mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 06:16:30 +03:00
Import chromium-107.0.5304.87
This commit is contained in:
commit
68a932d26c
39
src/.clang-format
Normal file
39
src/.clang-format
Normal file
@ -0,0 +1,39 @@
|
||||
# Defines the Chromium style for automatic reformatting.
|
||||
# http://clang.llvm.org/docs/ClangFormatStyleOptions.html
|
||||
BasedOnStyle: Chromium
|
||||
# This defaults to 'Auto'. Explicitly set it for a while, so that
|
||||
# 'vector<vector<int> >' in existing files gets formatted to
|
||||
# 'vector<vector<int>>'. ('Auto' means that clang-format will only use
|
||||
# 'int>>' if the file already contains at least one such instance.)
|
||||
Standard: Cpp11
|
||||
|
||||
# Make sure code like:
|
||||
# IPC_BEGIN_MESSAGE_MAP()
|
||||
# IPC_MESSAGE_HANDLER(WidgetHostViewHost_Update, OnUpdate)
|
||||
# IPC_END_MESSAGE_MAP()
|
||||
# gets correctly indented.
|
||||
MacroBlockBegin: "^\
|
||||
BEGIN_MSG_MAP|\
|
||||
BEGIN_MSG_MAP_EX|\
|
||||
BEGIN_SAFE_MSG_MAP_EX|\
|
||||
CR_BEGIN_MSG_MAP_EX|\
|
||||
IPC_BEGIN_MESSAGE_MAP|\
|
||||
IPC_BEGIN_MESSAGE_MAP_WITH_PARAM|\
|
||||
IPC_PROTOBUF_MESSAGE_TRAITS_BEGIN|\
|
||||
IPC_STRUCT_BEGIN|\
|
||||
IPC_STRUCT_BEGIN_WITH_PARENT|\
|
||||
IPC_STRUCT_TRAITS_BEGIN|\
|
||||
POLPARAMS_BEGIN|\
|
||||
PPAPI_BEGIN_MESSAGE_MAP$"
|
||||
MacroBlockEnd: "^\
|
||||
CR_END_MSG_MAP|\
|
||||
END_MSG_MAP|\
|
||||
IPC_END_MESSAGE_MAP|\
|
||||
IPC_PROTOBUF_MESSAGE_TRAITS_END|\
|
||||
IPC_STRUCT_END|\
|
||||
IPC_STRUCT_TRAITS_END|\
|
||||
POLPARAMS_END|\
|
||||
PPAPI_END_MESSAGE_MAP$"
|
||||
|
||||
# TODO: Remove this once clang-format r357700 is rolled in.
|
||||
JavaImportGroups: ['android', 'androidx', 'com', 'dalvik', 'junit', 'org', 'com.google.android.apps.chrome', 'org.chromium', 'java', 'javax']
|
58
src/.gitattributes
vendored
Normal file
58
src/.gitattributes
vendored
Normal file
@ -0,0 +1,58 @@
|
||||
# Stop Windows python license check presubmit errors by forcing LF checkout.
|
||||
*.py text eol=lf
|
||||
|
||||
# Force LF checkout of the pins files to avoid transport_security_state_generator errors.
|
||||
/net/http/*.pins text eol=lf
|
||||
|
||||
# Force LF checkout for all source files
|
||||
*.bin binary
|
||||
*.c text eol=lf
|
||||
*.cc text eol=lf
|
||||
*.cpp text eol=lf
|
||||
*.csv text eol=lf
|
||||
*.grd text eol=lf
|
||||
*.grdp text eol=lf
|
||||
*.gn text eol=lf
|
||||
*.gni text eol=lf
|
||||
*.h text eol=lf
|
||||
*.html text eol=lf
|
||||
*.idl text eol=lf
|
||||
*.in text eol=lf
|
||||
*.inc text eol=lf
|
||||
*.java text eol=lf
|
||||
*.js text eol=lf
|
||||
*.json text eol=lf
|
||||
*.json5 text eol=lf
|
||||
*.md text eol=lf
|
||||
*.mm text eol=lf
|
||||
*.mojom text eol=lf
|
||||
*.pdf -diff
|
||||
*.proto text eol=lf
|
||||
*.rs text eol=lf
|
||||
*.sh text eol=lf
|
||||
*.sql text eol=lf
|
||||
*.toml text eol=lf
|
||||
*.txt text eol=lf
|
||||
*.xml text eol=lf
|
||||
*.xslt text eol=lf
|
||||
.clang-format text eol=lf
|
||||
.eslintrc.js text eol=lf
|
||||
.git-blame-ignore-revs text eol=lf
|
||||
.gitattributes text eol=lf
|
||||
.gitignore text eol=lf
|
||||
.vpython text eol=lf
|
||||
codereview.settings text eol=lf
|
||||
DEPS text eol=lf
|
||||
ENG_REVIEW_OWNERS text eol=lf
|
||||
LICENSE text eol=lf
|
||||
LICENSE.* text eol=lf
|
||||
MAJOR_BRANCH_DATE text eol=lf
|
||||
OWNERS text eol=lf
|
||||
README text eol=lf
|
||||
README.* text eol=lf
|
||||
WATCHLISTS text eol=lf
|
||||
VERSION text eol=lf
|
||||
DIR_METADATA text eol=lf
|
||||
|
||||
# Skip Tricium by default on files in third_party.
|
||||
third_party/** -tricium
|
172
src/.gn
Normal file
172
src/.gn
Normal file
@ -0,0 +1,172 @@
|
||||
# This file is used by the GN meta build system to find the root of the source
|
||||
# tree and to set startup options. For documentation on the values set in this
|
||||
# file, run "gn help dotfile" at the command line.
|
||||
|
||||
import("//build/dotfile_settings.gni")
|
||||
import("//third_party/angle/dotfile_settings.gni")
|
||||
|
||||
# The location of the build configuration file.
|
||||
buildconfig = "//build/config/BUILDCONFIG.gn"
|
||||
|
||||
# The python interpreter to use by default. On Windows, this will look
|
||||
# for python3.exe and python3.bat.
|
||||
script_executable = "python3"
|
||||
|
||||
# These arguments override the default values for items in a declare_args
|
||||
# block. "gn args" in turn can override these.
|
||||
#
|
||||
# In general the value for a build arg in the declare_args block should be the
|
||||
# default. In some cases, a DEPS-ed in project will want different defaults for
|
||||
# being built as part of Chrome vs. being built standalone. In this case, the
|
||||
# Chrome defaults should go here. There should be no overrides here for
|
||||
# values declared in the main Chrome repository.
|
||||
#
|
||||
# Important note for defining defaults: This file is executed before the
|
||||
# BUILDCONFIG.gn file. That file sets up the global variables like "is_ios".
|
||||
# This means that the default_args can not depend on the platform,
|
||||
# architecture, or other build parameters. If you really need that, the other
|
||||
# repo should define a flag that toggles on a behavior that implements the
|
||||
# additional logic required by Chrome to set the variables.
|
||||
default_args = {
|
||||
# TODO(brettw) bug 684096: Chrome on iOS does not build v8, so "gn gen" prints
|
||||
# a warning that "Build argument has no effect". When adding a v8 variable, it
|
||||
# also needs to be defined to src/ios/BUILD.gn (respectively removed from both
|
||||
# location when it is removed).
|
||||
|
||||
v8_enable_gdbjit = false
|
||||
v8_imminent_deprecation_warnings = false
|
||||
|
||||
# Don't include webrtc's builtin task queue implementation.
|
||||
rtc_link_task_queue_impl = false
|
||||
|
||||
# Don't include the iLBC audio codec.
|
||||
# TODO(bugs.webrtc.org/8396): Once WebRTC gets rid of its internal
|
||||
# deps on codecs, we can remove this.
|
||||
rtc_include_ilbc = false
|
||||
|
||||
# Changes some setup for the Crashpad build to set them to build against
|
||||
# Chromium's zlib, base, etc.
|
||||
crashpad_dependencies = "chromium"
|
||||
|
||||
# Override ANGLE's Vulkan dependencies.
|
||||
angle_vulkan_headers_dir = "//third_party/vulkan-deps/vulkan-headers/src"
|
||||
angle_vulkan_loader_dir = "//third_party/vulkan-deps/vulkan-loader/src"
|
||||
angle_vulkan_tools_dir = "//third_party/vulkan-deps/vulkan-tools/src"
|
||||
angle_vulkan_validation_layers_dir =
|
||||
"//third_party/vulkan-deps/vulkan-validation-layers/src"
|
||||
|
||||
# Overwrite default args declared in the Fuchsia sdk
|
||||
fuchsia_sdk_readelf_exec =
|
||||
"//third_party/llvm-build/Release+Asserts/bin/llvm-readelf"
|
||||
fuchsia_target_api_level = 9
|
||||
|
||||
devtools_visibility = [ "*" ]
|
||||
}
|
||||
|
||||
# These are the targets to skip header checking by default. The files in targets
|
||||
# matching these patterns (see "gn help label_pattern" for format) will not have
|
||||
# their includes checked for proper dependencies when you run either
|
||||
# "gn check" or "gn gen --check".
|
||||
no_check_targets = [
|
||||
# crbug.com/1158989
|
||||
"//headless:headless_renderer", # 12 errors
|
||||
"//headless:headless_shared_sources", # 2 errors
|
||||
|
||||
# //v8, https://crbug.com/v8/7330
|
||||
"//v8/src/inspector:inspector", # 20 errors
|
||||
"//v8/test/cctest:cctest_sources", # 15 errors
|
||||
"//v8/test/unittests:inspector_unittests_sources", # 2 errors
|
||||
"//v8:cppgc_base", # 1 error
|
||||
"//v8:v8_internal_headers", # 11 errors
|
||||
"//v8:v8_libplatform", # 2 errors
|
||||
|
||||
# After making partition_alloc a standalone library, remove partition_alloc
|
||||
# target from the skip list, because partition_aloc will depend on its own
|
||||
# base.
|
||||
# partition alloc standalone library bug is https://crbug.com/1151236.
|
||||
"//base/allocator/partition_allocator:partition_alloc", # 292 errors
|
||||
]
|
||||
|
||||
# These are the list of GN files that run exec_script. This whitelist exists
|
||||
# to force additional review for new uses of exec_script, which is strongly
|
||||
# discouraged.
|
||||
#
|
||||
# PLEASE READ
|
||||
#
|
||||
# You should almost never need to add new exec_script calls. exec_script is
|
||||
# slow, especially on Windows, and can cause confusing effects. Although
|
||||
# individually each call isn't slow or necessarily very confusing, at the scale
|
||||
# of our repo things get out of hand quickly. By strongly pushing back on all
|
||||
# additions, we keep the build fast and clean. If you think you need to add a
|
||||
# new call, please consider:
|
||||
#
|
||||
# - Do not use a script to check for the existence of a file or directory to
|
||||
# enable a different mode. Instead, use GN build args to enable or disable
|
||||
# functionality and set options. An example is checking for a file in the
|
||||
# src-internal repo to see if the corresponding src-internal feature should
|
||||
# be enabled. There are several things that can go wrong with this:
|
||||
#
|
||||
# - It's mysterious what causes some things to happen. Although in many cases
|
||||
# such behavior can be conveniently automatic, GN optimizes for explicit
|
||||
# and obvious behavior so people can more easily diagnose problems.
|
||||
#
|
||||
# - The user can't enable a mode for one build and not another. With GN build
|
||||
# args, the user can choose the exact configuration of multiple builds
|
||||
# using one checkout. But implicitly basing flags on the state of the
|
||||
# checkout, this functionality is broken.
|
||||
#
|
||||
# - It's easy to get stale files. If for example the user edits the gclient
|
||||
# to stop checking out src-internal (or any other optional thing), it's
|
||||
# easy to end up with stale files still mysteriously triggering build
|
||||
# conditions that are no longer appropriate (yes, this happens in real
|
||||
# life).
|
||||
#
|
||||
# - Do not use a script to iterate files in a directory (glob):
|
||||
#
|
||||
# - This has the same "stale file" problem as the above discussion. Various
|
||||
# operations can leave untracked files in the source tree which can cause
|
||||
# surprising effects.
|
||||
#
|
||||
# - It becomes impossible to use "git grep" to find where a certain file is
|
||||
# referenced. This operation is very common and people really do get
|
||||
# confused when things aren't listed.
|
||||
#
|
||||
# - It's easy to screw up. One common case is a build-time script that packs
|
||||
# up a directory. The author notices that the script isn't re-run when the
|
||||
# directory is updated, so adds a glob so all the files are listed as
|
||||
# inputs. This seems to work great... until a file is deleted. When a
|
||||
# file is deleted, all the inputs the glob lists will still be up to date
|
||||
# and no command-lines will have been changed. The action will not be
|
||||
# re-run and the build will be broken. It is possible to get this correct
|
||||
# using glob, and it's possible to mess it up without glob, but globs make
|
||||
# this situation much easier to create. if the build always lists the
|
||||
# files and passes them to a script, it will always be correct.
|
||||
|
||||
exec_script_whitelist =
|
||||
build_dotfile_settings.exec_script_whitelist +
|
||||
angle_dotfile_settings.exec_script_whitelist +
|
||||
[
|
||||
# Whitelist entries for //build should go into
|
||||
# //build/dotfile_settings.gni instead, so that they can be shared
|
||||
# with other repos. The entries in this list should be only for files
|
||||
# in the Chromium repo outside of //build.
|
||||
"//build_overrides/build.gni",
|
||||
|
||||
"//chrome/android/webapk/shell_apk/prepare_upload_dir/BUILD.gn",
|
||||
"//chrome/version.gni",
|
||||
|
||||
# TODO(dgn): Layer violation but breaks the build otherwise, see
|
||||
# https://crbug.com/474506.
|
||||
"//clank/java/BUILD.gn",
|
||||
"//clank/native/BUILD.gn",
|
||||
|
||||
"//google_apis/BUILD.gn",
|
||||
"//printing/BUILD.gn",
|
||||
|
||||
"//remoting/host/installer/linux/BUILD.gn",
|
||||
"//remoting/remoting_version.gni",
|
||||
"//remoting/host/installer/win/generate_clsids.gni",
|
||||
|
||||
"//tools/grit/grit_rule.gni",
|
||||
"//tools/gritsettings/BUILD.gn",
|
||||
]
|
1460
src/AUTHORS
Normal file
1460
src/AUTHORS
Normal file
File diff suppressed because it is too large
Load Diff
1793
src/BUILD.gn
Normal file
1793
src/BUILD.gn
Normal file
File diff suppressed because it is too large
Load Diff
27
src/LICENSE
Normal file
27
src/LICENSE
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright 2015 The Chromium Authors
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google LLC nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
4797
src/base/BUILD.gn
Normal file
4797
src/base/BUILD.gn
Normal file
File diff suppressed because it is too large
Load Diff
28
src/base/DEPS
Normal file
28
src/base/DEPS
Normal file
@ -0,0 +1,28 @@
|
||||
include_rules = [
|
||||
"+third_party/ashmem",
|
||||
"+third_party/apple_apsl",
|
||||
"+third_party/boringssl/src/include",
|
||||
"+third_party/ced",
|
||||
"+third_party/libevent",
|
||||
"+third_party/libunwindstack/src/libunwindstack/include",
|
||||
"+third_party/lss",
|
||||
"+third_party/modp_b64",
|
||||
"+third_party/perfetto/include",
|
||||
"+third_party/perfetto/protos/perfetto",
|
||||
# Conversions between base and Rust types (e.g. base::span <-> rust::Slice)
|
||||
# require the cxx.h header from cxx. This is only used if Rust is enabled
|
||||
# in the gn build; see //base/BUILD.gn's conditional dependency on
|
||||
# //build/rust:cxx_cppdeps.
|
||||
"+third_party/rust/cxx",
|
||||
"+third_party/test_fonts",
|
||||
|
||||
# These are implicitly brought in from the root, and we don't want them.
|
||||
"-ipc",
|
||||
"-url",
|
||||
|
||||
# ICU dependendencies must be separate from the rest of base.
|
||||
"-i18n",
|
||||
|
||||
# //base/util can use //base but not vice versa.
|
||||
"-util",
|
||||
]
|
3
src/base/DIR_METADATA
Normal file
3
src/base/DIR_METADATA
Normal file
@ -0,0 +1,3 @@
|
||||
monorail {
|
||||
component: "Internals>Core"
|
||||
}
|
41
src/base/OWNERS
Normal file
41
src/base/OWNERS
Normal file
@ -0,0 +1,41 @@
|
||||
# See //base/README.md to find qualification for being an owner.
|
||||
|
||||
set noparent
|
||||
# NOTE: keep this in sync with lsc-owners-override@chromium.org owners
|
||||
# by emailing lsc-policy@chromium.org when this list changes.
|
||||
altimin@chromium.org
|
||||
danakj@chromium.org
|
||||
dcheng@chromium.org
|
||||
fdoray@chromium.org
|
||||
gab@chromium.org
|
||||
kylechar@chromium.org
|
||||
mark@chromium.org
|
||||
thakis@chromium.org
|
||||
thestig@chromium.org
|
||||
wez@chromium.org
|
||||
# NOTE: keep this in sync with lsc-owners-override@chromium.org owners
|
||||
# by emailing lsc-policy@chromium.org when this list changes.
|
||||
|
||||
# per-file rules:
|
||||
# These are for the common case of adding or renaming files. If you're doing
|
||||
# structural changes, please get a review from a reviewer in this file.
|
||||
per-file BUILD.gn=*
|
||||
|
||||
# For Android-specific changes:
|
||||
per-file ..._android*=file://base/android/OWNERS
|
||||
|
||||
# For Fuchsia-specific changes:
|
||||
per-file ..._fuchsia*=file://build/fuchsia/OWNERS
|
||||
|
||||
# For Windows-specific changes:
|
||||
per-file ..._win*=file://base/win/OWNERS
|
||||
|
||||
per-file callback_list*=pkasting@chromium.org
|
||||
per-file feature_list*=asvitkine@chromium.org
|
||||
per-file feature_list*=isherman@chromium.org
|
||||
|
||||
# Restricted since rand_util.h also backs the cryptographically secure RNG.
|
||||
per-file rand_util*=set noparent
|
||||
per-file rand_util*=file://ipc/SECURITY_OWNERS
|
||||
|
||||
per-file safe_numerics_unittest.cc=file://base/numerics/OWNERS
|
163
src/base/PRESUBMIT.py
Normal file
163
src/base/PRESUBMIT.py
Normal file
@ -0,0 +1,163 @@
|
||||
# Copyright 2012 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
"""Chromium presubmit script for src/base.
|
||||
|
||||
See http://dev.chromium.org/developers/how-tos/depottools/presubmit-scripts
|
||||
for more details on the presubmit API built into depot_tools.
|
||||
"""
|
||||
|
||||
|
||||
USE_PYTHON3 = True
|
||||
|
||||
|
||||
def CheckChangeLintsClean(input_api, output_api):
|
||||
"""Makes sure that the code is cpplint clean."""
|
||||
# lint_filters=[] stops the OFF_BY_DEFAULT_LINT_FILTERS from being disabled,
|
||||
# finding many more issues. verbose_level=1 finds a small number of additional
|
||||
# issues.
|
||||
# The only valid extensions for cpplint are .cc, .h, .cpp, .cu, and .ch.
|
||||
# Only process those extensions which are used in Chromium, in directories
|
||||
# that currently lint clean.
|
||||
CLEAN_CPP_FILES_ONLY = (r'base[\\/]win[\\/].*\.(cc|h)$', )
|
||||
source_file_filter = lambda x: input_api.FilterSourceFile(
|
||||
x,
|
||||
files_to_check=CLEAN_CPP_FILES_ONLY,
|
||||
files_to_skip=input_api.DEFAULT_FILES_TO_SKIP)
|
||||
return input_api.canned_checks.CheckChangeLintsClean(
|
||||
input_api, output_api, source_file_filter=source_file_filter,
|
||||
lint_filters=[], verbose_level=1)
|
||||
|
||||
|
||||
def _CheckNoInterfacesInBase(input_api, output_api):
|
||||
"""Checks to make sure no files in libbase.a have |@interface|."""
|
||||
pattern = input_api.re.compile(r'^\s*@interface', input_api.re.MULTILINE)
|
||||
files = []
|
||||
for f in input_api.AffectedSourceFiles(input_api.FilterSourceFile):
|
||||
if (f.LocalPath().startswith('base/') and
|
||||
not "/ios/" in f.LocalPath() and
|
||||
not "/test/" in f.LocalPath() and
|
||||
not f.LocalPath().endswith('.java') and
|
||||
not f.LocalPath().endswith('_unittest.mm') and
|
||||
not f.LocalPath().endswith('mac/sdk_forward_declarations.h')):
|
||||
contents = input_api.ReadFile(f)
|
||||
if pattern.search(contents):
|
||||
files.append(f)
|
||||
|
||||
if len(files):
|
||||
return [ output_api.PresubmitError(
|
||||
'Objective-C interfaces or categories are forbidden in libbase. ' +
|
||||
'See http://groups.google.com/a/chromium.org/group/chromium-dev/' +
|
||||
'browse_thread/thread/efb28c10435987fd',
|
||||
files) ]
|
||||
return []
|
||||
|
||||
|
||||
def _FindLocations(input_api, search_regexes, files_to_check, files_to_skip):
|
||||
"""Returns locations matching one of the search_regexes."""
|
||||
def FilterFile(affected_file):
|
||||
return input_api.FilterSourceFile(
|
||||
affected_file,
|
||||
files_to_check=files_to_check,
|
||||
files_to_skip=files_to_skip)
|
||||
|
||||
no_presubmit = r"// no-presubmit-check"
|
||||
locations = []
|
||||
for f in input_api.AffectedSourceFiles(FilterFile):
|
||||
for line_num, line in f.ChangedContents():
|
||||
for search_regex in search_regexes:
|
||||
if (input_api.re.search(search_regex, line) and
|
||||
not input_api.re.search(no_presubmit, line)):
|
||||
locations.append(" %s:%d" % (f.LocalPath(), line_num))
|
||||
break
|
||||
return locations
|
||||
|
||||
|
||||
def _CheckNoTraceEventInclude(input_api, output_api):
|
||||
"""Verify that //base includes base_tracing.h instead of trace event headers.
|
||||
|
||||
Checks that files outside trace event implementation include the
|
||||
base_tracing.h header instead of specific trace event implementation headers
|
||||
to maintain compatibility with the gn flag "enable_base_tracing = false".
|
||||
"""
|
||||
discouraged_includes = [
|
||||
r'^#include "base/trace_event/(?!base_tracing\.h|base_tracing_forward\.h)',
|
||||
r'^#include "third_party/perfetto/include/',
|
||||
]
|
||||
|
||||
files_to_check = [
|
||||
r".*\.(h|cc|mm)$",
|
||||
]
|
||||
files_to_skip = [
|
||||
r".*[\\/]test[\\/].*",
|
||||
r".*[\\/]trace_event[\\/].*",
|
||||
r".*[\\/]tracing[\\/].*",
|
||||
]
|
||||
|
||||
locations = _FindLocations(input_api, discouraged_includes, files_to_check,
|
||||
files_to_skip)
|
||||
if locations:
|
||||
return [ output_api.PresubmitError(
|
||||
'Base code should include "base/trace_event/base_tracing.h" instead\n' +
|
||||
'of trace_event implementation headers. If you need to include an\n' +
|
||||
'implementation header, verify that "gn check" and base_unittests\n' +
|
||||
'still pass with gn arg "enable_base_tracing = false" and add\n' +
|
||||
'"// no-presubmit-check" after the include. \n' +
|
||||
'\n'.join(locations)) ]
|
||||
return []
|
||||
|
||||
|
||||
def _WarnPbzeroIncludes(input_api, output_api):
|
||||
"""Warn to check enable_base_tracing=false when including a pbzero header.
|
||||
|
||||
Emits a warning when including a perfetto pbzero header, encouraging the
|
||||
user to verify that //base still builds with enable_base_tracing=false.
|
||||
"""
|
||||
warn_includes = [
|
||||
r'^#include "third_party/perfetto/protos/',
|
||||
r'^#include "base/tracing/protos/',
|
||||
]
|
||||
|
||||
files_to_check = [
|
||||
r".*\.(h|cc|mm)$",
|
||||
]
|
||||
files_to_skip = [
|
||||
r".*[\\/]test[\\/].*",
|
||||
r".*[\\/]trace_event[\\/].*",
|
||||
r".*[\\/]tracing[\\/].*",
|
||||
]
|
||||
|
||||
locations = _FindLocations(input_api, warn_includes, files_to_check,
|
||||
files_to_skip)
|
||||
if locations:
|
||||
return [ output_api.PresubmitPromptWarning(
|
||||
'Please verify that "gn check" and base_unittests still pass with\n' +
|
||||
'gn arg "enable_base_tracing = false" when adding typed trace\n' +
|
||||
'events to //base. You can use "#if BUILDFLAG(ENABLE_BASE_TRACING)"\n' +
|
||||
'to exclude pbzero headers and anything not supported by\n' +
|
||||
'//base/trace_event/trace_event_stub.h.\n' +
|
||||
'\n'.join(locations)) ]
|
||||
return []
|
||||
|
||||
|
||||
def _CommonChecks(input_api, output_api):
|
||||
"""Checks common to both upload and commit."""
|
||||
results = []
|
||||
results.extend(_CheckNoInterfacesInBase(input_api, output_api))
|
||||
results.extend(_CheckNoTraceEventInclude(input_api, output_api))
|
||||
results.extend(_WarnPbzeroIncludes(input_api, output_api))
|
||||
results.extend(CheckChangeLintsClean(input_api, output_api))
|
||||
return results
|
||||
|
||||
|
||||
def CheckChangeOnUpload(input_api, output_api):
|
||||
results = []
|
||||
results.extend(_CommonChecks(input_api, output_api))
|
||||
return results
|
||||
|
||||
|
||||
def CheckChangeOnCommit(input_api, output_api):
|
||||
results = []
|
||||
results.extend(_CommonChecks(input_api, output_api))
|
||||
return results
|
87
src/base/README.md
Normal file
87
src/base/README.md
Normal file
@ -0,0 +1,87 @@
|
||||
# What is this
|
||||
Contains a written down set of principles and other information on //base.
|
||||
Please add to it!
|
||||
|
||||
## About //base:
|
||||
|
||||
Chromium is a very mature project. Most things that are generally useful are
|
||||
already here and things not here aren't generally useful.
|
||||
|
||||
The bar for adding stuff to base is that it must have demonstrated wide
|
||||
applicability. Prefer to add things closer to where they're used (i.e. "not
|
||||
base"), and pull into base only when needed. In a project our size,
|
||||
sometimes even duplication is OK and inevitable.
|
||||
|
||||
Adding a new logging macro `DPVELOG_NE` is not more clear than just
|
||||
writing the stuff you want to log in a regular logging statement, even
|
||||
if it makes your calling code longer. Just add it to your own code.
|
||||
|
||||
If the code in question does not need to be used inside base, but will have
|
||||
multiple consumers across the codebase, consider placing it in a new directory
|
||||
under components/ instead.
|
||||
|
||||
base is written for the Chromium project and is not intended to be used
|
||||
outside it. Using base outside of src.git is explicitly not supported,
|
||||
and base makes no guarantees about API (or even ABI) stability (like all
|
||||
other code in Chromium). New code that depends on base/ must be in
|
||||
src.git. Code that's not in src.git but pulled in through DEPS (for
|
||||
example, v8) cannot use base.
|
||||
|
||||
## Qualifications for being in //base OWNERS
|
||||
* interest and ability to learn low level/high detail/complex c++ stuff
|
||||
* inclination to always ask why and understand everything (including external
|
||||
interactions like win32) rather than just hoping the author did it right
|
||||
* mentorship/experience
|
||||
* demonstrated good judgement (esp with regards to public APIs) over a length
|
||||
of time
|
||||
|
||||
Owners are added when a contributor has shown the above qualifications and
|
||||
when they express interest. There isn't an upper bound on the number of OWNERS.
|
||||
|
||||
## Design and naming
|
||||
* Be sure to use the base namespace.
|
||||
* STL-like constructs should adhere as closely to STL as possible. Functions
|
||||
and behaviors not present in STL should only be added when they are related
|
||||
to the specific data structure implemented by the container.
|
||||
* For STL-like constructs our policy is that they should use STL-like naming
|
||||
even when it may conflict with the style guide. So functions and class names
|
||||
should be lower case with underscores. Non-STL-like classes and functions
|
||||
should use Google naming.
|
||||
|
||||
## Performance testing
|
||||
|
||||
Since the primitives provided by //base are used very widely, it is important to
|
||||
ensure they scale to the necessary workloads and perform well under all
|
||||
supported platforms. The `base_perftests` target is a suite of
|
||||
synthetic microbenchmarks that measure performance in various scenarios:
|
||||
|
||||
* BasicPostTaskPerfTest: Exercises MessageLoopTaskRunner's multi-threaded
|
||||
queue in isolation.
|
||||
* ConditionVariablePerfTest: Measures thread switching cost of condition
|
||||
variables.
|
||||
* IntegratedPostTaskPerfTest: Exercises the full MessageLoop/RunLoop
|
||||
machinery.
|
||||
* JSONPerfTest: Tests JSONWriter and JSONReader performance.
|
||||
* MessageLoopPerfTest: Measures the speed of task posting in various
|
||||
configurations.
|
||||
* ObserverListPerfTest: Exercises adding, removing and signalling observers.
|
||||
* PartitionLockPerfTest: Tests the implementation of Lock used in
|
||||
PartitionAlloc
|
||||
* PthreadEventPerfTest: Establishes the baseline thread switching cost using
|
||||
pthreads.
|
||||
* RandUtilPerfTest: Measures the time it takes to generate random numbers.
|
||||
* ScheduleWorkTest: Measures the overhead of MessagePump::ScheduleWork.
|
||||
* SequenceManagerPerfTest: Benchmarks SequenceManager scheduling with various
|
||||
underlying task runners.
|
||||
* TaskObserverPerfTest: Measures the incremental cost of adding task
|
||||
observers.
|
||||
* TaskPerfTest: Checks the cost of posting tasks between threads.
|
||||
* ThreadLocalStoragePerfTest: Exercises different mechanisms for accessing
|
||||
data associated with the current thread (C++ `thread_local`, the
|
||||
implementation in //base, the POSIX/WinAPI directly)
|
||||
* WaitableEvent{Thread,}PerfTest: Measures waitable events in single and
|
||||
multithreaded scenarios.
|
||||
|
||||
Regressions in these benchmarks can generally by caused by 1) operating system
|
||||
changes, 2) compiler version or flag changes or 3) changes in //base code
|
||||
itself.
|
13
src/base/SECURITY_OWNERS
Normal file
13
src/base/SECURITY_OWNERS
Normal file
@ -0,0 +1,13 @@
|
||||
# Changes to code that runs at high privilege and which has a high risk of
|
||||
# memory corruption, such as parsers for complex inputs, require a security
|
||||
# review to avoid introducing sandbox escapes.
|
||||
#
|
||||
# Although this file is in base/, it may apply to more than just base, OWNERS
|
||||
# files outside of base may also include this file.
|
||||
#
|
||||
# Security team: If you are uncomfortable reviewing a particular bit of code
|
||||
# yourself, don't hesitate to seek help from another security team member!
|
||||
# Nobody knows everything, and the only way to learn is from experience.
|
||||
dcheng@chromium.org
|
||||
rsesek@chromium.org
|
||||
tsepez@chromium.org
|
97
src/base/allocator/BUILD.gn
Normal file
97
src/base/allocator/BUILD.gn
Normal file
@ -0,0 +1,97 @@
|
||||
# Copyright 2013 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//base/allocator/allocator.gni")
|
||||
import("//build/buildflag_header.gni")
|
||||
import("//build/config/compiler/compiler.gni")
|
||||
import("//build/config/dcheck_always_on.gni")
|
||||
|
||||
buildflag_header("buildflags") {
|
||||
header = "buildflags.h"
|
||||
_use_partition_alloc_as_malloc = use_allocator == "partition"
|
||||
assert(use_allocator_shim || !_use_partition_alloc_as_malloc,
|
||||
"Partition alloc requires the allocator shim")
|
||||
assert(
|
||||
!_use_partition_alloc_as_malloc ||
|
||||
enable_partition_alloc_as_malloc_support,
|
||||
"Partition alloc as malloc requires enable_partition_alloc_as_malloc_support=true")
|
||||
|
||||
# BackupRefPtr(BRP) build flags.
|
||||
_use_backup_ref_ptr = use_backup_ref_ptr && use_partition_alloc && !is_nacl
|
||||
|
||||
_use_partition_alloc_as_gwp_asan_store = _use_backup_ref_ptr
|
||||
|
||||
# MTECheckedPtr is exclusive against BRP (asserted at declaration).
|
||||
# MTECheckedPtr requires 64-bit pointers (not available in NaCl).
|
||||
_use_mte_checked_ptr = use_mte_checked_ptr && !is_nacl
|
||||
|
||||
flags = [
|
||||
"USE_ALLOCATOR_SHIM=$use_allocator_shim",
|
||||
"USE_PARTITION_ALLOC=$use_partition_alloc",
|
||||
"USE_PARTITION_ALLOC_AS_MALLOC=$_use_partition_alloc_as_malloc",
|
||||
|
||||
"USE_BACKUP_REF_PTR=$_use_backup_ref_ptr",
|
||||
"USE_ASAN_BACKUP_REF_PTR=$use_asan_backup_ref_ptr",
|
||||
"USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE=$_use_partition_alloc_as_gwp_asan_store",
|
||||
|
||||
# Not to be used directly - see `partition_alloc_config.h`.
|
||||
"USE_MTE_CHECKED_PTR=$_use_mte_checked_ptr",
|
||||
|
||||
"FORCE_ENABLE_RAW_PTR_EXCLUSION=$force_enable_raw_ptr_exclusion",
|
||||
]
|
||||
}
|
||||
|
||||
if (is_apple) {
|
||||
source_set("early_zone_registration_mac") {
|
||||
sources = [
|
||||
"early_zone_registration_mac.cc",
|
||||
"early_zone_registration_mac.h",
|
||||
]
|
||||
|
||||
deps = [
|
||||
":buildflags",
|
||||
"//base/allocator/partition_allocator:buildflags",
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
# Used to shim malloc symbols on Android. see //base/allocator/README.md.
|
||||
config("wrap_malloc_symbols") {
|
||||
ldflags = [
|
||||
"-Wl,-wrap,calloc",
|
||||
"-Wl,-wrap,free",
|
||||
"-Wl,-wrap,malloc",
|
||||
"-Wl,-wrap,memalign",
|
||||
"-Wl,-wrap,posix_memalign",
|
||||
"-Wl,-wrap,pvalloc",
|
||||
"-Wl,-wrap,realloc",
|
||||
"-Wl,-wrap,valloc",
|
||||
|
||||
# Not allocating memory, but part of the API
|
||||
"-Wl,-wrap,malloc_usable_size",
|
||||
|
||||
# <stdlib.h> functions
|
||||
"-Wl,-wrap,realpath",
|
||||
|
||||
# <string.h> functions
|
||||
"-Wl,-wrap,strdup",
|
||||
"-Wl,-wrap,strndup",
|
||||
|
||||
# <unistd.h> functions
|
||||
"-Wl,-wrap,getcwd",
|
||||
|
||||
# <stdio.h> functions
|
||||
"-Wl,-wrap,asprintf",
|
||||
"-Wl,-wrap,vasprintf",
|
||||
]
|
||||
}
|
||||
|
||||
config("mac_no_default_new_delete_symbols") {
|
||||
if (!is_component_build) {
|
||||
# This is already set when we compile libc++, see
|
||||
# buildtools/third_party/libc++/BUILD.gn. But it needs to be set here as well,
|
||||
# since the shim defines the symbols, to prevent them being exported.
|
||||
cflags = [ "-fvisibility-global-new-delete-hidden" ]
|
||||
}
|
||||
}
|
3
src/base/allocator/DIR_METADATA
Normal file
3
src/base/allocator/DIR_METADATA
Normal file
@ -0,0 +1,3 @@
|
||||
monorail {
|
||||
component: "Internals"
|
||||
}
|
7
src/base/allocator/OWNERS
Normal file
7
src/base/allocator/OWNERS
Normal file
@ -0,0 +1,7 @@
|
||||
lizeb@chromium.org
|
||||
primiano@chromium.org
|
||||
wfh@chromium.org
|
||||
|
||||
per-file allocator.gni=file://base/allocator/partition_allocator/OWNERS
|
||||
per-file partition_alloc*=file://base/allocator/partition_allocator/OWNERS
|
||||
per-file BUILD.gn=file://base/allocator/partition_allocator/OWNERS
|
172
src/base/allocator/README.md
Normal file
172
src/base/allocator/README.md
Normal file
@ -0,0 +1,172 @@
|
||||
This document describes how malloc / new calls are routed in the various Chrome
|
||||
platforms.
|
||||
|
||||
Bare in mind that the chromium codebase does not always just use `malloc()`.
|
||||
Some examples:
|
||||
- Large parts of the renderer (Blink) use two home-brewed allocators,
|
||||
PartitionAlloc and BlinkGC (Oilpan).
|
||||
- Some subsystems, such as the V8 JavaScript engine, handle memory management
|
||||
autonomously.
|
||||
- Various parts of the codebase use abstractions such as `SharedMemory` or
|
||||
`DiscardableMemory` which, similarly to the above, have their own page-level
|
||||
memory management.
|
||||
|
||||
Background
|
||||
----------
|
||||
The `allocator` target defines at compile-time the platform-specific choice of
|
||||
the allocator and extra-hooks which services calls to malloc/new. The relevant
|
||||
build-time flags involved are `use_allocator` and `use_allocator_shim`.
|
||||
|
||||
The default choices are as follows:
|
||||
|
||||
**Windows**
|
||||
`use_allocator: winheap`, the default Windows heap.
|
||||
Additionally, `static_library` (i.e. non-component) builds have a shim
|
||||
layer wrapping malloc/new, which is controlled by `use_allocator_shim`.
|
||||
The shim layer provides extra security features, such as preventing large
|
||||
allocations that can hit signed vs. unsigned bugs in third_party code.
|
||||
|
||||
**Android**
|
||||
`use_allocator: none`, always use the allocator symbols coming from Android's
|
||||
libc (Bionic). As it is developed as part of the OS, it is considered to be
|
||||
optimized for small devices and more memory-efficient than other choices.
