// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/strings/string_util.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base/logging.h" #include "base/macros.h" #include "base/memory/singleton.h" #include "base/strings/utf_string_conversion_utils.h" #include "base/strings/utf_string_conversions.h" #include "base/third_party/icu/icu_utf.h" #include "build/build_config.h" namespace base { namespace { // Force the singleton used by EmptyString[16] to be a unique type. This // prevents other code that might accidentally use Singleton from // getting our internal one. struct EmptyStrings { EmptyStrings() = default; const std::string s; const string16 s16; static EmptyStrings* GetInstance() { return Singleton::get(); } }; // Used by ReplaceStringPlaceholders to track the position in the string of // replaced parameters. struct ReplacementOffset { ReplacementOffset(uintptr_t parameter, size_t offset) : parameter(parameter), offset(offset) {} // Index of the parameter. uintptr_t parameter; // Starting position in the string. size_t offset; }; static bool CompareParameter(const ReplacementOffset& elem1, const ReplacementOffset& elem2) { return elem1.parameter < elem2.parameter; } // Overloaded function to append one string onto the end of another. Having a // separate overload for |source| as both string and StringPiece allows for more // efficient usage from functions templated to work with either type (avoiding a // redundant call to the BasicStringPiece constructor in both cases). template inline void AppendToString(string_type* target, const string_type& source) { target->append(source); } template inline void AppendToString(string_type* target, const BasicStringPiece& source) { source.AppendToString(target); } // Assuming that a pointer is the size of a "machine word", then // uintptr_t is an integer type that is also a machine word. typedef uintptr_t MachineWord; const uintptr_t kMachineWordAlignmentMask = sizeof(MachineWord) - 1; inline bool IsAlignedToMachineWord(const void* pointer) { return !(reinterpret_cast(pointer) & kMachineWordAlignmentMask); } template inline T* AlignToMachineWord(T* pointer) { return reinterpret_cast(reinterpret_cast(pointer) & ~kMachineWordAlignmentMask); } template struct NonASCIIMask; template<> struct NonASCIIMask<4, char16> { static inline uint32_t value() { return 0xFF80FF80U; } }; template<> struct NonASCIIMask<4, char> { static inline uint32_t value() { return 0x80808080U; } }; template<> struct NonASCIIMask<8, char16> { static inline uint64_t value() { return 0xFF80FF80FF80FF80ULL; } }; template<> struct NonASCIIMask<8, char> { static inline uint64_t value() { return 0x8080808080808080ULL; } }; #if defined(WCHAR_T_IS_UTF32) template<> struct NonASCIIMask<4, wchar_t> { static inline uint32_t value() { return 0xFFFFFF80U; } }; template<> struct NonASCIIMask<8, wchar_t> { static inline uint64_t value() { return 0xFFFFFF80FFFFFF80ULL; } }; #endif // WCHAR_T_IS_UTF32 } // namespace bool IsWprintfFormatPortable(const wchar_t* format) { for (const wchar_t* position = format; *position != '\0'; ++position) { if (*position == '%') { bool in_specification = true; bool modifier_l = false; while (in_specification) { // Eat up characters until reaching a known specifier. if (*++position == '\0') { // The format string ended in the middle of a specification. Call // it portable because no unportable specifications were found. The // string is equally broken on all platforms. return true; } if (*position == 'l') { // 'l' is the only thing that can save the 's' and 'c' specifiers. modifier_l = true; } else if (((*position == 's' || *position == 'c') && !modifier_l) || *position == 'S' || *position == 'C' || *position == 'F' || *position == 'D' || *position == 'O' || *position == 'U') { // Not portable. return false; } if (wcschr(L"diouxXeEfgGaAcspn%", *position)) { // Portable, keep scanning the rest of the format string. in_specification = false; } } } } return true; } namespace { template StringType ToLowerASCIIImpl(BasicStringPiece str) { StringType ret; ret.reserve(str.size()); for (size_t i = 0; i < str.size(); i++) ret.push_back(ToLowerASCII(str[i])); return ret; } template StringType ToUpperASCIIImpl(BasicStringPiece str) { StringType ret; ret.reserve(str.size()); for (size_t i = 0; i < str.size(); i++) ret.push_back(ToUpperASCII(str[i])); return ret; } } // namespace std::string ToLowerASCII(StringPiece str) { return