// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/time/time.h" #include #include #include #if defined(OS_ANDROID) && !defined(__LP64__) #include #endif #include #include #include "base/numerics/safe_math.h" #include "base/synchronization/lock.h" #include "build/build_config.h" #if defined(OS_ANDROID) #include "base/os_compat_android.h" #elif defined(OS_NACL) #include "base/os_compat_nacl.h" #endif // Ensure the Mac build does not include this module. Instead, non-POSIX // implementation is used to support Time::Exploded. #if defined(OS_MACOSX) #error "This implementation is for POSIX platforms other than Mac." #endif namespace { // This prevents a crash on traversing the environment global and looking up // the 'TZ' variable in libc. See: crbug.com/390567. base::Lock* GetSysTimeToTimeStructLock() { static auto* lock = new base::Lock(); return lock; } // Define a system-specific SysTime that wraps either to a time_t or // a time64_t depending on the host system, and associated convertion. // See crbug.com/162007 #if defined(OS_ANDROID) && !defined(__LP64__) typedef time64_t SysTime; SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { base::AutoLock locked(*GetSysTimeToTimeStructLock()); if (is_local) return mktime64(timestruct); else return timegm64(timestruct); } void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { base::AutoLock locked(*GetSysTimeToTimeStructLock()); if (is_local) localtime64_r(&t, timestruct); else gmtime64_r(&t, timestruct); } #elif defined(OS_AIX) // The function timegm is not available on AIX. time_t aix_timegm(struct tm* tm) { time_t ret; char* tz; tz = getenv("TZ"); if (tz) { tz = strdup(tz); } setenv("TZ", "GMT0", 1); tzset(); ret = mktime(tm); if (tz) { setenv("TZ", tz, 1); free(tz); } else { unsetenv("TZ"); } tzset(); return ret; } typedef time_t SysTime; SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { base::AutoLock locked(*GetSysTimeToTimeStructLock()); if (is_local) return mktime(timestruct); else return aix_timegm(timestruct); } void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { base::AutoLock locked(*GetSysTimeToTimeStructLock()); if (is_local) localtime_r(&t, timestruct); else gmtime_r(&t, timestruct); } #else // OS_ANDROID && !__LP64__ typedef time_t SysTime; SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { base::AutoLock locked(*GetSysTimeToTimeStructLock()); if (is_local) return mktime(timestruct); else return timegm(timestruct); } void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { base::AutoLock locked(*GetSysTimeToTimeStructLock()); if (is_local) localtime_r(&t, timestruct); else gmtime_r(&t, timestruct); } #endif // OS_ANDROID } // namespace namespace base { void Time::Explode(bool is_local, Exploded* exploded) const { // Time stores times with microsecond resolution, but Exploded only carries // millisecond resolution, so begin by being lossy. Adjust from Windows // epoch (1601) to Unix epoch (1970); int64_t microseconds = us_ - kTimeTToMicrosecondsOffset; // The following values are all rounded towards -infinity. int64_t milliseconds; // Milliseconds since epoch. SysTime seconds; // Seconds since epoch. int millisecond; // Exploded millisecond value (0-999). if (microseconds >= 0) { // Rounding towards -infinity <=> rounding towards 0, in this case. milliseconds = microseconds / kMicrosecondsPerMillisecond; seconds = milliseconds / kMillisecondsPerSecond; millisecond = milliseconds % kMillisecondsPerSecond; } else { // Round these *down* (towards -infinity). milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) / kMicrosecondsPerMillisecond; seconds = (milliseconds - kMillisecondsPerSecond + 1) / kMillisecondsPerSecond; // Make this nonnegative (and between 0 and 999 inclusive). millisecond = milliseconds % kMillisecondsPerSecond; if (millisecond < 0) millisecond += kMillisecondsPerSecond; } struct tm timestruct; SysTimeToTimeStruct(seconds, ×truct, is_local); exploded->year = timestruct.tm_year + 1900; exploded->month = timestruct.tm_mon + 1; exploded->day_of_week = timestruct.tm_wday; exploded->day_of_month = timestruct.tm_mday; exploded->hour = timestruct.tm_hour; exploded->minute = timestruct.tm_min; exploded->second = timestruct.tm_sec; exploded->millisecond = millisecond; } // static bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) { CheckedNumeric month = exploded.month; month--; CheckedNumeric year = exploded.year; year -= 1900; if (!month.IsValid() || !year.IsValid()) { *time = Time(0); return false; } struct tm timestruct; timestruct.tm_sec = exploded.second; timestruct.tm_min = exploded.minute; timestruct.tm_hour = exploded.hour; timestruct.tm_mday = exploded.day_of_month; timestruct.tm_mon = month.ValueOrDie(); timestruct.tm_year = year.ValueOrDie(); timestruct.tm_wday = exploded.day_of_week; // mktime/timegm ignore this timestruct.tm_yday = 0; // mktime/timegm ignore this timestruct.tm_isdst = -1; // attempt to figure it out #if !defined(OS_NACL) && !defined(OS_SOLARIS) && !defined(OS_AIX) timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore timestruct.tm_zone = NULL; // not a POSIX field, so mktime/timegm ignore #endif SysTime seconds; // Certain exploded dates do not really exist due to daylight saving times, // and this causes mktime() to return implementation-defined values when // tm_isdst is set to -1. On Android, the function will return -1, while the // C libraries of other platforms typically return a liberally-chosen value. // Handling this requires the special code below. // SysTimeFromTimeStruct() modifies the input structure, save current value. struct tm timestruct0 = timestruct; seconds = SysTimeFromTimeStruct(×truct, is_local); if (seconds == -1) { // Get the time values with tm_isdst == 0 and 1, then select the closest one // to UTC 00:00:00 that isn't -1. timestruct = timestruct0; timestruct.tm_isdst = 0; int64_t seconds_isdst0 = SysTimeFromTimeStruct(×truct, is_local); timestruct = timestruct0; timestruct.tm_isdst = 1; int64_t seconds_isdst1 = SysTimeFromTimeStruct(×truct, is_local); // seconds_isdst0 or seconds_isdst1 can be -1 for some timezones. // E.g. "CLST" (Chile Summer Time) returns -1 for 'tm_isdt == 1'. if (seconds_isdst0 < 0) seconds = seconds_isdst1; else if (seconds_isdst1 < 0) seconds = seconds_isdst0; else seconds = std::min(seconds_isdst0, seconds_isdst1); } // Handle overflow. Clamping the range to what mktime and timegm might // return is the best that can be done here. It's not ideal, but it's better // than failing here or ignoring the overflow case and treating each time // overflow as one second prior to the epoch. int64_t milliseconds = 0; if (seconds == -1 && (exploded.year < 1969 || exploded.year > 1970)) { // If exploded.year is 1969 or 1970, take -1 as correct, with the // time indicating 1 second prior to the epoch. (1970 is allowed to handle // time zone and DST offsets.) Otherwise, return the most future or past // time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC. // // The minimum and maximum representible times that mktime and timegm could // return are used here instead of values outside that range to allow for // proper round-tripping between exploded and counter-type time // representations in the presence of possible truncation to time_t by // division and use with other functions that accept time_t. // // When representing the most distant time in the future, add in an extra // 999ms to avoid the time being less than any other possible value that // this function can return. // On Android, SysTime is int64_t, special care must be taken to avoid // overflows. const int64_t min_seconds = (sizeof(SysTime) < sizeof(int64_t)) ? std::numeric_limits::min() : std::numeric_limits::min(); const int64_t max_seconds = (sizeof(SysTime) < sizeof(int64_t)) ? std::numeric_limits::max() : std::numeric_limits::max(); if (exploded.year < 1969) { milliseconds = min_seconds * kMillisecondsPerSecond; } else { milliseconds = max_seconds * kMillisecondsPerSecond; milliseconds += (kMillisecondsPerSecond - 1); } } else { base::CheckedNumeric checked_millis = seconds; checked_millis *= kMillisecondsPerSecond; checked_millis += exploded.millisecond; if (!checked_millis.IsValid()) { *time = base::Time(0); return false; } milliseconds = checked_millis.ValueOrDie(); } // Adjust from Unix (1970) to Windows (1601) epoch avoiding overflows. base::CheckedNumeric checked_microseconds_win_epoch = milliseconds; checked_microseconds_win_epoch *= kMicrosecondsPerMillisecond; checked_microseconds_win_epoch += kTimeTToMicrosecondsOffset; if (!checked_microseconds_win_epoch.IsValid()) { *time = base::Time(0); return false; } base::Time converted_time(checked_microseconds_win_epoch.ValueOrDie()); // If |exploded.day_of_month| is set to 31 on a 28-30 day month, it will // return the first day of the next month. Thus round-trip the time and // compare the initial |exploded| with |utc_to_exploded| time. base::Time::Exploded to_exploded; if (!is_local) converted_time.UTCExplode(&to_exploded); else converted_time.LocalExplode(&to_exploded); if (ExplodedMostlyEquals(to_exploded, exploded)) { *time = converted_time; return true; } *time = Time(0); return false; } } // namespace base