|
||||
The actual implementation backing malloc symbols in Bionic is up to the board
|
||||
config and can vary (typically *dlmalloc* or *jemalloc* on most Nexus devices).
|
||||
|
||||
**Mac/iOS**
|
||||
`use_allocator: none`, we always use the system's allocator implementation.
|
||||
|
||||
In addition, when building for `asan` / `msan` both the allocator and the shim
|
||||
layer are disabled.
|
||||
|
||||
|
||||
Layering and build deps
|
||||
-----------------------
|
||||
The `allocator` target provides the linker flags required for the Windows shim
|
||||
layer. The `base` target is (almost) the only one depending on `allocator`. No
|
||||
other targets should depend on it, with the exception of the very few
|
||||
executables / dynamic libraries that don't depend, either directly or
|
||||
indirectly, on `base` within the scope of a linker unit.
|
||||
|
||||
More importantly, **no other place outside of `/base` should depend on the
|
||||
specific allocator**.
|
||||
If such a functional dependency is required that should be achieved using
|
||||
abstractions in `base` (see `/base/allocator/allocator_extension.h` and
|
||||
`/base/memory/`)
|
||||
|
||||
**Why `base` depends on `allocator`?**
|
||||
Because it needs to provide services that depend on the actual allocator
|
||||
implementation. In the past `base` used to pretend to be allocator-agnostic
|
||||
and get the dependencies injected by other layers. This ended up being an
|
||||
inconsistent mess.
|
||||
See the [allocator cleanup doc][url-allocator-cleanup] for more context.
|
||||
|
||||
Linker unit targets (executables and shared libraries) that depend in some way
|
||||
on `base` (most of the targets in the codebase) automatically get the correct
|
||||
set of linker flags to pull in the Windows shim-layer (if needed).
|
||||
|
||||
|
||||
Source code
|
||||
-----------
|
||||
This directory contains just the allocator (i.e. shim) layer that switches
|
||||
between the different underlying memory allocation implementations.
|
||||
|
||||
|
||||
Unified allocator shim
|
||||
----------------------
|
||||
On most platforms, Chrome overrides the malloc / operator new symbols (and
|
||||
corresponding free / delete and other variants). This is to enforce security
|
||||
checks and lately to enable the
|
||||
[memory-infra heap profiler][url-memory-infra-heap-profiler].
|
||||
Historically each platform had its special logic for defining the allocator
|
||||
symbols in different places of the codebase. The unified allocator shim is
|
||||
a project aimed to unify the symbol definition and allocator routing logic in
|
||||
a central place.
|
||||
|
||||
- Full documentation: [Allocator shim design doc][url-allocator-shim].
|
||||
- Current state: Available and enabled by default on Android, CrOS, Linux,
|
||||
Mac OS and Windows.
|
||||
- Tracking bug: [https://crbug.com/550886][crbug.com/550886].
|
||||
- Build-time flag: `use_allocator_shim`.
|
||||
|
||||
**Overview of the unified allocator shim**
|
||||
The allocator shim consists of three stages:
|
||||
```
|
||||
+-------------------------+ +-----------------------+ +----------------+
|
||||
| malloc & friends | -> | shim layer | -> | Routing to |
|
||||
| symbols definition | | implementation | | allocator |
|
||||
+-------------------------+ +-----------------------+ +----------------+
|
||||
| - libc symbols (malloc, | | - Security checks | | - glibc |
|
||||
| calloc, free, ...) | | - Chain of dispatchers| | - Android |
|
||||
| - C++ symbols (operator | | that can intercept | | bionic |
|
||||
| new, delete, ...) | | and override | | - WinHeap |
|
||||
| - glibc weak symbols | | allocations | | - Partition |
|
||||
| (__libc_malloc, ...) | +-----------------------+ | Alloc |
|
||||
+-------------------------+ +----------------+
|
||||
```
|
||||
|
||||
**1. malloc symbols definition**
|
||||
This stage takes care of overriding the symbols `malloc`, `free`,
|
||||
`operator new`, `operator delete` and friends and routing those calls inside the
|
||||
allocator shim (next point).
|
||||
This is taken care of by the headers in `allocator_shim_override_*`.
|
||||
|
||||
*On Windows*: Windows' UCRT (Universal C Runtime) exports weak symbols, that we
|
||||
can override in `allocator_shim_override_ucr_symbols_win.h`.
|
||||
|
||||
*On Linux/CrOS*: the allocator symbols are defined as exported global symbols
|
||||
in `allocator_shim_override_libc_symbols.h` (for `malloc`, `free` and friends)
|
||||
and in `allocator_shim_override_cpp_symbols.h` (for `operator new`,
|
||||
`operator delete` and friends).
|
||||
This enables proper interposition of malloc symbols referenced by the main
|
||||
executable and any third party libraries. Symbol resolution on Linux is a breadth first search that starts from the root link unit, that is the executable
|
||||
(see EXECUTABLE AND LINKABLE FORMAT (ELF) - Portable Formats Specification).
|
||||
The Linux/CrOS shim was introduced by
|
||||
[crrev.com/1675143004](https://crrev.com/1675143004).
|
||||
|
||||
*On Android*: load-time symbol interposition (unlike the Linux/CrOS case) is not
|
||||
possible. This is because Android processes are `fork()`-ed from the Android
|
||||
zygote, which pre-loads libc.so and only later native code gets loaded via
|
||||
`dlopen()` (symbols from `dlopen()`-ed libraries get a different resolution
|
||||
scope).
|
||||
In this case, the approach instead of wrapping symbol resolution at link time
|
||||
(i.e. during the build), via the `--Wl,-wrap,malloc` linker flag.
|
||||
The use of this wrapping flag causes:
|
||||
- All references to allocator symbols in the Chrome codebase to be rewritten as
|
||||
references to `__wrap_malloc` and friends. The `__wrap_malloc` symbols are
|
||||
defined in the `allocator_shim_override_linker_wrapped_symbols.h` and
|
||||
route allocator calls inside the shim layer.
|
||||
- The reference to the original `malloc` symbols (which typically is defined by
|
||||
the system's libc.so) are accessible via the special `__real_malloc` and
|
||||
friends symbols (which will be relocated, at load time, against `malloc`).
|
||||
|
||||
In summary, this approach is transparent to the dynamic loader, which still sees
|
||||
undefined symbol references to malloc symbols.
|
||||
These symbols will be resolved against libc.so as usual.
|
||||
More details in [crrev.com/1719433002](https://crrev.com/1719433002).
|
||||
|
||||
**2. Shim layer implementation**
|
||||
This stage contains the actual shim implementation. This consists of:
|
||||
- A singly linked list of dispatchers (structs with function pointers to `malloc`-like functions). Dispatchers can be dynamically inserted at runtime
|
||||
(using the `InsertAllocatorDispatch` API). They can intercept and override
|
||||
allocator calls.
|
||||
- The security checks (suicide on malloc-failure via `std::new_handler`, etc).
|
||||
This happens inside `allocator_shim.cc`
|
||||
|
||||
**3. Final allocator routing**
|
||||
The final element of the aforementioned dispatcher chain is statically defined
|
||||
at build time and ultimately routes the allocator calls to the actual allocator
|
||||
(as described in the *Background* section above). This is taken care of by the
|
||||
headers in `allocator_shim_default_dispatch_to_*` files.
|
||||
|
||||
|
||||
Related links
|
||||
-------------
|
||||
- [Unified allocator shim doc - Feb 2016][url-allocator-shim]
|
||||
- [Allocator cleanup doc - Jan 2016][url-allocator-cleanup]
|
||||
- [Proposal to use PartitionAlloc as default allocator](https://crbug.com/339604)
|
||||
- [Memory-Infra: Tools to profile memory usage in Chrome](/docs/memory-infra/README.md)
|
||||
|
||||
[url-allocator-cleanup]: https://docs.google.com/document/d/1V77Kgp_4tfaaWPEZVxNevoD02wXiatnAv7Ssgr0hmjg/edit?usp=sharing
|
||||
[url-memory-infra-heap-profiler]: /docs/memory-infra/heap_profiler.md
|
||||
[url-allocator-shim]: https://docs.google.com/document/d/1yKlO1AO4XjpDad9rjcBOI15EKdAGsuGO_IeZy0g0kxo/edit?usp=sharing
|
100
src/base/allocator/allocator.gni
Normal file
100
src/base/allocator/allocator.gni
Normal file
@ -0,0 +1,100 @@
|
||||
# Copyright 2019 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//base/allocator/partition_allocator/partition_alloc.gni")
|
||||
import("//build/config/chromecast_build.gni")
|
||||
import("//build/config/sanitizers/sanitizers.gni")
|
||||
import("//build_overrides/partition_alloc.gni")
|
||||
|
||||
if (is_ios) {
|
||||
import("//build/config/ios/ios_sdk.gni")
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Causes all the allocations to be routed via allocator_shim.cc.
|
||||
use_allocator_shim = use_allocator_shim_default
|
||||
|
||||
# Whether PartitionAlloc should be available for use or not.
|
||||
# true makes PartitionAlloc linked to the executable or shared library and
|
||||
# makes it available for use. It doesn't mean that the default allocator
|
||||
# is PartitionAlloc, which is governed by |use_allocator|.
|
||||
#
|
||||
# This flag is currently set to false only on Cronet bots, because Cronet
|
||||
# doesn't use PartitionAlloc at all, and doesn't wish to incur the library
|
||||
# size increase (crbug.com/674570).
|
||||
use_partition_alloc = true
|
||||
|
||||
# RAW_PTR_EXCLUSION macro is disabled on official builds because it increased
|
||||
# binary size. This flag can be used to enable it for official builds too.
|
||||
force_enable_raw_ptr_exclusion = false
|
||||
}
|
||||
|
||||
if (!use_partition_alloc && use_allocator == "partition") {
|
||||
# If there is a conflict, prioritize |use_partition_alloc| over
|
||||
# |use_allocator|.
|
||||
use_allocator = "none"
|
||||
}
|
||||
|
||||
assert(use_allocator == "none" || use_allocator == "partition")
|
||||
|
||||
assert(
|
||||
!use_allocator_shim || is_linux || is_chromeos || is_android || is_win ||
|
||||
is_fuchsia || is_apple,
|
||||
"use_allocator_shim works only on Android, iOS, Linux, macOS, Fuchsia, " +
|
||||
"and Windows.")
|
||||
|
||||
if (is_win && use_allocator_shim) {
|
||||
# TODO(crbug.com/1245317): Add a comment indicating why the shim doesn't work.
|
||||
assert(!is_component_build,
|
||||
"The allocator shim doesn't work for the component build on Windows.")
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# If we use PartitionAlloc as default allocator and enable its MTECheckedPtr
|
||||
# support as default, we can use_mte_checked_ptr=true as default.
|
||||
use_mte_checked_ptr = enable_mte_checked_ptr_support_default &&
|
||||
use_partition_alloc && use_allocator == "partition"
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Set use_backup_ref_ptr true to use BackupRefPtr (BRP) as the implementation
|
||||
# of raw_ptr<T>, and enable PartitionAlloc support for it.
|
||||
# We also disable BRP in the presence of MTECheckedPtr, which is almost
|
||||
# never enabled.
|
||||
use_backup_ref_ptr = enable_backup_ref_ptr_support_default &&
|
||||
use_partition_alloc && use_allocator == "partition"
|
||||
}
|
||||
|
||||
assert(!use_backup_ref_ptr || enable_backup_ref_ptr_support,
|
||||
"BackupRefPtr needs enable_backup_ref_ptr_support.")
|
||||
|
||||
assert(!use_mte_checked_ptr || enable_mte_checked_ptr_support,
|
||||
"MTECheckedPtr needs enable_mte_checked_ptr_support.")
|
||||
|
||||
assert(!(use_backup_ref_ptr && use_mte_checked_ptr),
|
||||
"MTECheckedPtr conflicts with BRP.")
|
||||
|
||||
declare_args() {
|
||||
# The supported platforms are supposed to match `_is_brp_supported`, but we
|
||||
# enable the feature on Linux early because it's most widely used for security
|
||||
# research
|
||||
use_asan_backup_ref_ptr = is_asan && (is_win || is_android || is_linux)
|
||||
}
|
||||
|
||||
# Prevent using BackupRefPtr when PartitionAlloc-Everywhere isn't used.
|
||||
# In theory, such a configuration is possible, but its scope would be limited to
|
||||
# only Blink partitions, which is currently not tested. Better to trigger an
|
||||
# error, than have BackupRefPtr silently disabled while believing it is enabled.
|
||||
if (!is_nacl) {
|
||||
assert(!use_backup_ref_ptr || use_allocator == "partition",
|
||||
"Can't use BackupRefPtr without PartitionAlloc-Everywhere")
|
||||
}
|
||||
|
||||
# BackupRefPtr and AsanBackupRefPtr are mutually exclusive variants of raw_ptr.
|
||||
assert(
|
||||
!use_backup_ref_ptr || !use_asan_backup_ref_ptr,
|
||||
"Both BackupRefPtr and AsanBackupRefPtr can't be enabled at the same time")
|
||||
|
||||
assert(!use_asan_backup_ref_ptr || is_asan,
|
||||
"AsanBackupRefPtr requires AddressSanitizer")
|
38
src/base/allocator/allocator_check.cc
Normal file
38
src/base/allocator/allocator_check.cc
Normal file
@ -0,0 +1,38 @@
|
||||
// Copyright 2016 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/allocator_check.h"
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include "base/allocator/partition_allocator/shim/winheap_stubs_win.h"
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#include "base/allocator/partition_allocator/shim/allocator_interception_mac.h"
|
||||
#endif
|
||||
|
||||
namespace base::allocator {
|
||||
|
||||
bool IsAllocatorInitialized() {
|
||||
#if BUILDFLAG(IS_WIN) && BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
// Set by allocator_shim_override_ucrt_symbols_win.h when the
|
||||
// shimmed _set_new_mode() is called.
|
||||
return allocator_shim::g_is_win_shim_layer_initialized;
|
||||
#elif BUILDFLAG(IS_APPLE) && !defined(MEMORY_TOOL_REPLACES_ALLOCATOR) && \
|
||||
!BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// From allocator_interception_mac.mm.
|
||||
return allocator_shim::g_replaced_default_zone;
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace base::allocator
|
18
src/base/allocator/allocator_check.h
Normal file
18
src/base/allocator/allocator_check.h
Normal file
@ -0,0 +1,18 @@
|
||||
// Copyright 2016 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_CHECK_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_CHECK_H_
|
||||
|
||||
#include "base/base_export.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
BASE_EXPORT bool IsAllocatorInitialized();
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_CHECK_H_
|
15
src/base/allocator/allocator_extension.cc
Normal file
15
src/base/allocator/allocator_extension.cc
Normal file
@ -0,0 +1,15 @@
|
||||
// Copyright 2012 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/allocator_extension.h"
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/check.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
void ReleaseFreeMemory() {}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
23
src/base/allocator/allocator_extension.h
Normal file
23
src/base/allocator/allocator_extension.h
Normal file
@ -0,0 +1,23 @@
|
||||
// Copyright 2012 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_EXTENSION_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_EXTENSION_H_
|
||||
|
||||
#include <stddef.h> // for size_t
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
// Request that the allocator release any free memory it knows about to the
|
||||
// system.
|
||||
BASE_EXPORT void ReleaseFreeMemory();
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_EXTENSION_H_
|
24
src/base/allocator/dispatcher/configuration.h
Normal file
24
src/base/allocator/dispatcher/configuration.h
Normal file
@ -0,0 +1,24 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_CONFIGURATION_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_CONFIGURATION_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
namespace base::allocator::dispatcher::configuration {
|
||||
|
||||
// The maximum number of optional observers that may be present depending on
|
||||
// command line parameters.
|
||||
constexpr size_t kMaximumNumberOfOptionalObservers = 4;
|
||||
|
||||
// The total number of observers including mandatory and optional observers.
|
||||
// Primarily the number of observers affects the performance at allocation time.
|
||||
// The current value of 4 doesn't have hard evidence. Keep in mind that
|
||||
// also a single observer can severely impact performance.
|
||||
constexpr size_t kMaximumNumberOfObservers = 4;
|
||||
|
||||
} // namespace base::allocator::dispatcher::configuration
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_CONFIGURATION_H_
|
341
src/base/allocator/dispatcher/dispatcher.cc
Normal file
341
src/base/allocator/dispatcher/dispatcher.cc
Normal file
@ -0,0 +1,341 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/dispatcher/dispatcher.h"
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/dispatcher/internal/dispatch_data.h"
|
||||
#include "base/allocator/dispatcher/reentry_guard.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc.h"
|
||||
#include "base/allocator/partition_allocator/shim/allocator_shim.h"
|
||||
#include "base/check.h"
|
||||
#include "base/dcheck_is_on.h"
|
||||
#include "base/no_destructor.h"
|
||||
#include "base/sampling_heap_profiler/poisson_allocation_sampler.h"
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
#include <atomic>
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
namespace base::allocator::dispatcher::allocator_shim_details {
|
||||
namespace {
|
||||
|
||||
using allocator_shim::AllocatorDispatch;
|
||||
|
||||
void* AllocFn(const AllocatorDispatch* self, size_t size, void* context) {
|
||||
ReentryGuard guard;
|
||||
void* address = self->next->alloc_function(self->next, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
PoissonAllocationSampler::RecordAlloc(
|
||||
address, size, PoissonAllocationSampler::kMalloc, nullptr);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
void* AllocUncheckedFn(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
void* address =
|
||||
self->next->alloc_unchecked_function(self->next, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
PoissonAllocationSampler::RecordAlloc(
|
||||
address, size, PoissonAllocationSampler::kMalloc, nullptr);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
void* AllocZeroInitializedFn(const AllocatorDispatch* self,
|
||||
size_t n,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
void* address =
|
||||
self->next->alloc_zero_initialized_function(self->next, n, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
PoissonAllocationSampler::RecordAlloc(
|
||||
address, n * size, PoissonAllocationSampler::kMalloc, nullptr);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
void* AllocAlignedFn(const AllocatorDispatch* self,
|
||||
size_t alignment,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
void* address =
|
||||
self->next->alloc_aligned_function(self->next, alignment, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
PoissonAllocationSampler::RecordAlloc(
|
||||
address, size, PoissonAllocationSampler::kMalloc, nullptr);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
void* ReallocFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
// Note: size == 0 actually performs free.
|
||||
PoissonAllocationSampler::RecordFree(address);
|
||||
address = self->next->realloc_function(self->next, address, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
PoissonAllocationSampler::RecordAlloc(
|
||||
address, size, PoissonAllocationSampler::kMalloc, nullptr);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
void FreeFn(const AllocatorDispatch* self, void* address, void* context) {
|
||||
// Note: The RecordFree should be called before free_function
|
||||
// (here and in other places).
|
||||
// That is because we need to remove the recorded allocation sample before
|
||||
// free_function, as once the latter is executed the address becomes available
|
||||
// and can be allocated by another thread. That would be racy otherwise.
|
||||
PoissonAllocationSampler::RecordFree(address);
|
||||
self->next->free_function(self->next, address, context);
|
||||
}
|
||||
|
||||
size_t GetSizeEstimateFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
void* context) {
|
||||
return self->next->get_size_estimate_function(self->next, address, context);
|
||||
}
|
||||
|
||||
unsigned BatchMallocFn(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
void** results,
|
||||
unsigned num_requested,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
unsigned num_allocated = self->next->batch_malloc_function(
|
||||
self->next, size, results, num_requested, context);
|
||||
if (LIKELY(guard)) {
|
||||
for (unsigned i = 0; i < num_allocated; ++i) {
|
||||
PoissonAllocationSampler::RecordAlloc(
|
||||
results[i], size, PoissonAllocationSampler::kMalloc, nullptr);
|
||||
}
|
||||
}
|
||||
return num_allocated;
|
||||
}
|
||||
|
||||
void BatchFreeFn(const AllocatorDispatch* self,
|
||||
void** to_be_freed,
|
||||
unsigned num_to_be_freed,
|
||||
void* context) {
|
||||
for (unsigned i = 0; i < num_to_be_freed; ++i)
|
||||
PoissonAllocationSampler::RecordFree(to_be_freed[i]);
|
||||
self->next->batch_free_function(self->next, to_be_freed, num_to_be_freed,
|
||||
context);
|
||||
}
|
||||
|
||||
void FreeDefiniteSizeFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context) {
|
||||
PoissonAllocationSampler::RecordFree(address);
|
||||
self->next->free_definite_size_function(self->next, address, size, context);
|
||||
}
|
||||
|
||||
static void* AlignedMallocFn(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
void* address =
|
||||
self->next->aligned_malloc_function(self->next, size, alignment, context);
|
||||
if (LIKELY(guard)) {
|
||||
PoissonAllocationSampler::RecordAlloc(
|
||||
address, size, PoissonAllocationSampler::kMalloc, nullptr);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AlignedReallocFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
// Note: size == 0 actually performs free.
|
||||
PoissonAllocationSampler::RecordFree(address);
|
||||
address = self->next->aligned_realloc_function(self->next, address, size,
|
||||
alignment, context);
|
||||
if (LIKELY(guard)) {
|
||||
PoissonAllocationSampler::RecordAlloc(
|
||||
address, size, PoissonAllocationSampler::kMalloc, nullptr);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
static void AlignedFreeFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
void* context) {
|
||||
PoissonAllocationSampler::RecordFree(address);
|
||||
self->next->aligned_free_function(self->next, address, context);
|
||||
}
|
||||
|
||||
AllocatorDispatch g_allocator_dispatch = {&AllocFn,
|
||||
&AllocUncheckedFn,
|
||||
&AllocZeroInitializedFn,
|
||||
&AllocAlignedFn,
|
||||
&ReallocFn,
|
||||
&FreeFn,
|
||||
&GetSizeEstimateFn,
|
||||
&BatchMallocFn,
|
||||
&BatchFreeFn,
|
||||
&FreeDefiniteSizeFn,
|
||||
&AlignedMallocFn,
|
||||
&AlignedReallocFn,
|
||||
&AlignedFreeFn,
|
||||
nullptr};
|
||||
|
||||
} // namespace
|
||||
} // namespace base::allocator::dispatcher::allocator_shim_details
|
||||
#endif // BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC) && !BUILDFLAG(IS_NACL)
|
||||
namespace base::allocator::dispatcher::partition_allocator_details {
|
||||
namespace {
|
||||
|
||||
void PartitionAllocHook(void* address, size_t size, const char* type) {
|
||||
PoissonAllocationSampler::RecordAlloc(
|
||||
address, size, PoissonAllocationSampler::kPartitionAlloc, type);
|
||||
}
|
||||
|
||||
void PartitionFreeHook(void* address) {
|
||||
PoissonAllocationSampler::RecordFree(address);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace base::allocator::dispatcher::partition_allocator_details
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC) && !BUILDFLAG(IS_NACL)
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
void InstallStandardAllocatorHooks() {
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
allocator_shim::InsertAllocatorDispatch(
|
||||
&allocator_shim_details::g_allocator_dispatch);
|
||||
#else
|
||||
// If the allocator shim isn't available, then we don't install any hooks.
|
||||
// There's no point in printing an error message, since this can regularly
|
||||
// happen for tests.
|
||||
#endif // BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC) && !BUILDFLAG(IS_NACL)
|
||||
partition_alloc::PartitionAllocHooks::SetObserverHooks(
|
||||
&partition_allocator_details::PartitionAllocHook,
|
||||
&partition_allocator_details::PartitionFreeHook);
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC) && !BUILDFLAG(IS_NACL)
|
||||
}
|
||||
|
||||
void RemoveStandardAllocatorHooksForTesting() {
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
allocator_shim::RemoveAllocatorDispatchForTesting(
|
||||
&allocator_shim_details::g_allocator_dispatch); // IN-TEST
|
||||
#endif
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC) && !BUILDFLAG(IS_NACL)
|
||||
partition_alloc::PartitionAllocHooks::SetObserverHooks(nullptr, nullptr);
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
// The private implementation of Dispatcher.
|
||||
struct Dispatcher::Impl {
|
||||
void Initialize(const internal::DispatchData& dispatch_data) {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(!is_initialized_check_flag_.test_and_set());
|
||||
#endif
|
||||
|
||||
dispatch_data_ = dispatch_data;
|
||||
ConnectToEmitters(dispatch_data_);
|
||||
}
|
||||
|
||||
void Reset() {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK([&]() {
|
||||
auto const was_set = is_initialized_check_flag_.test_and_set();
|
||||
is_initialized_check_flag_.clear();
|
||||
return was_set;
|
||||
}());
|
||||
#endif
|
||||
|
||||
DisconnectFromEmitters(dispatch_data_);
|
||||
dispatch_data_ = {};
|
||||
}
|
||||
|
||||
private:
|
||||
// Connect the hooks to the memory subsystem. In some cases, most notably when
|
||||
// we have no observers at all, the hooks will be invalid and must NOT be
|
||||
// connected. This way we prevent notifications although no observers are
|
||||
// present.
|
||||
static void ConnectToEmitters(const internal::DispatchData& dispatch_data) {
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
if (auto* const allocator_dispatch = dispatch_data.GetAllocatorDispatch()) {
|
||||
allocator_shim::InsertAllocatorDispatch(allocator_dispatch);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
{
|
||||
auto* const allocation_hook = dispatch_data.GetAllocationObserverHook();
|
||||
auto* const free_hook = dispatch_data.GetFreeObserverHook();
|
||||
if (allocation_hook && free_hook) {
|
||||
partition_alloc::PartitionAllocHooks::SetObserverHooks(allocation_hook,
|
||||
free_hook);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void DisconnectFromEmitters(internal::DispatchData& dispatch_data) {
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
if (auto* const allocator_dispatch = dispatch_data.GetAllocatorDispatch()) {
|
||||
allocator_shim::RemoveAllocatorDispatchForTesting(
|
||||
allocator_dispatch); // IN-TEST
|
||||
}
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
partition_alloc::PartitionAllocHooks::SetObserverHooks(nullptr, nullptr);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Information on the hooks.
|
||||
internal::DispatchData dispatch_data_;
|
||||
#if DCHECK_IS_ON()
|
||||
// Indicator if the dispatcher has been initialized before.
|
||||
#if !defined(__cpp_lib_atomic_value_initialization) || \
|
||||
__cpp_lib_atomic_value_initialization < 201911L
|
||||
std::atomic_flag is_initialized_check_flag_ = ATOMIC_FLAG_INIT;
|
||||
#else
|
||||
std::atomic_flag is_initialized_check_flag_;
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
||||
Dispatcher::Dispatcher() : impl_(std::make_unique<Impl>()) {}
|
||||
|
||||
Dispatcher::~Dispatcher() = default;
|
||||
|
||||
Dispatcher& Dispatcher::GetInstance() {
|
||||
static base::NoDestructor<Dispatcher> instance;
|
||||
return *instance;
|
||||
}
|
||||
|
||||
void Dispatcher::Initialize(const internal::DispatchData& dispatch_data) {
|
||||
impl_->Initialize(dispatch_data);
|
||||
}
|
||||
|
||||
void Dispatcher::ResetForTesting() {
|
||||
impl_->Reset();
|
||||
}
|
||||
} // namespace base::allocator::dispatcher
|
78
src/base/allocator/dispatcher/dispatcher.h
Normal file
78
src/base/allocator/dispatcher/dispatcher.h
Normal file
@ -0,0 +1,78 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_DISPATCHER_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_DISPATCHER_H_
|
||||
|
||||
#include "base/allocator/dispatcher/internal/dispatcher_internal.h"
|
||||
#include "base/base_export.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
void BASE_EXPORT InstallStandardAllocatorHooks();
|
||||
void BASE_EXPORT RemoveStandardAllocatorHooksForTesting();
|
||||
|
||||
namespace internal {
|
||||
struct DispatchData;
|
||||
}
|
||||
|
||||
// Dispatcher serves as the top level instance for managing the dispatch
|
||||
// mechanism. The class instance manages connections to the various memory
|
||||
// subsystems such as PartitionAlloc. To keep the public interface as lean as
|
||||
// possible it uses a pimpl pattern.
|
||||
class BASE_EXPORT Dispatcher {
|
||||
public:
|
||||
static Dispatcher& GetInstance();
|
||||
|
||||
Dispatcher();
|
||||
|
||||
// Initialize the dispatch mechanism with the given tuple of observers. The
|
||||
// observers must be valid (it is only DCHECKed internally at initialization,
|
||||
// but not verified further)
|
||||
// If Initialize is called multiple times, the first one wins. All later
|
||||
// invocations are silently ignored. Initialization is protected from
|
||||
// concurrent invocations. In case of concurrent accesses, the first one to
|
||||
// get the lock wins.
|
||||
// The dispatcher invokes following functions on the observers:
|
||||
// void OnAllocation(void* address,
|
||||
// size_t size,
|
||||
// AllocationSubsystem sub_system,
|
||||
// const char* type_name);
|
||||
// void OnFree(void* address);
|
||||
//
|
||||
// Note: The dispatcher mechanism does NOT bring systematic protection against
|
||||
// recursive invocations. That is, observers which allocate memory on the
|
||||
// heap, i.e. through dynamically allocated containers or by using the
|
||||
// CHECK-macro, are responsible to break these recursions!
|
||||
template <typename... ObserverTypes>
|
||||
void Initialize(const std::tuple<ObserverTypes...>& observers) {
|
||||
// Get the hooks for running these observers and pass them to further
|
||||
// initialization
|
||||
Initialize(internal::GetNotificationHooks(observers));
|
||||
}
|
||||
|
||||
// The following functions provide an interface to setup and tear down the
|
||||
// dispatcher when testing. This must NOT be used from production code since
|
||||
// the hooks cannot be removed reliably under all circumstances.
|
||||
template <typename ObserverType>
|
||||
void InitializeForTesting(ObserverType* observer) {
|
||||
Initialize(std::make_tuple(observer));
|
||||
}
|
||||
|
||||
void ResetForTesting();
|
||||
|
||||
private:
|
||||
// structure and pointer to the private implementation.
|
||||
struct Impl;
|
||||
std::unique_ptr<Impl> const impl_;
|
||||
|
||||
~Dispatcher();
|
||||
|
||||
void Initialize(const internal::DispatchData& dispatch_data);
|
||||
};
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_DISPATCHER_H_
|
206
src/base/allocator/dispatcher/initializer.h
Normal file
206
src/base/allocator/dispatcher/initializer.h
Normal file
@ -0,0 +1,206 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_INITIALIZER_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_INITIALIZER_H_
|
||||
|
||||
#include "base/allocator/dispatcher/configuration.h"
|
||||
#include "base/allocator/dispatcher/dispatcher.h"
|
||||
#include "base/allocator/dispatcher/internal/tools.h"
|
||||
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
namespace internal {
|
||||
|
||||
// Filter the passed observers and perform initialization of the passed
|
||||
// dispatcher.
|
||||
template <size_t CurrentIndex,
|
||||
typename DispatcherType,
|
||||
typename CheckObserverPredicate,
|
||||
typename VerifiedObservers,
|
||||
typename UnverifiedObservers,
|
||||
size_t... IndicesToSelect>
|
||||
inline void DoInitialize(DispatcherType& dispatcher,
|
||||
CheckObserverPredicate check_observer,
|
||||
const VerifiedObservers& verified_observers,
|
||||
const UnverifiedObservers& unverified_observers,
|
||||
std::index_sequence<IndicesToSelect...> indices) {
|
||||
if constexpr (CurrentIndex < std::tuple_size<UnverifiedObservers>::value) {
|
||||
// We still have some items left to handle.
|
||||
if (check_observer(std::get<CurrentIndex>(unverified_observers))) {
|
||||
// The current observer is valid. Hence, append the index of the current
|
||||
// item to the set of indices and head on to the next item.
|
||||
DoInitialize<CurrentIndex + 1>(
|
||||
dispatcher, check_observer, verified_observers, unverified_observers,
|
||||
std::index_sequence<IndicesToSelect..., CurrentIndex>{});
|
||||
} else {
|
||||
// The current observer is not valid. Hence, head on to the next item with
|
||||
// an unaltered list of indices.
|
||||
DoInitialize<CurrentIndex + 1>(dispatcher, check_observer,
|
||||
verified_observers, unverified_observers,
|
||||
indices);
|
||||
}
|
||||
} else if constexpr (CurrentIndex ==
|
||||
std::tuple_size<UnverifiedObservers>::value) {
|
||||
// So we have met the end of the tuple of observers to verify.
|
||||
// Hence, we extract the additional valid observers, append to the tuple of
|
||||
// already verified observers and hand over to the dispatcher.
|
||||
auto observers = std::tuple_cat(
|
||||
verified_observers,
|
||||
std::make_tuple(std::get<IndicesToSelect>(unverified_observers)...));
|
||||
|
||||
// Do a final check that neither the maximum total number of observers nor
|
||||
// the maximum number of optional observers is exceeded.
|
||||
static_assert(std::tuple_size<decltype(observers)>::value <=
|
||||
configuration::kMaximumNumberOfObservers);
|
||||
static_assert(sizeof...(IndicesToSelect) <=
|
||||
configuration::kMaximumNumberOfOptionalObservers);
|
||||
|
||||
dispatcher.Initialize(std::move(observers));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// The result of concatenating two tuple-types.
|
||||
template <typename... tuples>
|
||||
using TupleCat = decltype(std::tuple_cat(std::declval<tuples>()...));
|
||||
|
||||
// Initializer collects mandatory and optional observers and initializes the
|
||||
// passed Dispatcher with only the enabled observers.
|
||||
//
|
||||
// In some situations, presence of observers depends on runtime. i.e. command
|
||||
// line parameters or CPU features. With 3 optional observers we already have 8
|
||||
// different combinations. Initializer takes the job of dealing with all
|
||||
// combinations from the user. It allows users to pass all observers (including
|
||||
// nullptr for disabled optional observers) and initializes the Dispatcher with
|
||||
// only the enabled observers.
|
||||
//
|
||||
// Since this process results in a combinatoric explosion, Initializer
|
||||
// distinguishes between optional and mandatory observers. Mandatory observers
|
||||
// are not included in the filtering process and must always be enabled (not
|
||||
// nullptr).
|
||||
//
|
||||
// To allow the Initializer to track the number and exact type of observers, it
|
||||
// is implemented as a templated class which holds information on the types in
|
||||
// the std::tuples passed as template parameters. Therefore, whenever any type
|
||||
// observer it set, the initializer changes its type to reflect this.
|
||||
template <typename MandatoryObservers = std::tuple<>,
|
||||
typename OptionalObservers = std::tuple<>>
|
||||
struct BASE_EXPORT Initializer {
|
||||
Initializer() = default;
|
||||
Initializer(MandatoryObservers mandatory_observers,
|
||||
OptionalObservers optional_observers)
|
||||
: mandatory_observers_(std::move(mandatory_observers)),
|
||||
optional_observers_(std::move(optional_observers)) {}
|
||||
|
||||
// Set the mandatory observers. The number of observers that can be set is
|
||||
// limited by configuration::maximum_number_of_observers.
|
||||
template <typename... NewMandatoryObservers,
|
||||
std::enable_if_t<
|
||||
internal::LessEqual((sizeof...(NewMandatoryObservers) +
|
||||
std::tuple_size<OptionalObservers>::value),
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
Initializer<std::tuple<NewMandatoryObservers*...>, OptionalObservers>
|
||||
SetMandatoryObservers(NewMandatoryObservers*... mandatory_observers) const {
|
||||
return {std::make_tuple(mandatory_observers...), GetOptionalObservers()};
|
||||
}
|
||||
|
||||
// Add mandatory observers. The number of observers that can be added is
|
||||
// limited by the current number of observers, see
|
||||
// configuration::maximum_number_of_observers.
|
||||
template <typename... AdditionalMandatoryObservers,
|
||||
std::enable_if_t<internal::LessEqual(
|
||||
std::tuple_size<MandatoryObservers>::value +
|
||||
sizeof...(AdditionalMandatoryObservers) +
|
||||
std::tuple_size<OptionalObservers>::value,
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
Initializer<TupleCat<MandatoryObservers,
|
||||
std::tuple<AdditionalMandatoryObservers*...>>,
|
||||
OptionalObservers>
|
||||
AddMandatoryObservers(
|
||||
AdditionalMandatoryObservers*... additional_mandatory_observers) const {
|
||||
return {std::tuple_cat(GetMandatoryObservers(),
|
||||
std::make_tuple(additional_mandatory_observers...)),
|
||||
GetOptionalObservers()};
|
||||
}
|
||||
|
||||
// Set the optional observers. The number of observers that can be set is
|
||||
// limited by configuration::maximum_number_of_optional_observers as well as
|
||||
// configuration::maximum_number_of_observers.
|
||||
template <
|
||||
typename... NewOptionalObservers,
|
||||
std::enable_if_t<
|
||||
internal::LessEqual(
|
||||
sizeof...(NewOptionalObservers),
|
||||
configuration::kMaximumNumberOfOptionalObservers) &&
|
||||
internal::LessEqual((sizeof...(NewOptionalObservers) +
|
||||
std::tuple_size<MandatoryObservers>::value),
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
Initializer<MandatoryObservers, std::tuple<NewOptionalObservers*...>>
|
||||
SetOptionalObservers(NewOptionalObservers*... optional_observers) const {
|
||||
return {GetMandatoryObservers(), std::make_tuple(optional_observers...)};
|
||||
}
|
||||
|
||||
// Add optional observers. The number of observers that can be added is
|
||||
// limited by the current number of optional observers,
|
||||
// configuration::maximum_number_of_optional_observers as well as
|
||||
// configuration::maximum_number_of_observers.
|
||||
template <
|
||||
typename... AdditionalOptionalObservers,
|
||||
std::enable_if_t<
|
||||
internal::LessEqual(
|
||||
std::tuple_size<OptionalObservers>::value +
|
||||
sizeof...(AdditionalOptionalObservers),
|
||||
configuration::kMaximumNumberOfOptionalObservers) &&
|
||||
internal::LessEqual((std::tuple_size<OptionalObservers>::value +
|
||||
sizeof...(AdditionalOptionalObservers) +
|
||||
std::tuple_size<MandatoryObservers>::value),
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
Initializer<
|
||||
MandatoryObservers,
|
||||
TupleCat<OptionalObservers, std::tuple<AdditionalOptionalObservers*...>>>
|
||||
AddOptionalObservers(
|
||||
AdditionalOptionalObservers*... additional_optional_observers) const {
|
||||
return {GetMandatoryObservers(),
|
||||
std::tuple_cat(GetOptionalObservers(),
|
||||
std::make_tuple(additional_optional_observers...))};
|
||||
}
|
||||
|
||||
// Perform the actual initialization on the passed dispatcher.