ToLowerASCIIImpl(str); } string16 ToLowerASCII(StringPiece16 str) { return ToLowerASCIIImpl(str); } std::string ToUpperASCII(StringPiece str) { return ToUpperASCIIImpl(str); } string16 ToUpperASCII(StringPiece16 str) { return ToUpperASCIIImpl(str); } template int CompareCaseInsensitiveASCIIT(BasicStringPiece a, BasicStringPiece b) { // Find the first characters that aren't equal and compare them. If the end // of one of the strings is found before a nonequal character, the lengths // of the strings are compared. size_t i = 0; while (i < a.length() && i < b.length()) { typename StringType::value_type lower_a = ToLowerASCII(a[i]); typename StringType::value_type lower_b = ToLowerASCII(b[i]); if (lower_a < lower_b) return -1; if (lower_a > lower_b) return 1; i++; } // End of one string hit before finding a different character. Expect the // common case to be "strings equal" at this point so check that first. if (a.length() == b.length()) return 0; if (a.length() < b.length()) return -1; return 1; } int CompareCaseInsensitiveASCII(StringPiece a, StringPiece b) { return CompareCaseInsensitiveASCIIT(a, b); } int CompareCaseInsensitiveASCII(StringPiece16 a, StringPiece16 b) { return CompareCaseInsensitiveASCIIT(a, b); } bool EqualsCaseInsensitiveASCII(StringPiece a, StringPiece b) { if (a.length() != b.length()) return false; return CompareCaseInsensitiveASCIIT(a, b) == 0; } bool EqualsCaseInsensitiveASCII(StringPiece16 a, StringPiece16 b) { if (a.length() != b.length()) return false; return CompareCaseInsensitiveASCIIT(a, b) == 0; } const std::string& EmptyString() { return EmptyStrings::GetInstance()->s; } const string16& EmptyString16() { return EmptyStrings::GetInstance()->s16; } template bool ReplaceCharsT(const StringType& input, BasicStringPiece find_any_of_these, BasicStringPiece replace_with, StringType* output); bool ReplaceChars(const string16& input, const StringPiece16& replace_chars, const string16& replace_with, string16* output) { return ReplaceCharsT(input, replace_chars, StringPiece16(replace_with), output); } bool ReplaceChars(const std::string& input, const StringPiece& replace_chars, const std::string& replace_with, std::string* output) { return ReplaceCharsT(input, replace_chars, StringPiece(replace_with), output); } bool RemoveChars(const string16& input, const StringPiece16& remove_chars, string16* output) { return ReplaceCharsT(input, remove_chars, StringPiece16(), output); } bool RemoveChars(const std::string& input, const StringPiece& remove_chars, std::string* output) { return ReplaceCharsT(input, remove_chars, StringPiece(), output); } template TrimPositions TrimStringT(const Str& input, BasicStringPiece trim_chars, TrimPositions positions, Str* output) { // Find the edges of leading/trailing whitespace as desired. Need to use // a StringPiece version of input to be able to call find* on it with the // StringPiece version of trim_chars (normally the trim_chars will be a // constant so avoid making a copy). BasicStringPiece input_piece(input); const size_t last_char = input.length() - 1; const size_t first_good_char = (positions & TRIM_LEADING) ? input_piece.find_first_not_of(trim_chars) : 0; const size_t last_good_char = (positions & TRIM_TRAILING) ? input_piece.find_last_not_of(trim_chars) : last_char; // When the string was all trimmed, report that we stripped off characters // from whichever position the caller was interested in. For empty input, we // stripped no characters, but we still need to clear |output|. if (input.empty() || (first_good_char == Str::npos) || (last_good_char == Str::npos)) { bool input_was_empty = input.empty(); // in case output == &input output->clear(); return input_was_empty ? TRIM_NONE : positions; } // Trim. *output = input.substr(first_good_char, last_good_char - first_good_char + 1); // Return where we trimmed from. return static_cast( ((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) | ((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING)); } bool TrimString(const string16& input, StringPiece16 trim_chars, string16* output) { return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE; } bool TrimString(const std::string& input, StringPiece trim_chars, std::string* output) { return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE; } template BasicStringPiece TrimStringPieceT(BasicStringPiece input, BasicStringPiece trim_chars, TrimPositions positions) { size_t begin = (positions & TRIM_LEADING) ? input.find_first_not_of(trim_chars) : 0; size_t end = (positions & TRIM_TRAILING) ? input.find_last_not_of(trim_chars) + 1 : input.size(); return input.substr(begin, end - begin); } StringPiece16 TrimString(StringPiece16 input, const StringPiece16& trim_chars, TrimPositions positions) { return TrimStringPieceT(input, trim_chars, positions); } StringPiece TrimString(StringPiece input, const StringPiece& trim_chars, TrimPositions positions) { return TrimStringPieceT(input, trim_chars, positions); } void TruncateUTF8ToByteSize(const std::string& input, const size_t byte_size, std::string* output) { DCHECK(output); if (byte_size > input.length()) { *output = input; return; } DCHECK_LE(byte_size, static_cast(std::numeric_limits::max())); // Note: This cast is necessary because CBU8_NEXT uses int32_ts. int32_t truncation_length = static_cast(byte_size); int32_t char_index = truncation_length - 1; const char* data = input.data(); // Using CBU8, we will move backwards from the truncation point // to the beginning of the string looking for a valid UTF8 // character. Once a full UTF8 character is found, we will // truncate the string to the end of that character. while (char_index >= 0) { int32_t prev = char_index; base_icu::UChar32 code_point = 0; CBU8_NEXT(data, char_index, truncation_length, code_point); if (!IsValidCharacter(code_point) || !IsValidCodepoint(code_point)) { char_index = prev - 1; } else { break; } } if (char_index >= 0 ) *output = input.substr(0, char_index); else output->clear(); } TrimPositions TrimWhitespace(const string16& input, TrimPositions positions, string16* output) { return TrimStringT(input, StringPiece16(kWhitespaceUTF16), positions, output); } StringPiece16 TrimWhitespace(StringPiece16 input, TrimPositions positions) { return TrimStringPieceT(input, StringPiece16(kWhitespaceUTF16), positions); } TrimPositions TrimWhitespaceASCII(const std::string& input, TrimPositions positions, std::string* output) { return TrimStringT(input, StringPiece(kWhitespaceASCII), positions, output); } StringPiece TrimWhitespaceASCII(StringPiece input, TrimPositions positions) { return TrimStringPieceT(input, StringPiece(kWhitespaceASCII), positions); } template STR CollapseWhitespaceT(const STR& text, bool trim_sequences_with_line_breaks) { STR result; result.resize(text.size()); // Set flags to pretend we're already in a trimmed whitespace sequence, so we // will trim any leading whitespace. bool in_whitespace = true; bool already_trimmed = true; int chars_written = 0; for (typename STR::const_iterator i(text.begin()); i != text.end(); ++i) { if (IsUnicodeWhitespace(*i)) { if (!in_whitespace) { // Reduce all whitespace sequences to a single space. in_whitespace = true; result[chars_written++] = L' '; } if (trim_sequences_with_line_breaks && !already_trimmed && ((*i == '\n') || (*i == '\r'))) { // Whitespace sequences containing CR or LF are eliminated entirely. already_trimmed = true; --chars_written; } } else { // Non-whitespace chracters are copied straight across. in_whitespace = false; already_trimmed = false; result[chars_written++] = *i; } } if (in_whitespace && !already_trimmed) { // Any trailing whitespace is eliminated. --chars_written; } result.resize(chars_written); return result; } string16 CollapseWhitespace(const string16& text, bool trim_sequences_with_line_breaks) { return CollapseWhitespaceT(text, trim_sequences_with_line_breaks); } std::string CollapseWhitespaceASCII(const std::string& text, bool trim_sequences_with_line_breaks) { return CollapseWhitespaceT(text, trim_sequences_with_line_breaks); } bool ContainsOnlyChars(const StringPiece& input, const StringPiece& characters) { return input.find_first_not_of(characters) == StringPiece::npos; } bool ContainsOnlyChars(const StringPiece16& input, const StringPiece16& characters) { return input.find_first_not_of(characters) == StringPiece16::npos; } template inline bool DoIsStringASCII(const Char* characters, size_t length) { MachineWord all_char_bits = 0; const Char* end = characters + length; // Prologue: align the input. while (!IsAlignedToMachineWord(characters) && characters != end) { all_char_bits |= *characters; ++characters; } // Compare the values of CPU word size. const Char* word_end = AlignToMachineWord(end); const size_t loop_increment = sizeof(MachineWord) / sizeof(Char); while (characters < word_end) { all_char_bits |= *(reinterpret_cast(characters)); characters += loop_increment; } // Process the remaining bytes. while (characters != end) { all_char_bits |= *characters; ++characters; } MachineWord non_ascii_bit_mask = NonASCIIMask::value(); return !