// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This defines a set of argument wrappers and related factory methods that // can be used specify the refcounting and reference semantics of arguments // that are bound by the Bind() function in base/bind.h. // // It also defines a set of simple functions and utilities that people want // when using Callback<> and Bind(). // // // ARGUMENT BINDING WRAPPERS // // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(), // base::ConstRef(), and base::IgnoreResult(). // // Unretained() allows Bind() to bind a non-refcounted class, and to disable // refcounting on arguments that are refcounted objects. // // Owned() transfers ownership of an object to the Callback resulting from // bind; the object will be deleted when the Callback is deleted. // // Passed() is for transferring movable-but-not-copyable types (eg. unique_ptr) // through a Callback. Logically, this signifies a destructive transfer of // the state of the argument into the target function. Invoking // Callback::Run() twice on a Callback that was created with a Passed() // argument will CHECK() because the first invocation would have already // transferred ownership to the target function. // // RetainedRef() accepts a ref counted object and retains a reference to it. // When the callback is called, the object is passed as a raw pointer. // // ConstRef() allows binding a constant reference to an argument rather // than a copy. // // IgnoreResult() is used to adapt a function or Callback with a return type to // one with a void return. This is most useful if you have a function with, // say, a pesky ignorable bool return that you want to use with PostTask or // something else that expect a Callback with a void return. // // EXAMPLE OF Unretained(): // // class Foo { // public: // void func() { cout << "Foo:f" << endl; } // }; // // // In some function somewhere. // Foo foo; // Closure foo_callback = // Bind(&Foo::func, Unretained(&foo)); // foo_callback.Run(); // Prints "Foo:f". // // Without the Unretained() wrapper on |&foo|, the above call would fail // to compile because Foo does not support the AddRef() and Release() methods. // // // EXAMPLE OF Owned(): // // void foo(int* arg) { cout << *arg << endl } // // int* pn = new int(1); // Closure foo_callback = Bind(&foo, Owned(pn)); // // foo_callback.Run(); // Prints "1" // foo_callback.Run(); // Prints "1" // *n = 2; // foo_callback.Run(); // Prints "2" // // foo_callback.Reset(); // |pn| is deleted. Also will happen when // // |foo_callback| goes out of scope. // // Without Owned(), someone would have to know to delete |pn| when the last // reference to the Callback is deleted. // // EXAMPLE OF RetainedRef(): // // void foo(RefCountedBytes* bytes) {} // // scoped_refptr bytes = ...; // Closure callback = Bind(&foo, base::RetainedRef(bytes)); // callback.Run(); // // Without RetainedRef, the scoped_refptr would try to implicitly convert to // a raw pointer and fail compilation: // // Closure callback = Bind(&foo, bytes); // ERROR! // // // EXAMPLE OF ConstRef(): // // void foo(int arg) { cout << arg << endl } // // int n = 1; // Closure no_ref = Bind(&foo, n); // Closure has_ref = Bind(&foo, ConstRef(n)); // // no_ref.Run(); // Prints "1" // has_ref.Run(); // Prints "1" // // n = 2; // no_ref.Run(); // Prints "1" // has_ref.Run(); // Prints "2" // // Note that because ConstRef() takes a reference on |n|, |n| must outlive all // its bound callbacks. // // // EXAMPLE OF IgnoreResult(): // // int DoSomething(int arg) { cout << arg << endl; } // // // Assign to a Callback with a void return type. // Callback cb = Bind(IgnoreResult(&DoSomething)); // cb->Run(1); // Prints "1". // // // Prints "1" on |ml|. // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1); // // // EXAMPLE OF Passed(): // // void TakesOwnership(std::unique_ptr arg) { } // std::unique_ptr CreateFoo() { return std::unique_ptr(new Foo()); // } // // std::unique_ptr f(new Foo()); // // // |cb| is given ownership of Foo(). |f| is now NULL. // // You can use std::move(f) in place of &f, but it's more verbose. // Closure cb = Bind(&TakesOwnership, Passed(&f)); // // // Run was never called so |cb| still owns Foo() and deletes // // it on Reset(). // cb.Reset(); // // // |cb| is given a new Foo created by CreateFoo(). // cb = Bind(&TakesOwnership, Passed(CreateFoo())); // // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| // // no longer owns Foo() and, if reset, would not delete Foo(). // cb.Run(); // Foo() is now transferred to |arg| and deleted. // cb.Run(); // This CHECK()s since Foo() already been used once. // // Passed() is particularly useful with PostTask() when you are transferring // ownership of an argument into a task, but don't necessarily know if the // task will always be executed. This can happen if the task is cancellable // or if it is posted to a TaskRunner. // // // SIMPLE FUNCTIONS AND UTILITIES. // // DoNothing() - Useful for creating a Closure that does nothing when called. // DeletePointer() - Useful for creating a Closure that will delete a // pointer when invoked. Only use this when necessary. // In most cases MessageLoop::DeleteSoon() is a better // fit. #ifndef BASE_BIND_HELPERS_H_ #define BASE_BIND_HELPERS_H_ #include #include #include #include "base/callback.h" #include "base/memory/weak_ptr.h" #include "build/build_config.h" namespace base { template struct IsWeakReceiver; template struct BindUnwrapTraits; namespace internal { template struct FunctorTraits; template class UnretainedWrapper { public: explicit UnretainedWrapper(T* o) : ptr_(o) {} T* get() const { return ptr_; } private: T* ptr_; }; template class ConstRefWrapper { public: explicit ConstRefWrapper(const T& o) : ptr_(&o) {} const T& get() const { return *ptr_; } private: const T* ptr_; }; template class RetainedRefWrapper { public: explicit RetainedRefWrapper(T* o) : ptr_(o) {} explicit RetainedRefWrapper(scoped_refptr o) : ptr_(std::move(o)) {} T* get() const { return ptr_.get(); } private: scoped_refptr ptr_; }; template struct IgnoreResultHelper { explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {} explicit operator bool() const { return !!functor_; } T functor_; }; // An alternate implementation is to avoid the destructive copy, and instead // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to // a class that is essentially a std::unique_ptr<>. // // The current implementation has the benefit though of leaving ParamTraits<> // fully in callback_internal.h as well as avoiding type conversions during // storage. template class OwnedWrapper { public: explicit OwnedWrapper(T* o) : ptr_(o) {} ~OwnedWrapper() { delete ptr_; } T* get() const { return ptr_; } OwnedWrapper(OwnedWrapper&& other) { ptr_ = other.ptr_; other.ptr_ = NULL; } private: mutable T* ptr_; }; // PassedWrapper is a copyable adapter for a scoper that ignores const. // // It is needed to get around the fact that Bind() takes a const reference to // all its arguments. Because Bind() takes a const reference to avoid // unnecessary copies, it is incompatible with movable-but-not-copyable // types; doing a destructive "move" of the type into Bind() would violate // the const correctness. // // This conundrum cannot be solved without either C++11 rvalue references or // a O(2^n) blowup of Bind() templates to handle each combination of regular // types and movable-but-not-copyable types. Thus we introduce a wrapper type // that is copyable to transmit the correct type information down into // BindState<>. Ignoring const in this type makes sense because it is only // created when we are explicitly trying to do a destructive move. // // Two notes: // 1) PassedWrapper supports any type that has a move constructor, however // the type will need to be specifically whitelisted in order for it to be // bound to a Callback. We guard this explicitly at the call of Passed() // to make for clear errors. Things not given to Passed() will be forwarded // and stored by value which will not work for general move-only types. // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" // scoper to a Callback and allow the Callback to execute once. template class PassedWrapper { public: explicit PassedWrapper(T&& scoper) : is_valid_(true), scoper_(std::move(scoper)) {} PassedWrapper(PassedWrapper&& other) : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} T Take() const { CHECK(is_valid_); is_valid_ = false; return std::move(scoper_); } private: mutable bool is_valid_; mutable T scoper_; }; template using Unwrapper = BindUnwrapTraits>; template auto Unwrap(T&& o) -> decltype(Unwrapper::Unwrap(std::forward(o))) { return Unwrapper::Unwrap(std::forward(o)); } // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a // method. It is used internally by Bind() to select the correct // InvokeHelper that will no-op itself in the event the WeakPtr<> for // the target object is invalidated. // // The first argument should be the type of the object that will be received by // the method. template struct IsWeakMethod : std::false_type {}; template struct IsWeakMethod : IsWeakReceiver {}; // Packs a list of types to hold them in a single type. template struct TypeList {}; // Used for DropTypeListItem implementation. template struct DropTypeListItemImpl; // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. template struct DropTypeListItemImpl> : DropTypeListItemImpl> {}; template struct DropTypeListItemImpl<0, TypeList> { using Type = TypeList; }; template <> struct DropTypeListItemImpl<0, TypeList<>> { using Type = TypeList<>; }; // A type-level function that drops |n| list item from given TypeList. template using DropTypeListItem = typename DropTypeListItemImpl::Type; // Used for TakeTypeListItem implementation. template struct TakeTypeListItemImpl; // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. template struct TakeTypeListItemImpl, Accum...> : TakeTypeListItemImpl, Accum..., T> {}; template struct TakeTypeListItemImpl<0, TypeList, Accum...> { using Type = TypeList; }; template struct TakeTypeListItemImpl<0, TypeList<>, Accum...