|
||||
// The dispatcher is passed as a template only to provide better testability.
|
||||
template <typename DispatcherType>
|
||||
void DoInitialize(DispatcherType& dispatcher) const {
|
||||
internal::DoInitialize<0>(dispatcher, internal::IsValidObserver{},
|
||||
GetMandatoryObservers(), GetOptionalObservers(),
|
||||
{});
|
||||
}
|
||||
|
||||
const MandatoryObservers& GetMandatoryObservers() const {
|
||||
return mandatory_observers_;
|
||||
}
|
||||
|
||||
const OptionalObservers& GetOptionalObservers() const {
|
||||
return optional_observers_;
|
||||
}
|
||||
|
||||
private:
|
||||
MandatoryObservers mandatory_observers_;
|
||||
OptionalObservers optional_observers_;
|
||||
};
|
||||
|
||||
// Convenience function for creating an empty Initializer.
|
||||
inline Initializer<> CreateInitializer() {
|
||||
return {};
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_INITIALIZER_H_
|
41
src/base/allocator/dispatcher/internal/dispatch_data.cc
Normal file
41
src/base/allocator/dispatcher/internal/dispatch_data.cc
Normal file
@ -0,0 +1,41 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/dispatcher/internal/dispatch_data.h"
|
||||
|
||||
namespace base::allocator::dispatcher::internal {
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
|
||||
DispatchData& DispatchData::SetAllocationObserverHooks(
|
||||
AllocationObserverHook* allocation_observer_hook,
|
||||
FreeObserverHook* free_observer_hook) {
|
||||
allocation_observer_hook_ = allocation_observer_hook;
|
||||
free_observer_hook_ = free_observer_hook;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
DispatchData::AllocationObserverHook* DispatchData::GetAllocationObserverHook()
|
||||
const {
|
||||
return allocation_observer_hook_;
|
||||
}
|
||||
|
||||
DispatchData::FreeObserverHook* DispatchData::GetFreeObserverHook() const {
|
||||
return free_observer_hook_;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
DispatchData& DispatchData::SetAllocatorDispatch(
|
||||
AllocatorDispatch* allocator_dispatch) {
|
||||
allocator_dispatch_ = allocator_dispatch;
|
||||
return *this;
|
||||
}
|
||||
|
||||
AllocatorDispatch* DispatchData::GetAllocatorDispatch() const {
|
||||
return allocator_dispatch_;
|
||||
}
|
||||
#endif
|
||||
} // namespace base::allocator::dispatcher::internal
|
58
src/base/allocator/dispatcher/internal/dispatch_data.h
Normal file
58
src/base/allocator/dispatcher/internal/dispatch_data.h
Normal file
@ -0,0 +1,58 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCH_DATA_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCH_DATA_H_
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/base_export.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
#include "base/allocator/partition_allocator/partition_alloc.h"
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
#include "base/allocator/partition_allocator/shim/allocator_shim.h"
|
||||
#endif
|
||||
|
||||
namespace base::allocator::dispatcher::internal {
|
||||
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
using allocator_shim::AllocatorDispatch;
|
||||
#endif
|
||||
|
||||
// A simple utility class to pass all the information required to properly hook
|
||||
// into the memory allocation subsystems from DispatcherImpl to the Dispatcher.
|
||||
struct BASE_EXPORT DispatchData {
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
using AllocationObserverHook =
|
||||
partition_alloc::PartitionAllocHooks::AllocationObserverHook;
|
||||
using FreeObserverHook =
|
||||
partition_alloc::PartitionAllocHooks::FreeObserverHook;
|
||||
|
||||
DispatchData& SetAllocationObserverHooks(AllocationObserverHook*,
|
||||
FreeObserverHook*);
|
||||
AllocationObserverHook* GetAllocationObserverHook() const;
|
||||
FreeObserverHook* GetFreeObserverHook() const;
|
||||
|
||||
private:
|
||||
AllocationObserverHook* allocation_observer_hook_ = nullptr;
|
||||
FreeObserverHook* free_observer_hook_ = nullptr;
|
||||
|
||||
public:
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
DispatchData& SetAllocatorDispatch(AllocatorDispatch* allocator_dispatch);
|
||||
AllocatorDispatch* GetAllocatorDispatch() const;
|
||||
|
||||
private:
|
||||
AllocatorDispatch* allocator_dispatch_ = nullptr;
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace base::allocator::dispatcher::internal
|
||||
|
||||
#endif
|
355
src/base/allocator/dispatcher/internal/dispatcher_internal.h
Normal file
355
src/base/allocator/dispatcher/internal/dispatcher_internal.h
Normal file
@ -0,0 +1,355 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCHER_INTERNAL_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCHER_INTERNAL_H_
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/dispatcher/configuration.h"
|
||||
#include "base/allocator/dispatcher/internal/dispatch_data.h"
|
||||
#include "base/allocator/dispatcher/internal/tools.h"
|
||||
#include "base/allocator/dispatcher/reentry_guard.h"
|
||||
#include "base/allocator/dispatcher/subsystem.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
#include "base/allocator/partition_allocator/partition_alloc.h"
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
#include "base/allocator/partition_allocator/shim/allocator_shim.h"
|
||||
#endif
|
||||
|
||||
#include <tuple>
|
||||
|
||||
namespace base::allocator::dispatcher::internal {
|
||||
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
using allocator_shim::AllocatorDispatch;
|
||||
#endif
|
||||
|
||||
template <typename CheckObserverPredicate,
|
||||
typename... ObserverTypes,
|
||||
size_t... Indices>
|
||||
void inline PerformObserverCheck(const std::tuple<ObserverTypes...>& observers,
|
||||
std::index_sequence<Indices...>,
|
||||
CheckObserverPredicate check_observer) {
|
||||
((DCHECK(check_observer(std::get<Indices>(observers)))), ...);
|
||||
}
|
||||
|
||||
template <typename... ObserverTypes, size_t... Indices>
|
||||
ALWAYS_INLINE void PerformAllocationNotification(
|
||||
const std::tuple<ObserverTypes...>& observers,
|
||||
std::index_sequence<Indices...>,
|
||||
void* address,
|
||||
size_t size,
|
||||
AllocationSubsystem subSystem,
|
||||
const char* type_name) {
|
||||
((std::get<Indices>(observers)->OnAllocation(address, size, subSystem,
|
||||
type_name)),
|
||||
...);
|
||||
}
|
||||
|
||||
template <typename... ObserverTypes, size_t... Indices>
|
||||
ALWAYS_INLINE void PerformFreeNotification(
|
||||
const std::tuple<ObserverTypes...>& observers,
|
||||
std::index_sequence<Indices...>,
|
||||
void* address) {
|
||||
((std::get<Indices>(observers)->OnFree(address)), ...);
|
||||
}
|
||||
|
||||
// DispatcherImpl provides hooks into the various memory subsystems. These hooks
|
||||
// are responsible for dispatching any notification to the observers.
|
||||
// In order to provide as many information on the exact type of the observer and
|
||||
// prevent any conditional jumps in the hot allocation path, observers are
|
||||
// stored in a std::tuple. DispatcherImpl performs a CHECK at initialization
|
||||
// time to ensure they are valid.
|
||||
template <typename... ObserverTypes>
|
||||
struct DispatcherImpl {
|
||||
using AllObservers = std::index_sequence_for<ObserverTypes...>;
|
||||
|
||||
template <std::enable_if_t<
|
||||
internal::LessEqual(sizeof...(ObserverTypes),
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
static DispatchData GetNotificationHooks(
|
||||
std::tuple<ObserverTypes*...> observers) {
|
||||
s_observers = std::move(observers);
|
||||
|
||||
PerformObserverCheck(s_observers, AllObservers{}, IsValidObserver{});
|
||||
|
||||
return CreateDispatchData();
|
||||
}
|
||||
|
||||
private:
|
||||
static DispatchData CreateDispatchData() {
|
||||
return DispatchData()
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
.SetAllocationObserverHooks(&PartitionAllocatorAllocationHook,
|
||||
&PartitionAllocatorFreeHook)
|
||||
#endif
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
.SetAllocatorDispatch(&allocator_dispatch_)
|
||||
#endif
|
||||
;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
static void PartitionAllocatorAllocationHook(void* address,
|
||||
size_t size,
|
||||
const char* type_name) {
|
||||
DoNotifyAllocation(address, size, AllocationSubsystem::kPartitionAllocator,
|
||||
type_name);
|
||||
}
|
||||
|
||||
static void PartitionAllocatorFreeHook(void* address) {
|
||||
DoNotifyFree(address);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
static void* AllocFn(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
void* const address = self->next->alloc_function(self->next, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
DoNotifyAllocation(address, size, AllocationSubsystem::kAllocatorShim);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AllocUncheckedFn(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
void* const address =
|
||||
self->next->alloc_unchecked_function(self->next, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
DoNotifyAllocation(address, size, AllocationSubsystem::kAllocatorShim);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AllocZeroInitializedFn(const AllocatorDispatch* self,
|
||||
size_t n,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
void* const address = self->next->alloc_zero_initialized_function(
|
||||
self->next, n, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
DoNotifyAllocation(address, n * size,
|
||||
AllocationSubsystem::kAllocatorShim);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AllocAlignedFn(const AllocatorDispatch* self,
|
||||
size_t alignment,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
void* const address = self->next->alloc_aligned_function(
|
||||
self->next, alignment, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
DoNotifyAllocation(address, size, AllocationSubsystem::kAllocatorShim);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* ReallocFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
// Note: size == 0 actually performs free.
|
||||
// Note: ReentryGuard prevents from recursions introduced by malloc and
|
||||
// initialization of thread local storage which happen in the allocation
|
||||
// path only (please see docs of ReentryGuard for full details). Therefore,
|
||||
// the DoNotifyFree doesn't need to be guarded. Instead, making it unguarded
|
||||
// also ensures proper notification.
|
||||
DoNotifyFree(address);
|
||||
void* const reallocated_address =
|
||||
self->next->realloc_function(self->next, address, size, context);
|
||||
if (LIKELY(guard)) {
|
||||
DoNotifyAllocation(reallocated_address, size,
|
||||
AllocationSubsystem::kAllocatorShim);
|
||||
}
|
||||
return reallocated_address;
|
||||
}
|
||||
|
||||
static void FreeFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
void* context) {
|
||||
// Note: The RecordFree should be called before free_function (here and in
|
||||
// other places). That is because observers need to handle the allocation
|
||||
// being freed before calling free_function, as once the latter is executed
|
||||
// the address becomes available and can be allocated by another thread.
|
||||
// That would be racy otherwise.
|
||||
// Note: The code doesn't need to protect from recursions using
|
||||
// ReentryGuard, see ReallocFn for details.
|
||||
DoNotifyFree(address);
|
||||
self->next->free_function(self->next, address, context);
|
||||
}
|
||||
|
||||
static size_t GetSizeEstimateFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
void* context) {
|
||||
return self->next->get_size_estimate_function(self->next, address, context);
|
||||
}
|
||||
|
||||
static unsigned BatchMallocFn(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
void** results,
|
||||
unsigned num_requested,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
unsigned const num_allocated = self->next->batch_malloc_function(
|
||||
self->next, size, results, num_requested, context);
|
||||
if (LIKELY(guard)) {
|
||||
for (unsigned i = 0; i < num_allocated; ++i) {
|
||||
DoNotifyAllocation(results[i], size,
|
||||
AllocationSubsystem::kAllocatorShim);
|
||||
}
|
||||
}
|
||||
return num_allocated;
|
||||
}
|
||||
|
||||
static void BatchFreeFn(const AllocatorDispatch* self,
|
||||
void** to_be_freed,
|
||||
unsigned num_to_be_freed,
|
||||
void* context) {
|
||||
// Note: The code doesn't need to protect from recursions using
|
||||
// ReentryGuard, see ReallocFn for details.
|
||||
for (unsigned i = 0; i < num_to_be_freed; ++i) {
|
||||
DoNotifyFree(to_be_freed[i]);
|
||||
}
|
||||
self->next->batch_free_function(self->next, to_be_freed, num_to_be_freed,
|
||||
context);
|
||||
}
|
||||
|
||||
static void FreeDefiniteSizeFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context) {
|
||||
// Note: The code doesn't need to protect from recursions using
|
||||
// ReentryGuard, see ReallocFn for details.
|
||||
DoNotifyFree(address);
|
||||
self->next->free_definite_size_function(self->next, address, size, context);
|
||||
}
|
||||
|
||||
static void* AlignedMallocFn(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
void* const address = self->next->aligned_malloc_function(
|
||||
self->next, size, alignment, context);
|
||||
if (LIKELY(guard)) {
|
||||
DoNotifyAllocation(address, size, AllocationSubsystem::kAllocatorShim);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AlignedReallocFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
ReentryGuard guard;
|
||||
// Note: size == 0 actually performs free.
|
||||
// Note: DoNotifyFree doesn't need to protect from recursions using
|
||||
// ReentryGuard, see ReallocFn for details.
|
||||
// Instead, making it unguarded also ensures proper notification of the free
|
||||
// portion.
|
||||
DoNotifyFree(address);
|
||||
address = self->next->aligned_realloc_function(self->next, address, size,
|
||||
alignment, context);
|
||||
if (LIKELY(guard)) {
|
||||
DoNotifyAllocation(address, size, AllocationSubsystem::kAllocatorShim);
|
||||
}
|
||||
return address;
|
||||
}
|
||||
|
||||
static void AlignedFreeFn(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
void* context) {
|
||||
// Note: The code doesn't need to protect from recursions using
|
||||
// ReentryGuard, see ReallocFn for details.
|
||||
DoNotifyFree(address);
|
||||
self->next->aligned_free_function(self->next, address, context);
|
||||
}
|
||||
|
||||
static AllocatorDispatch allocator_dispatch_;
|
||||
#endif
|
||||
|
||||
static ALWAYS_INLINE void DoNotifyAllocation(
|
||||
void* address,
|
||||
size_t size,
|
||||
AllocationSubsystem subSystem,
|
||||
const char* type_name = nullptr) {
|
||||
PerformAllocationNotification(s_observers, AllObservers{}, address, size,
|
||||
subSystem, type_name);
|
||||
}
|
||||
|
||||
static ALWAYS_INLINE void DoNotifyFree(void* address) {
|
||||
PerformFreeNotification(s_observers, AllObservers{}, address);
|
||||
}
|
||||
|
||||
static std::tuple<ObserverTypes*...> s_observers;
|
||||
};
|
||||
|
||||
template <typename... ObserverTypes>
|
||||
std::tuple<ObserverTypes*...> DispatcherImpl<ObserverTypes...>::s_observers;
|
||||
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
template <typename... ObserverTypes>
|
||||
AllocatorDispatch DispatcherImpl<ObserverTypes...>::allocator_dispatch_ = {
|
||||
&AllocFn,
|
||||
&AllocUncheckedFn,
|
||||
&AllocZeroInitializedFn,
|
||||
&AllocAlignedFn,
|
||||
&ReallocFn,
|
||||
&FreeFn,
|
||||
&GetSizeEstimateFn,
|
||||
&BatchMallocFn,
|
||||
&BatchFreeFn,
|
||||
&FreeDefiniteSizeFn,
|
||||
&AlignedMallocFn,
|
||||
&AlignedReallocFn,
|
||||
&AlignedFreeFn,
|
||||
nullptr};
|
||||
#endif
|
||||
|
||||
// Specialization of DispatcherImpl in case we have no observers to notify. In
|
||||
// this special case we return a set of null pointers as the Dispatcher must not
|
||||
// install any hooks at all.
|
||||
template <>
|
||||
struct DispatcherImpl<> {
|
||||
static DispatchData GetNotificationHooks(std::tuple<> /*observers*/) {
|
||||
return DispatchData()
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
.SetAllocationObserverHooks(nullptr, nullptr)
|
||||
#endif
|
||||
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
.SetAllocatorDispatch(nullptr)
|
||||
#endif
|
||||
;
|
||||
}
|
||||
};
|
||||
|
||||
// A little utility function that helps using DispatcherImpl by providing
|
||||
// automated type deduction for templates.
|
||||
template <typename... ObserverTypes>
|
||||
inline DispatchData GetNotificationHooks(
|
||||
std::tuple<ObserverTypes*...> observers) {
|
||||
return DispatcherImpl<ObserverTypes...>::GetNotificationHooks(
|
||||
std::move(observers));
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCHER_INTERNAL_H_
|
29
src/base/allocator/dispatcher/internal/tools.h
Normal file
29
src/base/allocator/dispatcher/internal/tools.h
Normal file
@ -0,0 +1,29 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_INTERNAL_TOOLS_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_INTERNAL_TOOLS_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
namespace base::allocator::dispatcher::internal {
|
||||
|
||||
constexpr bool LessEqual(size_t lhs, size_t rhs) {
|
||||
return lhs <= rhs;
|
||||
}
|
||||
|
||||
constexpr bool Equal(size_t lhs, size_t rhs) {
|
||||
return lhs == rhs;
|
||||
}
|
||||
|
||||
struct IsValidObserver {
|
||||
template <typename T>
|
||||
constexpr bool operator()(T const* ptr) const noexcept {
|
||||
return ptr != nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace base::allocator::dispatcher::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCHER_H_
|
34
src/base/allocator/dispatcher/reentry_guard.cc
Normal file
34
src/base/allocator/dispatcher/reentry_guard.cc
Normal file
@ -0,0 +1,34 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/dispatcher/reentry_guard.h"
|
||||
|
||||
#include "base/check.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID)
|
||||
#include <pthread.h>
|
||||
#endif
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID)
|
||||
pthread_key_t ReentryGuard::entered_key_ = 0;
|
||||
|
||||
void ReentryGuard::InitTLSSlot() {
|
||||
if (entered_key_ == 0) {
|
||||
int error = pthread_key_create(&entered_key_, nullptr);
|
||||
CHECK(!error);
|
||||
}
|
||||
|
||||
DCHECK(entered_key_ != 0);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void ReentryGuard::InitTLSSlot() {}
|
||||
|
||||
#endif
|
||||
} // namespace base::allocator::dispatcher
|
65
src/base/allocator/dispatcher/reentry_guard.h
Normal file
65
src/base/allocator/dispatcher/reentry_guard.h
Normal file
@ -0,0 +1,65 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_REENTRY_GUARD_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_REENTRY_GUARD_H_
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "base/check.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID)
|
||||
#include <pthread.h>
|
||||
#endif
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID)
|
||||
|
||||
// The macOS implementation of libmalloc sometimes calls malloc recursively,
|
||||
// delegating allocations between zones. That causes our hooks being called
|
||||
// twice. The scoped guard allows us to detect that.
|
||||
//
|
||||
// Besides that the implementations of thread_local on macOS and Android
|
||||
// seem to allocate memory lazily on the first access to thread_local variables.
|
||||
// Make use of pthread TLS instead of C++ thread_local there.
|
||||
struct BASE_EXPORT ReentryGuard {
|
||||
ReentryGuard() : allowed_(!pthread_getspecific(entered_key_)) {
|
||||
pthread_setspecific(entered_key_, reinterpret_cast<void*>(true));
|
||||
}
|
||||
|
||||
~ReentryGuard() {
|
||||
if (LIKELY(allowed_))
|
||||
pthread_setspecific(entered_key_, nullptr);
|
||||
}
|
||||
|
||||
explicit operator bool() const noexcept { return allowed_; }
|
||||
|
||||
// This function must be called in very early of the process start-up in
|
||||
// order to acquire a low TLS slot number because glibc TLS implementation
|
||||
// will require a malloc call to allocate storage for a higher slot number
|
||||
// (>= PTHREAD_KEY_2NDLEVEL_SIZE == 32). c.f. heap_profiling::InitTLSSlot.
|
||||
static void InitTLSSlot();
|
||||
|
||||
private:
|
||||
static pthread_key_t entered_key_;
|
||||
const bool allowed_;
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
// Use [[maybe_unused]] as this lightweight stand-in for the more heavyweight
|
||||
// ReentryGuard above will otherwise trigger the "unused code" warnings.
|
||||
struct [[maybe_unused]] BASE_EXPORT ReentryGuard {
|
||||
constexpr explicit operator bool() const noexcept { return true; }
|
||||
|
||||
static void InitTLSSlot();
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_REENTRY_GUARD_H_
|
21
src/base/allocator/dispatcher/subsystem.h
Normal file
21
src/base/allocator/dispatcher/subsystem.h
Normal file
@ -0,0 +1,21 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_SUBSYSTEM_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_SUBSYSTEM_H_
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
// Identifiers for the memory subsystem handling the allocation. Some observers
|
||||
// require more detailed information on who is performing the allocation, i.e.
|
||||
// SamplingHeapProfiler.
|
||||
enum class AllocationSubsystem {
|
||||
// Allocation is handled by PartitionAllocator.
|
||||
kPartitionAllocator = 1,
|
||||
// Allocation is handled by AllocatorShims.
|
||||
kAllocatorShim = 2
|
||||
};
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_SUBSYSTEM_H_
|
27
src/base/allocator/dispatcher/testing/dispatcher_test.h
Normal file
27
src/base/allocator/dispatcher/testing/dispatcher_test.h
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_TESTING_DISPATCHER_TEST_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_TESTING_DISPATCHER_TEST_H_
|
||||
|
||||
#include "testing/gtest/include/gtest/gtest.h"
|
||||
|
||||
namespace base::allocator::dispatcher::testing {
|
||||
|
||||
// DispatcherTest provides some common initialization which most of the
|
||||
// unittests of the dispatcher require. DispatcherTest should not be used
|
||||
// directly. Instead, derive your test fixture from it.
|
||||
struct DispatcherTest : public ::testing::Test {
|
||||
// Perform some commonly required initialization, at them moment
|
||||
// - Initialize the TLS slot for the ReentryGuard
|
||||
DispatcherTest();
|
||||
|
||||
protected:
|
||||
// Protected d'tor only to prevent direct usage of this class.
|
||||
~DispatcherTest() override;
|
||||
};
|
||||
|
||||
} // namespace base::allocator::dispatcher::testing
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_TESTING_DISPATCHER_TEST_H_
|
32
src/base/allocator/dispatcher/testing/observer_mock.h
Normal file
32
src/base/allocator/dispatcher/testing/observer_mock.h
Normal file
@ -0,0 +1,32 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_TESTING_OBSERVER_MOCK_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_TESTING_OBSERVER_MOCK_H_
|
||||
|
||||
#include "base/allocator/dispatcher/subsystem.h"
|
||||
#include "testing/gmock/include/gmock/gmock.h"
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
namespace base::allocator::dispatcher::testing {
|
||||
|
||||
// ObserverMock is a small mock class based on GoogleMock.
|
||||
// It complies to the interface enforced by the dispatcher. The template
|
||||
// parameter serves only to create distinct types of observers if required.
|
||||
template <typename T = void>
|
||||
struct ObserverMock {
|
||||
MOCK_METHOD(void,
|
||||
OnAllocation,
|
||||
(void* address,
|
||||
size_t size,
|
||||
AllocationSubsystem sub_system,
|
||||
const char* type_name),
|
||||
());
|
||||
MOCK_METHOD(void, OnFree, (void* address), ());
|
||||
};
|
||||
|
||||
} // namespace base::allocator::dispatcher::testing
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_TESTING_OBSERVER_MOCK_H_
|
50
src/base/allocator/dispatcher/testing/tools.h
Normal file
50
src/base/allocator/dispatcher/testing/tools.h
Normal file
@ -0,0 +1,50 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_TESTING_TOOLS_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_TESTING_TOOLS_H_
|
||||
|
||||
#include <array>
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
|
||||
namespace base::allocator::dispatcher::testing {
|
||||
|
||||
namespace internal {
|
||||
template <size_t Size, typename Type, typename... AppendedTypes>
|
||||
struct DefineTupleFromSingleType {
|
||||
using type = typename DefineTupleFromSingleType<Size - 1,
|
||||
Type,
|
||||
AppendedTypes...,
|
||||
Type>::type;
|
||||
};
|
||||
|
||||
template <typename Type, typename... AppendedTypes>
|
||||
struct DefineTupleFromSingleType<0, Type, AppendedTypes...> {
|
||||
using type = std::tuple<AppendedTypes...>;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
template <size_t Size, typename Type>
|
||||
struct DefineTupleFromSingleType {
|
||||
using type = typename internal::DefineTupleFromSingleType<Size, Type>::type;
|
||||
};
|
||||
|
||||
template <typename Type, size_t Size, size_t... Indices>
|
||||
typename internal::DefineTupleFromSingleType<Size, Type*>::type
|
||||
CreateTupleOfPointers(std::array<Type, Size>& items,
|
||||
std::index_sequence<Indices...>) {
|
||||
return std::make_tuple((&items[Indices])...);
|
||||
}
|
||||
|
||||
template <typename Type, size_t Size>
|
||||
typename internal::DefineTupleFromSingleType<Size, Type*>::type
|
||||
CreateTupleOfPointers(std::array<Type, Size>& items) {
|
||||
return CreateTupleOfPointers(items, std::make_index_sequence<Size>{});
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher::testing
|
||||
|
||||
#endif
|
256
src/base/allocator/early_zone_registration_mac.cc
Normal file
256
src/base/allocator/early_zone_registration_mac.cc
Normal file
@ -0,0 +1,256 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/early_zone_registration_mac.h"
|
||||
|
||||
#include <mach/mach.h>
|
||||
#include <malloc/malloc.h>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
|
||||
// BASE_EXPORT tends to be defined as soon as anything from //base is included.
|
||||
#if defined(BASE_EXPORT)
|
||||
#error "This file cannot depend on //base"
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
#if !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
void EarlyMallocZoneRegistration() {}
|
||||
void AllowDoublePartitionAllocZoneRegistration() {}
|
||||
|
||||
#else
|
||||
|
||||
extern "C" {
|
||||
// abort_report_np() records the message in a special section that both the
|
||||
// system CrashReporter and Crashpad collect in crash reports. See also in
|
||||
// chrome_exe_main_mac.cc.
|
||||
void abort_report_np(const char* fmt, ...);
|
||||
}
|
||||
|
||||
namespace {
|
||||
malloc_zone_t* GetDefaultMallocZone() {
|
||||
// malloc_default_zone() does not return... the default zone, but the
|
||||
// initial one. The default one is the first element of the default zone
|
||||
// array.
|
||||
unsigned int zone_count = 0;
|
||||
vm_address_t* zones = nullptr;
|
||||
kern_return_t result =
|
||||
malloc_get_all_zones(mach_task_self(), nullptr, &zones, &zone_count);
|
||||
if (result != KERN_SUCCESS)
|
||||
abort_report_np("Cannot enumerate malloc() zones");
|
||||
return reinterpret_cast<malloc_zone_t*>(zones[0]);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void EarlyMallocZoneRegistration() {
|
||||
// Must have static storage duration, as raw pointers are passed to
|
||||
// libsystem_malloc.
|
||||
static malloc_zone_t g_delegating_zone;
|
||||
static malloc_introspection_t g_delegating_zone_introspect;
|
||||
static malloc_zone_t* g_default_zone;
|
||||
|
||||
// Make sure that the default zone is instantiated.
|
||||
malloc_zone_t* purgeable_zone = malloc_default_purgeable_zone();
|
||||
|
||||
g_default_zone = GetDefaultMallocZone();
|
||||
|
||||
// The delegating zone:
|
||||
// - Forwards all allocations to the existing default zone
|
||||
// - Does *not* claim to own any memory, meaning that it will always be
|
||||
// skipped in free() in libsystem_malloc.dylib.
|
||||
//
|
||||
// This is a temporary zone, until it gets replaced by PartitionAlloc, inside
|
||||
// the main library. Since the main library depends on many external
|
||||
// libraries, we cannot install PartitionAlloc as the default zone without
|
||||
// concurrency issues.
|
||||
//
|
||||
// Instead, what we do is here, while the process is single-threaded:
|
||||
// - Register the delegating zone as the default one.
|
||||
// - Set the original (libsystem_malloc's) one as the second zone
|
||||
//
|
||||
// Later, when PartitionAlloc initializes, we replace the default (delegating)
|
||||
// zone with ours. The end state is:
|
||||
// 1. PartitionAlloc zone
|
||||
// 2. libsystem_malloc zone
|
||||
|
||||
// Set up of the delegating zone. Note that it doesn't just forward calls to
|
||||
// the default zone. This is because the system zone's malloc_zone_t pointer
|
||||
// actually points to a larger struct, containing allocator metadata. So if we
|
||||
// pass as the first parameter the "simple" delegating zone pointer, then we
|
||||
// immediately crash inside the system zone functions. So we need to replace
|
||||
// the zone pointer as well.
|
||||
//
|
||||
// Calls fall into 4 categories:
|
||||
// - Allocation calls: forwarded to the real system zone
|
||||
// - "Is this pointer yours" calls: always answer no
|
||||
// - free(): Should never be called, but is in practice, see comments below.
|
||||
// - Diagnostics and debugging: these are typically called for every
|
||||
// zone. They are no-ops for us, as we don't want to double-count, or lock
|
||||
// the data structures of the real zone twice.
|
||||
|
||||
// Allocation: Forward to the real zone.
|
||||
g_delegating_zone.malloc = [](malloc_zone_t* zone, size_t size) {
|
||||
return g_default_zone->malloc(g_default_zone, size);
|
||||
};
|
||||
g_delegating_zone.calloc = [](malloc_zone_t* zone, size_t num_items,
|
||||
size_t size) {
|
||||
return g_default_zone->calloc(g_default_zone, num_items, size);
|
||||
};
|
||||
g_delegating_zone.valloc = [](malloc_zone_t* zone, size_t size) {
|
||||
return g_default_zone->valloc(g_default_zone, size);
|
||||
};
|
||||
g_delegating_zone.realloc = [](malloc_zone_t* zone, void* ptr, size_t size) {
|
||||
return g_default_zone->realloc(g_default_zone, ptr, size);
|
||||
};
|
||||
g_delegating_zone.batch_malloc = [](malloc_zone_t* zone, size_t size,
|
||||
void** results, unsigned num_requested) {
|
||||
return g_default_zone->batch_malloc(g_default_zone, size, results,
|
||||
num_requested);
|
||||
};
|
||||
g_delegating_zone.memalign = [](malloc_zone_t* zone, size_t alignment,
|
||||
size_t size) {
|
||||
return g_default_zone->memalign(g_default_zone, alignment, size);
|
||||
};
|
||||
|
||||
// Does ptr belong to this zone? Return value is != 0 if so.
|
||||
g_delegating_zone.size = [](malloc_zone_t* zone, const void* ptr) -> size_t {
|
||||
return 0;
|
||||
};
|
||||
|
||||
// Free functions.
|
||||
// The normal path for freeing memory is:
|
||||
// 1. Try all zones in order, call zone->size(ptr)
|
||||
// 2. If zone->size(ptr) != 0, call zone->free(ptr) (or free_definite_size)
|
||||
// 3. If no zone matches, crash.
|
||||
//
|
||||
// Since this zone always returns 0 in size() (see above), then zone->free()
|
||||
// should never be called. Unfortunately, this is not the case, as some places
|
||||
// in CoreFoundation call malloc_zone_free(zone, ptr) directly. So rather than
|
||||
// crashing, forward the call. It's the caller's responsibility to use the
|
||||
// same zone for free() as for the allocation (this is in the contract of
|
||||
// malloc_zone_free()).
|
||||
//
|
||||
// However, note that the sequence of calls size() -> free() is not possible
|
||||
// for this zone, as size() always returns 0.
|
||||
g_delegating_zone.free = [](malloc_zone_t* zone, void* ptr) {
|
||||
return g_default_zone->free(g_default_zone, ptr);
|
||||
};
|
||||
g_delegating_zone.free_definite_size = [](malloc_zone_t* zone, void* ptr,
|
||||
size_t size) {
|
||||
return g_default_zone->free_definite_size(g_default_zone, ptr, size);
|
||||
};
|
||||
g_delegating_zone.batch_free = [](malloc_zone_t* zone, void** to_be_freed,
|
||||
unsigned num_to_be_freed) {
|
||||
return g_default_zone->batch_free(g_default_zone, to_be_freed,
|
||||
num_to_be_freed);
|
||||
};
|
||||
|
||||
// Diagnostics and debugging.
|
||||
//
|
||||
// Do nothing to reduce memory footprint, the real
|
||||
// zone will do it.
|
||||
g_delegating_zone.pressure_relief = [](malloc_zone_t* zone,
|
||||
size_t goal) -> size_t { return 0; };
|
||||
|
||||
// Introspection calls are not all optional, for instance locking and
|
||||
// unlocking before/after fork() is not optional.
|
||||
//
|
||||
// Nothing to enumerate.
|
||||
g_delegating_zone_introspect.enumerator =
|
||||
[](task_t task, void*, unsigned type_mask, vm_address_t zone_address,
|
||||
memory_reader_t reader,
|
||||
vm_range_recorder_t recorder) -> kern_return_t {
|
||||
return KERN_SUCCESS;
|
||||
};
|
||||
// Need to provide a real implementation, it is used for e.g. array sizing.
|
||||
g_delegating_zone_introspect.good_size = [](malloc_zone_t* zone,
|
||||
size_t size) {
|
||||
return g_default_zone->introspect->good_size(g_default_zone, size);
|
||||
};
|
||||
// Nothing to do.
|
||||
g_delegating_zone_introspect.check = [](malloc_zone_t* zone) -> boolean_t {
|
||||
return true;
|
||||
};
|
||||
g_delegating_zone_introspect.print = [](malloc_zone_t* zone,
|
||||
boolean_t verbose) {};
|
||||
g_delegating_zone_introspect.log = [](malloc_zone_t*, void*) {};
|
||||
// Do not forward the lock / unlock calls. Since the default zone is still
|
||||
// there, we should not lock here, as it would lock the zone twice (all
|
||||
// zones are locked before fork().). Rather, do nothing, since this fake
|
||||
// zone does not need any locking.
|
||||
g_delegating_zone_introspect.force_lock = [](malloc_zone_t* zone) {};
|
||||
g_delegating_zone_introspect.force_unlock = [](malloc_zone_t* zone) {};
|
||||
g_delegating_zone_introspect.reinit_lock = [](malloc_zone_t* zone) {};
|
||||
// No stats.
|
||||
g_delegating_zone_introspect.statistics = [](malloc_zone_t* zone,
|
||||
malloc_statistics_t* stats) {};
|
||||
// We are not locked.
|
||||
g_delegating_zone_introspect.zone_locked =
|
||||
[](malloc_zone_t* zone) -> boolean_t { return false; };
|
||||
// Don't support discharge checking.
|
||||
g_delegating_zone_introspect.enable_discharge_checking =
|
||||
[](malloc_zone_t* zone) -> boolean_t { return false; };
|
||||
g_delegating_zone_introspect.disable_discharge_checking =
|
||||
[](malloc_zone_t* zone) {};
|
||||
g_delegating_zone_introspect.discharge = [](malloc_zone_t* zone,
|
||||
void* memory) {};
|
||||
|
||||
// Could use something lower to support fewer functions, but this is
|
||||
// consistent with the real zone installed by PartitionAlloc.
|
||||
g_delegating_zone.version = kZoneVersion;
|
||||
g_delegating_zone.introspect = &g_delegating_zone_introspect;
|
||||
// This name is used in PartitionAlloc's initialization to determine whether
|
||||
// it should replace the delegating zone.
|
||||
g_delegating_zone.zone_name = kDelegatingZoneName;
|
||||
|
||||
// Register puts the new zone at the end, unregister swaps the new zone with
|
||||
// the last one.
|
||||
// The zone array is, after these lines, in order:
|
||||
// 1. |g_default_zone|...|g_delegating_zone|
|
||||
// 2. |g_delegating_zone|...| (no more default)
|
||||
// 3. |g_delegating_zone|...|g_default_zone|
|
||||
malloc_zone_register(&g_delegating_zone);
|
||||
malloc_zone_unregister(g_default_zone);
|
||||
malloc_zone_register(g_default_zone);
|
||||
|
||||
// Make sure that the purgeable zone is after the default one.
|
||||
// Will make g_default_zone take the purgeable zone spot
|
||||
malloc_zone_unregister(purgeable_zone);
|
||||
// Add back the purgeable zone as the last one.
|
||||
malloc_zone_register(purgeable_zone);
|
||||
|
||||
// Final configuration:
|
||||
// |g_delegating_zone|...|g_default_zone|purgeable_zone|
|
||||
|
||||
// Sanity check.
|
||||
if (GetDefaultMallocZone() != &g_delegating_zone)
|
||||
abort_report_np("Failed to install the delegating zone as default.");
|
||||
}
|
||||
|
||||
void AllowDoublePartitionAllocZoneRegistration() {
|
||||
unsigned int zone_count = 0;
|
||||
vm_address_t* zones = nullptr;
|
||||
kern_return_t result =
|
||||
malloc_get_all_zones(mach_task_self(), nullptr, &zones, &zone_count);
|
||||
if (result != KERN_SUCCESS)
|
||||
abort_report_np("Cannot enumerate malloc() zones");
|
||||
|
||||
// If PartitionAlloc is one of the zones, *change* its name so that
|
||||
// registration can happen multiple times. This works because zone
|
||||
// registration only keeps a pointer to the struct, it does not copy the data.
|
||||
for (unsigned int i = 0; i < zone_count; i++) {
|
||||
malloc_zone_t* zone = reinterpret_cast<malloc_zone_t*>(zones[i]);
|
||||
if (zone->zone_name &&
|
||||
strcmp(zone->zone_name, kPartitionAllocZoneName) == 0) {
|
||||
zone->zone_name = "RenamedPartitionAlloc";
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
} // namespace partition_alloc
|
37
src/base/allocator/early_zone_registration_mac.h
Normal file
37
src/base/allocator/early_zone_registration_mac.h
Normal file
@ -0,0 +1,37 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_EARLY_ZONE_REGISTRATION_MAC_H_
|
||||
#define BASE_ALLOCATOR_EARLY_ZONE_REGISTRATION_MAC_H_
|
||||
|
||||
// This is an Apple-only file, used to register PartitionAlloc's zone *before*
|
||||
// the process becomes multi-threaded.
