Sparse histograms use |id + 1| in |logged_metadata|. (data->logged_metadata.id != data->samples_metadata.id && data->logged_metadata.id != data->samples_metadata.id + 1) || // Most non-matching values happen due to truncated names. Ideally, we // could just verify the name length based on the overall alloc length, // but that doesn't work because the allocated block may have been // aligned to the next boundary value. HashMetricName(data->name) != data->samples_metadata.id) { NOTREACHED(); return nullptr; } return CreateHistogram(data); } std::unique_ptr PersistentHistogramAllocator::AllocateHistogram( HistogramType histogram_type, const std::string& name, int minimum, int maximum, const BucketRanges* bucket_ranges, int32_t flags, Reference* ref_ptr) { // If the allocator is corrupt, don't waste time trying anything else. // This also allows differentiating on the dashboard between allocations // failed due to a corrupt allocator and the number of process instances // with one, the latter being idicated by "newly corrupt", below. if (memory_allocator_->IsCorrupt()) return nullptr; // Create the metadata necessary for a persistent sparse histogram. This // is done first because it is a small subset of what is required for // other histograms. The type is "under construction" so that a crash // during the datafill doesn't leave a bad record around that could cause // confusion by another process trying to read it. It will be corrected // once histogram construction is complete. PersistentHistogramData* histogram_data = memory_allocator_->New( offsetof(PersistentHistogramData, name) + name.length() + 1); if (histogram_data) { memcpy(histogram_data->name, name.c_str(), name.size() + 1); histogram_data->histogram_type = histogram_type; histogram_data->flags = flags | HistogramBase::kIsPersistent; } // Create the remaining metadata necessary for regular histograms. if (histogram_type != SPARSE_HISTOGRAM) { size_t bucket_count = bucket_ranges->bucket_count(); size_t counts_bytes = CalculateRequiredCountsBytes(bucket_count); if (counts_bytes == 0) { // |bucket_count| was out-of-range. NOTREACHED(); return nullptr; } // Since the StasticsRecorder keeps a global collection of BucketRanges // objects for re-use, it would be dangerous for one to hold a reference // from a persistent allocator that is not the global one (which is // permanent once set). If this stops being the case, this check can // become an "if" condition beside "!ranges_ref" below and before // set_persistent_reference() farther down. DCHECK_EQ(this, GlobalHistogramAllocator::Get()); // Re-use an existing BucketRanges persistent allocation if one is known; // otherwise, create one. PersistentMemoryAllocator::Reference ranges_ref = bucket_ranges->persistent_reference(); if (!ranges_ref) { size_t ranges_count = bucket_count + 1; size_t ranges_bytes = ranges_count * sizeof(HistogramBase::Sample); ranges_ref = memory_allocator_->Allocate(ranges_bytes, kTypeIdRangesArray); if (ranges_ref) { HistogramBase::Sample* ranges_data = memory_allocator_->GetAsArray( ranges_ref, kTypeIdRangesArray, ranges_count); if (ranges_data) { for (size_t i = 0; i < bucket_ranges->size(); ++i) ranges_data[i] = bucket_ranges->range(i); bucket_ranges->set_persistent_reference(ranges_ref); } else { // This should never happen but be tolerant if it does. NOTREACHED(); ranges_ref = PersistentMemoryAllocator::kReferenceNull; } } } else { DCHECK_EQ(kTypeIdRangesArray, memory_allocator_->GetType(ranges_ref)); } // Only continue here if all allocations were successful. If they weren't, // there is no way to free the space but that's not really a problem since // the allocations only fail because the space is full or corrupt and so // any future attempts will also fail. if (ranges_ref && histogram_data) { histogram_data->minimum = minimum; histogram_data->maximum = maximum; // |bucket_count| must fit within 32-bits or the allocation of