(all_char_bits & non_ascii_bit_mask); } bool IsStringASCII(const StringPiece& str) { return DoIsStringASCII(str.data(), str.length()); } bool IsStringASCII(const StringPiece16& str) { return DoIsStringASCII(str.data(), str.length()); } bool IsStringASCII(const string16& str) { return DoIsStringASCII(str.data(), str.length()); } #if defined(WCHAR_T_IS_UTF32) bool IsStringASCII(const std::wstring& str) { return DoIsStringASCII(str.data(), str.length()); } #endif bool IsStringUTF8(const StringPiece& str) { const char *src = str.data(); int32_t src_len = static_cast(str.length()); int32_t char_index = 0; while (char_index < src_len) { int32_t code_point; CBU8_NEXT(src, char_index, src_len, code_point); if (!IsValidCharacter(code_point)) return false; } return true; } // Implementation note: Normally this function will be called with a hardcoded // constant for the lowercase_ascii parameter. Constructing a StringPiece from // a C constant requires running strlen, so the result will be two passes // through the buffers, one to file the length of lowercase_ascii, and one to // compare each letter. // // This function could have taken a const char* to avoid this and only do one // pass through the string. But the strlen is faster than the case-insensitive // compares and lets us early-exit in the case that the strings are different // lengths (will often be the case for non-matches). So whether one approach or // the other will be faster depends on the case. // // The hardcoded strings are typically very short so it doesn't matter, and the // string piece gives additional flexibility for the caller (doesn't have to be // null terminated) so we choose the StringPiece route. template static inline bool DoLowerCaseEqualsASCII(BasicStringPiece str, StringPiece lowercase_ascii) { if (str.size() != lowercase_ascii.size()) return false; for (size_t i = 0; i < str.size(); i++) { if (ToLowerASCII(str[i]) != lowercase_ascii[i]) return false; } return true; } bool LowerCaseEqualsASCII(StringPiece str, StringPiece lowercase_ascii) { return DoLowerCaseEqualsASCII(str, lowercase_ascii); } bool LowerCaseEqualsASCII(StringPiece16 str, StringPiece lowercase_ascii) { return DoLowerCaseEqualsASCII(str, lowercase_ascii); } bool EqualsASCII(StringPiece16 str, StringPiece ascii) { if (str.length() != ascii.length()) return false; return std::equal(ascii.begin(), ascii.end(), str.begin()); } template bool StartsWithT(BasicStringPiece str, BasicStringPiece search_for, CompareCase case_sensitivity) { if (search_for.size() > str.size()) return false; BasicStringPiece source = str.substr(0, search_for.size()); switch (case_sensitivity) { case CompareCase::SENSITIVE: return source == search_for; case CompareCase::INSENSITIVE_ASCII: return std::equal( search_for.begin(), search_for.end(), source.begin(), CaseInsensitiveCompareASCII()); default: NOTREACHED(); return false; } } bool StartsWith(StringPiece str, StringPiece search_for, CompareCase case_sensitivity) { return StartsWithT(str, search_for, case_sensitivity); } bool StartsWith(StringPiece16 str, StringPiece16 search_for, CompareCase case_sensitivity) { return StartsWithT(str, search_for, case_sensitivity); } template bool EndsWithT(BasicStringPiece str, BasicStringPiece search_for, CompareCase case_sensitivity) { if (search_for.size() > str.size()) return false; BasicStringPiece source = str.substr(str.size() - search_for.size(), search_for.size()); switch (case_sensitivity) { case CompareCase::SENSITIVE: return source == search_for; case CompareCase::INSENSITIVE_ASCII: return std::equal( source.begin(), source.end(), search_for.begin(), CaseInsensitiveCompareASCII()); default: NOTREACHED(); return false; } } bool EndsWith(StringPiece str, StringPiece search_for, CompareCase case_sensitivity) { return EndsWithT(str, search_for, case_sensitivity); } bool EndsWith(StringPiece16 str, StringPiece16 search_for, CompareCase case_sensitivity) { return EndsWithT(str, search_for, case_sensitivity); } char HexDigitToInt(wchar_t c) { DCHECK(IsHexDigit(c)); if (c >= '0' && c <= '9') return static_cast(c - '0'); if (c >= 'A' && c <= 'F') return static_cast(c - 'A' + 10); if (c >= 'a' && c <= 'f') return static_cast(c - 'a' + 10); return 0; } bool