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
static constexpr char kDelegatingZoneName[] =
|
||||
"DelegatingDefaultZoneForPartitionAlloc";
|
||||
static constexpr char kPartitionAllocZoneName[] = "PartitionAlloc";
|
||||
|
||||
// Zone version. Determines which callbacks are set in the various malloc_zone_t
|
||||
// structs.
|
||||
constexpr int kZoneVersion = 9;
|
||||
|
||||
// Must be called *once*, *before* the process becomes multi-threaded.
|
||||
void EarlyMallocZoneRegistration();
|
||||
|
||||
// Tricks the registration code to believe that PartitionAlloc was not already
|
||||
// registered. This allows a future library load to register PartitionAlloc's
|
||||
// zone as well, rather than bailing out.
|
||||
//
|
||||
// This is mutually exclusive with EarlyMallocZoneRegistation(), and should
|
||||
// ideally be removed. Indeed, by allowing two zones to be registered, we still
|
||||
// end up with a split heap, and more memory usage.
|
||||
//
|
||||
// This is a hack for crbug.com/1274236.
|
||||
void AllowDoublePartitionAllocZoneRegistration();
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_EARLY_ZONE_REGISTRATION_H_
|
164
src/base/allocator/partition_alloc_features.cc
Normal file
164
src/base/allocator/partition_alloc_features.cc
Normal file
@ -0,0 +1,164 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_alloc_features.h"
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "base/feature_list.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace base {
|
||||
namespace features {
|
||||
|
||||
const BASE_EXPORT Feature kPartitionAllocDanglingPtr{
|
||||
"PartitionAllocDanglingPtr", FEATURE_DISABLED_BY_DEFAULT};
|
||||
constexpr FeatureParam<DanglingPtrMode>::Option kDanglingPtrModeOption[] = {
|
||||
{DanglingPtrMode::kCrash, "crash"},
|
||||
{DanglingPtrMode::kLogSignature, "log_signature"},
|
||||
};
|
||||
const base::FeatureParam<DanglingPtrMode> kDanglingPtrModeParam{
|
||||
&kPartitionAllocDanglingPtr,
|
||||
"mode",
|
||||
DanglingPtrMode::kCrash,
|
||||
&kDanglingPtrModeOption,
|
||||
};
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
// If enabled, PCScan is turned on by default for all partitions that don't
|
||||
// disable it explicitly.
|
||||
const Feature kPartitionAllocPCScan{"PartitionAllocPCScan",
|
||||
FEATURE_DISABLED_BY_DEFAULT};
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// If enabled, PCScan is turned on only for the browser's malloc partition.
|
||||
const Feature kPartitionAllocPCScanBrowserOnly{
|
||||
"PartitionAllocPCScanBrowserOnly", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// If enabled, PCScan is turned on only for the renderer's malloc partition.
|
||||
const Feature kPartitionAllocPCScanRendererOnly{
|
||||
"PartitionAllocPCScanRendererOnly", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// If enabled, this instance belongs to the Control group of the BackupRefPtr
|
||||
// binary experiment.
|
||||
const Feature kPartitionAllocBackupRefPtrControl{
|
||||
"PartitionAllocBackupRefPtrControl", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// Use a larger maximum thread cache cacheable bucket size.
|
||||
const Feature kPartitionAllocLargeThreadCacheSize{
|
||||
"PartitionAllocLargeThreadCacheSize",
|
||||
#if BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_32_BITS)
|
||||
// Not unconditionally enabled on 32 bit Android, since it is a more
|
||||
// memory-constrained platform.
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#endif
|
||||
};
|
||||
|
||||
const BASE_EXPORT Feature kPartitionAllocLargeEmptySlotSpanRing{
|
||||
"PartitionAllocLargeEmptySlotSpanRing", FEATURE_DISABLED_BY_DEFAULT};
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
const Feature kPartitionAllocBackupRefPtr {
|
||||
"PartitionAllocBackupRefPtr",
|
||||
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_WIN) || \
|
||||
(BUILDFLAG(USE_ASAN_BACKUP_REF_PTR) && BUILDFLAG(IS_LINUX))
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#endif
|
||||
};
|
||||
|
||||
constexpr FeatureParam<BackupRefPtrEnabledProcesses>::Option
|
||||
kBackupRefPtrEnabledProcessesOptions[] = {
|
||||
{BackupRefPtrEnabledProcesses::kBrowserOnly, "browser-only"},
|
||||
{BackupRefPtrEnabledProcesses::kBrowserAndRenderer,
|
||||
"browser-and-renderer"},
|
||||
{BackupRefPtrEnabledProcesses::kNonRenderer, "non-renderer"},
|
||||
{BackupRefPtrEnabledProcesses::kAllProcesses, "all-processes"}};
|
||||
|
||||
const base::FeatureParam<BackupRefPtrEnabledProcesses>
|
||||
kBackupRefPtrEnabledProcessesParam{
|
||||
&kPartitionAllocBackupRefPtr, "enabled-processes",
|
||||
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_WIN) || \
|
||||
(BUILDFLAG(USE_ASAN_BACKUP_REF_PTR) && BUILDFLAG(IS_LINUX))
|
||||
BackupRefPtrEnabledProcesses::kNonRenderer,
|
||||
#else
|
||||
BackupRefPtrEnabledProcesses::kBrowserOnly,
|
||||
#endif
|
||||
&kBackupRefPtrEnabledProcessesOptions
|
||||
};
|
||||
|
||||
constexpr FeatureParam<BackupRefPtrMode>::Option kBackupRefPtrModeOptions[] = {
|
||||
{BackupRefPtrMode::kDisabled, "disabled"},
|
||||
{BackupRefPtrMode::kEnabled, "enabled"},
|
||||
{BackupRefPtrMode::kEnabledWithoutZapping, "enabled-without-zapping"},
|
||||
{BackupRefPtrMode::kDisabledButSplitPartitions2Way,
|
||||
"disabled-but-2-way-split"},
|
||||
{BackupRefPtrMode::kDisabledButSplitPartitions3Way,
|
||||
"disabled-but-3-way-split"},
|
||||
};
|
||||
|
||||
const base::FeatureParam<BackupRefPtrMode> kBackupRefPtrModeParam{
|
||||
&kPartitionAllocBackupRefPtr, "brp-mode", BackupRefPtrMode::kEnabled,
|
||||
&kBackupRefPtrModeOptions};
|
||||
|
||||
const base::FeatureParam<bool> kBackupRefPtrAsanEnableDereferenceCheckParam{
|
||||
&kPartitionAllocBackupRefPtr, "asan-enable-dereference-check", true};
|
||||
const base::FeatureParam<bool> kBackupRefPtrAsanEnableExtractionCheckParam{
|
||||
&kPartitionAllocBackupRefPtr, "asan-enable-extraction-check",
|
||||
false}; // Not much noise at the moment to enable by default.
|
||||
const base::FeatureParam<bool> kBackupRefPtrAsanEnableInstantiationCheckParam{
|
||||
&kPartitionAllocBackupRefPtr, "asan-enable-instantiation-check", true};
|
||||
|
||||
// If enabled, switches the bucket distribution to an alternate one. Only one of
|
||||
// these features may b e enabled at a time.
|
||||
const BASE_EXPORT Feature kPartitionAllocUseAlternateDistribution{
|
||||
"PartitionAllocUseAlternateDistribution", FEATURE_DISABLED_BY_DEFAULT};
|
||||
const base::FeatureParam<AlternateBucketDistributionMode>::Option
|
||||
kPartitionAllocAlternateDistributionOption[] = {
|
||||
{AlternateBucketDistributionMode::kDefault, "default"},
|
||||
{AlternateBucketDistributionMode::kCoarser, "coarser"},
|
||||
{AlternateBucketDistributionMode::kDenser, "denser"},
|
||||
};
|
||||
const base::FeatureParam<AlternateBucketDistributionMode>
|
||||
kPartitionAllocAlternateBucketDistributionParam{
|
||||
&kPartitionAllocUseAlternateDistribution, "mode",
|
||||
AlternateBucketDistributionMode::kDefault,
|
||||
&kPartitionAllocAlternateDistributionOption};
|
||||
|
||||
// If enabled, switches PCScan scheduling to a mutator-aware scheduler. Does not
|
||||
// affect whether PCScan is enabled itself.
|
||||
const Feature kPartitionAllocPCScanMUAwareScheduler{
|
||||
"PartitionAllocPCScanMUAwareScheduler", FEATURE_ENABLED_BY_DEFAULT};
|
||||
|
||||
// If enabled, PCScan frees unconditionally all quarantined objects.
|
||||
// This is a performance testing feature.
|
||||
const Feature kPartitionAllocPCScanImmediateFreeing{
|
||||
"PartitionAllocPCScanImmediateFreeing", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// If enabled, PCScan clears eagerly (synchronously) on free().
|
||||
const Feature kPartitionAllocPCScanEagerClearing{
|
||||
"PartitionAllocPCScanEagerClearing", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// In addition to heap, scan also the stack of the current mutator.
|
||||
const Feature kPartitionAllocPCScanStackScanning {
|
||||
"PartitionAllocPCScanStackScanning",
|
||||
#if defined(PA_PCSCAN_STACK_SUPPORTED)
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#endif // defined(PA_PCSCAN_STACK_SUPPORTED)
|
||||
};
|
||||
|
||||
const Feature kPartitionAllocDCScan{"PartitionAllocDCScan",
|
||||
FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// Whether to sort the active slot spans in PurgeMemory().
|
||||
extern const Feature kPartitionAllocSortActiveSlotSpans{
|
||||
"PartitionAllocSortActiveSlotSpans", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
} // namespace features
|
||||
} // namespace base
|
115
src/base/allocator/partition_alloc_features.h
Normal file
115
src/base/allocator/partition_alloc_features.h
Normal file
@ -0,0 +1,115 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/feature_list.h"
|
||||
#include "base/metrics/field_trial_params.h"
|
||||
|
||||
namespace base {
|
||||
namespace features {
|
||||
|
||||
// See /docs/dangling_ptr.md
|
||||
//
|
||||
// Usage:
|
||||
// --enable-features=PartitionAllocDanglingPtr:mode/crash
|
||||
// --enable-features=PartitionAllocDanglingPtr:mode/log_signature
|
||||
extern const BASE_EXPORT Feature kPartitionAllocDanglingPtr;
|
||||
enum class DanglingPtrMode {
|
||||
// Crash immediately after detecting a dangling raw_ptr.
|
||||
kCrash, // (default)
|
||||
|
||||
// Log the signature of every occurrences without crashing. It is used by
|
||||
// bots.
|
||||
// Format "[DanglingSignature]\t<1>\t<2>"
|
||||
// 1. The function who freed the memory while it was still referenced.
|
||||
// 2. The function who released the raw_ptr reference.
|
||||
kLogSignature,
|
||||
|
||||
// Note: This will be extended with a single shot DumpWithoutCrashing.
|
||||
};
|
||||
extern const BASE_EXPORT base::FeatureParam<DanglingPtrMode>
|
||||
kDanglingPtrModeParam;
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScan;
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanBrowserOnly;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanRendererOnly;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocBackupRefPtrControl;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocLargeThreadCacheSize;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocLargeEmptySlotSpanRing;
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
enum class BackupRefPtrEnabledProcesses {
|
||||
// BRP enabled only in the browser process.
|
||||
kBrowserOnly,
|
||||
// BRP enabled only in the browser and renderer processes.
|
||||
kBrowserAndRenderer,
|
||||
// BRP enabled in all processes, except renderer.
|
||||
kNonRenderer,
|
||||
// BRP enabled in all processes.
|
||||
kAllProcesses,
|
||||
};
|
||||
|
||||
enum class BackupRefPtrMode {
|
||||
// BRP is disabled across all partitions. Equivalent to the Finch flag being
|
||||
// disabled.
|
||||
kDisabled,
|
||||
|
||||
// BRP is enabled in the main partition, as well as certain Renderer-only
|
||||
// partitions (if enabled in Renderer at all).
|
||||
// This entails splitting the main partition.
|
||||
kEnabled,
|
||||
|
||||
// Same as kEnabled but without zapping quarantined objects.
|
||||
kEnabledWithoutZapping,
|
||||
|
||||
// BRP is disabled, but the main partition is split out, as if BRP was enabled
|
||||
// in the "previous slot" mode.
|
||||
kDisabledButSplitPartitions2Way,
|
||||
|
||||
// BRP is disabled, but the main partition *and* aligned partition are split
|
||||
// out, as if BRP was enabled in the "before allocation" mode.
|
||||
kDisabledButSplitPartitions3Way,
|
||||
};
|
||||
|
||||
enum class AlternateBucketDistributionMode : uint8_t {
|
||||
kDefault,
|
||||
kCoarser,
|
||||
kDenser,
|
||||
};
|
||||
|
||||
extern const BASE_EXPORT Feature kPartitionAllocBackupRefPtr;
|
||||
extern const BASE_EXPORT base::FeatureParam<BackupRefPtrEnabledProcesses>
|
||||
kBackupRefPtrEnabledProcessesParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<BackupRefPtrMode>
|
||||
kBackupRefPtrModeParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<bool>
|
||||
kBackupRefPtrAsanEnableDereferenceCheckParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<bool>
|
||||
kBackupRefPtrAsanEnableExtractionCheckParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<bool>
|
||||
kBackupRefPtrAsanEnableInstantiationCheckParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<AlternateBucketDistributionMode>
|
||||
kPartitionAllocAlternateBucketDistributionParam;
|
||||
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanMUAwareScheduler;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanStackScanning;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocDCScan;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanImmediateFreeing;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanEagerClearing;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocSortActiveSlotSpans;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocUseAlternateDistribution;
|
||||
|
||||
} // namespace features
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_
|
547
src/base/allocator/partition_alloc_support.cc
Normal file
547
src/base/allocator/partition_alloc_support.cc
Normal file
@ -0,0 +1,547 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_alloc_support.h"
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_alloc_features.h"
|
||||
#include "base/allocator/partition_allocator/allocation_guard.h"
|
||||
#include "base/allocator/partition_allocator/dangling_raw_ptr_checks.h"
|
||||
#include "base/allocator/partition_allocator/memory_reclaimer.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "base/allocator/partition_allocator/thread_cache.h"
|
||||
#include "base/bind.h"
|
||||
#include "base/callback.h"
|
||||
#include "base/check.h"
|
||||
#include "base/debug/stack_trace.h"
|
||||
#include "base/feature_list.h"
|
||||
#include "base/immediate_crash.h"
|
||||
#include "base/metrics/histogram_functions.h"
|
||||
#include "base/metrics/histogram_macros.h"
|
||||
#include "base/no_destructor.h"
|
||||
#include "base/strings/string_piece.h"
|
||||
#include "base/strings/string_split.h"
|
||||
#include "base/strings/stringprintf.h"
|
||||
#include "base/thread_annotations.h"
|
||||
#include "base/threading/platform_thread.h"
|
||||
#include "base/threading/thread_task_runner_handle.h"
|
||||
#include "base/time/time.h"
|
||||
#include "base/timer/timer.h"
|
||||
#include "base/trace_event/base_tracing.h"
|
||||
#include "third_party/abseil-cpp/absl/types/optional.h"
|
||||
|
||||
#if BUILDFLAG(STARSCAN)
|
||||
#include "base/allocator/partition_allocator/starscan/pcscan.h"
|
||||
#include "base/allocator/partition_allocator/starscan/stats_collector.h"
|
||||
#include "base/allocator/partition_allocator/starscan/stats_reporter.h"
|
||||
#endif // BUILDFLAG(STARSCAN)
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
namespace {
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
|
||||
#if BUILDFLAG(ENABLE_BASE_TRACING)
|
||||
constexpr const char* ScannerIdToTracingString(
|
||||
partition_alloc::internal::StatsCollector::ScannerId id) {
|
||||
switch (id) {
|
||||
case partition_alloc::internal::StatsCollector::ScannerId::kClear:
|
||||
return "PCScan.Scanner.Clear";
|
||||
case partition_alloc::internal::StatsCollector::ScannerId::kScan:
|
||||
return "PCScan.Scanner.Scan";
|
||||
case partition_alloc::internal::StatsCollector::ScannerId::kSweep:
|
||||
return "PCScan.Scanner.Sweep";
|
||||
case partition_alloc::internal::StatsCollector::ScannerId::kOverall:
|
||||
return "PCScan.Scanner";
|
||||
case partition_alloc::internal::StatsCollector::ScannerId::kNumIds:
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
constexpr const char* MutatorIdToTracingString(
|
||||
partition_alloc::internal::StatsCollector::MutatorId id) {
|
||||
switch (id) {
|
||||
case partition_alloc::internal::StatsCollector::MutatorId::kClear:
|
||||
return "PCScan.Mutator.Clear";
|
||||
case partition_alloc::internal::StatsCollector::MutatorId::kScanStack:
|
||||
return "PCScan.Mutator.ScanStack";
|
||||
case partition_alloc::internal::StatsCollector::MutatorId::kScan:
|
||||
return "PCScan.Mutator.Scan";
|
||||
case partition_alloc::internal::StatsCollector::MutatorId::kOverall:
|
||||
return "PCScan.Mutator";
|
||||
case partition_alloc::internal::StatsCollector::MutatorId::kNumIds:
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
|
||||
|
||||
// Inject TRACE_EVENT_BEGIN/END, TRACE_COUNTER1, and UmaHistogramTimes.
|
||||
class StatsReporterImpl final : public partition_alloc::StatsReporter {
|
||||
public:
|
||||
void ReportTraceEvent(
|
||||
partition_alloc::internal::StatsCollector::ScannerId id,
|
||||
[[maybe_unused]] partition_alloc::internal::base::PlatformThreadId tid,
|
||||
int64_t start_time_ticks_internal_value,
|
||||
int64_t end_time_ticks_internal_value) override {
|
||||
#if BUILDFLAG(ENABLE_BASE_TRACING)
|
||||
// TRACE_EVENT_* macros below drop most parameters when tracing is
|
||||
// disabled at compile time.
|
||||
const char* tracing_id = ScannerIdToTracingString(id);
|
||||
const TimeTicks start_time =
|
||||
TimeTicks::FromInternalValue(start_time_ticks_internal_value);
|
||||
const TimeTicks end_time =
|
||||
TimeTicks::FromInternalValue(end_time_ticks_internal_value);
|
||||
TRACE_EVENT_BEGIN(kTraceCategory, perfetto::StaticString(tracing_id),
|
||||
perfetto::ThreadTrack::ForThread(tid), start_time);
|
||||
TRACE_EVENT_END(kTraceCategory, perfetto::ThreadTrack::ForThread(tid),
|
||||
end_time);
|
||||
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
|
||||
}
|
||||
|
||||
void ReportTraceEvent(
|
||||
partition_alloc::internal::StatsCollector::MutatorId id,
|
||||
[[maybe_unused]] partition_alloc::internal::base::PlatformThreadId tid,
|
||||
int64_t start_time_ticks_internal_value,
|
||||
int64_t end_time_ticks_internal_value) override {
|
||||
#if BUILDFLAG(ENABLE_BASE_TRACING)
|
||||
// TRACE_EVENT_* macros below drop most parameters when tracing is
|
||||
// disabled at compile time.
|
||||
const char* tracing_id = MutatorIdToTracingString(id);
|
||||
const TimeTicks start_time =
|
||||
TimeTicks::FromInternalValue(start_time_ticks_internal_value);
|
||||
const TimeTicks end_time =
|
||||
TimeTicks::FromInternalValue(end_time_ticks_internal_value);
|
||||
TRACE_EVENT_BEGIN(kTraceCategory, perfetto::StaticString(tracing_id),
|
||||
perfetto::ThreadTrack::ForThread(tid), start_time);
|
||||
TRACE_EVENT_END(kTraceCategory, perfetto::ThreadTrack::ForThread(tid),
|
||||
end_time);
|
||||
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
|
||||
}
|
||||
|
||||
void ReportSurvivedQuarantineSize(size_t survived_size) override {
|
||||
TRACE_COUNTER1(kTraceCategory, "PCScan.SurvivedQuarantineSize",
|
||||
survived_size);
|
||||
}
|
||||
|
||||
void ReportSurvivedQuarantinePercent(double survived_rate) override {
|
||||
// Multiply by 1000 since TRACE_COUNTER1 expects integer. In catapult,
|
||||
// divide back.
|
||||
// TODO(bikineev): Remove after switching to perfetto.
|
||||
TRACE_COUNTER1(kTraceCategory, "PCScan.SurvivedQuarantinePercent",
|
||||
1000 * survived_rate);
|
||||
}
|
||||
|
||||
void ReportStats(const char* stats_name, int64_t sample_in_usec) override {
|
||||
TimeDelta sample = Microseconds(sample_in_usec);
|
||||
UmaHistogramTimes(stats_name, sample);
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr char kTraceCategory[] = "partition_alloc";
|
||||
};
|
||||
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
|
||||
} // namespace
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
void RegisterPCScanStatsReporter() {
|
||||
static StatsReporterImpl s_reporter;
|
||||
static bool registered = false;
|
||||
|
||||
DCHECK(!registered);
|
||||
|
||||
partition_alloc::internal::PCScan::RegisterStatsReporter(&s_reporter);
|
||||
registered = true;
|
||||
}
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
|
||||
namespace {
|
||||
|
||||
void RunThreadCachePeriodicPurge() {
|
||||
// Micros, since periodic purge should typically take at most a few ms.
|
||||
SCOPED_UMA_HISTOGRAM_TIMER_MICROS("Memory.PartitionAlloc.PeriodicPurge");
|
||||
TRACE_EVENT0("memory", "PeriodicPurge");
|
||||
auto& instance = ::partition_alloc::ThreadCacheRegistry::Instance();
|
||||
instance.RunPeriodicPurge();
|
||||
TimeDelta delay =
|
||||
Microseconds(instance.GetPeriodicPurgeNextIntervalInMicroseconds());
|
||||
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
|
||||
FROM_HERE, BindOnce(RunThreadCachePeriodicPurge), delay);
|
||||
}
|
||||
|
||||
void RunMemoryReclaimer(scoped_refptr<SequencedTaskRunner> task_runner) {
|
||||
TRACE_EVENT0("base", "partition_alloc::MemoryReclaimer::Reclaim()");
|
||||
auto* instance = ::partition_alloc::MemoryReclaimer::Instance();
|
||||
|
||||
{
|
||||
// Micros, since memory reclaiming should typically take at most a few ms.
|
||||
SCOPED_UMA_HISTOGRAM_TIMER_MICROS("Memory.PartitionAlloc.MemoryReclaim");
|
||||
instance->ReclaimNormal();
|
||||
}
|
||||
|
||||
TimeDelta delay =
|
||||
Microseconds(instance->GetRecommendedReclaimIntervalInMicroseconds());
|
||||
task_runner->PostDelayedTask(
|
||||
FROM_HERE, BindOnce(RunMemoryReclaimer, task_runner), delay);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void StartThreadCachePeriodicPurge() {
|
||||
auto& instance = ::partition_alloc::ThreadCacheRegistry::Instance();
|
||||
TimeDelta delay =
|
||||
Microseconds(instance.GetPeriodicPurgeNextIntervalInMicroseconds());
|
||||
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
|
||||
FROM_HERE, BindOnce(RunThreadCachePeriodicPurge), delay);
|
||||
}
|
||||
|
||||
void StartMemoryReclaimer(scoped_refptr<SequencedTaskRunner> task_runner) {
|
||||
// Can be called several times.
|
||||
static bool is_memory_reclaimer_running = false;
|
||||
if (is_memory_reclaimer_running)
|
||||
return;
|
||||
is_memory_reclaimer_running = true;
|
||||
|
||||
// The caller of the API fully controls where running the reclaim.
|
||||
// However there are a few reasons to recommend that the caller runs
|
||||
// it on the main thread:
|
||||
// - Most of PartitionAlloc's usage is on the main thread, hence PA's metadata
|
||||
// is more likely in cache when executing on the main thread.
|
||||
// - Memory reclaim takes the partition lock for each partition. As a
|
||||
// consequence, while reclaim is running, the main thread is unlikely to be
|
||||
// able to make progress, as it would be waiting on the lock.
|
||||
// - Finally, this runs in idle time only, so there should be no visible
|
||||
// impact.
|
||||
//
|
||||
// From local testing, time to reclaim is 100us-1ms, and reclaiming every few
|
||||
// seconds is useful. Since this is meant to run during idle time only, it is
|
||||
// a reasonable starting point balancing effectivenes vs cost. See
|
||||
// crbug.com/942512 for details and experimental results.
|
||||
auto* instance = ::partition_alloc::MemoryReclaimer::Instance();
|
||||
TimeDelta delay =
|
||||
Microseconds(instance->GetRecommendedReclaimIntervalInMicroseconds());
|
||||
task_runner->PostDelayedTask(
|
||||
FROM_HERE, BindOnce(RunMemoryReclaimer, task_runner), delay);
|
||||
}
|
||||
|
||||
std::map<std::string, std::string> ProposeSyntheticFinchTrials() {
|
||||
std::map<std::string, std::string> trials;
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// BackupRefPtr_Effective and PCScan_Effective record whether or not
|
||||
// BackupRefPtr and/or PCScan are enabled. The experiments aren't independent,
|
||||
// so having a synthetic Finch will help look only at cases where one isn't
|
||||
// affected by the other.
|
||||
|
||||
// Whether PartitionAllocBackupRefPtr is enabled (as determined by
|
||||
// FeatureList::IsEnabled).
|
||||
[[maybe_unused]] bool brp_finch_enabled = false;
|
||||
// Whether PartitionAllocBackupRefPtr is set up for the default behavior. The
|
||||
// default behavior is when either the Finch flag is disabled, or is enabled
|
||||
// in brp-mode=disabled (these two options are equivalent).
|
||||
[[maybe_unused]] bool brp_nondefault_behavior = false;
|
||||
// Whether PartitionAllocBackupRefPtr is set up to enable BRP protection. It
|
||||
// requires the Finch flag to be enabled and brp-mode!=disabled*. Some modes,
|
||||
// e.g. disabled-but-3-way-split, do something (hence can't be considered the
|
||||
// default behavior), but don't enable BRP protection.
|
||||
[[maybe_unused]] bool brp_truly_enabled = false;
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
if (FeatureList::IsEnabled(features::kPartitionAllocBackupRefPtr))
|
||||
brp_finch_enabled = true;
|
||||
if (brp_finch_enabled && features::kBackupRefPtrModeParam.Get() !=
|
||||
features::BackupRefPtrMode::kDisabled)
|
||||
brp_nondefault_behavior = true;
|
||||
if (brp_finch_enabled && features::kBackupRefPtrModeParam.Get() ==
|
||||
features::BackupRefPtrMode::kEnabled)
|
||||
brp_truly_enabled = true;
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
[[maybe_unused]] bool pcscan_enabled =
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
FeatureList::IsEnabled(features::kPartitionAllocPCScanBrowserOnly);
|
||||
#else
|
||||
false;
|
||||
#endif
|
||||
|
||||
std::string brp_group_name = "Unavailable";
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
if (pcscan_enabled) {
|
||||
// If PCScan is enabled, just ignore the population.
|
||||
brp_group_name = "Ignore_PCScanIsOn";
|
||||
} else if (!brp_finch_enabled) {
|
||||
// The control group is actually disguised as "enabled", but in fact it's
|
||||
// disabled using a param. This is to differentiate the population that
|
||||
// participates in the control group, from the population that isn't in any
|
||||
// group.
|
||||
brp_group_name = "Ignore_NoGroup";
|
||||
} else {
|
||||
switch (features::kBackupRefPtrModeParam.Get()) {
|
||||
case features::BackupRefPtrMode::kDisabled:
|
||||
brp_group_name = "Disabled";
|
||||
break;
|
||||
case features::BackupRefPtrMode::kEnabled:
|
||||
#if BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)
|
||||
brp_group_name = "EnabledPrevSlot";
|
||||
#else
|
||||
brp_group_name = "EnabledBeforeAlloc";
|
||||
#endif
|
||||
break;
|
||||
case features::BackupRefPtrMode::kEnabledWithoutZapping:
|
||||
#if BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)
|
||||
brp_group_name = "EnabledPrevSlotWithoutZapping";
|
||||
#else
|
||||
brp_group_name = "EnabledBeforeAllocWithoutZapping";
|
||||
#endif
|
||||
break;
|
||||
case features::BackupRefPtrMode::kDisabledButSplitPartitions2Way:
|
||||
brp_group_name = "DisabledBut2WaySplit";
|
||||
break;
|
||||
case features::BackupRefPtrMode::kDisabledButSplitPartitions3Way:
|
||||
brp_group_name = "DisabledBut3WaySplit";
|
||||
break;
|
||||
}
|
||||
|
||||
if (features::kBackupRefPtrModeParam.Get() !=
|
||||
features::BackupRefPtrMode::kDisabled) {
|
||||
std::string process_selector;
|
||||
switch (features::kBackupRefPtrEnabledProcessesParam.Get()) {
|
||||
case features::BackupRefPtrEnabledProcesses::kBrowserOnly:
|
||||
process_selector = "BrowserOnly";
|
||||
break;
|
||||
case features::BackupRefPtrEnabledProcesses::kBrowserAndRenderer:
|
||||
process_selector = "BrowserAndRenderer";
|
||||
break;
|
||||
case features::BackupRefPtrEnabledProcesses::kNonRenderer:
|
||||
process_selector = "NonRenderer";
|
||||
break;
|
||||
case features::BackupRefPtrEnabledProcesses::kAllProcesses:
|
||||
process_selector = "AllProcesses";
|
||||
break;
|
||||
}
|
||||
|
||||
brp_group_name += ("_" + process_selector);
|
||||
}
|
||||
}
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
trials.emplace("BackupRefPtr_Effective", brp_group_name);
|
||||
|
||||
// On 32-bit architectures, PCScan is not supported and permanently disabled.
|
||||
// Don't lump it into "Disabled", so that belonging to "Enabled"/"Disabled" is
|
||||
// fully controlled by Finch and thus have identical population sizes.
|
||||
std::string pcscan_group_name = "Unavailable";
|
||||
std::string pcscan_group_name_fallback = "Unavailable";
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
if (brp_truly_enabled) {
|
||||
// If BRP protection is enabled, just ignore the population. Check
|
||||
// brp_truly_enabled, not brp_finch_enabled, because there are certain modes
|
||||
// where BRP protection is actually disabled.
|
||||
pcscan_group_name = "Ignore_BRPIsOn";
|
||||
} else {
|
||||
pcscan_group_name = (pcscan_enabled ? "Enabled" : "Disabled");
|
||||
}
|
||||
// In case we are incorrect that PCScan is independent of partition-split
|
||||
// modes, create a fallback trial that only takes into account the BRP Finch
|
||||
// settings that preserve the default behavior.
|
||||
if (brp_nondefault_behavior) {
|
||||
pcscan_group_name_fallback = "Ignore_BRPIsOn";
|
||||
} else {
|
||||
pcscan_group_name_fallback = (pcscan_enabled ? "Enabled" : "Disabled");
|
||||
}
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
trials.emplace("PCScan_Effective", pcscan_group_name);
|
||||
trials.emplace("PCScan_Effective_Fallback", pcscan_group_name_fallback);
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
return trials;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
|
||||
|
||||
namespace {
|
||||
|
||||
internal::PartitionLock g_stack_trace_buffer_lock;
|
||||
|
||||
struct StackTraceWithID {
|
||||
debug::StackTrace stack_trace;
|
||||
uintptr_t id = 0;
|
||||
};
|
||||
using DanglingRawPtrBuffer = std::array<absl::optional<StackTraceWithID>, 32>;
|
||||
DanglingRawPtrBuffer g_stack_trace_buffer GUARDED_BY(g_stack_trace_buffer_lock);
|
||||
|
||||
void DanglingRawPtrDetected(uintptr_t id) {
|
||||
// This is called from inside the allocator. No allocation is allowed.
|
||||
|
||||
internal::PartitionAutoLock guard(g_stack_trace_buffer_lock);
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
for (absl::optional<StackTraceWithID>& entry : g_stack_trace_buffer)
|
||||
PA_DCHECK(!entry || entry->id != id);
|
||||
#endif // DCHECK_IS_ON()
|
||||
|
||||
for (absl::optional<StackTraceWithID>& entry : g_stack_trace_buffer) {
|
||||
if (!entry) {
|
||||
entry = {debug::StackTrace(), id};
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// The StackTrace hasn't been recorded, because the buffer isn't large
|
||||
// enough.
|
||||
}
|
||||
|
||||
// From the StackTrace recorded in |DanglingRawPtrDetected|, extract the one
|
||||
// whose id match |id|. Return nullopt if not found.
|
||||
absl::optional<debug::StackTrace> TakeStackTrace(uintptr_t id) {
|
||||
internal::PartitionAutoLock guard(g_stack_trace_buffer_lock);
|
||||
for (absl::optional<StackTraceWithID>& entry : g_stack_trace_buffer) {
|
||||
if (entry && entry->id == id) {
|
||||
debug::StackTrace stack_trace = std::move(entry->stack_trace);
|
||||
entry = absl::nullopt;
|
||||
return stack_trace;
|
||||
}
|
||||
}
|
||||
return absl::nullopt;
|
||||
}
|
||||
|
||||
// Extract from the StackTrace output, the signature of the pertinent caller.
|
||||
// This function is meant to be used only by Chromium developers, to list what
|
||||
// are all the dangling raw_ptr occurrences in a table.
|
||||
std::string ExtractDanglingPtrSignature(std::string stacktrace) {
|
||||
std::vector<StringPiece> lines = SplitStringPiece(
|
||||
stacktrace, "\r\n", TRIM_WHITESPACE, SPLIT_WANT_NONEMPTY);
|
||||
|
||||
// We are looking for the callers of the function releasing the raw_ptr and
|
||||
// freeing memory:
|
||||
const StringPiece callees[] = {
|
||||
"internal::BackupRefPtrImpl<>::ReleaseInternal()",
|
||||
"internal::PartitionFree()",
|
||||
"base::(anonymous namespace)::FreeFn()",
|
||||
};
|
||||
size_t caller_index = 0;
|
||||
for (size_t i = 0; i < lines.size(); ++i) {
|
||||
for (const auto& callee : callees) {
|
||||
if (lines[i].find(callee) != StringPiece::npos) {
|
||||
caller_index = i + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (caller_index >= lines.size()) {
|
||||
return "undefined";
|
||||
}
|
||||
StringPiece caller = lines[caller_index];
|
||||
|
||||
// |callers| follows the following format:
|
||||
//
|
||||
// #4 0x56051fe3404b content::GeneratedCodeCache::DidCreateBackend()
|
||||
// -- -------------- -----------------------------------------------
|
||||
// Depth Address Function
|
||||
|
||||
size_t address_start = caller.find(' ');
|
||||
size_t function_start = caller.find(' ', address_start + 1);
|
||||
|
||||
if (address_start == caller.npos || function_start == caller.npos) {
|
||||
return "undefined";
|
||||
}
|
||||
|
||||
return std::string(caller.substr(function_start + 1));
|
||||
}
|
||||
|
||||
void DanglingRawPtrReleasedLogSignature(uintptr_t id) {
|
||||
// This is called from raw_ptr<>'s release operation. Making allocations is
|
||||
// allowed. In particular, symbolizing and printing the StackTraces may
|
||||
// allocate memory.
|
||||
|
||||
debug::StackTrace stack_trace_release;
|
||||
absl::optional<debug::StackTrace> stack_trace_free = TakeStackTrace(id);
|
||||
|
||||
if (stack_trace_free) {
|
||||
LOG(ERROR) << StringPrintf(
|
||||
"[DanglingSignature]\t%s\t%s",
|
||||
ExtractDanglingPtrSignature(stack_trace_release.ToString()).c_str(),
|
||||
ExtractDanglingPtrSignature(stack_trace_free->ToString()).c_str());
|
||||
} else {
|
||||
LOG(ERROR) << StringPrintf(
|
||||
"[DanglingSignature]\t%s\tmissing-stacktrace",
|
||||
ExtractDanglingPtrSignature(stack_trace_release.ToString()).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
void DanglingRawPtrReleasedCrash(uintptr_t id) {
|
||||
// This is called from raw_ptr<>'s release operation. Making allocations is
|
||||
// allowed. In particular, symbolizing and printing the StackTraces may
|
||||
// allocate memory.
|
||||
debug::StackTrace stack_trace_release;
|
||||
absl::optional<debug::StackTrace> stack_trace_free = TakeStackTrace(id);
|
||||
|
||||
if (stack_trace_free) {
|
||||
LOG(ERROR) << StringPrintf(
|
||||
"Detected dangling raw_ptr with id=0x%016" PRIxPTR
|
||||
":\n\n"
|
||||
"The memory was freed at:\n%s\n"
|
||||
"The dangling raw_ptr was released at:\n%s",
|
||||
id, stack_trace_free->ToString().c_str(),
|
||||
stack_trace_release.ToString().c_str());
|
||||
} else {
|
||||
LOG(ERROR) << StringPrintf(
|
||||
"Detected dangling raw_ptr with id=0x%016" PRIxPTR
|
||||
":\n\n"
|
||||
"It was not recorded where the memory was freed.\n\n"
|
||||
"The dangling raw_ptr was released at:\n%s",
|
||||
id, stack_trace_release.ToString().c_str());
|
||||
}
|
||||
IMMEDIATE_CRASH();
|
||||
}
|
||||
|
||||
void ClearDanglingRawPtrBuffer() {
|
||||
internal::PartitionAutoLock guard(g_stack_trace_buffer_lock);
|
||||
g_stack_trace_buffer = DanglingRawPtrBuffer();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void InstallDanglingRawPtrChecks() {
|
||||
// Clearing storage is useful for running multiple unit tests without
|
||||
// restarting the test executable.
|
||||
ClearDanglingRawPtrBuffer();
|
||||
|
||||
if (!FeatureList::IsEnabled(features::kPartitionAllocDanglingPtr)) {
|
||||
partition_alloc::SetDanglingRawPtrDetectedFn([](uintptr_t) {});
|
||||
partition_alloc::SetDanglingRawPtrReleasedFn([](uintptr_t) {});
|
||||
return;
|
||||
}
|
||||
|
||||
switch (features::kDanglingPtrModeParam.Get()) {
|
||||
case features::DanglingPtrMode::kCrash:
|
||||
partition_alloc::SetDanglingRawPtrDetectedFn(DanglingRawPtrDetected);
|
||||
partition_alloc::SetDanglingRawPtrReleasedFn(DanglingRawPtrReleasedCrash);
|
||||
break;
|
||||
|
||||
case features::DanglingPtrMode::kLogSignature:
|
||||
partition_alloc::SetDanglingRawPtrDetectedFn(DanglingRawPtrDetected);
|
||||
partition_alloc::SetDanglingRawPtrReleasedFn(
|
||||
DanglingRawPtrReleasedLogSignature);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO(arthursonzogni): There might exist long lived dangling raw_ptr. If there
|
||||
// is a dangling pointer, we should crash at some point. Consider providing an
|
||||
// API to periodically check the buffer.
|
||||
|
||||
#else // BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
|
||||
void InstallDanglingRawPtrChecks() {}
|
||||
#endif // BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
42
src/base/allocator/partition_alloc_support.h
Normal file
42
src/base/allocator/partition_alloc_support.h
Normal file
@ -0,0 +1,42 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOC_SUPPORT_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOC_SUPPORT_H_
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/memory/scoped_refptr.h"
|
||||
#include "base/task/sequenced_task_runner.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
BASE_EXPORT void RegisterPCScanStatsReporter();
|
||||
#endif
|
||||
|
||||
// Starts a periodic timer on the current thread to purge all thread caches.
|
||||
BASE_EXPORT void StartThreadCachePeriodicPurge();
|
||||
|
||||
BASE_EXPORT void StartMemoryReclaimer(
|
||||
scoped_refptr<SequencedTaskRunner> task_runner);
|
||||
|
||||
BASE_EXPORT std::map<std::string, std::string> ProposeSyntheticFinchTrials();
|
||||
|
||||
// Install handlers for when dangling raw_ptr(s) have been detected. This prints
|
||||
// two StackTraces. One where the memory is freed, one where the last dangling
|
||||
// raw_ptr stopped referencing it.
|
||||
//
|
||||
// This is currently effective, only when compiled with
|
||||
// `enable_dangling_raw_ptr_checks` build flag.
|
||||
BASE_EXPORT void InstallDanglingRawPtrChecks();
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOC_SUPPORT_H_
|
434
src/base/allocator/partition_allocator/BUILD.gn
Normal file
434
src/base/allocator/partition_allocator/BUILD.gn
Normal file
@ -0,0 +1,434 @@
|
||||
# Copyright 2022 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//base/allocator/partition_allocator/partition_alloc.gni")
|
||||
import("//build/buildflag_header.gni")
|
||||
import("//build/config/chromecast_build.gni")
|
||||
import("//build/config/chromeos/ui_mode.gni")
|
||||
import("//build/config/dcheck_always_on.gni")
|
||||
import("//build/config/logging.gni")
|
||||
|
||||
# Add partition_alloc.gni and import it for partition_alloc configs.
|
||||
|
||||
config("partition_alloc_implementation") {
|
||||
# See also: `partition_alloc_base/component_export.h`
|
||||
defines = [ "IS_PARTITION_ALLOC_IMPL" ]
|
||||
}
|
||||
|
||||
config("memory_tagging") {
|
||||
if (current_cpu == "arm64" && is_clang &&
|
||||
(is_linux || is_chromeos || is_android || is_fuchsia)) {
|
||||
# base/ has access to the MTE intrinsics because it needs to use them,
|
||||
# but they're not backwards compatible. Use base::CPU::has_mte()
|
||||
# beforehand to confirm or use indirect functions (ifuncs) to select
|
||||
# an MTE-specific implementation at dynamic link-time.
|
||||
cflags = [
|
||||
"-Xclang",
|
||||
"-target-feature",
|
||||
"-Xclang",
|
||||
"+mte",
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
if (is_fuchsia) {
|
||||
config("fuchsia_sync_lib") {
|
||||
libs = [
|
||||
"sync", # Used by spinning_mutex.h.