the counts // array would have failed for being too large; the allocator supports // less than 4GB total size. histogram_data->bucket_count = static_cast(bucket_count); histogram_data->ranges_ref = ranges_ref; histogram_data->ranges_checksum = bucket_ranges->checksum(); } else { histogram_data = nullptr; // Clear this for proper handling below. } } if (histogram_data) { // Create the histogram using resources in persistent memory. This ends up // resolving the "ref" values stored in histogram_data instad of just // using what is already known above but avoids duplicating the switch // statement here and serves as a double-check that everything is // correct before commiting the new histogram to persistent space. std::unique_ptr histogram = CreateHistogram(histogram_data); DCHECK(histogram); DCHECK_NE(0U, histogram_data->samples_metadata.id); DCHECK_NE(0U, histogram_data->logged_metadata.id); PersistentMemoryAllocator::Reference histogram_ref = memory_allocator_->GetAsReference(histogram_data); if (ref_ptr != nullptr) *ref_ptr = histogram_ref; // By storing the reference within the allocator to this histogram, the // next import (which will happen before the next histogram creation) // will know to skip it. // See also the comment in ImportHistogramsToStatisticsRecorder(). subtle::NoBarrier_Store(&last_created_, histogram_ref); return histogram; } if (memory_allocator_->IsCorrupt()) NOTREACHED() << memory_allocator_->Name() << " is corrupt!"; return nullptr; } void PersistentHistogramAllocator::FinalizeHistogram(Reference ref, bool registered) { if (registered) { // If the created persistent histogram was registered then it needs to // be marked as "iterable" in order to be found by other processes. This // happens only after the histogram is fully formed so it's impossible for // code iterating through the allocator to read a partially created record. memory_allocator_->MakeIterable(ref); } else { // If it wasn't registered then a race condition must have caused two to // be created. The allocator does not support releasing the acquired memory // so just change the type to be empty. memory_allocator_->ChangeType(ref, 0, PersistentHistogramData::kPersistentTypeId, /*clear=*/false); } } void PersistentHistogramAllocator::MergeHistogramDeltaToStatisticsRecorder( HistogramBase* histogram) { DCHECK(histogram); HistogramBase* existing = GetOrCreateStatisticsRecorderHistogram(histogram); if (!existing) { // The above should never fail but if it does, no real harm is done. // The data won't be merged but it also won't be recorded as merged // so a future try, if successful, will get what was missed. If it // continues to fail, some metric data will be lost but that is better // than crashing. NOTREACHED(); return; } // Merge the delta from the passed object to the one in the SR. existing->AddSamples(*histogram->SnapshotDelta()); } void PersistentHistogramAllocator::MergeHistogramFinalDeltaToStatisticsRecorder( const HistogramBase* histogram) { DCHECK(histogram); HistogramBase* existing = GetOrCreateStatisticsRecorderHistogram(histogram); if (!existing) { // The above should never fail but if it does, no real harm is done. // Some metric data will be lost but that is better than crashing. NOTREACHED(); return; } // Merge the delta from the passed object to the one in the SR. existing->AddSamples(*histogram->SnapshotFinalDelta()); } PersistentSampleMapRecords* PersistentHistogramAllocator::UseSampleMapRecords( uint64_t id, const void* user) { return sparse_histogram_data_manager_.UseSampleMapRecords(id, user); } void PersistentHistogramAllocator::CreateTrackingHistograms(StringPiece name) { memory_allocator_->CreateTrackingHistograms(name); } void PersistentHistogramAllocator::UpdateTrackingHistograms() { memory_allocator_->UpdateTrackingHistograms(); } void PersistentHistogramAllocator::ClearLastCreatedReferenceForTesting() { subtle::NoBarrier_Store(&last_created_, 