// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "crypto/encryptor.h" #include #include #include "base/logging.h" #include "base/strings/string_util.h" #include "base/sys_byteorder.h" #include "crypto/openssl_util.h" #include "crypto/symmetric_key.h" #include "third_party/boringssl/src/include/openssl/aes.h" #include "third_party/boringssl/src/include/openssl/evp.h" namespace crypto { namespace { const EVP_CIPHER* GetCipherForKey(const SymmetricKey* key) { switch (key->key().length()) { case 16: return EVP_aes_128_cbc(); case 32: return EVP_aes_256_cbc(); default: return nullptr; } } // On destruction this class will cleanup the ctx, and also clear the OpenSSL // ERR stack as a convenience. class ScopedCipherCTX { public: ScopedCipherCTX() { EVP_CIPHER_CTX_init(&ctx_); } ~ScopedCipherCTX() { EVP_CIPHER_CTX_cleanup(&ctx_); ClearOpenSSLERRStack(FROM_HERE); } EVP_CIPHER_CTX* get() { return &ctx_; } private: EVP_CIPHER_CTX ctx_; }; } // namespace ///////////////////////////////////////////////////////////////////////////// // Encyptor::Counter Implementation. Encryptor::Counter::Counter(const base::StringPiece& counter) { CHECK(sizeof(counter_) == counter.length()); memcpy(&counter_, counter.data(), sizeof(counter_)); } Encryptor::Counter::~Counter() { } bool Encryptor::Counter::Increment() { uint64_t low_num = base::NetToHost64(counter_.components64[1]); uint64_t new_low_num = low_num + 1; counter_.components64[1] = base::HostToNet64(new_low_num); // If overflow occured then increment the most significant component. if (new_low_num < low_num) { counter_.components64[0] = base::HostToNet64(base::NetToHost64(counter_.components64[0]) + 1); } // TODO(hclam): Return false if counter value overflows. return true; } void Encryptor::Counter::Write(void* buf) { uint8_t* buf_ptr = reinterpret_cast(buf); memcpy(buf_ptr, &counter_, sizeof(counter_)); } size_t Encryptor::Counter::GetLengthInBytes() const { return sizeof(counter_); } ///////////////////////////////////////////////////////////////////////////// // Encryptor Implementation. Encryptor::Encryptor() : key_(nullptr), mode_(CBC) {} Encryptor::~Encryptor() { } bool Encryptor::Init(const SymmetricKey* key, Mode mode, const base::StringPiece& iv) { DCHECK(key); DCHECK(mode == CBC || mode == CTR); EnsureOpenSSLInit(); if (mode == CBC && iv.size() != AES_BLOCK_SIZE) return false; if (GetCipherForKey(key) == nullptr) return false; key_ = key; mode_ = mode; iv.CopyToString(&iv_); return true; } bool Encryptor::Encrypt(const base::StringPiece& plaintext, std::string* ciphertext) { CHECK(!plaintext.empty() || (mode_ == CBC)); return (mode_ == CTR) ? CryptCTR(true, plaintext, ciphertext) : Crypt(true, plaintext, ciphertext); } bool Encryptor::Decrypt(const base::StringPiece& ciphertext, std::string* plaintext) { CHECK(!ciphertext.empty()); return (mode_ == CTR) ? CryptCTR(false, ciphertext, plaintext) : Crypt(false, ciphertext, plaintext); } bool Encryptor::SetCounter(const base::StringPiece& counter) { if (mode_ != CTR) return false; if (counter.length() != 16u) return false; counter_.reset(new Counter(counter)); return true; } bool Encryptor::Crypt(bool do_encrypt, const base::StringPiece& input, std::string* output) { DCHECK(key_); // Must call Init() before En/De-crypt. // Work on the result in a local variable, and then only transfer it to // |output| on success to ensure no partial data is returned. std::string result; output->clear(); const EVP_CIPHER* cipher = GetCipherForKey(key_); DCHECK(cipher); // Already handled in Init(); const std::string& key = key_->key(); DCHECK_EQ(EVP_CIPHER_iv_length(cipher), iv_.length()); DCHECK_EQ(EVP_CIPHER_key_length(cipher), key.length()); ScopedCipherCTX ctx; if (!EVP_CipherInit_ex(ctx.get(), cipher, nullptr, reinterpret_cast(key.data()), reinterpret_cast(iv_.data()), do_encrypt)) return false; // When encrypting, add another block size of space to allow for any padding. const size_t output_size = input.size() + (do_encrypt ? iv_.size() : 0); CHECK_GT(output_size, 0u); CHECK_GT(output_size + 1, input.size()); uint8_t* out_ptr = reinterpret_cast(base::WriteInto(&result, output_size + 1)); int out_len; if (!EVP_CipherUpdate(ctx.get(), out_ptr, &out_len, reinterpret_cast(input.data()), input.length())) return false; // Write out the final block plus padding (if any) to the end of the data // just written. int tail_len; if (!EVP_CipherFinal_ex(ctx.get(), out_ptr + out_len, &tail_len)) return false; out_len += tail_len; DCHECK_LE(out_len, static_cast(output_size)); result.resize(out_len); output->swap(result); return true; } bool Encryptor::CryptCTR(bool do_encrypt, const base::StringPiece& input, std::string* output) { if (!counter_.get()) { LOG(ERROR) << "Counter value not set in CTR mode."; return false; } AES_KEY aes_key; if (AES_set_encrypt_key(reinterpret_cast(key_->key().data()), key_->key().size() * 8, &aes_key) != 0) { return false; } const size_t out_size = input.size(); CHECK_GT(out_size, 0u); CHECK_GT(out_size + 1, input.size()); std::string result; uint8_t* out_ptr = reinterpret_cast(base::WriteInto(&result, out_size + 1)); uint8_t ivec[AES_BLOCK_SIZE] = { 0 }; uint8_t ecount_buf[AES_BLOCK_SIZE] = { 0 }; unsigned int block_offset = 0; counter_->Write(ivec); AES_ctr128_encrypt(reinterpret_cast(input.data()), out_ptr, input.size(), &aes_key, ivec, ecount_buf, &block_offset); // AES_ctr128_encrypt() updates |ivec|. Update the |counter_| here. SetCounter(base::StringPiece(reinterpret_cast(ivec), AES_BLOCK_SIZE)); output->swap(result); return true; } } // namespace crypto