IsUnicodeWhitespace(wchar_t c) { // kWhitespaceWide is a NULL-terminated string for (const wchar_t* cur = kWhitespaceWide; *cur; ++cur) { if (*cur == c) return true; } return false; } static const char* const kByteStringsUnlocalized[] = { " B", " kB", " MB", " GB", " TB", " PB" }; string16 FormatBytesUnlocalized(int64_t bytes) { double unit_amount = static_cast(bytes); size_t dimension = 0; const int kKilo = 1024; while (unit_amount >= kKilo && dimension < arraysize(kByteStringsUnlocalized) - 1) { unit_amount /= kKilo; dimension++; } char buf[64]; if (bytes != 0 && dimension > 0 && unit_amount < 100) { base::snprintf(buf, arraysize(buf), "%.1lf%s", unit_amount, kByteStringsUnlocalized[dimension]); } else { base::snprintf(buf, arraysize(buf), "%.0lf%s", unit_amount, kByteStringsUnlocalized[dimension]); } return ASCIIToUTF16(buf); } // A Matcher for DoReplaceMatchesAfterOffset() that matches substrings. template struct SubstringMatcher { BasicStringPiece find_this; size_t Find(const StringType& input, size_t pos) { return input.find(find_this.data(), pos, find_this.length()); } size_t MatchSize() { return find_this.length(); } }; // A Matcher for DoReplaceMatchesAfterOffset() that matches single characters. template struct CharacterMatcher { BasicStringPiece find_any_of_these; size_t Find(const StringType& input, size_t pos) { return input.find_first_of(find_any_of_these.data(), pos, find_any_of_these.length()); } constexpr size_t MatchSize() { return 1; } }; enum class ReplaceType { REPLACE_ALL, REPLACE_FIRST }; // Runs in O(n) time in the length of |str|, and transforms the string without // reallocating when possible. Returns |true| if any matches were found. // // This is parameterized on a |Matcher| traits type, so that it can be the // implementation for both ReplaceChars() and ReplaceSubstringsAfterOffset(). template bool DoReplaceMatchesAfterOffset(StringType* str, size_t initial_offset, Matcher matcher, BasicStringPiece replace_with, ReplaceType replace_type) { using CharTraits = typename StringType::traits_type; const size_t find_length = matcher.MatchSize(); if (!find_length) return false; // If the find string doesn't appear, there's nothing to do. size_t first_match = matcher.Find(*str, initial_offset); if (first_match == StringType::npos) return false; // If we're only replacing one instance, there's no need to do anything // complicated. const size_t replace_length = replace_with.length(); if (replace_type == ReplaceType::REPLACE_FIRST) { str->replace(first_match, find_length, replace_with.data(), replace_length); return true; } // If the find and replace strings are the same length, we can simply use // replace() on each instance, and finish the entire operation in O(n) time. if (find_length == replace_length) { auto* buffer = &((*str)[0]); for (size_t offset = first_match; offset != StringType::npos; offset = matcher.Find(*str, offset + replace_length)) { CharTraits::copy(buffer + offset, replace_with.data(), replace_length); } return true; } // Since the find and replace strings aren't the same length, a loop like the // one above would be O(n^2) in the worst case, as replace() will shift the // entire remaining string each time. We need to be more clever to keep things // O(n). // // When the string is being shortened, it's possible to just shift the matches // down in one pass while finding, and truncate the length at the end of the // search. // // If the string is being lengthened, more work is required. The strategy used // here is to make two find() passes through the string. The first pass counts // the number of matches to determine the new size. The second pass will // either construct the new string into a new buffer (if the existing buffer // lacked capacity), or else -- if there is room -- create a region of scratch // space after |first_match| by shifting the tail of the string to a higher // index, and doing in-place moves from the tail to lower indices thereafter. size_t str_length = str->length(); size_t expansion = 0; if (replace_length > find_length) { // This operation lengthens the string; determine the new length by counting // matches. const size_t expansion_per_match = (replace_length - find_length); size_t num_matches = 0; for (size_t match = first_match; match != StringType::npos; match = matcher.Find(*str, match + find_length)) { expansion += expansion_per_match; ++num_matches; } const size_t final_length = str_length + expansion; if (str->capacity() < final_length) { // If we'd have to allocate a new buffer to grow the string, build the // result directly into the new allocation via append(). StringType src(str->get_allocator()); str->swap(src); str->reserve(final_length); size_t pos = 0; for (size_t match = first_match;; match = matcher.Find(src, pos)) { str->append(src, pos, match - pos); str->append(replace_with.data(), replace_length); pos = match + find_length; // A mid-loop test/break enables skipping the final Find() call; the // number of matches is known, so don't search past the last one. if (!