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
component("partition_alloc") {
|
||||
sources = [
|
||||
"address_pool_manager.cc",
|
||||
"address_pool_manager.h",
|
||||
"address_pool_manager_bitmap.cc",
|
||||
"address_pool_manager_bitmap.h",
|
||||
"address_pool_manager_types.h",
|
||||
"address_space_randomization.cc",
|
||||
"address_space_randomization.h",
|
||||
"address_space_stats.h",
|
||||
"allocation_guard.cc",
|
||||
"allocation_guard.h",
|
||||
"dangling_raw_ptr_checks.cc",
|
||||
"dangling_raw_ptr_checks.h",
|
||||
"freeslot_bitmap.h",
|
||||
"freeslot_bitmap_constants.h",
|
||||
"gwp_asan_support.cc",
|
||||
"gwp_asan_support.h",
|
||||
"memory_reclaimer.cc",
|
||||
"memory_reclaimer.h",
|
||||
"oom.cc",
|
||||
"oom.h",
|
||||
"oom_callback.cc",
|
||||
"oom_callback.h",
|
||||
"page_allocator.cc",
|
||||
"page_allocator.h",
|
||||
"page_allocator_constants.h",
|
||||
"page_allocator_internal.h",
|
||||
"partition_address_space.cc",
|
||||
"partition_address_space.h",
|
||||
"partition_alloc-inl.h",
|
||||
"partition_alloc.cc",
|
||||
"partition_alloc.h",
|
||||
"partition_alloc_base/atomic_ref_count.h",
|
||||
"partition_alloc_base/bit_cast.h",
|
||||
"partition_alloc_base/bits.h",
|
||||
"partition_alloc_base/check.cc",
|
||||
"partition_alloc_base/check.h",
|
||||
"partition_alloc_base/compiler_specific.h",
|
||||
"partition_alloc_base/component_export.h",
|
||||
"partition_alloc_base/cpu.cc",
|
||||
"partition_alloc_base/cpu.h",
|
||||
"partition_alloc_base/cxx17_backports.h",
|
||||
"partition_alloc_base/debug/alias.cc",
|
||||
"partition_alloc_base/debug/alias.h",
|
||||
"partition_alloc_base/gtest_prod_util.h",
|
||||
"partition_alloc_base/immediate_crash.h",
|
||||
"partition_alloc_base/logging.cc",
|
||||
"partition_alloc_base/logging.h",
|
||||
"partition_alloc_base/memory/ref_counted.cc",
|
||||
"partition_alloc_base/memory/ref_counted.h",
|
||||
"partition_alloc_base/memory/scoped_policy.h",
|
||||
"partition_alloc_base/memory/scoped_refptr.h",
|
||||
"partition_alloc_base/migration_adapter.h",
|
||||
"partition_alloc_base/no_destructor.h",
|
||||
"partition_alloc_base/numerics/checked_math.h",
|
||||
"partition_alloc_base/numerics/checked_math_impl.h",
|
||||
"partition_alloc_base/numerics/clamped_math.h",
|
||||
"partition_alloc_base/numerics/clamped_math_impl.h",
|
||||
"partition_alloc_base/numerics/math_constants.h",
|
||||
"partition_alloc_base/numerics/ostream_operators.h",
|
||||
"partition_alloc_base/numerics/ranges.h",
|
||||
"partition_alloc_base/numerics/safe_conversions.h",
|
||||
"partition_alloc_base/numerics/safe_conversions_arm_impl.h",
|
||||
"partition_alloc_base/numerics/safe_conversions_impl.h",
|
||||
"partition_alloc_base/numerics/safe_math.h",
|
||||
"partition_alloc_base/numerics/safe_math_arm_impl.h",
|
||||
"partition_alloc_base/numerics/safe_math_clang_gcc_impl.h",
|
||||
"partition_alloc_base/numerics/safe_math_shared_impl.h",
|
||||
"partition_alloc_base/posix/eintr_wrapper.h",
|
||||
"partition_alloc_base/rand_util.cc",
|
||||
"partition_alloc_base/rand_util.h",
|
||||
"partition_alloc_base/scoped_clear_last_error.h",
|
||||
"partition_alloc_base/strings/stringprintf.cc",
|
||||
"partition_alloc_base/strings/stringprintf.h",
|
||||
"partition_alloc_base/thread_annotations.h",
|
||||
"partition_alloc_base/threading/platform_thread.cc",
|
||||
"partition_alloc_base/threading/platform_thread.h",
|
||||
"partition_alloc_base/threading/platform_thread_ref.h",
|
||||
"partition_alloc_base/time/time.cc",
|
||||
"partition_alloc_base/time/time.h",
|
||||
"partition_alloc_base/time/time_override.cc",
|
||||
"partition_alloc_base/time/time_override.h",
|
||||
"partition_alloc_base/types/strong_alias.h",
|
||||
"partition_alloc_base/win/windows_types.h",
|
||||
"partition_alloc_check.h",
|
||||
"partition_alloc_config.h",
|
||||
"partition_alloc_constants.h",
|
||||
"partition_alloc_forward.h",
|
||||
"partition_alloc_hooks.cc",
|
||||
"partition_alloc_hooks.h",
|
||||
"partition_alloc_notreached.h",
|
||||
"partition_bucket.cc",
|
||||
"partition_bucket.h",
|
||||
"partition_bucket_lookup.h",
|
||||
"partition_cookie.h",
|
||||
"partition_direct_map_extent.h",
|
||||
"partition_freelist_entry.h",
|
||||
"partition_lock.h",
|
||||
"partition_oom.cc",
|
||||
"partition_oom.h",
|
||||
"partition_page.cc",
|
||||
"partition_page.h",
|
||||
"partition_ref_count.h",
|
||||
"partition_root.cc",
|
||||
"partition_root.h",
|
||||
"partition_stats.cc",
|
||||
"partition_stats.h",
|
||||
"partition_tag.h",
|
||||
"partition_tag_bitmap.h",
|
||||
"partition_tag_types.h",
|
||||
"partition_tls.h",
|
||||
"random.cc",
|
||||
"random.h",
|
||||
"reservation_offset_table.cc",
|
||||
"reservation_offset_table.h",
|
||||
"reverse_bytes.h",
|
||||
"spinning_mutex.cc",
|
||||
"spinning_mutex.h",
|
||||
"tagging.cc",
|
||||
"tagging.h",
|
||||
"thread_cache.cc",
|
||||
"thread_cache.h",
|
||||
"yield_processor.h",
|
||||
]
|
||||
|
||||
# Add *Scan sources if building inside Chromium. Currently,
|
||||
# we see no need to add a more dedicated buildflag for this, as
|
||||
# we don't anticipate Chromium-external usage of *Scan.
|
||||
if (build_with_chromium) {
|
||||
sources += [
|
||||
"starscan/logging.h",
|
||||
"starscan/metadata_allocator.cc",
|
||||
"starscan/metadata_allocator.h",
|
||||
"starscan/pcscan.cc",
|
||||
"starscan/pcscan.h",
|
||||
"starscan/pcscan_internal.cc",
|
||||
"starscan/pcscan_internal.h",
|
||||
"starscan/pcscan_scheduling.cc",
|
||||
"starscan/pcscan_scheduling.h",
|
||||
"starscan/raceful_worklist.h",
|
||||
"starscan/scan_loop.h",
|
||||
"starscan/snapshot.cc",
|
||||
"starscan/snapshot.h",
|
||||
"starscan/stack/stack.cc",
|
||||
"starscan/stack/stack.h",
|
||||
"starscan/starscan_fwd.h",
|
||||
"starscan/state_bitmap.h",
|
||||
"starscan/stats_collector.cc",
|
||||
"starscan/stats_collector.h",
|
||||
"starscan/stats_reporter.h",
|
||||
"starscan/write_protector.cc",
|
||||
"starscan/write_protector.h",
|
||||
]
|
||||
}
|
||||
|
||||
defines = []
|
||||
if (is_win) {
|
||||
sources += [
|
||||
"page_allocator_internals_win.h",
|
||||
"partition_alloc_base/rand_util_win.cc",
|
||||
"partition_alloc_base/scoped_clear_last_error_win.cc",
|
||||
"partition_alloc_base/threading/platform_thread_win.cc",
|
||||
"partition_alloc_base/time/time_win.cc",
|
||||
"partition_tls_win.cc",
|
||||
]
|
||||
} else if (is_posix) {
|
||||
sources += [
|
||||
"page_allocator_internals_posix.cc",
|
||||
"page_allocator_internals_posix.h",
|
||||
"partition_alloc_base/files/file_util.h",
|
||||
"partition_alloc_base/files/file_util_posix.cc",
|
||||
"partition_alloc_base/posix/safe_strerror.cc",
|
||||
"partition_alloc_base/posix/safe_strerror.h",
|
||||
"partition_alloc_base/rand_util_posix.cc",
|
||||
"partition_alloc_base/threading/platform_thread_internal_posix.h",
|
||||
"partition_alloc_base/threading/platform_thread_posix.cc",
|
||||
"partition_alloc_base/time/time_conversion_posix.cc",
|
||||
]
|
||||
|
||||
if (is_android || is_chromeos_ash) {
|
||||
sources += [ "partition_alloc_base/time/time_android.cc" ]
|
||||
}
|
||||
if (is_apple) {
|
||||
sources += [ "partition_alloc_base/time/time_mac.mm" ]
|
||||
} else {
|
||||
sources += [ "partition_alloc_base/time/time_now_posix.cc" ]
|
||||
}
|
||||
} else if (is_fuchsia) {
|
||||
sources += [
|
||||
"page_allocator_internals_fuchsia.h",
|
||||
"partition_alloc_base/fuchsia/fuchsia_logging.cc",
|
||||
"partition_alloc_base/fuchsia/fuchsia_logging.h",
|
||||
"partition_alloc_base/posix/safe_strerror.cc",
|
||||
"partition_alloc_base/posix/safe_strerror.h",
|
||||
"partition_alloc_base/rand_util_fuchsia.cc",
|
||||
"partition_alloc_base/threading/platform_thread_internal_posix.h",
|
||||
"partition_alloc_base/threading/platform_thread_posix.cc",
|
||||
"partition_alloc_base/time/time_conversion_posix.cc",
|
||||
"partition_alloc_base/time/time_fuchsia.cc",
|
||||
]
|
||||
}
|
||||
if (is_android) {
|
||||
# Only android build requires native_library, and native_library depends
|
||||
# on file_path. So file_path is added if is_android = true.
|
||||
sources += [
|
||||
"partition_alloc_base/files/file_path.cc",
|
||||
"partition_alloc_base/files/file_path.h",
|
||||
"partition_alloc_base/native_library.cc",
|
||||
"partition_alloc_base/native_library.h",
|
||||
"partition_alloc_base/native_library_posix.cc",
|
||||
]
|
||||
}
|
||||
if (is_apple) {
|
||||
# Apple-specific utilities
|
||||
sources += [
|
||||
"partition_alloc_base/mac/foundation_util.h",
|
||||
"partition_alloc_base/mac/foundation_util.mm",
|
||||
"partition_alloc_base/mac/mac_util.h",
|
||||
"partition_alloc_base/mac/mac_util.mm",
|
||||
"partition_alloc_base/mac/scoped_cftyperef.h",
|
||||
"partition_alloc_base/mac/scoped_typeref.h",
|
||||
]
|
||||
}
|
||||
if (build_with_chromium) {
|
||||
if (current_cpu == "x64") {
|
||||
defines += [ "PA_PCSCAN_STACK_SUPPORTED" ]
|
||||
sources += [ "starscan/stack/asm/x64/push_registers_asm.cc" ]
|
||||
} else if (current_cpu == "x86") {
|
||||
defines += [ "PA_PCSCAN_STACK_SUPPORTED" ]
|
||||
sources += [ "starscan/stack/asm/x86/push_registers_asm.cc" ]
|
||||
} else if (current_cpu == "arm") {
|
||||
defines += [ "PA_PCSCAN_STACK_SUPPORTED" ]
|
||||
sources += [ "starscan/stack/asm/arm/push_registers_asm.cc" ]
|
||||
} else if (current_cpu == "arm64") {
|
||||
defines += [ "PA_PCSCAN_STACK_SUPPORTED" ]
|
||||
sources += [ "starscan/stack/asm/arm64/push_registers_asm.cc" ]
|
||||
} else {
|
||||
# To support a trampoline for another arch, please refer to v8/src/heap/base.
|
||||
}
|
||||
}
|
||||
public_deps = [
|
||||
":chromecast_buildflags",
|
||||
":chromeos_buildflags",
|
||||
":debugging_buildflags",
|
||||
":logging_buildflags",
|
||||
":partition_alloc_buildflags",
|
||||
]
|
||||
|
||||
configs += [
|
||||
":partition_alloc_implementation",
|
||||
":memory_tagging",
|
||||
]
|
||||
deps = []
|
||||
public_configs = []
|
||||
if (is_android) {
|
||||
# tagging.cc requires __arm_mte_set_* functions.
|
||||
deps += [ "//third_party/android_ndk:cpu_features" ]
|
||||
}
|
||||
if (is_fuchsia) {
|
||||
public_deps += [
|
||||
"//third_party/fuchsia-sdk/sdk/pkg/fit",
|
||||
"//third_party/fuchsia-sdk/sdk/pkg/sync",
|
||||
"//third_party/fuchsia-sdk/sdk/pkg/zx",
|
||||
]
|
||||
|
||||
# Needed for users of spinning_mutex.h, which for performance reasons,
|
||||
# contains inlined calls to `libsync` inside the header file.
|
||||
# It appends an entry to the "libs" section of the dependent target.
|
||||
public_configs += [ ":fuchsia_sync_lib" ]
|
||||
}
|
||||
|
||||
frameworks = []
|
||||
if (is_mac) {
|
||||
# SecTaskGetCodeSignStatus needs:
|
||||
frameworks += [ "Security.framework" ]
|
||||
}
|
||||
|
||||
if (is_component_build && is_apple) {
|
||||
frameworks += [ "CoreFoundation.framework" ]
|
||||
}
|
||||
|
||||
configs += [ "//build/config/compiler:wexit_time_destructors" ]
|
||||
|
||||
# Partition alloc is relatively hot (>1% of cycles for users of CrOS). Use speed-focused
|
||||
# optimizations for it.
|
||||
if (!is_debug) {
|
||||
configs -= [ "//build/config/compiler:default_optimization" ]
|
||||
configs += [ "//build/config/compiler:optimize_speed" ]
|
||||
}
|
||||
}
|
||||
|
||||
buildflag_header("partition_alloc_buildflags") {
|
||||
header = "partition_alloc_buildflags.h"
|
||||
|
||||
# BackupRefPtr(BRP) build flags.
|
||||
_enable_backup_ref_ptr_support = enable_backup_ref_ptr_support && !is_nacl
|
||||
_put_ref_count_in_previous_slot =
|
||||
put_ref_count_in_previous_slot && _enable_backup_ref_ptr_support
|
||||
_enable_backup_ref_ptr_slow_checks =
|
||||
enable_backup_ref_ptr_slow_checks && _enable_backup_ref_ptr_support
|
||||
_enable_dangling_raw_ptr_checks =
|
||||
enable_dangling_raw_ptr_checks && _enable_backup_ref_ptr_support
|
||||
|
||||
# MTECheckedPtr is exclusive against BRP (asserted at declaration).
|
||||
# MTECheckedPtr requires 64-bit pointers (not available in NaCl).
|
||||
_enable_mte_checked_ptr_support = enable_mte_checked_ptr_support && !is_nacl
|
||||
|
||||
_record_alloc_info = false
|
||||
|
||||
_enable_gwp_asan_support = _enable_backup_ref_ptr_support
|
||||
|
||||
# The only BRP mode that GWP-ASan supports is the "previous slot" mode.
|
||||
# This is because it requires out-of-line ref count storage for system
|
||||
# page aligned allocations.
|
||||
assert(_put_ref_count_in_previous_slot || !_enable_gwp_asan_support,
|
||||
"It's unsafe to use BRP in a mode that doesn't support GWP-ASan")
|
||||
|
||||
# TODO(crbug.com/1151236): Need to refactor the following buildflags.
|
||||
# The buildflags (except RECORD_ALLOC_INFO) are used by both chrome and
|
||||
# partition alloc. For partition alloc,
|
||||
# gen/base/allocator/partition_allocator/partition_alloc_buildflags.h
|
||||
# defines and partition alloc includes the header file. For chrome,
|
||||
# gen/base/allocator/buildflags.h defines and chrome includes.
|
||||
flags = [
|
||||
"ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT=$enable_partition_alloc_as_malloc_support",
|
||||
|
||||
"ENABLE_BACKUP_REF_PTR_SUPPORT=$_enable_backup_ref_ptr_support",
|
||||
"ENABLE_BACKUP_REF_PTR_SLOW_CHECKS=$_enable_backup_ref_ptr_slow_checks",
|
||||
"ENABLE_DANGLING_RAW_PTR_CHECKS=$_enable_dangling_raw_ptr_checks",
|
||||
"PUT_REF_COUNT_IN_PREVIOUS_SLOT=$_put_ref_count_in_previous_slot",
|
||||
"ENABLE_GWP_ASAN_SUPPORT=$_enable_gwp_asan_support",
|
||||
|
||||
"ENABLE_MTE_CHECKED_PTR_SUPPORT=$_enable_mte_checked_ptr_support",
|
||||
|
||||
"RECORD_ALLOC_INFO=$_record_alloc_info",
|
||||
"USE_FREESLOT_BITMAP=$use_freeslot_bitmap",
|
||||
"ENABLE_SHADOW_METADATA_FOR_64_BITS_POINTERS=$enable_shadow_metadata",
|
||||
|
||||
# *Scan is currently only used by Chromium.
|
||||
"STARSCAN=$build_with_chromium",
|
||||
]
|
||||
}
|
||||
|
||||
buildflag_header("chromecast_buildflags") {
|
||||
header = "chromecast_buildflags.h"
|
||||
|
||||
flags = [
|
||||
"PA_IS_CAST_ANDROID=$is_cast_android",
|
||||
"PA_IS_CASTOS=$is_castos",
|
||||
]
|
||||
}
|
||||
|
||||
buildflag_header("chromeos_buildflags") {
|
||||
header = "chromeos_buildflags.h"
|
||||
|
||||
flags = [ "PA_IS_CHROMEOS_ASH=$is_chromeos_ash" ]
|
||||
}
|
||||
|
||||
buildflag_header("logging_buildflags") {
|
||||
header = "logging_buildflags.h"
|
||||
|
||||
flags = [ "PA_ENABLE_LOG_ERROR_NOT_REACHED=$enable_log_error_not_reached" ]
|
||||
}
|
||||
|
||||
buildflag_header("debugging_buildflags") {
|
||||
header = "debugging_buildflags.h"
|
||||
header_dir = rebase_path(".", "//") + "/partition_alloc_base/debug"
|
||||
|
||||
# Duplicates the setup Chromium uses to define `DCHECK_IS_ON()`,
|
||||
# but avails it as a buildflag.
|
||||
_dcheck_is_on = is_debug || dcheck_always_on
|
||||
|
||||
flags = [
|
||||
"PA_DCHECK_IS_ON=$_dcheck_is_on",
|
||||
"PA_EXPENSIVE_DCHECKS_ARE_ON=$enable_expensive_dchecks",
|
||||
"PA_DCHECK_IS_CONFIGURABLE=$dcheck_is_configurable",
|
||||
]
|
||||
}
|
||||
|
||||
group("buildflags") {
|
||||
public_deps = [
|
||||
":chromecast_buildflags",
|
||||
":chromeos_buildflags",
|
||||
":debugging_buildflags",
|
||||
":logging_buildflags",
|
||||
":partition_alloc_buildflags",
|
||||
]
|
||||
}
|
||||
# TODO(crbug.com/1151236): After making partition_alloc a standalone library,
|
||||
# move test code here. i.e. test("partition_alloc_tests") { ... } and
|
||||
# test("partition_alloc_perftests").
|
34
src/base/allocator/partition_allocator/DEPS
Normal file
34
src/base/allocator/partition_allocator/DEPS
Normal file
@ -0,0 +1,34 @@
|
||||
# Copyright 2021 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# PartitionAlloc is planned to be extracted into a standalone library, and
|
||||
# therefore dependencies need to be strictly controlled and minimized.
|
||||
|
||||
noparent = True
|
||||
|
||||
include_rules = [
|
||||
"+build/build_config.h",
|
||||
"+build/buildflag.h",
|
||||
"+third_party/lss/linux_syscall_support.h",
|
||||
]
|
||||
|
||||
specific_include_rules = {
|
||||
".*_(perf|unit)test\.cc$": [
|
||||
"+base/allocator/allocator_shim_default_dispatch_to_partition_alloc.h",
|
||||
"+base/debug/proc_maps_linux.h",
|
||||
"+base/system/sys_info.h",
|
||||
"+base/test/gtest_util.h",
|
||||
"+base/timer/lap_timer.h",
|
||||
"+base/win/windows_version.h",
|
||||
"+testing/gmock/include/gmock/gmock.h",
|
||||
"+testing/gtest/include/gtest/gtest.h",
|
||||
"+testing/perf/perf_result_reporter.h",
|
||||
],
|
||||
"extended_api\.cc$": [
|
||||
"+base/allocator/allocator_shim_default_dispatch_to_partition_alloc.h",
|
||||
],
|
||||
"gtest_prod_util\.h$": [
|
||||
"+testing/gtest/include/gtest/gtest_prod.h",
|
||||
],
|
||||
}
|
6
src/base/allocator/partition_allocator/DIR_METADATA
Normal file
6
src/base/allocator/partition_allocator/DIR_METADATA
Normal file
@ -0,0 +1,6 @@
|
||||
monorail {
|
||||
component: "Blink>MemoryAllocator>Partition"
|
||||
}
|
||||
|
||||
# Also security-dev@chromium.org
|
||||
team_email: "platform-architecture-dev@chromium.org"
|
4
src/base/allocator/partition_allocator/OWNERS
Normal file
4
src/base/allocator/partition_allocator/OWNERS
Normal file
@ -0,0 +1,4 @@
|
||||
bartekn@chromium.org
|
||||
haraken@chromium.org
|
||||
lizeb@chromium.org
|
||||
tasak@google.com
|
199
src/base/allocator/partition_allocator/PartitionAlloc.md
Normal file
199
src/base/allocator/partition_allocator/PartitionAlloc.md
Normal file
@ -0,0 +1,199 @@
|
||||
# PartitionAlloc Design
|
||||
|
||||
This document describes PartitionAlloc at a high level, with some architectural
|
||||
details. For implementation details, see the comments in
|
||||
`partition_alloc_constants.h`.
|
||||
|
||||
## Quick Links
|
||||
|
||||
* [Glossary](./glossary.md): Definitions of terms commonly used in
|
||||
PartitionAlloc. The present document largely avoids defining terms.
|
||||
|
||||
* [Build Config](./build_config.md): Pertinent GN args, buildflags, and
|
||||
macros.
|
||||
|
||||
## Overview
|
||||
|
||||
PartitionAlloc is a memory allocator optimized for space efficiency,
|
||||
allocation latency, and security.
|
||||
|
||||
### Performance
|
||||
|
||||
PartitionAlloc is designed to be extremely fast in its fast paths. The fast
|
||||
paths of allocation and deallocation require very few (reasonably predictable)
|
||||
branches. The number of operations in the fast paths is minimal, leading to the
|
||||
possibility of inlining.
|
||||
|
||||
![The central allocator manages slots and spans. It is locked on a
|
||||
per-partition basis. Separately, the thread cache consumes slots
|
||||
from the central allocator, allowing it to hand out memory
|
||||
quickly to individual threads.](./dot/layers.png)
|
||||
|
||||
However, even the fast path isn't the fastest, because it requires taking
|
||||
a per-partition lock. Although we optimized the lock, there was still room for
|
||||
improvement; to this end, we introduced the thread cache.
|
||||
The thread cache has been tailored to satisfy a vast majority of requests by
|
||||
allocating from and releasing memory to the main allocator in batches,
|
||||
amortizing lock acquisition and further improving locality while not trapping
|
||||
excess memory.
|
||||
|
||||
### Security
|
||||
|
||||
Security is one of the important goals of PartitionAlloc.
|
||||
|
||||
PartitionAlloc guarantees that different partitions exist in different regions
|
||||
of the process's address space. When the caller has freed all objects contained
|
||||
in a page in a partition, PartitionAlloc returns the physical memory to the
|
||||
operating system, but continues to reserve the region of address space.
|
||||
PartitionAlloc will only reuse an address space region for the same partition.
|
||||
|
||||
Similarly, one page can contain only objects from the same bucket.
|
||||
When freed, PartitionAlloc returns the physical memory, but continues to reserve
|
||||
the region for this very bucket.
|
||||
|
||||
The above techniques help avoid type confusion attacks. Note, however, these
|
||||
apply only to normal buckets and not to direct map, as it'd waste too much
|
||||
address space.
|
||||
|
||||
PartitionAlloc also guarantees that:
|
||||
|
||||
* Linear overflows/underflows cannot corrupt into, out of, or between
|
||||
partitions. There are guard pages at the beginning and the end of each memory
|
||||
region owned by a partition.
|
||||
|
||||
* Linear overflows/underflows cannot corrupt the allocation metadata.
|
||||
PartitionAlloc records metadata in a dedicated, out-of-line region (not
|
||||
adjacent to objects), surrounded by guard pages. (Freelist pointers are an
|
||||
exception.)
|
||||
|
||||
* Partial pointer overwrite of freelist pointer should fault.
|
||||
|
||||
* Direct map allocations have guard pages at the beginning and the end.
|
||||
|
||||
### Alignment
|
||||
|
||||
PartitionAlloc guarantees that returned pointers are aligned on
|
||||
`partition_alloc::internal::kAlignment` boundary (typically 16B on
|
||||
64-bit systems, and 8B on 32-bit).
|
||||
|
||||
PartitionAlloc also supports higher levels of alignment, that can be requested
|
||||
via `PartitionAlloc::AlignedAllocWithFlags()` or platform-specific APIs (such as
|
||||
`posix_memalign()`). The requested
|
||||
alignment has to be a power of two. PartitionAlloc reserves the right to round
|
||||
up the requested size to the nearest power of two, greater than or equal to the
|
||||
requested alignment. This may be wasteful, but allows taking advantage of
|
||||
natural PartitionAlloc alignment guarantees. Allocations with an alignment
|
||||
requirement greater than `partition_alloc::internal::kAlignment` are expected
|
||||
to be very rare.
|
||||
|
||||
## Architecture
|
||||
|
||||
### Layout in Memory
|
||||
|
||||
PartitionAlloc handles normal buckets by reserving (not committing) 2MiB super
|
||||
pages. Each super page is split into partition pages.
|
||||
The first and the last partition page are permanently inaccessible and serve
|
||||
as guard pages, with the exception of one system page in the middle of the first
|
||||
partition page that holds metadata (32B struct per partition page).
|
||||
|
||||
![A super page is shown full of slot spans. The slot spans are logically
|
||||
strung together to form buckets. At both extremes of the super page
|
||||
are guard pages. PartitionAlloc metadata is hidden inside the
|
||||
guard pages at the "front."](./dot/super-page.png)
|
||||
|
||||
* The slot span numbers provide a visual hint of their size (in partition
|
||||
pages).
|
||||
* Colors provide a visual hint of the bucket to which the slot span belongs.
|
||||
* Although only five colors are shown, in reality, a super page holds
|
||||
tens of slot spans, some of which belong to the same bucket.
|
||||
* The system page that holds metadata tracks each partition page with one 32B
|
||||
[`PartitionPage` struct][PartitionPage], which is either
|
||||
* a [`SlotSpanMetadata`][SlotSpanMetadata] ("v"s in the diagram) or
|
||||
* a [`SubsequentPageMetadata`][SubsequentPageMetadata] ("+"s in the
|
||||
diagram).
|
||||
* Gray fill denotes guard pages (one partition page each at the head and tail
|
||||
of each super page).
|
||||
* In some configurations, PartitionAlloc stores more metadata than can
|
||||
fit in the one system page at the front. These are the bitmaps for
|
||||
StarScan and `MTECheckedPtr<T>`, and they are relegated to the head of
|
||||
what would otherwise be usable space for slot spans. One, both, or
|
||||
none of these bitmaps may be present, depending on build
|
||||
configuration, runtime configuration, and type of allocation.
|
||||
See [`SuperPagePayloadBegin()`][payload-start] for details.
|
||||
|
||||
As allocation requests arrive, there is eventually a need to allocate a new slot
|
||||
span.
|
||||
Address space for such a slot span is carved out from the last super page. If
|
||||
not enough space, a new super page is allocated. Due to varying sizes of slot
|
||||
span, this may lead to leaving space unused (we never go back to fill previous
|
||||
super pages), which is fine because this memory is merely reserved, which is far
|
||||
less precious than committed memory. Note also that address space reserved for a
|
||||
slot span is never released, even if the slot span isn't used for a long time.
|
||||
|
||||
All slots in a newly allocated slot span are *free*, i.e. available for
|
||||
allocation.
|
||||
|
||||
### Freelist Pointers
|
||||
|
||||
All free slots within a slot span are chained into a singly-linked free-list,
|
||||
by writing the *next* pointer at the beginning of each slot, and the head of the
|
||||
list is written in the metadata struct.
|
||||
|
||||
However, writing a pointer in each free slot of a newly allocated span would
|
||||
require committing and faulting in physical pages upfront, which would be
|
||||
unacceptable. Therefore, PartitionAlloc has a concept of *provisioning slots*.
|
||||
Only provisioned slots are chained into the freelist.
|
||||
Once provisioned slots in a span are depleted, then another page worth of slots
|
||||
is provisioned (note, a slot that crosses a page boundary only gets
|
||||
provisioned with slots of the next page). See
|
||||
`PartitionBucket::ProvisionMoreSlotsAndAllocOne()` for more details.
|
||||
|
||||
Freelist pointers are stored at the beginning of each free slot. As such, they
|
||||
are the only metadata that is inline, i.e. stored among the
|
||||
objects. This makes them prone to overruns. On little-endian systems, the
|
||||
pointers are encoded by reversing byte order, so that partial overruns will very
|
||||
likely result in destroying the pointer, as opposed to forming a valid pointer
|
||||
to a nearby location.
|
||||
|
||||
Furthermore, a shadow of a freelist pointer is stored next to it, encoded in a
|
||||
different manner. This helps PartitionAlloc detect corruptions.
|
||||
|
||||
### Slot Span States
|
||||
|
||||
A slot span can be in any of 4 states:
|
||||
* *Full*. A full span has no free slots.
|
||||
* *Empty*. An empty span has no allocated slots, only free slots.
|
||||
* *Active*. An active span is anything in between the above two.
|
||||
* *Decommitted*. A decommitted span is a special case of an empty span, where
|
||||
all pages are decommitted from memory.
|
||||
|
||||
PartitionAlloc prioritizes getting an available slot from an active span, over
|
||||
an empty one, in hope that the latter can be soon transitioned into a
|
||||
decommitted state, thus releasing memory. There is no mechanism, however, to
|
||||
prioritize selection of a slot span based on the number of already allocated
|
||||
slots.
|
||||
|
||||
An empty span becomes decommitted either when there are too many empty spans
|
||||
(FIFO), or when `PartitionRoot::PurgeMemory()` gets invoked periodically (or in
|
||||
low memory pressure conditions). An allocation can be satisfied from
|
||||
a decommitted span if there are no active or empty spans available. The slot
|
||||
provisioning mechanism kicks back in, committing the pages gradually as needed,
|
||||
and the span becomes active. (There is currently no other way
|
||||
to unprovision slots than decommitting the entire span).
|
||||
|
||||
As mentioned above, a bucket is a collection of slot spans containing slots of
|
||||
the same size. In fact, each bucket has 3 linked-lists, chaining active, empty
|
||||
and decommitted spans (see `PartitionBucket::*_slot_spans_head`).
|
||||
There is no need for a full span list. The lists are updated lazily. An empty,
|
||||
decommitted or full span may stay on the active list for some time, until
|
||||
`PartitionBucket::SetNewActiveSlotSpan()` encounters it.
|
||||
A decommitted span may stay on the empty list for some time,
|
||||
until `PartitionBucket<thread_safe>::SlowPathAlloc()` encounters it. However,
|
||||
the inaccuracy can't happen in the other direction, i.e. an active span can only
|
||||
be on the active list, and an empty span can only be on the active or empty
|
||||
list.
|
||||
|
||||
[PartitionPage]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_page.h;l=314;drc=e5b03e85ea180d1d1ab0dec471c7fd5d1706a9e4
|
||||
[SlotSpanMetadata]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_page.h;l=120;drc=e5b03e85ea180d1d1ab0dec471c7fd5d1706a9e4
|
||||
[SubsequentPageMetadata]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_page.h;l=295;drc=e5b03e85ea180d1d1ab0dec471c7fd5d1706a9e4
|
||||
[payload-start]: https://source.chromium.org/chromium/chromium/src/+/35b2deed603dedd4abb37f204d516ed62aa2b85c:base/allocator/partition_allocator/partition_page.h;l=454
|
541
src/base/allocator/partition_allocator/address_pool_manager.cc
Normal file
541
src/base/allocator/partition_allocator/address_pool_manager.cc
Normal file
@ -0,0 +1,541 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_space_stats.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/debug/debugging_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
#include "base/allocator/partition_allocator/reservation_offset_table.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
AddressPoolManager AddressPoolManager::singleton_;
|
||||
|
||||
// static
|
||||
AddressPoolManager& AddressPoolManager::GetInstance() {
|
||||
return singleton_;
|
||||
}
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace {
|
||||
|
||||
// This will crash if the range cannot be decommitted.
|
||||
void DecommitPages(uintptr_t address, size_t size) {
|
||||
// Callers rely on the pages being zero-initialized when recommitting them.
|
||||
// |DecommitSystemPages| doesn't guarantee this on all operating systems, in
|
||||
// particular on macOS, but |DecommitAndZeroSystemPages| does.
