// Copyright 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_pump_fuchsia.h" #include #include #include "base/auto_reset.h" #include "base/logging.h" namespace base { MessagePumpFuchsia::ZxHandleWatchController::ZxHandleWatchController( const Location& from_here) : created_from_location_(from_here) {} MessagePumpFuchsia::ZxHandleWatchController::~ZxHandleWatchController() { if (!StopWatchingZxHandle()) NOTREACHED(); } bool MessagePumpFuchsia::ZxHandleWatchController::StopWatchingZxHandle() { if (was_stopped_) { DCHECK(!*was_stopped_); *was_stopped_ = true; // |was_stopped_| points at a value stored on the stack, which will go out // of scope. MessagePumpFuchsia::Run() will reset it only if the value is // false. So we need to reset this pointer here as well, to make sure it's // not used again. was_stopped_ = nullptr; } if (!has_begun_) return true; has_begun_ = false; // If the pump is gone then there is nothing to cancel. if (!weak_pump_) return true; int result = zx_port_cancel(weak_pump_->port_.get(), handle_, wait_key()); DLOG_IF(ERROR, result != ZX_OK) << "zx_port_cancel(handle=" << handle_ << ") failed: " << zx_status_get_string(result); return result == ZX_OK; } void MessagePumpFuchsia::FdWatchController::OnZxHandleSignalled( zx_handle_t handle, zx_signals_t signals) { uint32_t events; __fdio_wait_end(io_, signals, &events); // Each |watcher_| callback we invoke may stop or delete |this|. The pump has // set |was_stopped_| to point to a safe location on the calling stack, so we // can use that to detect being stopped mid-callback and avoid doing further // work that would touch |this|. bool* was_stopped = was_stopped_; if (events & FDIO_EVT_WRITABLE) watcher_->OnFileCanWriteWithoutBlocking(fd_); if (!*was_stopped && (events & FDIO_EVT_READABLE)) watcher_->OnFileCanReadWithoutBlocking(fd_); // Don't add additional work here without checking |*was_stopped_| again. } MessagePumpFuchsia::FdWatchController::FdWatchController( const Location& from_here) : ZxHandleWatchController(from_here) {} MessagePumpFuchsia::FdWatchController::~FdWatchController() { if (!StopWatchingFileDescriptor()) NOTREACHED(); } bool MessagePumpFuchsia::FdWatchController::StopWatchingFileDescriptor() { bool success = StopWatchingZxHandle(); if (io_) { __fdio_release(io_); io_ = nullptr; } return success; } MessagePumpFuchsia::MessagePumpFuchsia() : weak_factory_(this) { CHECK_EQ(ZX_OK, zx_port_create(0, port_.receive())); } MessagePumpFuchsia::~MessagePumpFuchsia() {} bool MessagePumpFuchsia::WatchFileDescriptor(int fd, bool persistent, int mode, FdWatchController* controller, FdWatcher* delegate) { DCHECK_GE(fd, 0); DCHECK(controller); DCHECK(delegate); if (!controller->StopWatchingFileDescriptor()) NOTREACHED(); controller->fd_ = fd; controller->watcher_ = delegate; DCHECK(!controller->io_); controller->io_ = __fdio_fd_to_io(fd); if (!controller->io_) { DLOG(ERROR) << "Failed to get IO for FD"; return false; } switch (mode) { case WATCH_READ: controller->desired_events_ = FDIO_EVT_READABLE; break; case WATCH_WRITE: controller->desired_events_ = FDIO_EVT_WRITABLE; break; case WATCH_READ_WRITE: controller->desired_events_ = FDIO_EVT_READABLE | FDIO_EVT_WRITABLE; break; default: NOTREACHED() << "unexpected mode: " << mode; return false; } // Pass dummy |handle| and |signals| values to WatchZxHandle(). The real // values will be populated by FdWatchController::WaitBegin(), before actually // starting the wait operation. return WatchZxHandle(ZX_HANDLE_INVALID, persistent, 1, controller, controller); } bool MessagePumpFuchsia::FdWatchController::WaitBegin() { // Refresh the |handle_| and |desired_signals_| from the mxio for the fd. // Some types of mxio map read/write events to different signals depending on // their current state, so we must do this every time we begin to wait. __fdio_wait_begin(io_, desired_events_, &handle_, &desired_signals_); if (handle_ == ZX_HANDLE_INVALID) { DLOG(ERROR) << "fdio_wait_begin failed"; return false; } return MessagePumpFuchsia::ZxHandleWatchController::WaitBegin(); } bool MessagePumpFuchsia::WatchZxHandle(zx_handle_t handle, bool persistent, zx_signals_t