0); } std::unique_ptr PersistentHistogramAllocator::CreateHistogram( PersistentHistogramData* histogram_data_ptr) { if (!histogram_data_ptr) { NOTREACHED(); return nullptr; } // Sparse histograms are quite different so handle them as a special case. if (histogram_data_ptr->histogram_type == SPARSE_HISTOGRAM) { std::unique_ptr histogram = SparseHistogram::PersistentCreate(this, histogram_data_ptr->name, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); histogram->SetFlags(histogram_data_ptr->flags); return histogram; } // Copy the configuration fields from histogram_data_ptr to local storage // because anything in persistent memory cannot be trusted as it could be // changed at any moment by a malicious actor that shares access. The local // values are validated below and then used to create the histogram, knowing // they haven't changed between validation and use. int32_t histogram_type = histogram_data_ptr->histogram_type; int32_t histogram_flags = histogram_data_ptr->flags; int32_t histogram_minimum = histogram_data_ptr->minimum; int32_t histogram_maximum = histogram_data_ptr->maximum; uint32_t histogram_bucket_count = histogram_data_ptr->bucket_count; uint32_t histogram_ranges_ref = histogram_data_ptr->ranges_ref; uint32_t histogram_ranges_checksum = histogram_data_ptr->ranges_checksum; HistogramBase::Sample* ranges_data = memory_allocator_->GetAsArray( histogram_ranges_ref, kTypeIdRangesArray, PersistentMemoryAllocator::kSizeAny); const uint32_t max_buckets = std::numeric_limits::max() / sizeof(HistogramBase::Sample); size_t required_bytes = (histogram_bucket_count + 1) * sizeof(HistogramBase::Sample); size_t allocated_bytes = memory_allocator_->GetAllocSize(histogram_ranges_ref); if (!ranges_data || histogram_bucket_count < 2 || histogram_bucket_count >= max_buckets || allocated_bytes < required_bytes) { NOTREACHED(); return nullptr; } std::unique_ptr created_ranges = CreateRangesFromData( ranges_data, histogram_ranges_checksum, histogram_bucket_count + 1); if (!created_ranges) { NOTREACHED(); return nullptr; } const BucketRanges* ranges = StatisticsRecorder::RegisterOrDeleteDuplicateRanges( created_ranges.release()); size_t counts_bytes = CalculateRequiredCountsBytes(histogram_bucket_count); PersistentMemoryAllocator::Reference counts_ref = subtle::Acquire_Load(&histogram_data_ptr->counts_ref); if (counts_bytes == 0 || (counts_ref != 0 && memory_allocator_->GetAllocSize(counts_ref) < counts_bytes)) { NOTREACHED(); return nullptr; } // The "counts" data (including both samples and logged samples) is a delayed // persistent allocation meaning that though its size and storage for a // reference is defined, no space is reserved until actually needed. When // it is needed, memory will be allocated from the persistent segment and // a reference to it stored at the passed address. Other threads can then // notice the valid reference and access the same data. DelayedPersistentAllocation counts_data(memory_allocator_.get(), &histogram_data_ptr->counts_ref, kTypeIdCountsArray, counts_bytes, 0); // A second delayed allocations is defined using the same reference storage // location as the first so the allocation of one will automatically be found // by the other. Within the block, the first half of the space is for "counts" // and the second half is for "logged counts". DelayedPersistentAllocation logged_data( memory_allocator_.get(), &histogram_data_ptr->counts_ref, kTypeIdCountsArray, counts_bytes, counts_bytes / 2, /*make_iterable=*/false); // Create the right type of histogram. const char* name = histogram_data_ptr->name; std::unique_ptr histogram; switch (histogram_type) { case HISTOGRAM: histogram = Histogram::PersistentCreate( name, histogram_minimum, histogram_maximum, ranges, counts_data, logged_data, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); break; case LINEAR_HISTOGRAM: histogram = LinearHistogram::PersistentCreate( name, histogram_minimum, histogram_maximum, ranges, counts_data, logged_data, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); break; case BOOLEAN_HISTOGRAM: histogram = BooleanHistogram::PersistentCreate( name, ranges, counts_data, logged_data, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); break; case CUSTOM_HISTOGRAM: histogram = CustomHistogram::PersistentCreate( name, ranges, counts_data, logged_data, &histogram_data_ptr->samples_metadata, &histogram_data_ptr->logged_metadata); DCHECK(histogram); break; default: NOTREACHED(); } if (histogram) { DCHECK_EQ(histogram_type, histogram->GetHistogramType()); histogram->SetFlags(histogram_flags); } return histogram; } HistogramBase* PersistentHistogramAllocator::GetOrCreateStatisticsRecorderHistogram( const HistogramBase* histogram) { // This should never be called on the global histogram allocator as objects // created there are already within the global statistics recorder. DCHECK_NE(GlobalHistogramAllocator::Get(), this); DCHECK(histogram); HistogramBase* existing = StatisticsRecorder::FindHistogram(histogram->histogram_name()); if (existing) return existing; // Adding the passed histogram to the SR would cause a problem if the // allocator that holds it eventually goes away. Instead, create a new // one from a serialized version. Deserialization calls the appropriate // FactoryGet() which will create the histogram in the global persistent- // histogram allocator if such is set. base::Pickle pickle; histogram->SerializeInfo(&pickle); PickleIterator iter(pickle); existing = DeserializeHistogramInfo(&iter); if (!existing) return nullptr; // Make sure there is no "serialization" flag set. DCHECK_EQ(0, existing->flags() & HistogramBase::kIPCSerializationSourceFlag); // Record the newly created histogram in the SR. return StatisticsRecorder::RegisterOrDeleteDuplicate(existing); } GlobalHistogramAllocator::~GlobalHistogramAllocator() = default; // static void GlobalHistogramAllocator::CreateWithPersistentMemory( void* base, size_t size, size_t page_size, uint64_t id, StringPiece name) { Set(WrapUnique( new GlobalHistogramAllocator(std::make_unique( base, size, page_size, id, name, false)))); } // static void GlobalHistogramAllocator::CreateWithLocalMemory( size_t size, uint64_t id, StringPiece name) { Set(WrapUnique(new GlobalHistogramAllocator( std::make_unique(size, id, name)))); } #if !defined(OS_NACL) // static bool GlobalHistogramAllocator::CreateWithFile( const FilePath& file_path, size_t size, uint64_t id, StringPiece name) { bool exists = PathExists(file_path); File file( file_path, File::FLAG_OPEN_ALWAYS | File::FLAG_SHARE_DELETE | File::FLAG_READ | File::FLAG_WRITE); std::unique_ptr mmfile(new MemoryMappedFile()); if (exists) { size = saturated_cast(file.GetLength()); mmfile->Initialize(std::move(file), MemoryMappedFile::READ_WRITE); } else { mmfile->Initialize(std::move(file), {0, size}, MemoryMappedFile::READ_WRITE_EXTEND); } if (!mmfile->IsValid() || !FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, true)) { NOTREACHED() << file_path; return false; } Set(WrapUnique(new GlobalHistogramAllocator( std::make_unique(std::move(mmfile), size, id, name, false)))); Get()->SetPersistentLocation(file_path); return true; } // static bool GlobalHistogramAllocator::CreateWithActiveFile(const FilePath& base_path, const FilePath& active_path, const FilePath& spare_path, size_t size, uint64_t id, StringPiece name) { // Old "active" becomes "base". if (!base::ReplaceFile(active_path, base_path, nullptr)) base::DeleteFile(base_path, /*recursive=*/false); DCHECK(!base::PathExists(active_path)); // Move any "spare" into "active". Okay to continue if file doesn't exist. if (!spare_path.empty()) { base::ReplaceFile(spare_path, active_path, nullptr); DCHECK(!base::PathExists(spare_path)); } return base::GlobalHistogramAllocator::CreateWithFile(active_path, size, id, name); } // static bool