> { using Type = TypeList; }; // A type-level function that takes first |n| list item from given TypeList. // E.g. TakeTypeListItem<3, TypeList> is evaluated to // TypeList. template using TakeTypeListItem = typename TakeTypeListItemImpl::Type; // Used for ConcatTypeLists implementation. template struct ConcatTypeListsImpl; template struct ConcatTypeListsImpl, TypeList> { using Type = TypeList; }; // A type-level function that concats two TypeLists. template using ConcatTypeLists = typename ConcatTypeListsImpl::Type; // Used for MakeFunctionType implementation. template struct MakeFunctionTypeImpl; template struct MakeFunctionTypeImpl> { // MSVC 2013 doesn't support Type Alias of function types. // Revisit this after we update it to newer version. typedef R Type(Args...); }; // A type-level function that constructs a function type that has |R| as its // return type and has TypeLists items as its arguments. template using MakeFunctionType = typename MakeFunctionTypeImpl::Type; // Used for ExtractArgs and ExtractReturnType. template struct ExtractArgsImpl; template struct ExtractArgsImpl { using ReturnType = R; using ArgsList = TypeList; }; // A type-level function that extracts function arguments into a TypeList. // E.g. ExtractArgs is evaluated to TypeList. template using ExtractArgs = typename ExtractArgsImpl::ArgsList; // A type-level function that extracts the return type of a function. // E.g. ExtractReturnType is evaluated to R. template using ExtractReturnType = typename ExtractArgsImpl::ReturnType; } // namespace internal template static inline internal::UnretainedWrapper Unretained(T* o) { return internal::UnretainedWrapper(o); } template static inline internal::RetainedRefWrapper RetainedRef(T* o) { return internal::RetainedRefWrapper(o); } template static inline internal::RetainedRefWrapper RetainedRef(scoped_refptr o) { return internal::RetainedRefWrapper(std::move(o)); } template static inline internal::ConstRefWrapper ConstRef(const T& o) { return internal::ConstRefWrapper(o); } template static inline internal::OwnedWrapper Owned(T* o) { return internal::OwnedWrapper(o); } // We offer 2 syntaxes for calling Passed(). The first takes an rvalue and // is best suited for use with the return value of a function or other temporary // rvalues. The second takes a pointer to the scoper and is just syntactic sugar // to avoid having to write Passed(std::move(scoper)). // // Both versions of Passed() prevent T from being an lvalue reference. The first // via use of enable_if, and the second takes a T* which will not bind to T&. template ::value>* = nullptr> static inline internal::PassedWrapper Passed(T&& scoper) { return internal::PassedWrapper(std::move(scoper)); } template static inline internal::PassedWrapper Passed(T* scoper) { return internal::PassedWrapper(std::move(*scoper)); } template static inline internal::IgnoreResultHelper IgnoreResult(T data) { return internal::IgnoreResultHelper(std::move(data)); } BASE_EXPORT void DoNothing(); template void DeletePointer(T* obj) { delete obj; } // An injection point to control |this| pointer behavior on a method invocation. // If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a // method, base::Bind cancels the method invocation if the receiver is tested as // false. // E.g. Foo::bar() is not called: // struct Foo : base::SupportsWeakPtr { // void bar() {} // }; // // WeakPtr oo = nullptr; // base::Bind(&Foo::bar, oo).Run(); template struct IsWeakReceiver : std::false_type {}; template struct IsWeakReceiver> : IsWeakReceiver {}; template struct IsWeakReceiver> : std::true_type {}; // An injection point to control how bound objects passed to the target // function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right // before the target function is invoked. template struct BindUnwrapTraits { template static T&& Unwrap(T&& o) { return std::forward(o); } }; template struct BindUnwrapTraits> { static T* Unwrap(const internal::UnretainedWrapper& o) { return o.get(); } }; template struct BindUnwrapTraits> { static const T& Unwrap(const internal::ConstRefWrapper& o) { return o.get(); } }; template struct BindUnwrapTraits> { static T* Unwrap(const internal::RetainedRefWrapper& o) { return o.get(); } }; template struct BindUnwrapTraits> { static T* Unwrap(const internal::OwnedWrapper& o) { return o.get(); } }; template struct BindUnwrapTraits> { static T Unwrap(const internal::PassedWrapper& o) { return o.Take(); } }; // CallbackCancellationTraits allows customization of Callback's cancellation // semantics. By default, callbacks are not cancellable. A specialization should // set is_cancellable = true and implement an IsCancelled() that returns if the // callback should be cancelled. template struct CallbackCancellationTraits { static constexpr bool is_cancellable = false; }; // Specialization for method bound to weak pointer receiver. template struct CallbackCancellationTraits< Functor, std::tuple, std::enable_if_t< internal::IsWeakMethod::is_method, BoundArgs...>::value>> { static constexpr bool is_cancellable = true; template static bool IsCancelled(const Functor&, const Receiver& receiver, const Args&...) { return !receiver; } }; // Specialization for a nested bind. template struct CallbackCancellationTraits, std::tuple> { static constexpr bool is_cancellable = true; template static bool IsCancelled(const Functor& functor, const BoundArgs&...) { return functor.IsCancelled(); } }; template struct CallbackCancellationTraits, std::tuple> { static constexpr bool is_cancellable = true; template static bool IsCancelled(const Functor& functor, const BoundArgs&...) { return functor.IsCancelled(); } }; } // namespace base #endif // BASE_BIND_HELPERS_H_