|
||||
DecommitAndZeroSystemPages(address, size);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
pool_handle AddressPoolManager::Add(uintptr_t ptr, size_t length) {
|
||||
PA_DCHECK(!(ptr & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!((ptr + length) & kSuperPageOffsetMask));
|
||||
|
||||
for (pool_handle i = 0; i < std::size(pools_); ++i) {
|
||||
if (!pools_[i].IsInitialized()) {
|
||||
pools_[i].Initialize(ptr, length);
|
||||
return i + 1;
|
||||
}
|
||||
}
|
||||
PA_NOTREACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void AddressPoolManager::GetPoolUsedSuperPages(
|
||||
pool_handle handle,
|
||||
std::bitset<kMaxSuperPagesInPool>& used) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!pool)
|
||||
return;
|
||||
|
||||
pool->GetUsedSuperPages(used);
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::GetPoolBaseAddress(pool_handle handle) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!pool)
|
||||
return 0;
|
||||
|
||||
return pool->GetBaseAddress();
|
||||
}
|
||||
|
||||
void AddressPoolManager::ResetForTesting() {
|
||||
for (pool_handle i = 0; i < std::size(pools_); ++i)
|
||||
pools_[i].Reset();
|
||||
}
|
||||
|
||||
void AddressPoolManager::Remove(pool_handle handle) {
|
||||
Pool* pool = GetPool(handle);
|
||||
PA_DCHECK(pool->IsInitialized());
|
||||
pool->Reset();
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Reserve(pool_handle handle,
|
||||
uintptr_t requested_address,
|
||||
size_t length) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!requested_address)
|
||||
return pool->FindChunk(length);
|
||||
const bool is_available = pool->TryReserveChunk(requested_address, length);
|
||||
if (is_available)
|
||||
return requested_address;
|
||||
return pool->FindChunk(length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::UnreserveAndDecommit(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
PA_DCHECK(0 < handle && handle <= kNumPools);
|
||||
Pool* pool = GetPool(handle);
|
||||
PA_DCHECK(pool->IsInitialized());
|
||||
DecommitPages(address, length);
|
||||
pool->FreeChunk(address, length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::Initialize(uintptr_t ptr, size_t length) {
|
||||
PA_CHECK(ptr != 0);
|
||||
PA_CHECK(!(ptr & kSuperPageOffsetMask));
|
||||
PA_CHECK(!(length & kSuperPageOffsetMask));
|
||||
address_begin_ = ptr;
|
||||
#if BUILDFLAG(PA_DCHECK_IS_ON)
|
||||
address_end_ = ptr + length;
|
||||
PA_DCHECK(address_begin_ < address_end_);
|
||||
#endif
|
||||
|
||||
total_bits_ = length / kSuperPageSize;
|
||||
PA_CHECK(total_bits_ <= kMaxSuperPagesInPool);
|
||||
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
alloc_bitset_.reset();
|
||||
bit_hint_ = 0;
|
||||
}
|
||||
|
||||
bool AddressPoolManager::Pool::IsInitialized() {
|
||||
return address_begin_ != 0;
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::Reset() {
|
||||
address_begin_ = 0;
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::GetUsedSuperPages(
|
||||
std::bitset<kMaxSuperPagesInPool>& used) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
|
||||
PA_DCHECK(IsInitialized());
|
||||
used = alloc_bitset_;
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Pool::GetBaseAddress() {
|
||||
PA_DCHECK(IsInitialized());
|
||||
return address_begin_;
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Pool::FindChunk(size_t requested_size) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
|
||||
PA_DCHECK(!(requested_size & kSuperPageOffsetMask));
|
||||
const size_t need_bits = requested_size >> kSuperPageShift;
|
||||
|
||||
// Use first-fit policy to find an available chunk from free chunks. Start
|
||||
// from |bit_hint_|, because we know there are no free chunks before.
|
||||
size_t beg_bit = bit_hint_;
|
||||
size_t curr_bit = bit_hint_;
|
||||
while (true) {
|
||||
// |end_bit| points 1 past the last bit that needs to be 0. If it goes past
|
||||
// |total_bits_|, return |nullptr| to signal no free chunk was found.
|
||||
size_t end_bit = beg_bit + need_bits;
|
||||
if (end_bit > total_bits_)
|
||||
return 0;
|
||||
|
||||
bool found = true;
|
||||
for (; curr_bit < end_bit; ++curr_bit) {
|
||||
if (alloc_bitset_.test(curr_bit)) {
|
||||
// The bit was set, so this chunk isn't entirely free. Set |found=false|
|
||||
// to ensure the outer loop continues. However, continue the inner loop
|
||||
// to set |beg_bit| just past the last set bit in the investigated
|
||||
// chunk. |curr_bit| is advanced all the way to |end_bit| to prevent the
|
||||
// next outer loop pass from checking the same bits.
|
||||
beg_bit = curr_bit + 1;
|
||||
found = false;
|
||||
if (bit_hint_ == curr_bit)
|
||||
++bit_hint_;
|
||||
}
|
||||
}
|
||||
|
||||
// An entire [beg_bit;end_bit) region of 0s was found. Fill them with 1s (to
|
||||
// mark as allocated) and return the allocated address.
|
||||
if (found) {
|
||||
for (size_t i = beg_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(!alloc_bitset_.test(i));
|
||||
alloc_bitset_.set(i);
|
||||
}
|
||||
if (bit_hint_ == beg_bit) {
|
||||
bit_hint_ = end_bit;
|
||||
}
|
||||
uintptr_t address = address_begin_ + beg_bit * kSuperPageSize;
|
||||
#if BUILDFLAG(PA_DCHECK_IS_ON)
|
||||
PA_DCHECK(address + requested_size <= address_end_);
|
||||
#endif
|
||||
return address;
|
||||
}
|
||||
}
|
||||
|
||||
PA_NOTREACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool AddressPoolManager::Pool::TryReserveChunk(uintptr_t address,
|
||||
size_t requested_size) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
PA_DCHECK(!(address & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!(requested_size & kSuperPageOffsetMask));
|
||||
const size_t begin_bit = (address - address_begin_) / kSuperPageSize;
|
||||
const size_t need_bits = requested_size / kSuperPageSize;
|
||||
const size_t end_bit = begin_bit + need_bits;
|
||||
// Check that requested address is not too high.
|
||||
if (end_bit > total_bits_)
|
||||
return false;
|
||||
// Check if any bit of the requested region is set already.
|
||||
for (size_t i = begin_bit; i < end_bit; ++i) {
|
||||
if (alloc_bitset_.test(i))
|
||||
return false;
|
||||
}
|
||||
// Otherwise, set the bits.
|
||||
for (size_t i = begin_bit; i < end_bit; ++i) {
|
||||
alloc_bitset_.set(i);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::FreeChunk(uintptr_t address, size_t free_size) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
|
||||
PA_DCHECK(!(address & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!(free_size & kSuperPageOffsetMask));
|
||||
|
||||
PA_DCHECK(address_begin_ <= address);
|
||||
#if BUILDFLAG(PA_DCHECK_IS_ON)
|
||||
PA_DCHECK(address + free_size <= address_end_);
|
||||
#endif
|
||||
|
||||
const size_t beg_bit = (address - address_begin_) / kSuperPageSize;
|
||||
const size_t end_bit = beg_bit + free_size / kSuperPageSize;
|
||||
for (size_t i = beg_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(alloc_bitset_.test(i));
|
||||
alloc_bitset_.reset(i);
|
||||
}
|
||||
bit_hint_ = std::min(bit_hint_, beg_bit);
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::GetStats(PoolStats* stats) {
|
||||
std::bitset<kMaxSuperPagesInPool> pages;
|
||||
size_t i;
|
||||
{
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
pages = alloc_bitset_;
|
||||
i = bit_hint_;
|
||||
}
|
||||
|
||||
stats->usage = pages.count();
|
||||
|
||||
size_t largest_run = 0;
|
||||
size_t current_run = 0;
|
||||
for (; i < total_bits_; ++i) {
|
||||
if (!pages[i]) {
|
||||
current_run += 1;
|
||||
continue;
|
||||
} else if (current_run > largest_run) {
|
||||
largest_run = current_run;
|
||||
}
|
||||
current_run = 0;
|
||||
}
|
||||
|
||||
// Fell out of the loop with last bit being zero. Check once more.
|
||||
if (current_run > largest_run) {
|
||||
largest_run = current_run;
|
||||
}
|
||||
stats->largest_available_reservation = largest_run;
|
||||
}
|
||||
|
||||
void AddressPoolManager::GetPoolStats(const pool_handle handle,
|
||||
PoolStats* stats) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!pool->IsInitialized()) {
|
||||
return;
|
||||
}
|
||||
pool->GetStats(stats);
|
||||
}
|
||||
|
||||
bool AddressPoolManager::GetStats(AddressSpaceStats* stats) {
|
||||
// Get 64-bit pool stats.
|
||||
GetPoolStats(GetRegularPool(), &stats->regular_pool_stats);
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
GetPoolStats(GetBRPPool(), &stats->brp_pool_stats);
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
if (IsConfigurablePoolAvailable()) {
|
||||
GetPoolStats(GetConfigurablePool(), &stats->configurable_pool_stats);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#else // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
static_assert(
|
||||
kSuperPageSize % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap ==
|
||||
0,
|
||||
"kSuperPageSize must be a multiple of kBytesPer1BitOfBRPPoolBitmap.");
|
||||
static_assert(
|
||||
kSuperPageSize / AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap > 0,
|
||||
"kSuperPageSize must be larger than kBytesPer1BitOfBRPPoolBitmap.");
|
||||
static_assert(AddressPoolManagerBitmap::kGuardBitsOfBRPPoolBitmap >=
|
||||
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap,
|
||||
"kGuardBitsOfBRPPoolBitmap must be larger than or equal to "
|
||||
"kGuardOffsetOfBRPPoolBitmap.");
|
||||
|
||||
template <size_t bitsize>
|
||||
void SetBitmap(std::bitset<bitsize>& bitmap,
|
||||
size_t start_bit,
|
||||
size_t bit_length) {
|
||||
const size_t end_bit = start_bit + bit_length;
|
||||
PA_DCHECK(start_bit <= bitsize);
|
||||
PA_DCHECK(end_bit <= bitsize);
|
||||
|
||||
for (size_t i = start_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(!bitmap.test(i));
|
||||
bitmap.set(i);
|
||||
}
|
||||
}
|
||||
|
||||
template <size_t bitsize>
|
||||
void ResetBitmap(std::bitset<bitsize>& bitmap,
|
||||
size_t start_bit,
|
||||
size_t bit_length) {
|
||||
const size_t end_bit = start_bit + bit_length;
|
||||
PA_DCHECK(start_bit <= bitsize);
|
||||
PA_DCHECK(end_bit <= bitsize);
|
||||
|
||||
for (size_t i = start_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(bitmap.test(i));
|
||||
bitmap.reset(i);
|
||||
}
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Reserve(pool_handle handle,
|
||||
uintptr_t requested_address,
|
||||
size_t length) {
|
||||
PA_DCHECK(!(length & DirectMapAllocationGranularityOffsetMask()));
|
||||
uintptr_t address = AllocPages(requested_address, length, kSuperPageSize,
|
||||
PageAccessibilityConfiguration::kInaccessible,
|
||||
PageTag::kPartitionAlloc);
|
||||
return address;
|
||||
}
|
||||
|
||||
void AddressPoolManager::UnreserveAndDecommit(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
PA_DCHECK(!(address & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!(length & DirectMapAllocationGranularityOffsetMask()));
|
||||
FreePages(address, length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::MarkUsed(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
ScopedGuard scoped_lock(AddressPoolManagerBitmap::GetLock());
|
||||
// When ENABLE_BACKUP_REF_PTR_SUPPORT is off, BRP pool isn't used.
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
if (handle == kBRPPoolHandle) {
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap) == 0);
|
||||
|
||||
// Make IsManagedByBRPPoolPool() return false when an address inside the
|
||||
// first or the last PartitionPageSize()-bytes block is given:
|
||||
//
|
||||
// ------+---+---------------+---+----
|
||||
// memory ..... | B | managed by PA | B | ...
|
||||
// regions ------+---+---------------+---+----
|
||||
//
|
||||
// B: PartitionPageSize()-bytes block. This is used internally by the
|
||||
// allocator and is not available for callers.
|
||||
//
|
||||
// This is required to avoid crash caused by the following code:
|
||||
// {
|
||||
// // Assume this allocation happens outside of PartitionAlloc.
|
||||
// raw_ptr<T> ptr = new T[20];
|
||||
// for (size_t i = 0; i < 20; i ++) { ptr++; }
|
||||
// // |ptr| may point to an address inside 'B'.
|
||||
// }
|
||||
//
|
||||
// Suppose that |ptr| points to an address inside B after the loop. If
|
||||
// IsManagedByBRPPoolPool(ptr) were to return true, ~raw_ptr<T>() would
|
||||
// crash, since the memory is not allocated by PartitionAlloc.
|
||||
SetBitmap(AddressPoolManagerBitmap::brp_pool_bits_,
|
||||
(address >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) +
|
||||
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap,
|
||||
(length >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) -
|
||||
AddressPoolManagerBitmap::kGuardBitsOfBRPPoolBitmap);
|
||||
} else
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
{
|
||||
PA_DCHECK(handle == kRegularPoolHandle);
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap) ==
|
||||
0);
|
||||
SetBitmap(AddressPoolManagerBitmap::regular_pool_bits_,
|
||||
address >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap,
|
||||
length >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap);
|
||||
}
|
||||
}
|
||||
|
||||
void AddressPoolManager::MarkUnused(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
// Address regions allocated for normal buckets are never released, so this
|
||||
// function can only be called for direct map. However, do not DCHECK on
|
||||
// IsManagedByDirectMap(address), because many tests test this function using
|
||||
// small allocations.
|
||||
|
||||
ScopedGuard scoped_lock(AddressPoolManagerBitmap::GetLock());
|
||||
// When ENABLE_BACKUP_REF_PTR_SUPPORT is off, BRP pool isn't used.
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
if (handle == kBRPPoolHandle) {
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap) == 0);
|
||||
|
||||
// Make IsManagedByBRPPoolPool() return false when an address inside the
|
||||
// first or the last PartitionPageSize()-bytes block is given.
|
||||
// (See MarkUsed comment)
|
||||
ResetBitmap(
|
||||
AddressPoolManagerBitmap::brp_pool_bits_,
|
||||
(address >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) +
|
||||
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap,
|
||||
(length >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) -
|
||||
AddressPoolManagerBitmap::kGuardBitsOfBRPPoolBitmap);
|
||||
} else
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
{
|
||||
PA_DCHECK(handle == kRegularPoolHandle);
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap) ==
|
||||
0);
|
||||
ResetBitmap(
|
||||
AddressPoolManagerBitmap::regular_pool_bits_,
|
||||
address >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap,
|
||||
length >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap);
|
||||
}
|
||||
}
|
||||
|
||||
void AddressPoolManager::ResetForTesting() {
|
||||
ScopedGuard guard(AddressPoolManagerBitmap::GetLock());
|
||||
AddressPoolManagerBitmap::regular_pool_bits_.reset();
|
||||
AddressPoolManagerBitmap::brp_pool_bits_.reset();
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
// Counts super pages in use represented by `bitmap`.
|
||||
template <size_t bitsize>
|
||||
size_t CountUsedSuperPages(const std::bitset<bitsize>& bitmap,
|
||||
const size_t bits_per_super_page) {
|
||||
size_t count = 0;
|
||||
size_t bit_index = 0;
|
||||
|
||||
// Stride over super pages.
|
||||
for (size_t super_page_index = 0; bit_index < bitsize; ++super_page_index) {
|
||||
// Stride over the bits comprising the super page.
|
||||
for (bit_index = super_page_index * bits_per_super_page;
|
||||
bit_index < (super_page_index + 1) * bits_per_super_page &&
|
||||
bit_index < bitsize;
|
||||
++bit_index) {
|
||||
if (bitmap[bit_index]) {
|
||||
count += 1;
|
||||
// Move on to the next super page.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
bool AddressPoolManager::GetStats(AddressSpaceStats* stats) {
|
||||
std::bitset<AddressPoolManagerBitmap::kRegularPoolBits> regular_pool_bits;
|
||||
std::bitset<AddressPoolManagerBitmap::kBRPPoolBits> brp_pool_bits;
|
||||
{
|
||||
ScopedGuard scoped_lock(AddressPoolManagerBitmap::GetLock());
|
||||
regular_pool_bits = AddressPoolManagerBitmap::regular_pool_bits_;
|
||||
brp_pool_bits = AddressPoolManagerBitmap::brp_pool_bits_;
|
||||
} // scoped_lock
|
||||
|
||||
// Pool usage is read out from the address pool bitmaps.
|
||||
// The output stats are sized in super pages, so we interpret
|
||||
// the bitmaps into super page usage.
|
||||
static_assert(
|
||||
kSuperPageSize %
|
||||
AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap ==
|
||||
0,
|
||||
"information loss when calculating metrics");
|
||||
constexpr size_t kRegularPoolBitsPerSuperPage =
|
||||
kSuperPageSize /
|
||||
AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap;
|
||||
|
||||
// Get 32-bit pool usage.
|
||||
stats->regular_pool_stats.usage =
|
||||
CountUsedSuperPages(regular_pool_bits, kRegularPoolBitsPerSuperPage);
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
static_assert(
|
||||
kSuperPageSize % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap ==
|
||||
0,
|
||||
"information loss when calculating metrics");
|
||||
constexpr size_t kBRPPoolBitsPerSuperPage =
|
||||
kSuperPageSize / AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap;
|
||||
stats->brp_pool_stats.usage =
|
||||
CountUsedSuperPages(brp_pool_bits, kBRPPoolBitsPerSuperPage);
|
||||
|
||||
// Get blocklist size.
|
||||
for (const auto& blocked :
|
||||
AddressPoolManagerBitmap::brp_forbidden_super_page_map_) {
|
||||
if (blocked.load(std::memory_order_relaxed))
|
||||
stats->blocklist_size += 1;
|
||||
}
|
||||
|
||||
// Count failures in finding non-blocklisted addresses.
|
||||
stats->blocklist_hit_count =
|
||||
AddressPoolManagerBitmap::blocklist_hit_count_.load(
|
||||
std::memory_order_relaxed);
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
void AddressPoolManager::DumpStats(AddressSpaceStatsDumper* dumper) {
|
||||
AddressSpaceStats stats{};
|
||||
if (GetStats(&stats)) {
|
||||
dumper->DumpStats(&stats);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
179
src/base/allocator/partition_allocator/address_pool_manager.h
Normal file
179
src/base/allocator/partition_allocator/address_pool_manager.h
Normal file
@ -0,0 +1,179 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_H_
|
||||
|
||||
#include <bitset>
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager_bitmap.h"
|
||||
#include "base/allocator/partition_allocator/address_pool_manager_types.h"
|
||||
#include "base/allocator/partition_allocator/partition_address_space.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/debug/debugging_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/thread_annotations.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
class AddressSpaceStatsDumper;
|
||||
struct AddressSpaceStats;
|
||||
struct PoolStats;
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// (64bit version)
|
||||
// AddressPoolManager takes a reserved virtual address space and manages address
|
||||
// space allocation.
|
||||
//
|
||||
// AddressPoolManager (currently) supports up to 3 pools. Each pool manages a
|
||||
// contiguous reserved address space. Alloc() takes a pool_handle and returns
|
||||
// address regions from the specified pool. Free() also takes a pool_handle and
|
||||
// returns the address region back to the manager.
|
||||
//
|
||||
// (32bit version)
|
||||
// AddressPoolManager wraps AllocPages and FreePages and remembers allocated
|
||||
// address regions using bitmaps. IsManagedByPartitionAllocBRPPool and
|
||||
// IsManagedByPartitionAllocRegularPool use the bitmaps to judge whether a given
|
||||
// address is in a pool that supports BackupRefPtr or in a pool that doesn't.
|
||||
// All PartitionAlloc allocations must be in either of the pools.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) AddressPoolManager {
|
||||
public:
|
||||
static AddressPoolManager& GetInstance();
|
||||
|
||||
AddressPoolManager(const AddressPoolManager&) = delete;
|
||||
AddressPoolManager& operator=(const AddressPoolManager&) = delete;
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
pool_handle Add(uintptr_t address, size_t length);
|
||||
void Remove(pool_handle handle);
|
||||
|
||||
// Populate a |used| bitset of superpages currently in use.
|
||||
void GetPoolUsedSuperPages(pool_handle handle,
|
||||
std::bitset<kMaxSuperPagesInPool>& used);
|
||||
|
||||
// Return the base address of a pool.
|
||||
uintptr_t GetPoolBaseAddress(pool_handle handle);
|
||||
#endif
|
||||
|
||||
// Reserves address space from GigaCage.
|
||||
uintptr_t Reserve(pool_handle handle,
|
||||
uintptr_t requested_address,
|
||||
size_t length);
|
||||
|
||||
// Frees address space back to GigaCage and decommits underlying system pages.
|
||||
void UnreserveAndDecommit(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length);
|
||||
void ResetForTesting();
|
||||
|
||||
#if !defined(PA_HAS_64_BITS_POINTERS)
|
||||
void MarkUsed(pool_handle handle, uintptr_t address, size_t size);
|
||||
void MarkUnused(pool_handle handle, uintptr_t address, size_t size);
|
||||
|
||||
static bool IsManagedByRegularPool(uintptr_t address) {
|
||||
return AddressPoolManagerBitmap::IsManagedByRegularPool(address);
|
||||
}
|
||||
|
||||
static bool IsManagedByBRPPool(uintptr_t address) {
|
||||
return AddressPoolManagerBitmap::IsManagedByBRPPool(address);
|
||||
}
|
||||
#endif // !defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
void DumpStats(AddressSpaceStatsDumper* dumper);
|
||||
|
||||
private:
|
||||
friend class AddressPoolManagerForTesting;
|
||||
|
||||
constexpr AddressPoolManager() = default;
|
||||
~AddressPoolManager() = default;
|
||||
|
||||
// Populates `stats` if applicable.
|
||||
// Returns whether `stats` was populated. (They might not be, e.g.
|
||||
// if PartitionAlloc is wholly unused in this process.)
|
||||
bool GetStats(AddressSpaceStats* stats);
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
class Pool {
|
||||
public:
|
||||
constexpr Pool() = default;
|
||||
~Pool() = default;
|
||||
|
||||
Pool(const Pool&) = delete;
|
||||
Pool& operator=(const Pool&) = delete;
|
||||
|
||||
void Initialize(uintptr_t ptr, size_t length);
|
||||
bool IsInitialized();
|
||||
void Reset();
|
||||
|
||||
uintptr_t FindChunk(size_t size);
|
||||
void FreeChunk(uintptr_t address, size_t size);
|
||||
|
||||
bool TryReserveChunk(uintptr_t address, size_t size);
|
||||
|
||||
void GetUsedSuperPages(std::bitset<kMaxSuperPagesInPool>& used);
|
||||
uintptr_t GetBaseAddress();
|
||||
|
||||
void GetStats(PoolStats* stats);
|
||||
|
||||
private:
|
||||
Lock lock_;
|
||||
|
||||
// The bitset stores the allocation state of the address pool. 1 bit per
|
||||
// super-page: 1 = allocated, 0 = free.
|
||||
std::bitset<kMaxSuperPagesInPool> alloc_bitset_ PA_GUARDED_BY(lock_);
|
||||
|
||||
// An index of a bit in the bitset before which we know for sure there all
|
||||
// 1s. This is a best-effort hint in the sense that there still may be lots
|
||||
// of 1s after this index, but at least we know there is no point in
|
||||
// starting the search before it.
|
||||
size_t bit_hint_ PA_GUARDED_BY(lock_) = 0;
|
||||
|
||||
size_t total_bits_ = 0;
|
||||
uintptr_t address_begin_ = 0;
|
||||
#if BUILDFLAG(PA_DCHECK_IS_ON)
|
||||
uintptr_t address_end_ = 0;
|
||||
#endif
|
||||
};
|
||||
|
||||
PA_ALWAYS_INLINE Pool* GetPool(pool_handle handle) {
|
||||
PA_DCHECK(0 < handle && handle <= kNumPools);
|
||||
return &pools_[handle - 1];
|
||||
}
|
||||
|
||||
// Gets the stats for the pool identified by `handle`, if
|
||||
// initialized.
|
||||
void GetPoolStats(pool_handle handle, PoolStats* stats);
|
||||
|
||||
Pool pools_[kNumPools];
|
||||
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
static AddressPoolManager singleton_;
|
||||
};
|
||||
|
||||
PA_ALWAYS_INLINE pool_handle GetRegularPool() {
|
||||
return kRegularPoolHandle;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE pool_handle GetBRPPool() {
|
||||
return kBRPPoolHandle;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE pool_handle GetConfigurablePool() {
|
||||
PA_DCHECK(IsConfigurablePoolAvailable());
|
||||
return kConfigurablePoolHandle;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_H_
|
@ -0,0 +1,37 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager_bitmap.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
|
||||
#if !defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
Lock g_lock;
|
||||
|
||||
} // namespace
|
||||
|
||||
Lock& AddressPoolManagerBitmap::GetLock() {
|
||||
return g_lock;
|
||||
}
|
||||
|
||||
std::bitset<AddressPoolManagerBitmap::kRegularPoolBits>
|
||||
AddressPoolManagerBitmap::regular_pool_bits_; // GUARDED_BY(GetLock())
|
||||
std::bitset<AddressPoolManagerBitmap::kBRPPoolBits>
|
||||
AddressPoolManagerBitmap::brp_pool_bits_; // GUARDED_BY(GetLock())
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
std::array<std::atomic_bool,
|
||||
AddressPoolManagerBitmap::kAddressSpaceSize / kSuperPageSize>
|
||||
AddressPoolManagerBitmap::brp_forbidden_super_page_map_;
|
||||
std::atomic_size_t AddressPoolManagerBitmap::blocklist_hit_count_;
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // !defined(PA_HAS_64_BITS_POINTERS)
|
@ -0,0 +1,190 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_BITMAP_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_BITMAP_H_
|
||||
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <bitset>
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if !defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// AddressPoolManagerBitmap is a set of bitmaps that track whether a given
|
||||
// address is in a pool that supports BackupRefPtr, or in a pool that doesn't
|
||||
// support it. All PartitionAlloc allocations must be in either of the pools.
|
||||
//
|
||||
// This code is specific to 32-bit systems.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) AddressPoolManagerBitmap {
|
||||
public:
|
||||
static constexpr uint64_t kGiB = 1024 * 1024 * 1024ull;
|
||||
static constexpr uint64_t kAddressSpaceSize = 4ull * kGiB;
|
||||
|
||||
// For BRP pool, we use partition page granularity to eliminate the guard
|
||||
// pages from the bitmap at the ends:
|
||||
// - Eliminating the guard page at the beginning is needed so that pointers
|
||||
// to the end of an allocation that immediately precede a super page in BRP
|
||||
// pool don't accidentally fall into that pool.
|
||||
// - Eliminating the guard page at the end is to ensure that the last page
|
||||
// of the address space isn't in the BRP pool. This allows using sentinels
|
||||
// like reinterpret_cast<void*>(-1) without a risk of triggering BRP logic
|
||||
// on an invalid address. (Note, 64-bit systems don't have this problem as
|
||||
// the upper half of the address space always belongs to the OS.)
|
||||
//
|
||||
// Note, direct map allocations also belong to this pool. The same logic as
|
||||
// above applies. It is important to note, however, that the granularity used
|
||||
// here has to be a minimum of partition page size and direct map allocation
|
||||
// granularity. Since DirectMapAllocationGranularity() is no smaller than
|
||||
// PageAllocationGranularity(), we don't need to decrease the bitmap
|
||||
// granularity any further.
|
||||
static constexpr size_t kBitShiftOfBRPPoolBitmap = PartitionPageShift();
|
||||
static constexpr size_t kBytesPer1BitOfBRPPoolBitmap = PartitionPageSize();
|
||||
static_assert(kBytesPer1BitOfBRPPoolBitmap == 1 << kBitShiftOfBRPPoolBitmap,
|
||||
"");
|
||||
static constexpr size_t kGuardOffsetOfBRPPoolBitmap = 1;
|
||||
static constexpr size_t kGuardBitsOfBRPPoolBitmap = 2;
|
||||
static constexpr size_t kBRPPoolBits =
|
||||
kAddressSpaceSize / kBytesPer1BitOfBRPPoolBitmap;
|
||||
|
||||
// Regular pool may include both normal bucket and direct map allocations, so
|
||||
// the bitmap granularity has to be at least as small as
|
||||
// DirectMapAllocationGranularity(). No need to eliminate guard pages at the
|
||||
// ends, as this is a BackupRefPtr-specific concern, hence no need to lower
|
||||
// the granularity to partition page size.
|
||||
static constexpr size_t kBitShiftOfRegularPoolBitmap =
|
||||
DirectMapAllocationGranularityShift();
|
||||
static constexpr size_t kBytesPer1BitOfRegularPoolBitmap =
|
||||
DirectMapAllocationGranularity();
|
||||
static_assert(kBytesPer1BitOfRegularPoolBitmap ==
|
||||
1 << kBitShiftOfRegularPoolBitmap,
|
||||
"");
|
||||
static constexpr size_t kRegularPoolBits =
|
||||
kAddressSpaceSize / kBytesPer1BitOfRegularPoolBitmap;
|
||||
|
||||
// Returns false for nullptr.
|
||||
static bool IsManagedByRegularPool(uintptr_t address) {
|
||||
static_assert(
|
||||
std::numeric_limits<uintptr_t>::max() >> kBitShiftOfRegularPoolBitmap <
|
||||
regular_pool_bits_.size(),
|
||||
"The bitmap is too small, will result in unchecked out of bounds "
|
||||
"accesses.");
|
||||
// It is safe to read |regular_pool_bits_| without a lock since the caller
|
||||
// is responsible for guaranteeing that the address is inside a valid
|
||||
// allocation and the deallocation call won't race with this call.
|
||||
return PA_TS_UNCHECKED_READ(
|
||||
regular_pool_bits_)[address >> kBitShiftOfRegularPoolBitmap];
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
static bool IsManagedByBRPPool(uintptr_t address) {
|
||||
static_assert(std::numeric_limits<uintptr_t>::max() >>
|
||||
kBitShiftOfBRPPoolBitmap < brp_pool_bits_.size(),
|
||||
"The bitmap is too small, will result in unchecked out of "
|
||||
"bounds accesses.");
|
||||
// It is safe to read |brp_pool_bits_| without a lock since the caller
|
||||
// is responsible for guaranteeing that the address is inside a valid
|
||||
// allocation and the deallocation call won't race with this call.
|
||||
return PA_TS_UNCHECKED_READ(
|
||||
brp_pool_bits_)[address >> kBitShiftOfBRPPoolBitmap];
|
||||
}
|
||||
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
static void BanSuperPageFromBRPPool(uintptr_t address) {
|
||||
brp_forbidden_super_page_map_[address >> kSuperPageShift].store(
|
||||
true, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
static bool IsAllowedSuperPageForBRPPool(uintptr_t address) {
|
||||
// The only potentially dangerous scenario, in which this check is used, is
|
||||
// when the assignment of the first raw_ptr<T> object for a non-GigaCage
|
||||
// address is racing with the allocation of a new GigCage super-page at the
|
||||
// same address. We assume that if raw_ptr<T> is being initialized with a
|
||||
// raw pointer, the associated allocation is "alive"; otherwise, the issue
|
||||
// should be fixed by rewriting the raw pointer variable as raw_ptr<T>.
|
||||
// In the worst case, when such a fix is impossible, we should just undo the
|
||||
// raw pointer -> raw_ptr<T> rewrite of the problematic field. If the
|
||||
// above assumption holds, the existing allocation will prevent us from
|
||||
// reserving the super-page region and, thus, having the race condition.
|
||||
// Since we rely on that external synchronization, the relaxed memory
|
||||
// ordering should be sufficient.
|
||||
return !brp_forbidden_super_page_map_[address >> kSuperPageShift].load(
|
||||
std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
static void IncrementBlocklistHitCount() { ++blocklist_hit_count_; }
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
|
||||
private:
|
||||
friend class AddressPoolManager;
|
||||
|
||||
static Lock& GetLock();
|
||||
|
||||
static std::bitset<kRegularPoolBits> regular_pool_bits_
|
||||
PA_GUARDED_BY(GetLock());
|
||||
static std::bitset<kBRPPoolBits> brp_pool_bits_ PA_GUARDED_BY(GetLock());
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
static std::array<std::atomic_bool, kAddressSpaceSize / kSuperPageSize>
|
||||
brp_forbidden_super_page_map_;
|
||||
static std::atomic_size_t blocklist_hit_count_;
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAlloc(uintptr_t address) {
|
||||
// When ENABLE_BACKUP_REF_PTR_SUPPORT is off, BRP pool isn't used.
|
||||
// No need to add IsManagedByConfigurablePool, because Configurable Pool
|
||||
// doesn't exist on 32-bit.
|
||||
#if !BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
PA_DCHECK(!internal::AddressPoolManagerBitmap::IsManagedByBRPPool(address));
|
||||
#endif
|
||||
return internal::AddressPoolManagerBitmap::IsManagedByRegularPool(address)
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
|| internal::AddressPoolManagerBitmap::IsManagedByBRPPool(address)
|
||||
#endif
|
||||
;
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocRegularPool(uintptr_t address) {
|
||||
return internal::AddressPoolManagerBitmap::IsManagedByRegularPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocBRPPool(uintptr_t address) {
|
||||
return internal::AddressPoolManagerBitmap::IsManagedByBRPPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocConfigurablePool(
|
||||
uintptr_t address) {
|
||||
// The Configurable Pool is only available on 64-bit builds.
|
||||
return false;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE bool IsConfigurablePoolAvailable() {
|
||||
// The Configurable Pool is only available on 64-bit builds.