--num_matches) break; } // Handle substring after the final match. str->append(src, pos, str_length - pos); return true; } // Prepare for the copy/move loop below -- expand the string to its final // size by shifting the data after the first match to the end of the resized // string. size_t shift_src = first_match + find_length; size_t shift_dst = shift_src + expansion; // Big |expansion| factors (relative to |str_length|) require padding up to // |shift_dst|. if (shift_dst > str_length) str->resize(shift_dst); str->replace(shift_dst, str_length - shift_src, *str, shift_src, str_length - shift_src); str_length = final_length; } // We can alternate replacement and move operations. This won't overwrite the // unsearched region of the string so long as |write_offset| <= |read_offset|; // that condition is always satisfied because: // // (a) If the string is being shortened, |expansion| is zero and // |write_offset| grows slower than |read_offset|. // // (b) If the string is being lengthened, |write_offset| grows faster than // |read_offset|, but |expansion| is big enough so that |write_offset| // will only catch up to |read_offset| at the point of the last match. auto* buffer = &((*str)[0]); size_t write_offset = first_match; size_t read_offset = first_match + expansion; do { if (replace_length) { CharTraits::copy(buffer + write_offset, replace_with.data(), replace_length); write_offset += replace_length; } read_offset += find_length; // min() clamps StringType::npos (the largest unsigned value) to str_length. size_t match = std::min(matcher.Find(*str, read_offset), str_length); size_t length = match - read_offset; if (length) { CharTraits::move(buffer + write_offset, buffer + read_offset, length); write_offset += length; read_offset += length; } } while (read_offset < str_length); // If we're shortening the string, truncate it now. str->resize(write_offset); return true; } template bool ReplaceCharsT(const StringType& input, BasicStringPiece find_any_of_these, BasicStringPiece replace_with, StringType* output) { // Commonly, this is called with output and input being the same string; in // that case, this assignment is inexpensive. *output = input; return DoReplaceMatchesAfterOffset( output, 0, CharacterMatcher{find_any_of_these}, replace_with, ReplaceType::REPLACE_ALL); } void ReplaceFirstSubstringAfterOffset(string16* str, size_t start_offset, StringPiece16 find_this, StringPiece16 replace_with) { DoReplaceMatchesAfterOffset(str, start_offset, SubstringMatcher{find_this}, replace_with, ReplaceType::REPLACE_FIRST); } void ReplaceFirstSubstringAfterOffset(std::string* str, size_t start_offset, StringPiece find_this, StringPiece replace_with) { DoReplaceMatchesAfterOffset(str, start_offset, SubstringMatcher{find_this}, replace_with, ReplaceType::REPLACE_FIRST); } void ReplaceSubstringsAfterOffset(string16* str, size_t start_offset, StringPiece16 find_this, StringPiece16 replace_with) { DoReplaceMatchesAfterOffset(str, start_offset, SubstringMatcher{find_this}, replace_with, ReplaceType::REPLACE_ALL); } void ReplaceSubstringsAfterOffset(std::string* str, size_t start_offset, StringPiece find_this, StringPiece replace_with) { DoReplaceMatchesAfterOffset(str, start_offset, SubstringMatcher{find_this}, replace_with, ReplaceType::REPLACE_ALL); } template inline typename string_type::value_type* WriteIntoT(string_type* str, size_t length_with_null) { DCHECK_GT(length_with_null, 1u); str->reserve(length_with_null); str->resize(length_with_null - 1); return &((*str)[0]); } char* WriteInto(std::string* str, size_t length_with_null) { return WriteIntoT(str, length_with_null); } char16* WriteInto(string16* str, size_t length_with_null) { return WriteIntoT(str, length_with_null); } // Generic version for all JoinString overloads. |list_type| must be a sequence // (std::vector or