// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/sync_socket.h" #include #include #include #include #include #include #include #include #include #if defined(OS_SOLARIS) #include #endif #include "base/files/file_util.h" #include "base/logging.h" #include "base/threading/thread_restrictions.h" #include "build/build_config.h" namespace base { namespace { // To avoid users sending negative message lengths to Send/Receive // we clamp message lengths, which are size_t, to no more than INT_MAX. const size_t kMaxMessageLength = static_cast(INT_MAX); // Writes |length| of |buffer| into |handle|. Returns the number of bytes // written or zero on error. |length| must be greater than 0. size_t SendHelper(SyncSocket::Handle handle, const void* buffer, size_t length) { DCHECK_GT(length, 0u); DCHECK_LE(length, kMaxMessageLength); DCHECK_NE(handle, SyncSocket::kInvalidHandle); const char* charbuffer = static_cast(buffer); return WriteFileDescriptor(handle, charbuffer, length) ? static_cast(length) : 0; } bool CloseHandle(SyncSocket::Handle handle) { if (handle != SyncSocket::kInvalidHandle && close(handle) < 0) { DPLOG(ERROR) << "close"; return false; } return true; } } // namespace const SyncSocket::Handle SyncSocket::kInvalidHandle = -1; SyncSocket::SyncSocket() : handle_(kInvalidHandle) {} SyncSocket::~SyncSocket() { Close(); } // static bool SyncSocket::CreatePair(SyncSocket* socket_a, SyncSocket* socket_b) { DCHECK_NE(socket_a, socket_b); DCHECK_EQ(socket_a->handle_, kInvalidHandle); DCHECK_EQ(socket_b->handle_, kInvalidHandle); #if defined(OS_MACOSX) int nosigpipe = 1; #endif // defined(OS_MACOSX) Handle handles[2] = { kInvalidHandle, kInvalidHandle }; if (socketpair(AF_UNIX, SOCK_STREAM, 0, handles) != 0) { CloseHandle(handles[0]); CloseHandle(handles[1]); return false; } #if defined(OS_MACOSX) // On OSX an attempt to read or write to a closed socket may generate a // SIGPIPE rather than returning -1. setsockopt will shut this off. if (0 != setsockopt(handles[0], SOL_SOCKET, SO_NOSIGPIPE, &nosigpipe, sizeof nosigpipe) || 0 != setsockopt(handles[1], SOL_SOCKET, SO_NOSIGPIPE, &nosigpipe, sizeof nosigpipe)) { CloseHandle(handles[0]); CloseHandle(handles[1]); return false; } #endif // Copy the handles out for successful return. socket_a->handle_ = handles[0]; socket_b->handle_ = handles[1]; return true; } // static SyncSocket::Handle SyncSocket::UnwrapHandle( const TransitDescriptor& descriptor) { return descriptor.fd; } bool SyncSocket::PrepareTransitDescriptor(ProcessHandle peer_process_handle, TransitDescriptor* descriptor) { descriptor->fd = handle(); descriptor->auto_close = false; return descriptor->fd != kInvalidHandle; } bool SyncSocket::Close() { const bool retval = CloseHandle(handle_); handle_ = kInvalidHandle; return retval; } size_t SyncSocket::Send(const void* buffer, size_t length) { ThreadRestrictions::AssertIOAllowed(); return SendHelper(handle_, buffer, length); } size_t SyncSocket::Receive(void* buffer, size_t length) { ThreadRestrictions::AssertIOAllowed(); DCHECK_GT(length, 0u); DCHECK_LE(length, kMaxMessageLength); DCHECK_NE(handle_, kInvalidHandle); char* charbuffer = static_cast(buffer); if (ReadFromFD(handle_, charbuffer, length)) return length; return 0; } size_t SyncSocket::ReceiveWithTimeout(void* buffer, size_t length, TimeDelta timeout) { ThreadRestrictions::AssertIOAllowed(); DCHECK_GT(length, 0u); DCHECK_LE(length, kMaxMessageLength); DCHECK_NE(handle_, kInvalidHandle); // Only timeouts greater than zero and less than one second are allowed. DCHECK_GT(timeout.InMicroseconds(), 0); DCHECK_LT(timeout.InMicroseconds(), TimeDelta::FromSeconds(1).InMicroseconds()); // Track the start time so we can reduce the timeout as data is read. TimeTicks start_time = TimeTicks::Now(); const TimeTicks finish_time = start_time + timeout; struct pollfd pollfd; pollfd.fd = handle_; pollfd.events = POLLIN; pollfd.revents = 0; size_t bytes_read_total = 0; while (bytes_read_total < length) { const TimeDelta this_timeout = finish_time - TimeTicks::Now(); const int timeout_ms = static_cast(this_timeout.InMillisecondsRoundedUp()); if (timeout_ms <= 0) break; const int poll_result = poll(&pollfd, 1, timeout_ms); // Handle EINTR manually since we need to update the timeout value. if (poll_result == -1 && errno == EINTR) continue; // Return if other type of error or a timeout. if (poll_result <= 0) return bytes_read_total; // poll() only tells us that data is ready for reading, not how much. We // must Peek() for the amount ready for reading to avoid blocking. // At hang up (POLLHUP), the write end has been closed and there might still // be data to be read. // No special handling is needed for error (POLLERR); we can let any of the // following operations fail and handle it there. DCHECK(pollfd.revents & (POLLIN | POLLHUP | POLLERR)) << pollfd.revents; const size_t bytes_to_read = std::min(Peek(), length - bytes_read_total); // There may be zero bytes to read if the socket at the other end closed. if (!bytes_to_read) return bytes_read_total; const size_t bytes_received = Receive(static_cast(buffer) + bytes_read_total, bytes_to_read); bytes_read_total += bytes_received; if (bytes_received != bytes_to_read) return bytes_read_total; } return bytes_read_total; } size_t SyncSocket::Peek() { DCHECK_NE(handle_, kInvalidHandle); int number_chars = 0; if (ioctl(handle_, FIONREAD, &number_chars) == -1) { // If there is an error in ioctl, signal that the channel would block. return 0; } DCHECK_GE(number_chars, 0); return number_chars; } SyncSocket::Handle SyncSocket::Release() { Handle r = handle_; handle_ = kInvalidHandle; return r; } CancelableSyncSocket::CancelableSyncSocket() {} CancelableSyncSocket::CancelableSyncSocket(Handle handle) : SyncSocket(handle) { } bool CancelableSyncSocket::Shutdown() { DCHECK_NE(handle_, kInvalidHandle); return HANDLE_EINTR(shutdown(handle_, SHUT_RDWR)) >= 0; } size_t CancelableSyncSocket::Send(const void* buffer, size_t length) { DCHECK_GT(length, 0u); DCHECK_LE(length, kMaxMessageLength); DCHECK_NE(handle_, kInvalidHandle); const int flags = fcntl(handle_, F_GETFL); if (flags != -1 && (flags & O_NONBLOCK) == 0) { // Set the socket to non-blocking mode for sending if its original mode // is blocking. fcntl(handle_, F_SETFL, flags | O_NONBLOCK); } const size_t len = SendHelper(handle_, buffer, length); if (flags != -1 && (flags & O_NONBLOCK) == 0) { // Restore the original flags. fcntl(handle_, F_SETFL, flags); } return len; } // static bool CancelableSyncSocket::CreatePair(CancelableSyncSocket* socket_a, CancelableSyncSocket* socket_b) { return SyncSocket::CreatePair(socket_a, socket_b); } } // namespace base