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // !defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_BITMAP_H_
|
@ -0,0 +1,14 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_TYPES_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_TYPES_H_
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
using pool_handle = unsigned;
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_TYPES_H_
|
@ -0,0 +1,66 @@
|
||||
// Copyright 2014 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/address_space_randomization.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/random.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include <windows.h> // Must be in front of other Windows header files.
|
||||
|
||||
#include <versionhelpers.h>
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
uintptr_t GetRandomPageBase() {
|
||||
uintptr_t random = static_cast<uintptr_t>(internal::RandomValue());
|
||||
|
||||
#if defined(ARCH_CPU_64_BITS)
|
||||
random <<= 32ULL;
|
||||
random |= static_cast<uintptr_t>(internal::RandomValue());
|
||||
|
||||
// The ASLRMask() and ASLROffset() constants will be suitable for the
|
||||
// OS and build configuration.
|
||||
#if BUILDFLAG(IS_WIN) && !defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
||||
// Windows >= 8.1 has the full 47 bits. Use them where available.
|
||||
static bool windows_81 = false;
|
||||
static bool windows_81_initialized = false;
|
||||
if (!windows_81_initialized) {
|
||||
windows_81 = IsWindows8Point1OrGreater();
|
||||
windows_81_initialized = true;
|
||||
}
|
||||
if (!windows_81) {
|
||||
random &= internal::ASLRMaskBefore8_10();
|
||||
} else {
|
||||
random &= internal::ASLRMask();
|
||||
}
|
||||
random += internal::ASLROffset();
|
||||
#else
|
||||
random &= internal::ASLRMask();
|
||||
random += internal::ASLROffset();
|
||||
#endif // BUILDFLAG(IS_WIN) && !defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
||||
#else // defined(ARCH_CPU_32_BITS)
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
// On win32 host systems the randomization plus huge alignment causes
|
||||
// excessive fragmentation. Plus most of these systems lack ASLR, so the
|
||||
// randomization isn't buying anything. In that case we just skip it.
|
||||
// TODO(palmer): Just dump the randomization when HE-ASLR is present.
|
||||
static BOOL is_wow64 = -1;
|
||||
if (is_wow64 == -1 && !IsWow64Process(GetCurrentProcess(), &is_wow64))
|
||||
is_wow64 = FALSE;
|
||||
if (!is_wow64)
|
||||
return 0;
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
random &= internal::ASLRMask();
|
||||
random += internal::ASLROffset();
|
||||
#endif // defined(ARCH_CPU_32_BITS)
|
||||
|
||||
PA_DCHECK(!(random & internal::PageAllocationGranularityOffsetMask()));
|
||||
return random;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
@ -0,0 +1,290 @@
|
||||
// Copyright 2014 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_RANDOMIZATION_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_RANDOMIZATION_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// Calculates a random preferred mapping address. In calculating an address, we
|
||||
// balance good ASLR against not fragmenting the address space too badly.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) uintptr_t GetRandomPageBase();
|
||||
|
||||
namespace internal {
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
AslrAddress(uintptr_t mask) {
|
||||
return mask & PageAllocationGranularityBaseMask();
|
||||
}
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
AslrMask(uintptr_t bits) {
|
||||
return AslrAddress((1ULL << bits) - 1ULL);
|
||||
}
|
||||
|
||||
// Turn off formatting, because the thicket of nested ifdefs below is
|
||||
// incomprehensible without indentation. It is also incomprehensible with
|
||||
// indentation, but the only other option is a combinatorial explosion of
|
||||
// *_{win,linux,mac,foo}_{32,64}.h files.
|
||||
//
|
||||
// clang-format off
|
||||
|
||||
#if defined(ARCH_CPU_64_BITS)
|
||||
|
||||
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
||||
|
||||
// We shouldn't allocate system pages at all for sanitizer builds. However,
|
||||
// we do, and if random hint addresses interfere with address ranges
|
||||
// hard-coded in those tools, bad things happen. This address range is
|
||||
// copied from TSAN source but works with all tools. See
|
||||
// https://crbug.com/539863.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrAddress(0x007fffffffffULL);
|
||||
}
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
ASLROffset() {
|
||||
return AslrAddress(0x7e8000000000ULL);
|
||||
}
|
||||
|
||||
#elif BUILDFLAG(IS_WIN)
|
||||
|
||||
// Windows 8.10 and newer support the full 48 bit address range. Older
|
||||
// versions of Windows only support 44 bits. Since ASLROffset() is non-zero
|
||||
// and may cause a carry, use 47 and 43 bit masks. See
|
||||
// http://www.alex-ionescu.com/?p=246
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(47);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMaskBefore8_10() {
|
||||
return AslrMask(43);
|
||||
}
|
||||
// Try not to map pages into the range where Windows loads DLLs by default.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return 0x80000000ULL;
|
||||
}
|
||||
|
||||
#elif BUILDFLAG(IS_APPLE)
|
||||
|
||||
// macOS as of 10.12.5 does not clean up entries in page map levels 3/4
|
||||
// [PDP/PML4] created from mmap or mach_vm_allocate, even after the region
|
||||
// is destroyed. Using a virtual address space that is too large causes a
|
||||
// leak of about 1 wired [can never be paged out] page per call to mmap. The
|
||||
// page is only reclaimed when the process is killed. Confine the hint to a
|
||||
// 39-bit section of the virtual address space.
|
||||
//
|
||||
// This implementation adapted from
|
||||
// https://chromium-review.googlesource.com/c/v8/v8/+/557958. The difference
|
||||
// is that here we clamp to 39 bits, not 32.
|
||||
//
|
||||
// TODO(crbug.com/738925): Remove this limitation if/when the macOS behavior
|
||||
// changes.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrMask(38);
|
||||
}
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
ASLROffset() {
|
||||
// Be careful, there is a zone where macOS will not map memory, at least
|
||||
// on ARM64. From an ARM64 machine running 12.3, the range seems to be
|
||||
// [0x1000000000, 0x7000000000). Make sure that the range we use is
|
||||
// outside these bounds. In 12.3, there is a reserved area between
|
||||
// MACH_VM_MIN_GPU_CARVEOUT_ADDRESS and MACH_VM_MAX_GPU_CARVEOUT_ADDRESS,
|
||||
// which is reserved on ARM64. See these constants in XNU's source code
|
||||
// for details (xnu-8019.80.24/osfmk/mach/arm/vm_param.h).
|
||||
return AslrAddress(0x10000000000ULL);
|
||||
}
|
||||
|
||||
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
||||
|
||||
#if defined(ARCH_CPU_X86_64)
|
||||
|
||||
// Linux (and macOS) support the full 47-bit user space of x64 processors.
|
||||
// Use only 46 to allow the kernel a chance to fulfill the request.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(46);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#elif defined(ARCH_CPU_ARM64)
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID)
|
||||
|
||||
// Restrict the address range on Android to avoid a large performance
|
||||
// regression in single-process WebViews. See https://crbug.com/837640.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x20000000ULL);
|
||||
}
|
||||
|
||||
#elif BUILDFLAG(IS_LINUX)
|
||||
|
||||
// Linux on arm64 can use 39, 42, 48, or 52-bit user space, depending on
|
||||
// page size and number of levels of translation pages used. We use
|
||||
// 39-bit as base as all setups should support this, lowered to 38-bit
|
||||
// as ASLROffset() could cause a carry.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrMask(38);
|
||||
}
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
ASLROffset() {
|
||||
return AslrAddress(0x1000000000ULL);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// ARM64 on Linux has 39-bit user space. Use 38 bits since ASLROffset()
|
||||
// could cause a carry.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(38);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x1000000000ULL);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#elif defined(ARCH_CPU_PPC64)
|
||||
|
||||
#if BUILDFLAG(IS_AIX)
|
||||
|
||||
// AIX has 64 bits of virtual addressing, but we limit the address range
|
||||
// to (a) minimize segment lookaside buffer (SLB) misses; and (b) use
|
||||
// extra address space to isolate the mmap regions.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x400000000000ULL);
|
||||
}
|
||||
|
||||
#elif defined(ARCH_CPU_BIG_ENDIAN)
|
||||
|
||||
// Big-endian Linux PPC has 44 bits of virtual addressing. Use 42.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(42);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#else // !BUILDFLAG(IS_AIX) && !defined(ARCH_CPU_BIG_ENDIAN)
|
||||
|
||||
// Little-endian Linux PPC has 48 bits of virtual addressing. Use 46.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(46);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#endif // !BUILDFLAG(IS_AIX) && !defined(ARCH_CPU_BIG_ENDIAN)
|
||||
|
||||
#elif defined(ARCH_CPU_S390X)
|
||||
|
||||
// Linux on Z uses bits 22 - 32 for Region Indexing, which translates to
|
||||
// 42 bits of virtual addressing. Truncate to 40 bits to allow kernel a
|
||||
// chance to fulfill the request.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(40);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#elif defined(ARCH_CPU_S390)
|
||||
|
||||
// 31 bits of virtual addressing. Truncate to 29 bits to allow the kernel
|
||||
// a chance to fulfill the request.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(29);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#else // !defined(ARCH_CPU_X86_64) && !defined(ARCH_CPU_PPC64) &&
|
||||
// !defined(ARCH_CPU_S390X) && !defined(ARCH_CPU_S390)
|
||||
|
||||
// For all other POSIX variants, use 30 bits.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_SOLARIS)
|
||||
|
||||
// For our Solaris/illumos mmap hint, we pick a random address in the
|
||||
// bottom half of the top half of the address space (that is, the third
|
||||
// quarter). Because we do not MAP_FIXED, this will be treated only as a
|
||||
// hint -- the system will not fail to mmap because something else
|
||||
// happens to already be mapped at our random address. We deliberately
|
||||
// set the hint high enough to get well above the system's break (that
|
||||
// is, the heap); Solaris and illumos will try the hint and if that
|
||||
// fails allocate as if there were no hint at all. The high hint
|
||||
// prevents the break from getting hemmed in at low values, ceding half
|
||||
// of the address space to the system heap.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x80000000ULL);
|
||||
}
|
||||
|
||||
#elif BUILDFLAG(IS_AIX)
|
||||
|
||||
// The range 0x30000000 - 0xD0000000 is available on AIX; choose the
|
||||
// upper range.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x90000000ULL);
|
||||
}
|
||||
|
||||
#else // !BUILDFLAG(IS_SOLARIS) && !BUILDFLAG(IS_AIX)
|
||||
|
||||
// The range 0x20000000 - 0x60000000 is relatively unpopulated across a
|
||||
// variety of ASLR modes (PAE kernel, NX compat mode, etc) and on macOS
|
||||
// 10.6 and 10.7.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x20000000ULL);
|
||||
}
|
||||
|
||||
#endif // !BUILDFLAG(IS_SOLARIS) && !BUILDFLAG(IS_AIX)
|
||||
|
||||
#endif // !defined(ARCH_CPU_X86_64) && !defined(ARCH_CPU_PPC64) &&
|
||||
// !defined(ARCH_CPU_S390X) && !defined(ARCH_CPU_S390)
|
||||
|
||||
#endif // BUILDFLAG(IS_POSIX)
|
||||
|
||||
#elif defined(ARCH_CPU_32_BITS)
|
||||
|
||||
// This is a good range on 32-bit Windows and Android (the only platforms on
|
||||
// which we support 32-bitness). Allocates in the 0.5 - 1.5 GiB region. There
|
||||
// is no issue with carries here.
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
constexpr PA_ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x20000000ULL);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#error Please tell us about your exotic hardware! Sounds interesting.
|
||||
|
||||
#endif // defined(ARCH_CPU_32_BITS)
|
||||
|
||||
// clang-format on
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_RANDOMIZATION_H_
|
52
src/base/allocator/partition_allocator/address_space_stats.h
Normal file
52
src/base/allocator/partition_allocator/address_space_stats.h
Normal file
@ -0,0 +1,52 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_STATS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_STATS_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// All members are measured in super pages.
|
||||
struct PoolStats {
|
||||
size_t usage = 0;
|
||||
|
||||
// On 32-bit, GigaCage is mainly a logical entity, intermingled with
|
||||
// allocations not managed by PartitionAlloc. The "largest available
|
||||
// reservation" is not possible to measure in that case.
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
size_t largest_available_reservation = 0;
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
};
|
||||
|
||||
struct AddressSpaceStats {
|
||||
PoolStats regular_pool_stats;
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
PoolStats brp_pool_stats;
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
PoolStats configurable_pool_stats;
|
||||
#else
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
size_t blocklist_size; // measured in super pages
|
||||
size_t blocklist_hit_count;
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
};
|
||||
|
||||
// Interface passed to `AddressPoolManager::DumpStats()` to mediate
|
||||
// for `AddressSpaceDumpProvider`.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) AddressSpaceStatsDumper {
|
||||
public:
|
||||
virtual void DumpStats(const AddressSpaceStats* address_space_stats) = 0;
|
||||
};
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_STATS_H_
|
41
src/base/allocator/partition_allocator/allocation_guard.cc
Normal file
41
src/base/allocator/partition_allocator/allocation_guard.cc
Normal file
@ -0,0 +1,41 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/allocation_guard.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/immediate_crash.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
|
||||
#if defined(PA_HAS_ALLOCATION_GUARD)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
thread_local bool g_disallow_allocations;
|
||||
} // namespace
|
||||
|
||||
ScopedDisallowAllocations::ScopedDisallowAllocations() {
|
||||
if (g_disallow_allocations)
|
||||
PA_IMMEDIATE_CRASH();
|
||||
|
||||
g_disallow_allocations = true;
|
||||
}
|
||||
|
||||
ScopedDisallowAllocations::~ScopedDisallowAllocations() {
|
||||
g_disallow_allocations = false;
|
||||
}
|
||||
|
||||
ScopedAllowAllocations::ScopedAllowAllocations() {
|
||||
// Save the previous value, as ScopedAllowAllocations is used in all
|
||||
// partitions, not just the malloc() ones(s).
|
||||
saved_value_ = g_disallow_allocations;
|
||||
g_disallow_allocations = false;
|
||||
}
|
||||
|
||||
ScopedAllowAllocations::~ScopedAllowAllocations() {
|
||||
g_disallow_allocations = saved_value_;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // defined(PA_HAS_ALLOCATION_GUARD)
|
49
src/base/allocator/partition_allocator/allocation_guard.h
Normal file
49
src/base/allocator/partition_allocator/allocation_guard.h
Normal file
@ -0,0 +1,49 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ALLOCATION_GUARD_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ALLOCATION_GUARD_H_
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
#if defined(PA_HAS_ALLOCATION_GUARD)
|
||||
|
||||
// Disallow allocations in the scope. Does not nest.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) ScopedDisallowAllocations {
|
||||
public:
|
||||
ScopedDisallowAllocations();
|
||||
~ScopedDisallowAllocations();
|
||||
};
|
||||
|
||||
// Disallow allocations in the scope. Does not nest.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) ScopedAllowAllocations {
|
||||
public:
|
||||
ScopedAllowAllocations();
|
||||
~ScopedAllowAllocations();
|
||||
|
||||
private:
|
||||
bool saved_value_;
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
struct [[maybe_unused]] ScopedDisallowAllocations{};
|
||||
struct [[maybe_unused]] ScopedAllowAllocations{};
|
||||
|
||||
#endif // defined(PA_HAS_ALLOCATION_GUARD)
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base::internal {
|
||||
|
||||
using ::partition_alloc::ScopedAllowAllocations;
|
||||
using ::partition_alloc::ScopedDisallowAllocations;
|
||||
|
||||
} // namespace base::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ALLOCATION_GUARD_H_
|
@ -0,0 +1,50 @@
|
||||
# Copyright 2021 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# This file contains a test function for checking Arm's branch target
|
||||
# identification (BTI) feature, which helps mitigate jump-oriented
|
||||
# programming. To get it working, BTI instructions must be executed
|
||||
# on a compatible core, and the executable pages must be mapped with
|
||||
# PROT_BTI. To validate that pages mapped with PROT_BTI are working
|
||||
# correctly:
|
||||
# 1) Allocate a read-write page.
|
||||
# 2) Copy between the start and end symbols into that page.
|
||||
# 3) Set the page to read-execute with PROT_BTI.
|
||||
# 4) Call the first offset of the page, verify the result.
|
||||
# 5) Call the second offset of the page (skipping the landing pad).
|
||||
# Verify that it crashes as expected.
|
||||
# This test works irrespective of whether BTI is enabled for C/C++
|
||||
# objects via -mbranch-protection=standard.
|
||||
|
||||
.text
|
||||
.global arm_bti_test_function
|
||||
.global arm_bti_test_function_invalid_offset
|
||||
.global arm_bti_test_function_end
|
||||
arm_bti_test_function:
|
||||
# Mark the start of this function as a valid call target.
|
||||
bti jc
|
||||
add x0, x0, #1
|
||||
arm_bti_test_function_invalid_offset:
|
||||
# This label simulates calling an incomplete function.
|
||||
# Jumping here should crash systems which support BTI.
|
||||
add x0, x0, #2
|
||||
ret
|
||||
arm_bti_test_function_end:
|
||||
nop
|
||||
|
||||
// For details see section "6.2 Program Property" in
|
||||
// "ELF for the Arm 64-bit Architecture (AArch64)"
|
||||
// https://github.com/ARM-software/abi-aa/blob/main/aaelf64/aaelf64.rst#62program-property
|
||||
.pushsection .note.gnu.property, "a";
|
||||
.balign 8;
|
||||
.long 4;
|
||||
.long 0x10;
|
||||
.long 0x5;
|
||||
.asciz "GNU";
|
||||
.long 0xc0000000; /* GNU_PROPERTY_AARCH64_FEATURE_1_AND */
|
||||
.long 4;
|
||||
.long 1; /* GNU_PROPERTY_AARCH64_BTI */;
|
||||
.long 0;
|
||||
.popsection
|
||||
|
@ -0,0 +1,31 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ARM_BTI_TEST_FUNCTIONS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ARM_BTI_TEST_FUNCTIONS_H_
|
||||
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if defined(ARCH_CPU_ARM64)
|
||||
extern "C" {
|
||||
/**
|
||||
* A valid BTI function. Jumping to this funtion should not cause any problem in
|
||||
* a BTI enabled environment.
|
||||
**/
|
||||
int64_t arm_bti_test_function(int64_t);
|
||||
|
||||
/**
|
||||
* A function without proper BTI landing pad. Jumping here should crash the
|
||||
* program on systems which support BTI.
|
||||
**/
|
||||
int64_t arm_bti_test_function_invalid_offset(int64_t);
|
||||
|
||||
/**
|
||||
* A simple function which immediately returns to sender.
|
||||
**/
|
||||
void arm_bti_test_function_end(void);
|
||||
}
|
||||
#endif // defined(ARCH_CPU_ARM64)
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ARM_BTI_TEST_FUNCTIONS_H_
|
131
src/base/allocator/partition_allocator/build_config.md
Normal file
131
src/base/allocator/partition_allocator/build_config.md
Normal file
@ -0,0 +1,131 @@
|
||||
# Build Config
|
||||
|
||||
PartitionAlloc's behavior and operation can be influenced by many
|
||||
different settings. Broadly, these are controlled at the top-level by
|
||||
[GN args][gn-declare-args], which propagate via
|
||||
[buildflags][buildflag-header] and `#defined` clauses.
|
||||
|
||||
*** promo
|
||||
Most of what you'll want to know exists between
|
||||
|
||||
* [`//base/allocator/partition_allocator/BUILD.gn`][pa-build-gn],
|
||||
* Everything else ending in `.gn` or `.gni` in
|
||||
`//base/allocator/partition_allocator/`,
|
||||
* [`allocator.gni`][allocator-gni],
|
||||
* [`//base/allocator/BUILD.gn`][base-allocator-build-gn], and
|
||||
* [`//base/BUILD.gn`][base-build-gn].
|
||||
***
|
||||
|
||||
*** aside
|
||||
While Chromium promotes the `#if BUILDFLAG(FOO)` construct, some of
|
||||
PartitionAlloc's behavior is governed by compound conditions `#defined`
|
||||
in [`partition_alloc_config.h`][partition-alloc-config].
|
||||
***
|
||||
|
||||
*** promo
|
||||
PartitionAlloc targets C++17. As the team develops standalone
|
||||
PartitionAlloc, this may diverge from what the rest of Chrome browser
|
||||
does, as we will be obligated to support external clients that
|
||||
may not yet support newer C++ standards.
|
||||
|
||||
See [Chrome-External Builds](./external_builds.md) for more.
|
||||
***
|
||||
|
||||
## Select GN Args
|
||||
|
||||
### `use_partition_alloc`
|
||||
|
||||
Defines whether PartitionAlloc is at all available.
|
||||
|
||||
Setting this `false` will entirely remove PartitionAlloc from the
|
||||
Chromium build. _You probably do not want this._
|
||||
|
||||
*** note
|
||||
Back when PartitionAlloc was the dedicated allocator in Blink, disabling
|
||||
it was logically identical to wholly disabling it in Chromium. This GN
|
||||
arg organically grew in scope with the advent of
|
||||
PartitionAlloc-Everywhere and must be `true` as a prerequisite for
|
||||
enabling PA-E.
|
||||
***
|
||||
|
||||
### `use_allocator`
|
||||
|
||||
Does nothing special when value is `"none"`. Enables
|
||||
[PartitionAlloc-Everywhere (PA-E)][pae-public-doc] when value is
|
||||
`"partition"`.
|
||||
|
||||
*** note
|
||||
* While "everywhere" (in "PartitionAlloc-Everywhere") tautologically
|
||||
includes Blink where PartitionAlloc originated, setting
|
||||
`use_allocator = "none"` does not disable PA usage in Blink.
|
||||
* `use_allocator = "partition"` internally sets
|
||||
`use_partition_alloc_as_malloc = true`, which must not be confused
|
||||
with `use_partition_alloc` (see above).
|
||||
***
|
||||
|
||||
### `use_backup_ref_ptr`
|
||||
|
||||
Specifies `BackupRefPtr` as the implementation for `base::raw_ptr<T>`
|
||||
when `true`. See the [MiraclePtr documentation][miracleptr-doc].
|
||||
|
||||
*** aside
|
||||
BRP requires support from PartitionAlloc, so `use_backup_ref_ptr` also
|
||||
compiles the relevant code into PA. However, this arg does _not_ govern
|
||||
whether or not BRP is actually enabled at runtime - that functionality
|
||||
is controlled by a Finch flag.
|
||||
***
|
||||
|
||||
## Note: Component Builds
|
||||
|
||||
When working on PartitionAlloc, know that `is_debug` defaults to
|
||||
implying `is_component_build`, which interferes with the allocator
|
||||
shim. A typical set of GN args should include
|
||||
|
||||
```none
|
||||
is_debug = true
|
||||
is_component_build = false
|
||||
```
|
||||
|
||||
Conversely, build configurations that have `is_component_build = true`
|
||||
without explicitly specifying PA-specific args will not build with PA-E
|
||||
enabled.
|
||||
|
||||
## Notable Macros
|
||||
|
||||
There is an ongoing effort
|
||||
[to break out PartitionAlloc into a standalone library][pa-ee-crbug].
|
||||
Once PartitionAlloc stands alone from the larger Chrome build apparatus,
|
||||
the code loses access to some macros. This is not an immediate concern,
|
||||
but the team needs to decide either
|
||||
|
||||
* how to propagate these macros in place, or
|
||||
* how to remove them, replacing them with PA-specific build config.
|
||||
|
||||
A non-exhaustive list of work items:
|
||||
|
||||
* `OFFICIAL_BUILD` - influences crash macros and
|
||||
`PA_THREAD_CACHE_ALLOC_STATS`. These are conceptually distinct enough
|
||||
to be worth separating into dedicated build controls.
|
||||
* `IS_PARTITION_ALLOC_IMPL` - must be defined when PartitionAlloc is
|
||||
built as a shared library. This is required to export symbols.
|
||||
* `COMPONENT_BUILD` - component builds (as per
|
||||
`//docs/component_build.md`) must `#define COMPONENT_BUILD`.
|
||||
Additionally, to build Win32, invoker must `#define WIN32`.
|
||||
* `MEMORY_TOOL_REPLACES_ALLOCATOR`
|
||||
* `*_SANITIZER` - mainly influences unit tests.
|
||||
|
||||
*** note
|
||||
Over time, the above list should evolve into a list of macros / GN args
|
||||
that influence PartitionAlloc's behavior.
|
||||
***
|
||||
|
||||
[gn-declare-args]: https://gn.googlesource.com/gn/+/refs/heads/main/docs/reference.md#func_declare_args
|
||||
[buildflag-header]: https://source.chromium.org/chromium/chromium/src/+/main:build/buildflag_header.gni
|
||||
[pa-build-gn]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/BUILD.gn
|
||||
[allocator-gni]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/allocator.gni
|
||||
[base-allocator-build-gn]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/BUILD.gn
|
||||
[base-build-gn]: https://source.chromium.org/chromium/chromium/src/+/main:base/BUILD.gn
|
||||
[partition-alloc-config]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_alloc_config.h
|
||||
[pae-public-doc]: https://docs.google.com/document/d/1R1H9z5IVUAnXJgDjnts3nTJVcRbufWWT9ByXLgecSUM/preview
|
||||
[miracleptr-doc]: https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg/preview
|
||||
[pa-ee-crbug]: https://crbug.com/1151236
|
@ -0,0 +1,9 @@
|
||||
# Copyright 2022 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# This file will be used to check out PartitionAlloc and to build it as
|
||||
# standalone library. In this case, PartitionAlloc needs to define
|
||||
# build_with_chromium. If building PartitionAlloc as a part of chromium,
|
||||
# chromium will provide build_with_chromium=true.
|
||||
build_with_chromium = false
|
@ -0,0 +1,19 @@
|
||||
# Copyright 2022 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//build_overrides/build.gni")
|
||||
|
||||
# This is the default build configuration when building PartitionAlloc
|
||||
# as a standalone library.
|
||||
# If embedders want to use PartitionAlloc, they need to create their own
|
||||
# //build_overrides/partition_alloc.gni and define their own PartitionAlloc
|
||||
# configuration.
|
||||
|
||||
use_partition_alloc_as_malloc_default = false
|
||||
use_allocator_shim_default = false
|
||||
enable_backup_ref_ptr_support_default = false
|
||||
enable_mte_checked_ptr_support_default = false
|
||||
put_ref_count_in_previous_slot_default = false
|
||||
enable_backup_ref_ptr_slow_checks_default = false
|
||||
enable_dangling_raw_ptr_checks_default = false
|
@ -0,0 +1,47 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/dangling_raw_ptr_checks.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
DanglingRawPtrDetectedFn* g_dangling_raw_ptr_detected_fn = [](uintptr_t) {};
|
||||
DanglingRawPtrReleasedFn* g_dangling_raw_ptr_released_fn = [](uintptr_t) {};
|
||||
} // namespace
|
||||
|
||||
DanglingRawPtrDetectedFn* GetDanglingRawPtrDetectedFn() {
|
||||
PA_DCHECK(g_dangling_raw_ptr_detected_fn);
|
||||
return g_dangling_raw_ptr_detected_fn;
|
||||
}
|
||||
|
||||
DanglingRawPtrDetectedFn* GetDanglingRawPtrReleasedFn() {
|
||||
PA_DCHECK(g_dangling_raw_ptr_released_fn);
|
||||
return g_dangling_raw_ptr_released_fn;
|
||||
}
|
||||
|
||||
void SetDanglingRawPtrDetectedFn(DanglingRawPtrDetectedFn fn) {
|
||||
PA_DCHECK(fn);
|
||||
g_dangling_raw_ptr_detected_fn = fn;
|
||||
}
|
||||
|
||||
void SetDanglingRawPtrReleasedFn(DanglingRawPtrReleasedFn fn) {
|
||||
PA_DCHECK(fn);
|
||||
g_dangling_raw_ptr_released_fn = fn;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) void DanglingRawPtrDetected(uintptr_t id) {
|
||||
g_dangling_raw_ptr_detected_fn(id);
|
||||
}
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) void DanglingRawPtrReleased(uintptr_t id) {
|
||||
g_dangling_raw_ptr_released_fn(id);
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
} // namespace partition_alloc
|
@ -0,0 +1,56 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_DANGLING_RAW_PTR_CHECKS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_DANGLING_RAW_PTR_CHECKS_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
|
||||
// When compiled with build flags `enable_dangling_raw_ptr_checks`, dangling
|
||||
// raw_ptr are reported. Its behavior can be configured here.
|
||||
//
|
||||
// Purpose of this level of indirection:
|
||||
// - Ease testing.
|
||||
// - Keep partition_alloc/ independent from base/. In most cases, when a
|
||||
// dangling raw_ptr is detected/released, this involves recording a
|
||||
// base::debug::StackTrace, which isn't desirable inside partition_alloc/.
|
||||
// - Be able (potentially) to turn this feature on/off at runtime based on
|
||||
// dependant's flags.
|
||||
namespace partition_alloc {
|
||||
|
||||
// DanglingRawPtrDetected is called when there exists a `raw_ptr` referencing a
|
||||
// memory region and the allocator is asked to release it.
|
||||
//
|
||||
// It won't be called again with the same `id`, up until (potentially) a call to
|
||||
// DanglingRawPtrReleased(`id`) is made.
|
||||
//
|
||||
// This function is called from within the allocator, and is not allowed to
|
||||
// allocate memory.
|
||||
using DanglingRawPtrDetectedFn = void(uintptr_t /*id*/);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
DanglingRawPtrDetectedFn* GetDanglingRawPtrDetectedFn();
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void SetDanglingRawPtrDetectedFn(DanglingRawPtrDetectedFn);
|
||||
|
||||
// DanglingRawPtrReleased: Called after DanglingRawPtrDetected(id), once the
|
||||
// last dangling raw_ptr stops referencing the memory region.
|
||||
//
|
||||
// This function is allowed to allocate memory.
|
||||
using DanglingRawPtrReleasedFn = void(uintptr_t /*id*/);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
DanglingRawPtrReleasedFn* GetDanglingRawPtrReleasedFn();
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void SetDanglingRawPtrReleasedFn(DanglingRawPtrReleasedFn);
|
||||
|
||||
namespace internal {
|
||||
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) void DanglingRawPtrDetected(uintptr_t id);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) void DanglingRawPtrReleased(uintptr_t id);
|
||||
|
||||
} // namespace internal
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_DANGLING_RAW_PTR_CHECKS_H_
|
23
src/base/allocator/partition_allocator/dot/layers.dot
Normal file
23
src/base/allocator/partition_allocator/dot/layers.dot
Normal file
@ -0,0 +1,23 @@
|
||||
digraph G {
|
||||
graph[bgcolor=transparent]
|
||||
node[shape=box,style="filled,rounded",color=deepskyblue]
|
||||
|
||||
subgraph cluster_tc {
|
||||
label = "Thread Cache"
|
||||
rankdir = LR
|
||||
{rank=same;TLS1,TLS2,TLSn}
|
||||
TLS1->TLS2[style=invisible,dir=none]
|
||||
TLS2->TLSn[style=dotted,dir=none]
|
||||
}
|
||||
|
||||
subgraph cluster_central {
|
||||
label = "Central Allocator (per-partition lock)"
|
||||
fast[label="slot span freelists (fast path)"]
|
||||
slow[label="slot span management (slow path)"]
|
||||
# Forces slow path node beneath fast path node.
|
||||
fast->slow[style=invisible,dir=none]
|
||||
}
|
||||
|
||||
# Forces thread-external subgraph beneath thread cache subgraph.
|
||||
TLS2->fast[style=invisible,dir=none]
|
||||
}
|
BIN
src/base/allocator/partition_allocator/dot/layers.png
Normal file
BIN
src/base/allocator/partition_allocator/dot/layers.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
95
src/base/allocator/partition_allocator/dot/super-page.dot
Normal file
95
src/base/allocator/partition_allocator/dot/super-page.dot
Normal file
@ -0,0 +1,95 @@
|
||||
digraph G {
|
||||
graph[bgcolor=transparent]
|
||||
node[shape=plaintext]
|
||||
edge[style=dashed]
|
||||
|
||||
invisible_a[label=<
|
||||
<TABLE BORDER="0" CELLBORDER="0" CELLSPACING="0">
|
||||
<TR>
|
||||
<TD PORT="red" WIDTH="100"></TD>
|
||||
<TD PORT="green" WIDTH="20"></TD>
|
||||
<TD PORT="blue" WIDTH="40"></TD>
|
||||
<TD PORT="gold" WIDTH="300"></TD>
|
||||
<TD PORT="pink" WIDTH="60"></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
superpage[xlabel="Super Page",label=<
|
||||
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0" WIDTH="10">
|
||||
<TR>
|
||||
<!-- Head Partition Page -->
|
||||
<TD BGCOLOR="darkgrey" HEIGHT="52"></TD>
|
||||
<TD PORT="metadata"></TD>
|
||||
<TD BGCOLOR="darkgrey" WIDTH="18"></TD>
|
||||
<!-- Bitmaps -->
|
||||
<TD WIDTH="100">Bitmaps(?)</TD>
|
||||
<!-- Several Slot Spans -->
|
||||
<TD PORT="red" BGCOLOR="crimson" WIDTH="119">3</TD>
|
||||
<TD PORT="green" BGCOLOR="palegreen" WIDTH="39">1</TD>
|
||||
<TD PORT="blue" BGCOLOR="cornflowerblue" WIDTH="79">2</TD>
|
||||
<TD PORT="gold" BGCOLOR="gold" WIDTH="239">6</TD>
|
||||
<TD PORT="red2" BGCOLOR="crimson" WIDTH="119">3</TD>
|
||||
<TD PORT="pink" BGCOLOR="deeppink" WIDTH="39">1</TD>
|
||||
<TD WIDTH="79">...</TD>
|
||||
<!-- Tail Partition Page -->
|
||||
<TD BGCOLOR="darkgrey" WIDTH="39"></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
invisible_b[label=<
|
||||
<TABLE BORDER="0" CELLBORDER="0" CELLSPACING="0">
|
||||
<TR>
|
||||
<TD PORT="green" WIDTH="30"></TD>
|
||||
<TD PORT="blue" WIDTH="60"></TD>
|
||||
<TD PORT="gold" WIDTH="180"></TD>
|
||||
<TD PORT="red" WIDTH="90"></TD>
|
||||
<TD PORT="pink" WIDTH="90"></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
metadata_page[xlabel="Metadata",label=<
|
||||
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0">
|
||||
<TR>
|
||||
<!-- Guard Page Metadata -->
|
||||
<TD BGCOLOR="darkgrey"> </TD>
|
||||
<!-- Bitmaps Offset -->
|
||||
<TD> B? </TD>
|
||||
<!-- Red Slot Span Metadata -->
|
||||
<TD BGCOLOR="crimson">v</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<!-- Green Slot Span Metadata -->
|
||||
<TD BGCOLOR="palegreen">v</TD>
|
||||
<!-- Blue Slot Span Metadata -->
|
||||
<TD BGCOLOR="cornflowerblue">v</TD>
|
||||
<TD BGCOLOR="cornflowerblue">+</TD>
|
||||
<!-- Gold Slot Span Metadata -->
|
||||
<TD BGCOLOR="gold">v</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<!-- Red Slot Span Metadata -->
|
||||
<TD BGCOLOR="crimson">v</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<!-- Pink Slot Span Metadata -->
|
||||
<TD BGCOLOR="deeppink">v</TD>
|
||||
<!-- etc. -->
|
||||
<TD WIDTH="64">...</TD>
|
||||
<!-- Guard Page Metadata -->
|
||||
<TD BGCOLOR="darkgrey"> </TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
|
||||
invisible_a:red->superpage:red->superpage:red2[color=crimson]
|
||||
superpage:red2->invisible_b:red[color=crimson]
|
||||
invisible_a:green->superpage:green->invisible_b:green[color=palegreen]
|
||||
invisible_a:blue->superpage:blue->invisible_b:blue[color=cornflowerblue]
|
||||
invisible_a:gold->superpage:gold->invisible_b:gold[color=gold]
|
||||
invisible_a:pink->superpage:pink->invisible_b:pink[color=deeppink]
|
||||
|
||||
superpage:metadata->metadata_page[style="",arrowhead=odot]
|
||||
}
|
BIN
src/base/allocator/partition_allocator/dot/super-page.png
Normal file
BIN
src/base/allocator/partition_allocator/dot/super-page.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
89
src/base/allocator/partition_allocator/extended_api.cc
Normal file
89
src/base/allocator/partition_allocator/extended_api.cc
Normal file
@ -0,0 +1,89 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/extended_api.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/shim/allocator_shim_default_dispatch_to_partition_alloc.h"
|
||||
#include "base/allocator/partition_allocator/thread_cache.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
#if defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
|
||||
namespace {
|
||||
|
||||
void DisableThreadCacheForRootIfEnabled(ThreadSafePartitionRoot* root) {
|
||||
// Some platforms don't have a thread cache, or it could already have been
|
||||
// disabled.
|
||||
if (!root || !root->flags.with_thread_cache)
|
||||
return;
|
||||
|
||||
ThreadCacheRegistry::Instance().PurgeAll();
|
||||
root->flags.with_thread_cache = false;
|
||||
// Doesn't destroy the thread cache object(s). For background threads, they
|
||||
// will be collected (and free cached memory) at thread destruction
|
||||
// time. For the main thread, we leak it.
|
||||
}
|
||||
|
||||
void EnablePartitionAllocThreadCacheForRootIfDisabled(
|
||||
ThreadSafePartitionRoot* root) {
|
||||
if (!root)
|
||||
return;
|
||||
root->flags.with_thread_cache = true;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT)
|
||||
void DisablePartitionAllocThreadCacheForProcess() {
|
||||
auto* regular_allocator =
|
||||
allocator_shim::internal::PartitionAllocMalloc::Allocator();
|
||||
auto* aligned_allocator =
|
||||
allocator_shim::internal::PartitionAllocMalloc::AlignedAllocator();
|
||||
DisableThreadCacheForRootIfEnabled(regular_allocator);
|
||||
if (aligned_allocator != regular_allocator)
|
||||
DisableThreadCacheForRootIfEnabled(aligned_allocator);
|
||||
DisableThreadCacheForRootIfEnabled(
|
||||
allocator_shim::internal::PartitionAllocMalloc::OriginalAllocator());
|
||||
}
|
||||
#endif // defined(ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT)
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
|
||||
void SwapOutProcessThreadCacheForTesting(ThreadSafePartitionRoot* root) {
|
||||
#if defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
|
||||
#if BUILDFLAG(ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT)
|
||||
DisablePartitionAllocThreadCacheForProcess();
|
||||
#else
|
||||
PA_CHECK(!ThreadCache::IsValid(ThreadCache::Get()));
|
||||
#endif // BUILDFLAG(ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT)
|
||||
|
||||
ThreadCache::SwapForTesting(root);
|
||||
EnablePartitionAllocThreadCacheForRootIfDisabled(root);
|
||||
|
||||
#endif // defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
}
|
||||
|
||||
void SwapInProcessThreadCacheForTesting(ThreadSafePartitionRoot* root) {
|
||||
#if defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
|
||||
// First, disable the test thread cache we have.
|
||||
DisableThreadCacheForRootIfEnabled(root);
|
||||
|
||||
#if BUILDFLAG(ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT)
|
||||
auto* regular_allocator =
|
||||
allocator_shim::internal::PartitionAllocMalloc::Allocator();
|
||||
EnablePartitionAllocThreadCacheForRootIfDisabled(regular_allocator);
|
||||
|
||||
ThreadCache::SwapForTesting(regular_allocator);
|
||||
#else
|
||||
ThreadCache::SwapForTesting(nullptr);
|
||||
#endif // BUILDFLAG(ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT)
|
||||
|
||||
#endif // defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
24
src/base/allocator/partition_allocator/extended_api.h
Normal file
24
src/base/allocator/partition_allocator/extended_api.h
Normal file
@ -0,0 +1,24 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_EXTENDED_API_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_EXTENDED_API_H_
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_root.h"
|
||||
#include "base/allocator/partition_allocator/thread_cache.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
// These two functions are unsafe to run if there are multiple threads running
|
||||
// in the process.
|
||||
//
|
||||
// Disables the thread cache for the entire process, and replaces it with a
|
||||
// thread cache for |root|.
|
||||
void SwapOutProcessThreadCacheForTesting(ThreadSafePartitionRoot* root);
|
||||
// Disables the current thread cache, and replaces it with the default for the
|
||||
// process.
|
||||
void SwapInProcessThreadCacheForTesting(ThreadSafePartitionRoot* root);
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_EXTENDED_API_H_
|
57
src/base/allocator/partition_allocator/external_builds.md
Normal file
57
src/base/allocator/partition_allocator/external_builds.md
Normal file
@ -0,0 +1,57 @@
|
||||
# Chrome-External Builds
|
||||
|
||||
Work is ongoing to make PartitionAlloc a standalone library. The
|
||||
standalone repository for PartitionAlloc is hosted
|
||||
[here][standalone-PA-repo].
|
||||
|
||||
## GN Args
|
||||
|
||||
External clients mainly need to set these six GN args:
|
||||
|
||||
``` none
|
||||
# These are blocked on PA-E and `raw_ptr.h` and can never be true until
|
||||
# we make them part of the standalone PA distribution.
|
||||
use_partition_alloc_as_malloc_default = false
|
||||
enable_mte_checked_ptr_support_default = false
|
||||
enable_backup_ref_ptr_support_default = false
|
||||
put_ref_count_in_previous_slot_default = false
|
||||
enable_backup_ref_ptr_slow_checks_default = false
|
||||
enable_dangling_raw_ptr_checks_default = false
|
||||
```
|
||||
|
||||
PartitionAlloc's build will expect them at
|
||||
`//build_overrides/partition_alloc.gni`.
|
||||
|
||||
In addition, something must provide `build_with_chromium = false` to
|
||||
the PA build system.
|
||||
|
||||
## Build Considerations
|
||||
|
||||
External clients create constraints on PartitionAlloc's implementation.
|
||||
|
||||
### C++17
|
||||
|
||||
PartitionAlloc targets C++17. This is aligned with our first external
|
||||
client, PDFium, and may be further constrained by other clients. These
|
||||
impositions prevent us from moving in lockstep with Chrome's target
|
||||
C++ version.
|
||||
|
||||
We do not even have guarantees of backported future features, e.g.
|
||||
C++20's designated initializers. Therefore, these cannot ship with
|
||||
PartitionAlloc.
|
||||
|
||||
### MSVC Support
|
||||
|
||||
PDFium supports MSVC. PartitionAlloc will have to match it.
|
||||
|
||||
### MSVC Constraint: No Inline Assembly
|
||||
|
||||
MSVC's syntax for `asm` blocks differs from the one widely adopted in
|
||||
parts of Chrome. But more generally,
|
||||
[MSVC doesn't support inline assembly on ARM and x64 processors][msvc-inline-assembly].
|
||||
Assembly blocks should be gated behind compiler-specific flags and
|
||||
replaced with intrinsics in the presence of `COMPILER_MSVC` (absent
|
||||
`__clang__`).