GlobalHistogramAllocator::CreateWithActiveFileInDir(const FilePath& dir, size_t size, uint64_t id, StringPiece name) { FilePath base_path, active_path, spare_path; ConstructFilePaths(dir, name, &base_path, &active_path, &spare_path); return CreateWithActiveFile(base_path, active_path, spare_path, size, id, name); } // static FilePath GlobalHistogramAllocator::ConstructFilePath(const FilePath& dir, StringPiece name) { return dir.AppendASCII(name).AddExtension( PersistentMemoryAllocator::kFileExtension); } // static FilePath GlobalHistogramAllocator::ConstructFilePathForUploadDir( const FilePath& dir, StringPiece name, base::Time stamp, ProcessId pid) { return ConstructFilePath( dir, StringPrintf("%.*s-%lX-%lX", static_cast(name.length()), name.data(), static_cast(stamp.ToTimeT()), static_cast(pid))); } // static bool GlobalHistogramAllocator::ParseFilePath(const FilePath& path, std::string* out_name, Time* out_stamp, ProcessId* out_pid) { std::string filename = path.BaseName().AsUTF8Unsafe(); std::vector parts = base::SplitStringPiece( filename, "-.", base::KEEP_WHITESPACE, base::SPLIT_WANT_ALL); if (parts.size() != 4) return false; if (out_name) *out_name = parts[0].as_string(); if (out_stamp) { int64_t stamp; if (!HexStringToInt64(parts[1], &stamp)) return false; *out_stamp = Time::FromTimeT(static_cast(stamp)); } if (out_pid) { int64_t pid; if (!HexStringToInt64(parts[2], &pid)) return false; *out_pid = static_cast(pid); } return true; } // static void GlobalHistogramAllocator::ConstructFilePaths(const FilePath& dir, StringPiece name, FilePath* out_base_path, FilePath* out_active_path, FilePath* out_spare_path) { if (out_base_path) *out_base_path = ConstructFilePath(dir, name); if (out_active_path) { *out_active_path = ConstructFilePath(dir, name.as_string().append("-active")); } if (out_spare_path) { *out_spare_path = ConstructFilePath(dir, name.as_string().append("-spare")); } } // static void GlobalHistogramAllocator::ConstructFilePathsForUploadDir( const FilePath& active_dir, const FilePath& upload_dir, const std::string& name, FilePath* out_upload_path, FilePath* out_active_path, FilePath* out_spare_path) { if (out_upload_path) { *out_upload_path = ConstructFilePathForUploadDir( upload_dir, name, Time::Now(), GetCurrentProcId()); } if (out_active_path) { *out_active_path = ConstructFilePath(active_dir, name + std::string("-active")); } if (out_spare_path) { *out_spare_path = ConstructFilePath(active_dir, name + std::string("-spare")); } } // static bool GlobalHistogramAllocator::CreateSpareFile(const FilePath& spare_path, size_t size) { FilePath temp_spare_path = spare_path.AddExtension(FILE_PATH_LITERAL(".tmp")); bool success = true; { File spare_file(temp_spare_path, File::FLAG_CREATE_ALWAYS | File::FLAG_READ | File::FLAG_WRITE); if (!spare_file.IsValid()) return false; MemoryMappedFile mmfile; mmfile.Initialize(std::move(spare_file), {0, size}, MemoryMappedFile::READ_WRITE_EXTEND); success = mmfile.IsValid(); } if (success) success = ReplaceFile(temp_spare_path, spare_path, nullptr); if (!success) DeleteFile(temp_spare_path, /*recursive=*/false); return success; } // static bool GlobalHistogramAllocator::CreateSpareFileInDir(const FilePath& dir, size_t size, StringPiece name) { FilePath spare_path; ConstructFilePaths(dir, name, nullptr, nullptr, &spare_path); return CreateSpareFile(spare_path, size); } #endif // !defined(OS_NACL) // static void GlobalHistogramAllocator::CreateWithSharedMemoryHandle( const SharedMemoryHandle& handle, size_t size) { std::unique_ptr shm( new SharedMemory(handle, /*readonly=*/false)); if (!shm->Map(size) || !SharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(*shm)) { NOTREACHED(); return; } Set(WrapUnique(new GlobalHistogramAllocator( std::make_unique( std::move(shm), 0, StringPiece(), /*readonly=*/false)))); } // static void GlobalHistogramAllocator::Set( std::unique_ptr allocator) { // Releasing or changing an allocator is extremely