signals, ZxHandleWatchController* controller, ZxHandleWatcher* delegate) { DCHECK_NE(0u, signals); DCHECK(controller); DCHECK(delegate); DCHECK(handle == ZX_HANDLE_INVALID || controller->handle_ == ZX_HANDLE_INVALID || handle == controller->handle_); if (!controller->StopWatchingZxHandle()) NOTREACHED(); controller->handle_ = handle; controller->persistent_ = persistent; controller->desired_signals_ = signals; controller->watcher_ = delegate; controller->weak_pump_ = weak_factory_.GetWeakPtr(); return controller->WaitBegin(); } bool MessagePumpFuchsia::ZxHandleWatchController::WaitBegin() { DCHECK(!has_begun_); zx_status_t status = zx_object_wait_async(handle_, weak_pump_->port_.get(), wait_key(), desired_signals_, ZX_WAIT_ASYNC_ONCE); if (status != ZX_OK) { DLOG(ERROR) << "zx_object_wait_async failed: " << zx_status_get_string(status) << " (port=" << weak_pump_->port_.get() << ")"; return false; } has_begun_ = true; return true; } uint32_t MessagePumpFuchsia::ZxHandleWatchController::WaitEnd( zx_signals_t signals) { DCHECK(has_begun_); has_begun_ = false; // |signals| can include other spurious things, in particular, that an fd // is writable, when we only asked to know when it was readable. In that // case, we don't want to call both the CanWrite and CanRead callback, // when the caller asked for only, for example, readable callbacks. So, // mask with the events that we actually wanted to know about. signals &= desired_signals_; return signals; } bool MessagePumpFuchsia::HandleEvents(zx_time_t deadline) { zx_port_packet_t packet; const zx_status_t wait_status = zx_port_wait(port_.get(), deadline, &packet, 0); if (wait_status == ZX_ERR_TIMED_OUT) return false; if (wait_status != ZX_OK) { NOTREACHED() << "unexpected wait status: " << zx_status_get_string(wait_status); return false; } if (packet.type == ZX_PKT_TYPE_SIGNAL_ONE) { // A watched fd caused the wakeup via zx_object_wait_async(). DCHECK_EQ(ZX_OK, packet.status); ZxHandleWatchController* controller = reinterpret_cast( static_cast(packet.key)); DCHECK_NE(0u, packet.signal.trigger & packet.signal.observed); zx_signals_t signals = controller->WaitEnd(packet.signal.observed); // In the case of a persistent Watch, the Watch may be stopped and // potentially deleted by the caller within the callback, in which case // |controller| should not be accessed again, and we mustn't continue the // watch. We check for this with a bool on the stack, which the Watch // receives a pointer to. bool controller_was_stopped = false; controller->was_stopped_ = &controller_was_stopped; controller->watcher_->OnZxHandleSignalled(controller->handle_, signals); if (!controller_was_stopped) { controller->was_stopped_ = nullptr; if (controller->persistent_) controller->WaitBegin(); } } else { // Wakeup caused by ScheduleWork(). DCHECK_EQ(ZX_PKT_TYPE_USER, packet.type); } return true; } void MessagePumpFuchsia::Run(Delegate* delegate) { AutoReset auto_reset_keep_running(&keep_running_, true); for (;;) { bool did_work = delegate->DoWork(); if (!keep_running_) break; did_work |= delegate->DoDelayedWork(&delayed_work_time_); if (!keep_running_) break; did_work |= HandleEvents(/*deadline=*/0); if (!keep_running_) break; if (did_work) continue; did_work = delegate->DoIdleWork(); if (!keep_running_) break; if (did_work) continue; zx_time_t deadline = delayed_work_time_.is_null() ? ZX_TIME_INFINITE : delayed_work_time_.ToZxTime(); HandleEvents(deadline); } } void MessagePumpFuchsia::Quit() { keep_running_ = false; } void MessagePumpFuchsia::ScheduleWork() { // Since this can be called on any thread, we need to ensure that our Run loop // wakes up. zx_port_packet_t packet = {}; packet.type = ZX_PKT_TYPE_USER; zx_status_t status = zx_port_queue(port_.get(), &packet, 0); DLOG_IF(ERROR, status != ZX_OK) << "zx_port_queue failed: " << status << " (port=" << port_.get() << ")"; } void MessagePumpFuchsia::ScheduleDelayedWork( const TimeTicks& delayed_work_time) { // We know that we can't be blocked right now since this method can only be // called on the same thread as Run, so we only need to update our record of // how long to sleep when we do sleep. delayed_work_time_ = delayed_work_time; } } // namespace base