std::initializer_list) of strings/StringPieces (std::string, // string16, StringPiece or StringPiece16). |string_type| is either std::string // or string16. template static string_type JoinStringT(const list_type& parts, BasicStringPiece sep) { if (parts.size() == 0) return string_type(); // Pre-allocate the eventual size of the string. Start with the size of all of // the separators (note that this *assumes* parts.size() > 0). size_t total_size = (parts.size() - 1) * sep.size(); for (const auto& part : parts) total_size += part.size(); string_type result; result.reserve(total_size); auto iter = parts.begin(); DCHECK(iter != parts.end()); AppendToString(&result, *iter); ++iter; for (; iter != parts.end(); ++iter) { sep.AppendToString(&result); // Using the overloaded AppendToString allows this template function to work // on both strings and StringPieces without creating an intermediate // StringPiece object. AppendToString(&result, *iter); } // Sanity-check that we pre-allocated correctly. DCHECK_EQ(total_size, result.size()); return result; } std::string JoinString(const std::vector& parts, StringPiece separator) { return JoinStringT(parts, separator); } string16 JoinString(const std::vector& parts, StringPiece16 separator) { return JoinStringT(parts, separator); } std::string JoinString(const std::vector& parts, StringPiece separator) { return JoinStringT(parts, separator); } string16 JoinString(const std::vector& parts, StringPiece16 separator) { return JoinStringT(parts, separator); } std::string JoinString(std::initializer_list parts, StringPiece separator) { return JoinStringT(parts, separator); } string16 JoinString(std::initializer_list parts, StringPiece16 separator) { return JoinStringT(parts, separator); } template OutStringType DoReplaceStringPlaceholders( const FormatStringType& format_string, const std::vector& subst, std::vector* offsets) { size_t substitutions = subst.size(); DCHECK_LT(substitutions, 10U); size_t sub_length = 0; for (const auto& cur : subst) sub_length += cur.length(); OutStringType formatted; formatted.reserve(format_string.length() + sub_length); std::vector r_offsets; for (auto i = format_string.begin(); i != format_string.end(); ++i) { if ('$' == *i) { if (i + 1 != format_string.end()) { ++i; if ('$' == *i) { while (i != format_string.end() && '$' == *i) { formatted.push_back('$'); ++i; } --i; } else { if (*i < '1' || *i > '9') { DLOG(ERROR) << "Invalid placeholder: $" << *i; continue; } uintptr_t index = *i - '1'; if (offsets) { ReplacementOffset r_offset(index, static_cast(formatted.size())); r_offsets.insert( std::upper_bound(r_offsets.begin(), r_offsets.end(), r_offset, &CompareParameter), r_offset); } if (index < substitutions) formatted.append(subst.at(index)); } } } else { formatted.push_back(*i); } } if (offsets) { for (const auto& cur : r_offsets) offsets->push_back(cur.offset); } return formatted; } string16 ReplaceStringPlaceholders(const string16& format_string, const std::vector& subst, std::vector* offsets) { return DoReplaceStringPlaceholders(format_string, subst, offsets); } std::string ReplaceStringPlaceholders(const StringPiece& format_string, const std::vector& subst, std::vector* offsets) { return DoReplaceStringPlaceholders(format_string, subst, offsets); } string16 ReplaceStringPlaceholders(const string16& format_string, const string16& a, size_t* offset) { std::vector offsets; std::vector subst; subst.push_back(a); string16 result = ReplaceStringPlaceholders(format_string, subst, &offsets); DCHECK_EQ(1U, offsets.size()); if (offset) *offset = offsets[0]; return result; } // The following code is compatible with the OpenBSD lcpy interface. See: // http://www.gratisoft.us/todd/papers/strlcpy.html // ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c namespace { template size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) { for (size_t i = 0; i < dst_size; ++i) { if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL. return i; } // We were left off at dst_size. We over copied 1 byte. Null terminate. if (dst_size != 0) dst[dst_size - 1] = 0; // Count the rest of the |src|, and return it's length in characters. while (src[dst_size]) ++dst_size; return dst_size; } } // namespace size_t strlcpy(char* dst, const char* src, size_t dst_size) { return lcpyT(dst, src, dst_size); } size_t wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) { return lcpyT(dst, src, dst_size); } } // namespace base