dangerous because it // likely has histograms stored within it. If the backing memory is also // also released, future accesses to those histograms will seg-fault. CHECK(!subtle::NoBarrier_Load(&g_histogram_allocator)); subtle::Release_Store(&g_histogram_allocator, reinterpret_cast(allocator.release())); size_t existing = StatisticsRecorder::GetHistogramCount(); DVLOG_IF(1, existing) << existing << " histograms were created before persistence was enabled."; } // static GlobalHistogramAllocator* GlobalHistogramAllocator::Get() { return reinterpret_cast( subtle::Acquire_Load(&g_histogram_allocator)); } // static std::unique_ptr GlobalHistogramAllocator::ReleaseForTesting() { GlobalHistogramAllocator* histogram_allocator = Get(); if (!histogram_allocator) return nullptr; PersistentMemoryAllocator* memory_allocator = histogram_allocator->memory_allocator(); // Before releasing the memory, it's necessary to have the Statistics- // Recorder forget about the histograms contained therein; otherwise, // some operations will try to access them and the released memory. PersistentMemoryAllocator::Iterator iter(memory_allocator); const PersistentHistogramData* data; while ((data = iter.GetNextOfObject()) != nullptr) { StatisticsRecorder::ForgetHistogramForTesting(data->name); } subtle::Release_Store(&g_histogram_allocator, 0); return WrapUnique(histogram_allocator); }; void GlobalHistogramAllocator::SetPersistentLocation(const FilePath& location) { persistent_location_ = location; } const FilePath& GlobalHistogramAllocator::GetPersistentLocation() const { return persistent_location_; } bool GlobalHistogramAllocator::WriteToPersistentLocation() { #if defined(OS_NACL) // NACL doesn't support file operations, including ImportantFileWriter. NOTREACHED(); return false; #else // Stop if no destination is set. if (persistent_location_.empty()) { NOTREACHED() << "Could not write \"" << Name() << "\" persistent histograms" << " to file because no location was set."; return false; } StringPiece contents(static_cast(data()), used()); if (!ImportantFileWriter::WriteFileAtomically(persistent_location_, contents)) { LOG(ERROR) << "Could not write \"" << Name() << "\" persistent histograms" << " to file: " << persistent_location_.value(); return false; } return true; #endif } void GlobalHistogramAllocator::DeletePersistentLocation() { memory_allocator()->SetMemoryState(PersistentMemoryAllocator::MEMORY_DELETED); #if defined(OS_NACL) NOTREACHED(); #else if (persistent_location_.empty()) return; // Open (with delete) and then immediately close the file by going out of // scope. This is the only cross-platform safe way to delete a file that may // be open elsewhere. Open handles will continue to operate normally but // new opens will not be possible. File file(persistent_location_, File::FLAG_OPEN | File::FLAG_READ | File::FLAG_DELETE_ON_CLOSE); #endif } GlobalHistogramAllocator::GlobalHistogramAllocator( std::unique_ptr memory) : PersistentHistogramAllocator(std::move(memory)), import_iterator_(this) { } void GlobalHistogramAllocator::ImportHistogramsToStatisticsRecorder() { // Skip the import if it's the histogram that was last created. Should a // race condition cause the "last created" to be overwritten before it // is recognized here then the histogram will be created and be ignored // when it is detected as a duplicate by the statistics-recorder. This // simple check reduces the time of creating persistent histograms by // about 40%. Reference record_to_ignore = last_created(); // There is no lock on this because the iterator is lock-free while still // guaranteed to only return each entry only once. The StatisticsRecorder // has its own lock so the Register operation is safe. while (true) { std::unique_ptr histogram = import_iterator_.GetNextWithIgnore(record_to_ignore); if (!histogram) break; StatisticsRecorder::RegisterOrDeleteDuplicate(histogram.release()); } } } // namespace base