|
||||
|
||||
[standalone-PA-repo]: https://chromium.googlesource.com/chromium/src/base/allocator/partition_allocator.git
|
||||
[msvc-inline-assembly]: https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=msvc-170
|
140
src/base/allocator/partition_allocator/freeslot_bitmap.h
Normal file
140
src/base/allocator/partition_allocator/freeslot_bitmap.h
Normal file
@ -0,0 +1,140 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_FREESLOT_BITMAP_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_FREESLOT_BITMAP_H_
|
||||
|
||||
#include <climits>
|
||||
#include <cstdint>
|
||||
#include <utility>
|
||||
|
||||
#include "base/allocator/partition_allocator/freeslot_bitmap_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/bits.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
|
||||
#if BUILDFLAG(USE_FREESLOT_BITMAP)
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
PA_ALWAYS_INLINE uintptr_t GetFreeSlotBitmapAddressForPointer(uintptr_t ptr) {
|
||||
uintptr_t super_page = ptr & kSuperPageBaseMask;
|
||||
return SuperPageFreeSlotBitmapAddr(super_page);
|
||||
}
|
||||
|
||||
// Calculates the cell address and the offset inside the cell corresponding to
|
||||
// the |slot_start|.
|
||||
PA_ALWAYS_INLINE std::pair<FreeSlotBitmapCellType*, size_t>
|
||||
GetFreeSlotBitmapCellPtrAndBitIndex(uintptr_t slot_start) {
|
||||
uintptr_t slot_superpage_offset = slot_start & kSuperPageOffsetMask;
|
||||
uintptr_t superpage_bitmap_start =
|
||||
GetFreeSlotBitmapAddressForPointer(slot_start);
|
||||
uintptr_t cell_addr = base::bits::AlignDown(
|
||||
superpage_bitmap_start +
|
||||
(slot_superpage_offset / kSmallestBucket) / CHAR_BIT,
|
||||
sizeof(FreeSlotBitmapCellType));
|
||||
PA_DCHECK(cell_addr < superpage_bitmap_start + kFreeSlotBitmapSize);
|
||||
size_t bit_index =
|
||||
(slot_superpage_offset / kSmallestBucket) & kFreeSlotBitmapOffsetMask;
|
||||
PA_DCHECK(bit_index < kFreeSlotBitmapBitsPerCell);
|
||||
return {reinterpret_cast<FreeSlotBitmapCellType*>(cell_addr), bit_index};
|
||||
}
|
||||
|
||||
// This bitmap marks the used slot as 0 and free one as 1. This is because we
|
||||
// would like to set all the slots as "used" by default to prevent allocating a
|
||||
// used slot when the freelist entry is overwritten. The state of the bitmap is
|
||||
// expected to be synced with freelist (i.e. the bitmap is set to 1 if and only
|
||||
// if the slot is in the freelist).
|
||||
|
||||
PA_ALWAYS_INLINE FreeSlotBitmapCellType CellWithAOne(size_t n) {
|
||||
return static_cast<FreeSlotBitmapCellType>(1) << n;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE FreeSlotBitmapCellType CellWithTrailingOnes(size_t n) {
|
||||
return (static_cast<FreeSlotBitmapCellType>(1) << n) -
|
||||
static_cast<FreeSlotBitmapCellType>(1);
|
||||
}
|
||||
|
||||
// Returns true if the bit corresponding to |slot_start| is used( = 0)
|
||||
PA_ALWAYS_INLINE bool FreeSlotBitmapSlotIsUsed(uintptr_t slot_start) {
|
||||
auto [cell, bit_index] = GetFreeSlotBitmapCellPtrAndBitIndex(slot_start);
|
||||
return (*cell & CellWithAOne(bit_index)) == 0;
|
||||
}
|
||||
|
||||
// Mark the bit corresponding to |slot_start| as used( = 0).
|
||||
PA_ALWAYS_INLINE void FreeSlotBitmapMarkSlotAsUsed(uintptr_t slot_start) {
|
||||
PA_CHECK(!FreeSlotBitmapSlotIsUsed(slot_start));
|
||||
auto [cell, bit_index] = GetFreeSlotBitmapCellPtrAndBitIndex(slot_start);
|
||||
*cell &= ~CellWithAOne(bit_index);
|
||||
}
|
||||
|
||||
// Mark the bit corresponding to |slot_start| as free( = 1).
|
||||
PA_ALWAYS_INLINE void FreeSlotBitmapMarkSlotAsFree(uintptr_t slot_start) {
|
||||
PA_CHECK(FreeSlotBitmapSlotIsUsed(slot_start));
|
||||
auto [cell, bit_index] = GetFreeSlotBitmapCellPtrAndBitIndex(slot_start);
|
||||
*cell |= CellWithAOne(bit_index);
|
||||
}
|
||||
|
||||
// Resets (= set to 0) all the bits corresponding to the slot-start addresses
|
||||
// within [begin_addr, end_addr). |begin_addr| has to be the beginning of a
|
||||
// slot, but |end_addr| does not.
|
||||
PA_ALWAYS_INLINE void FreeSlotBitmapReset(uintptr_t begin_addr,
|
||||
uintptr_t end_addr,
|
||||
uintptr_t slot_size) {
|
||||
PA_DCHECK(begin_addr <= end_addr);
|
||||
// |end_addr| has to be kSmallestBucket-aligned.
|
||||
PA_DCHECK((end_addr & (kSmallestBucket - 1)) == 0u);
|
||||
for (uintptr_t slot_start = begin_addr; slot_start < end_addr;
|
||||
slot_start += slot_size) {
|
||||
auto [cell, bit_index] = GetFreeSlotBitmapCellPtrAndBitIndex(slot_start);
|
||||
*cell &= ~CellWithAOne(bit_index);
|
||||
}
|
||||
|
||||
#if BUILDFLAG(PA_DCHECK_IS_ON)
|
||||
// Checks if the cells that are meant to contain only unset bits are really 0.
|
||||
auto [begin_cell, begin_bit_index] =
|
||||
GetFreeSlotBitmapCellPtrAndBitIndex(begin_addr);
|
||||
auto [end_cell, end_bit_index] =
|
||||
GetFreeSlotBitmapCellPtrAndBitIndex(end_addr);
|
||||
|
||||
// The bits that should be marked to 0 are |begin_bit_index|th bit of
|
||||
// |begin_cell| to |end_bit_index - 1|th bit of |end_cell|. We verify all the
|
||||
// bits are set to 0 for the cells between [begin_cell + 1, end_cell). For the
|
||||
// |begin_cell| and |end_cell|, we have to handle them separately to only
|
||||
// check the partial bits.
|
||||
// | begin_cell | |...| | end_cell |
|
||||
// |11...100...0|0...0|...|0...0|0...01...1|
|
||||
// ^ ^
|
||||
// | |
|
||||
// begin_addr end_addr
|
||||
|
||||
if (begin_cell == end_cell) {
|
||||
PA_DCHECK((*begin_cell & (~CellWithTrailingOnes(begin_bit_index) &
|
||||
CellWithTrailingOnes(end_bit_index))) == 0u);
|
||||
}
|
||||
|
||||
if (begin_bit_index != 0) {
|
||||
// Checks the bits between [begin_bit_index, kFreeSlotBitmapBitsPerCell) in
|
||||
// the begin_cell are 0
|
||||
PA_DCHECK((*begin_cell & ~CellWithTrailingOnes(begin_bit_index)) == 0u);
|
||||
++begin_cell;
|
||||
}
|
||||
|
||||
if (end_bit_index != 0) {
|
||||
// Checks the bits between [0, end_bit_index) in the end_cell are 0
|
||||
PA_DCHECK((*end_cell & CellWithTrailingOnes(end_bit_index)) == 0u);
|
||||
}
|
||||
|
||||
for (FreeSlotBitmapCellType* cell = begin_cell; cell != end_cell; ++cell) {
|
||||
PA_DCHECK(*cell == 0u);
|
||||
}
|
||||
#endif // BUILDFLAG(PA_DCHECK_IS_ON)
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BUILDFLAG(USE_FREESLOT_BITMAP)
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_FREESLOT_BITMAP_H_
|
@ -0,0 +1,63 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_FREESLOT_BITMAP_CONSTANTS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_FREESLOT_BITMAP_CONSTANTS_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/bits.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
|
||||
#include "base/allocator/partition_allocator/partition_tag_bitmap.h"
|
||||
#include "base/allocator/partition_allocator/reservation_offset_table.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
using FreeSlotBitmapCellType = uint64_t;
|
||||
constexpr size_t kFreeSlotBitmapBitsPerCell =
|
||||
sizeof(FreeSlotBitmapCellType) * CHAR_BIT;
|
||||
constexpr size_t kFreeSlotBitmapOffsetMask = kFreeSlotBitmapBitsPerCell - 1;
|
||||
|
||||
// The number of bits necessary for the bitmap is equal to the maximum number of
|
||||
// slots in a super page.
|
||||
constexpr size_t kFreeSlotBitmapSize =
|
||||
(kSuperPageSize / kSmallestBucket) / CHAR_BIT;
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
ReservedFreeSlotBitmapSize() {
|
||||
#if BUILDFLAG(USE_FREESLOT_BITMAP)
|
||||
return base::bits::AlignUp(kFreeSlotBitmapSize, PartitionPageSize());
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
CommittedFreeSlotBitmapSize() {
|
||||
#if BUILDFLAG(USE_FREESLOT_BITMAP)
|
||||
return base::bits::AlignUp(kFreeSlotBitmapSize, SystemPageSize());
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
NumPartitionPagesPerFreeSlotBitmap() {
|
||||
return ReservedFreeSlotBitmapSize() / PartitionPageSize();
|
||||
}
|
||||
|
||||
#if BUILDFLAG(USE_FREESLOT_BITMAP)
|
||||
PA_ALWAYS_INLINE uintptr_t SuperPageFreeSlotBitmapAddr(uintptr_t super_page) {
|
||||
PA_DCHECK(!(super_page % kSuperPageAlignment));
|
||||
return super_page + PartitionPageSize() +
|
||||
(IsManagedByNormalBuckets(super_page) ? ReservedTagBitmapSize() : 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_FREESLOT_BITMAP_CONSTANTS_H_
|
157
src/base/allocator/partition_allocator/glossary.md
Normal file
157
src/base/allocator/partition_allocator/glossary.md
Normal file
@ -0,0 +1,157 @@
|
||||
# Glossary
|
||||
|
||||
This page describes some core terminology used in PartitionAlloc.
|
||||
A weak attempt is made to present terms "in conceptual order" s.t.
|
||||
each term depends mainly upon previously defined ones.
|
||||
|
||||
## Top-Level Terms
|
||||
|
||||
* **Partition**: A heap that is separated and protected both from other
|
||||
partitions and from non-PartitionAlloc memory. Each partition holds
|
||||
multiple buckets.
|
||||
|
||||
*** promo
|
||||
**NOTE**: In code (and comments), "partition," "root," and even
|
||||
"allocator" are all conceptually the same thing.
|
||||
***
|
||||
|
||||
* **Bucket**: A collection of regions in a partition that contains
|
||||
similar-sized objects. For example, one bucket may hold objects of
|
||||
size (224, 256], another (256, 320], etc. Bucket size
|
||||
brackets are geometrically spaced,
|
||||
[going up to `kMaxBucketed`][max-bucket-comment].
|
||||
* **Normal Bucket**: Any bucket whose size ceiling does not exceed
|
||||
`kMaxBucketed`. This is the common case in PartitionAlloc, and
|
||||
the "normal" modifier is often dropped in casual reference.
|
||||
* **Direct Map (Bucket)**: Any allocation whose size exceeds `kMaxBucketed`.
|
||||
|
||||
Buckets consist of slot spans, organized as linked lists (see below).
|
||||
|
||||
## Pages
|
||||
|
||||
* **System Page**: A memory page defined by the CPU/OS. Commonly
|
||||
referred to as a "virtual page" in other contexts. This is typically
|
||||
4KiB, but it can be larger. PartitionAlloc supports up to 64KiB,
|
||||
though this constant isn't always known at compile time (depending
|
||||
on the OS).
|
||||
* **Partition Page**: The most common granularity used by
|
||||
PartitionAlloc. Consists of exactly 4 system pages.
|
||||
* **Super Page**: A 2MiB region, aligned on a 2MiB boundary. Not to
|
||||
be confused with OS-level terms like "large page" or "huge page",
|
||||
which are also commonly 2MiB. These have to be fully committed /
|
||||
uncommitted in memory, whereas super pages can be partially committed
|
||||
with system page granularity.
|
||||
* **Extent**: An extent is a run of consecutive super pages (belonging
|
||||
to a single partition). Extents are to super pages what slot spans are
|
||||
to slots (see below).
|
||||
|
||||
## Slots and Spans
|
||||
|
||||
* **Slot**: An indivisible allocation unit. Slot sizes are tied to
|
||||
buckets. For example, each allocation that falls into the bucket
|
||||
(224, 256] would be satisfied with a slot of size 256. This
|
||||
applies only to normal buckets, not to direct map.
|
||||
* **Slot Span**: A run of same-sized slots that are contiguous in
|
||||
memory. Slot span size is a multiple of partition page size, but it
|
||||
isn't always a multiple of slot size, although we try hard for this
|
||||
to be the case.
|
||||
* **Small Bucket**: Allocations up to 4 partition pages. In these
|
||||
cases, slot spans are always between 1 and 4 partition pages in
|
||||
size. For each slot span size, the slot span is chosen to minimize
|
||||
number of pages used while keeping the rounding waste under a
|
||||
reasonable limit.
|
||||
* For example, for a slot size 96, 64B waste is deemed acceptable
|
||||
when using a single partition page, but for slot size
|
||||
384, the potential waste of 256B wouldn't be, so 3 partition pages
|
||||
are used to achieve 0B waste.
|
||||
* PartitionAlloc may avoid waste by lowering the number of committed
|
||||
system pages compared to the number of reserved pages. For
|
||||
example, for the slot size of 896B we'd use a slot span of 2
|
||||
partition pages of 16KiB, i.e. 8 system pages of 4KiB, but commit
|
||||
only up to 7, thus resulting in perfect packing.
|
||||
* **Single-Slot Span**: Allocations above 4 partition pages (but
|
||||
≤`kMaxBucketed`). This is because each slot span is guaranteed to
|
||||
hold exactly one slot.
|
||||
* Fun fact: there are sizes ≤4 partition pages that result in a
|
||||
slot span having exactly 1 slot, but nonetheless they're still
|
||||
classified as small buckets. The reason is that single-slot spans
|
||||
are often handled by a different code path, and that distinction
|
||||
is made purely based on slot size, for simplicity and efficiency.
|
||||
|
||||
## Other Terms
|
||||
|
||||
* **Object**: A chunk of memory returned to the allocating invoker
|
||||
of the size requested. It doesn't have to span the entire slot,
|
||||
nor does it have to begin at the slot start. This term is commonly
|
||||
used as a parameter name in PartitionAlloc code, as opposed to
|
||||
`slot_start`.
|
||||
* **Thread Cache**: A [thread-local structure][pa-thread-cache] that
|
||||
holds some not-too-large memory chunks, ready to be allocated. This
|
||||
speeds up in-thread allocation by reducing a lock hold to a
|
||||
thread-local storage lookup, improving cache locality.
|
||||
* **GigaCage**: A memory region several gigabytes wide, reserved by
|
||||
PartitionAlloc upon initialization, from which all allocations are
|
||||
taken. The motivation for GigaCage is for code to be able to examine
|
||||
a pointer and to immediately determine whether or not the memory was
|
||||
allocated by PartitionAlloc. This provides support for a number of
|
||||
features, including
|
||||
[StarScan][starscan-readme] and
|
||||
[BackupRefPtr][brp-doc].
|
||||
* Note that GigaCage only exists in builds with 64-bit pointers.
|
||||
* In builds with 32-bit pointers, PartitionAlloc tracks pointers
|
||||
it dispenses with a bitmap. This is often referred to as "fake
|
||||
GigaCage" (or simply "GigaCage") for lack of a better term.
|
||||
* **Payload**: The usable area of a super page in which slot spans
|
||||
reside. While generally this means "everything between the first
|
||||
and last guard partition pages in a super page," the presence of
|
||||
other metadata (e.g. StarScan bitmaps) can bump the starting offset
|
||||
forward. While this term is entrenched in the code, the team
|
||||
considers it suboptimal and is actively looking for a replacement.
|
||||
* **Allocation Fast Path**: A path taken during an allocation that is
|
||||
considered fast. Usually means that an allocation request can be
|
||||
immediately satisfied by grabbing a slot from the freelist of the
|
||||
first active slot span in the bucket.
|
||||
* **Allocation Slow Path**: Anything which is not fast (see above).
|
||||
Can involve
|
||||
* finding another active slot span in the list,
|
||||
* provisioning more slots in a slot span,
|
||||
* bringing back a free (or decommitted) slot span,
|
||||
* allocating a new slot span, or even
|
||||
* allocating a new super page.
|
||||
|
||||
*** aside
|
||||
By "slow" we may mean something as simple as extra logic (`if`
|
||||
statements etc.), or something as costly as system calls.
|
||||
***
|
||||
|
||||
## PartitionAlloc-Everywhere
|
||||
|
||||
Originally, PartitionAlloc was used only in Blink (Chromium's rendering engine).
|
||||
It was invoked explicitly, by calling PartitionAlloc APIs directly.
|
||||
|
||||
PartitionAlloc-Everywhere is the name of the project that brought PartitionAlloc
|
||||
to the entire-ish codebase (exclusions apply). This was done by intercepting
|
||||
`malloc()`, `free()`, `realloc()`, aforementioned `posix_memalign()`, etc. and
|
||||
routing them into PartitionAlloc. The shim located in
|
||||
`base/allocator/allocator_shim_default_dispatch_to_partition_alloc.h` is
|
||||
responsible for intercepting. For more details, see
|
||||
[base/allocator/README.md](../../../base/allocator/README.md).
|
||||
|
||||
A special, catch-it-all *Malloc* partition has been created for the intercepted
|
||||
`malloc()` et al. This is to isolate from already existing Blink partitions.
|
||||
The only exception from that is Blink's *FastMalloc* partition, which was also
|
||||
catch-it-all in nature, so it's perfectly fine to merge these together, to
|
||||
minimize fragmentation.
|
||||
|
||||
As of 2022, PartitionAlloc-Everywhere is supported on
|
||||
|
||||
* Windows 32- and 64-bit
|
||||
* Linux
|
||||
* Android 32- and 64-bit
|
||||
* macOS
|
||||
* Fuchsia
|
||||
|
||||
[max-bucket-comment]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_alloc_constants.h;l=345;drc=667e6b001f438521e1c1a1bc3eabeead7aaa1f37
|
||||
[pa-thread-cache]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/thread_cache.h
|
||||
[starscan-readme]: https://chromium.googlesource.com/chromium/src/+/main/base/allocator/partition_allocator/starscan/README.md
|
||||
[brp-doc]: https://docs.google.com/document/d/1m0c63vXXLyGtIGBi9v6YFANum7-IRC3-dmiYBCWqkMk/preview
|
134
src/base/allocator/partition_allocator/gwp_asan_support.cc
Normal file
134
src/base/allocator/partition_allocator/gwp_asan_support.cc
Normal file
@ -0,0 +1,134 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/gwp_asan_support.h"
|
||||
|
||||
#if BUILDFLAG(ENABLE_GWP_ASAN_SUPPORT)
|
||||
|
||||
#include "base/allocator/partition_allocator/freeslot_bitmap_constants.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/no_destructor.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_bucket.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "base/allocator/partition_allocator/partition_page.h"
|
||||
#include "base/allocator/partition_allocator/partition_ref_count.h"
|
||||
#include "base/allocator/partition_allocator/partition_root.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// static
|
||||
void* GwpAsanSupport::MapRegion(size_t slot_count,
|
||||
std::vector<uint16_t>& free_list) {
|
||||
PA_CHECK(slot_count > 0);
|
||||
|
||||
constexpr PartitionOptions kConfig{
|
||||
PartitionOptions::AlignedAlloc::kDisallowed,
|
||||
PartitionOptions::ThreadCache::kDisabled,
|
||||
PartitionOptions::Quarantine::kDisallowed,
|
||||
PartitionOptions::Cookie::kDisallowed,
|
||||
PartitionOptions::BackupRefPtr::kEnabled,
|
||||
PartitionOptions::BackupRefPtrZapping::kDisabled,
|
||||
PartitionOptions::UseConfigurablePool::kNo,
|
||||
};
|
||||
static internal::base::NoDestructor<ThreadSafePartitionRoot> root(kConfig);
|
||||
|
||||
const size_t kSlotSize = 2 * internal::SystemPageSize();
|
||||
uint16_t bucket_index =
|
||||
PartitionRoot<internal::ThreadSafe>::SizeToBucketIndex(
|
||||
kSlotSize, root->GetBucketDistribution());
|
||||
auto* bucket = root->buckets + bucket_index;
|
||||
|
||||
const size_t kSuperPagePayloadStartOffset =
|
||||
internal::SuperPagePayloadStartOffset(
|
||||
/* is_managed_by_normal_buckets = */ true,
|
||||
/* with_quarantine = */ false);
|
||||
PA_CHECK(kSuperPagePayloadStartOffset % kSlotSize == 0);
|
||||
const size_t kSuperPageGwpAsanSlotAreaBeginOffset =
|
||||
kSuperPagePayloadStartOffset;
|
||||
const size_t kSuperPageGwpAsanSlotAreaEndOffset =
|
||||
internal::SuperPagePayloadEndOffset();
|
||||
const size_t kSuperPageGwpAsanSlotAreaSize =
|
||||
kSuperPageGwpAsanSlotAreaEndOffset - kSuperPageGwpAsanSlotAreaBeginOffset;
|
||||
const size_t kSlotsPerSlotSpan = bucket->get_bytes_per_span() / kSlotSize;
|
||||
const size_t kSlotsPerSuperPage =
|
||||
kSuperPageGwpAsanSlotAreaSize / (kSlotsPerSlotSpan * kSlotSize);
|
||||
|
||||
size_t super_page_count = 1 + ((slot_count - 1) / kSlotsPerSuperPage);
|
||||
PA_CHECK(super_page_count <=
|
||||
std::numeric_limits<size_t>::max() / kSuperPageSize);
|
||||
uintptr_t super_page_span_start;
|
||||
{
|
||||
internal::ScopedGuard locker{root->lock_};
|
||||
super_page_span_start = bucket->AllocNewSuperPageSpanForGwpAsan(
|
||||
root.get(), super_page_count, 0);
|
||||
|
||||
if (!super_page_span_start)
|
||||
return nullptr;
|
||||
|
||||
#if defined(ARCH_CPU_64_BITS)
|
||||
// Mapping the GWP-ASan region in to the lower 32-bits of address space
|
||||
// makes it much more likely that a bad pointer dereference points into
|
||||
// our region and triggers a false positive report. We rely on the fact
|
||||
// that PA address pools are never allocated in the first 4GB due to
|
||||
// their alignment requirements.
|
||||
PA_CHECK(super_page_span_start >= (1ULL << 32));
|
||||
#endif // defined(ARCH_CPU_64_BITS)
|
||||
|
||||
uintptr_t super_page_span_end =
|
||||
super_page_span_start + super_page_count * kSuperPageSize;
|
||||
PA_CHECK(super_page_span_start < super_page_span_end);
|
||||
|
||||
for (uintptr_t super_page = super_page_span_start;
|
||||
super_page < super_page_span_end; super_page += kSuperPageSize) {
|
||||
auto* page_metadata =
|
||||
internal::PartitionSuperPageToMetadataArea<internal::ThreadSafe>(
|
||||
super_page);
|
||||
|
||||
// Index 0 is invalid because it is the super page extent metadata.
|
||||
for (size_t partition_page_idx =
|
||||
1 + internal::NumPartitionPagesPerFreeSlotBitmap();
|
||||
partition_page_idx + bucket->get_pages_per_slot_span() <
|
||||
internal::NumPartitionPagesPerSuperPage();
|
||||
partition_page_idx += bucket->get_pages_per_slot_span()) {
|
||||
auto* slot_span_metadata =
|
||||
&page_metadata[partition_page_idx].slot_span_metadata;
|
||||
bucket->InitializeSlotSpanForGwpAsan(slot_span_metadata);
|
||||
auto slot_span_start =
|
||||
internal::SlotSpanMetadata<internal::ThreadSafe>::ToSlotSpanStart(
|
||||
slot_span_metadata);
|
||||
|
||||
for (uintptr_t slot_idx = 0; slot_idx < kSlotsPerSlotSpan; ++slot_idx) {
|
||||
auto slot_start = slot_span_start + slot_idx * kSlotSize;
|
||||
internal::PartitionRefCountPointer(slot_start)->InitalizeForGwpAsan();
|
||||
size_t global_slot_idx = (slot_start - super_page_span_start -
|
||||
kSuperPageGwpAsanSlotAreaBeginOffset) /
|
||||
kSlotSize;
|
||||
PA_DCHECK(global_slot_idx < std::numeric_limits<uint16_t>::max());
|
||||
free_list.push_back(global_slot_idx);
|
||||
if (free_list.size() == slot_count) {
|
||||
return reinterpret_cast<void*>(
|
||||
super_page_span_start + kSuperPageGwpAsanSlotAreaBeginOffset -
|
||||
internal::SystemPageSize()); // Depends on the PA guard region
|
||||
// in front of the super page
|
||||
// payload area.
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
PA_NOTREACHED();
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// static
|
||||
bool GwpAsanSupport::CanReuse(uintptr_t slot_start) {
|
||||
return internal::PartitionRefCountPointer(slot_start)->CanBeReusedByGwpAsan();
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BUILDFLAG(ENABLE_GWP_ASAN_SUPPORT)
|
120
src/base/allocator/partition_allocator/gwp_asan_support.h
Normal file
120
src/base/allocator/partition_allocator/gwp_asan_support.h
Normal file
@ -0,0 +1,120 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_GWP_ASAN_SUPPORT_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_GWP_ASAN_SUPPORT_H_
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
|
||||
#if BUILDFLAG(ENABLE_GWP_ASAN_SUPPORT)
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// This class allows GWP-ASan allocations to be backed by PartitionAlloc and,
|
||||
// consequently, protected by MiraclePtr.
|
||||
//
|
||||
// GWP-ASan mainly operates at the system memory page granularity. During
|
||||
// process startup, it reserves a certain number of consecutive system pages.
|
||||
//
|
||||
// The standard layout is as follows:
|
||||
//
|
||||
// +-------------------+--------
|
||||
// | | ▲ ▲
|
||||
// | system page 0 |(a) (c)
|
||||
// | | ▼ ▼
|
||||
// +-------------------+--------
|
||||
// | | ▲ ▲
|
||||
// | system page 1 |(b) |
|
||||
// | | ▼ |
|
||||
// +-------------------+--- (d) (a) inaccessible
|
||||
// | | ▲ | (b) accessible
|
||||
// | system page 2 |(a) | (c) initial guard page
|
||||
// | | ▼ ▼ (d) allocation slot
|
||||
// +-------------------+--------
|
||||
// | | ▲ ▲
|
||||
// | system page 3 |(b) |
|
||||
// | | ▼ |
|
||||
// +-------------------+--- (d)
|
||||
// | | ▲ |
|
||||
// | system page 4 |(a) |
|
||||
// | | ▼ ▼
|
||||
// |-------------------|--------
|
||||
// | | ▲ ▲
|
||||
// | ... |(a) (d)
|
||||
//
|
||||
// Unfortunately, PartitionAlloc can't provide GWP-ASan an arbitrary number of
|
||||
// consecutive allocation slots. Allocations need to be grouped into 2MB super
|
||||
// pages so that the allocation metadata can be easily located.
|
||||
//
|
||||
// Below is the new layout:
|
||||
//
|
||||
// +-----------------------------------
|
||||
// | | ▲ ▲
|
||||
// | system page 0 | | |
|
||||
// | | | |
|
||||
// +-------------------+ | |
|
||||
// | | | |
|
||||
// | ... | (e) |
|
||||
// | | | |
|
||||
// +-------------------+------- | |
|
||||
// | | ▲ ▲ | |
|
||||
// | system page k-1 |(a) (c) | |
|
||||
// | | ▼ ▼ ▼ |
|
||||
// +-------------------+----------- (f)
|
||||
// | | ▲ ▲ |
|
||||
// | system page k |(b) | |
|
||||
// | | ▼ | |
|
||||
// +-------------------+--- (d) |
|
||||
// | | ▲ | |
|
||||
// | system page k+1 |(a) | |
|
||||
// | | ▼ ▼ |
|
||||
// +-------------------+----------- |
|
||||
// | | | (a) inaccessible
|
||||
// | ... | | (b) accessible
|
||||
// | | ▼ (c) initial guard page
|
||||
// +----------------------------------- (d) allocation slot
|
||||
// | | ▲ ▲ (e) super page metadata
|
||||
// | system page m | | | (f) super page
|
||||
// | | | | (g) pseudo allocation slot
|
||||
// +-------------------+------- | |
|
||||
// | | ▲ | |
|
||||
// | ... | | (e) |
|
||||
// | | | | |
|
||||
// +-------------------+--- (g) | |
|
||||
// | | ▲ | | |
|
||||
// | system page m+k-1 |(a) | | |
|
||||
// | | ▼ ▼ ▼ |
|
||||
// +-------------------+----------- (f)
|
||||
// | | ▲ ▲ |
|
||||
// | system page m+k |(b) | |
|
||||
// | | ▼ | |
|
||||
// +-------------------+--- (d) |
|
||||
// | | ▲ | |
|
||||
// | system page m+k+1 |(a) | |
|
||||
// | | ▼ ▼ |
|
||||
// +-------------------+----------- |
|
||||
// | | |
|
||||
// | ... | |
|
||||
// | | ▼
|
||||
// +-------------------+---------------
|
||||
//
|
||||
// This means some allocation slots will be reserved to hold PA
|
||||
// metadata. We exclude these pseudo slots from the GWP-ASan free list so that
|
||||
// they are never used for anything other that storing the metadata.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) GwpAsanSupport {
|
||||
public:
|
||||
static void* MapRegion(size_t slot_count, std::vector<uint16_t>& free_list);
|
||||
static bool CanReuse(uintptr_t slot_start);
|
||||
};
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BUILDFLAG(ENABLE_GWP_ASAN_SUPPORT)
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_GWP_ASAN_SUPPORT_H_
|
100
src/base/allocator/partition_allocator/memory_reclaimer.cc
Normal file
100
src/base/allocator/partition_allocator/memory_reclaimer.cc
Normal file
@ -0,0 +1,100 @@
|
||||
// Copyright 2019 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/memory_reclaimer.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/no_destructor.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
|
||||
#if BUILDFLAG(STARSCAN)
|
||||
#include "base/allocator/partition_allocator/starscan/pcscan.h"
|
||||
#endif // BUILDFLAG(STARSCAN)
|
||||
|
||||
// TODO(bikineev): Temporarily disable *Scan in MemoryReclaimer as it seems to
|
||||
// cause significant jank.
|
||||
#define PA_STARSCAN_ENABLE_STARSCAN_ON_RECLAIM 0
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// static
|
||||
MemoryReclaimer* MemoryReclaimer::Instance() {
|
||||
static internal::base::NoDestructor<MemoryReclaimer> instance;
|
||||
return instance.get();
|
||||
}
|
||||
|
||||
void MemoryReclaimer::RegisterPartition(PartitionRoot<>* partition) {
|
||||
internal::ScopedGuard lock(lock_);
|
||||
PA_DCHECK(partition);
|
||||
auto it_and_whether_inserted = partitions_.insert(partition);
|
||||
PA_DCHECK(it_and_whether_inserted.second);
|
||||
}
|
||||
|
||||
void MemoryReclaimer::UnregisterPartition(
|
||||
PartitionRoot<internal::ThreadSafe>* partition) {
|
||||
internal::ScopedGuard lock(lock_);
|
||||
PA_DCHECK(partition);
|
||||
size_t erased_count = partitions_.erase(partition);
|
||||
PA_DCHECK(erased_count == 1u);
|
||||
}
|
||||
|
||||
MemoryReclaimer::MemoryReclaimer() = default;
|
||||
MemoryReclaimer::~MemoryReclaimer() = default;
|
||||
|
||||
void MemoryReclaimer::ReclaimAll() {
|
||||
constexpr int kFlags = PurgeFlags::kDecommitEmptySlotSpans |
|
||||
PurgeFlags::kDiscardUnusedSystemPages |
|
||||
PurgeFlags::kAggressiveReclaim;
|
||||
Reclaim(kFlags);
|
||||
}
|
||||
|
||||
void MemoryReclaimer::ReclaimNormal() {
|
||||
constexpr int kFlags = PurgeFlags::kDecommitEmptySlotSpans |
|
||||
PurgeFlags::kDiscardUnusedSystemPages;
|
||||
Reclaim(kFlags);
|
||||
}
|
||||
|
||||
void MemoryReclaimer::Reclaim(int flags) {
|
||||
internal::ScopedGuard lock(
|
||||
lock_); // Has to protect from concurrent (Un)Register calls.
|
||||
|
||||
// PCScan quarantines freed slots. Trigger the scan first to let it call
|
||||
// FreeNoHooksImmediate on slots that pass the quarantine.
|
||||
//
|
||||
// In turn, FreeNoHooksImmediate may add slots to thread cache. Purge it next
|
||||
// so that the slots are actually freed. (This is done synchronously only for
|
||||
// the current thread.)
|
||||
//
|
||||
// Lastly decommit empty slot spans and lastly try to discard unused pages at
|
||||
// the end of the remaining active slots.
|
||||
#if PA_STARSCAN_ENABLE_STARSCAN_ON_RECLAIM && BUILDFLAG(STARSCAN)
|
||||
{
|
||||
using PCScan = internal::PCScan;
|
||||
const auto invocation_mode = flags & PurgeFlags::kAggressiveReclaim
|
||||
? PCScan::InvocationMode::kForcedBlocking
|
||||
: PCScan::InvocationMode::kBlocking;
|
||||
PCScan::PerformScanIfNeeded(invocation_mode);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
// Don't completely empty the thread cache outside of low memory situations,
|
||||
// as there is periodic purge which makes sure that it doesn't take too much
|
||||
// space.
|
||||
if (flags & PurgeFlags::kAggressiveReclaim)
|
||||
ThreadCacheRegistry::Instance().PurgeAll();
|
||||
#endif
|
||||
|
||||
for (auto* partition : partitions_)
|
||||
partition->PurgeMemory(flags);
|
||||
}
|
||||
|
||||
void MemoryReclaimer::ResetForTesting() {
|
||||
internal::ScopedGuard lock(lock_);
|
||||
partitions_.clear();
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
74
src/base/allocator/partition_allocator/memory_reclaimer.h
Normal file
74
src/base/allocator/partition_allocator/memory_reclaimer.h
Normal file
@ -0,0 +1,74 @@
|
||||
// Copyright 2019 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_MEMORY_RECLAIMER_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_MEMORY_RECLAIMER_H_
|
||||
|
||||
#include <memory>
|
||||
#include <set>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/no_destructor.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/thread_annotations.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/time/time.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// Posts and handles memory reclaim tasks for PartitionAlloc.
|
||||
//
|
||||
// Thread safety: |RegisterPartition()| and |UnregisterPartition()| can be
|
||||
// called from any thread, concurrently with reclaim. Reclaim itself runs in the
|
||||
// context of the provided |SequencedTaskRunner|, meaning that the caller must
|
||||
// take care of this runner being compatible with the various partitions.
|
||||
//
|
||||
// Singleton as this runs as long as the process is alive, and
|
||||
// having multiple instances would be wasteful.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) MemoryReclaimer {
|
||||
public:
|
||||
static MemoryReclaimer* Instance();
|
||||
|
||||
MemoryReclaimer(const MemoryReclaimer&) = delete;
|
||||
MemoryReclaimer& operator=(const MemoryReclaimer&) = delete;
|
||||
|
||||
// Internal. Do not use.
|
||||
// Registers a partition to be tracked by the reclaimer.
|
||||
void RegisterPartition(PartitionRoot<>* partition);
|
||||
// Internal. Do not use.
|
||||
// Unregisters a partition to be tracked by the reclaimer.
|
||||
void UnregisterPartition(PartitionRoot<>* partition);
|
||||
|
||||
// Triggers an explicit reclaim now to reclaim as much free memory as
|
||||
// possible. The API callers need to invoke this method periodically
|
||||
// if they want to use memory reclaimer.
|
||||
// See also GetRecommendedReclaimIntervalInMicroseconds()'s comment.
|
||||
void ReclaimNormal();
|
||||
|
||||
// Returns a recommended interval to invoke ReclaimNormal.
|
||||
int64_t GetRecommendedReclaimIntervalInMicroseconds() {
|
||||
return internal::base::Seconds(4).InMicroseconds();
|
||||
}
|
||||
|
||||
// Triggers an explicit reclaim now reclaiming all free memory
|
||||
void ReclaimAll();
|
||||
|
||||
private:
|
||||
MemoryReclaimer();
|
||||
~MemoryReclaimer();
|
||||
// |flags| is an OR of base::PartitionPurgeFlags
|
||||
void Reclaim(int flags);
|
||||
void ReclaimAndReschedule();
|
||||
void ResetForTesting();
|
||||
|
||||
internal::Lock lock_;
|
||||
std::set<PartitionRoot<>*> partitions_ PA_GUARDED_BY(lock_);
|
||||
|
||||
friend class internal::base::NoDestructor<MemoryReclaimer>;
|
||||
friend class MemoryReclaimerTest;
|
||||
};
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_MEMORY_RECLAIMER_H_
|
81
src/base/allocator/partition_allocator/oom.cc
Normal file
81
src/base/allocator/partition_allocator/oom.cc
Normal file
@ -0,0 +1,81 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/oom.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/oom_callback.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/debug/alias.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/immediate_crash.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include <windows.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <array>
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
size_t g_oom_size = 0U;
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Crash server classifies base::internal::OnNoMemoryInternal as OOM.
|
||||
// TODO(crbug.com/1151236): Update to
|
||||
// partition_alloc::internal::base::internal::OnNoMemoryInternal
|
||||
PA_NOINLINE void OnNoMemoryInternal(size_t size) {
|
||||
g_oom_size = size;
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
// Kill the process. This is important for security since most of code
|
||||
// does not check the result of memory allocation.
|
||||
// https://msdn.microsoft.com/en-us/library/het71c37.aspx
|
||||
// Pass the size of the failed request in an exception argument.
|
||||
ULONG_PTR exception_args[] = {size};
|
||||
::RaiseException(win::kOomExceptionCode, EXCEPTION_NONCONTINUABLE,
|
||||
std::size(exception_args), exception_args);
|
||||
|
||||
// Safety check, make sure process exits here.
|
||||
_exit(win::kOomExceptionCode);
|
||||
#else
|
||||
size_t tmp_size = size;
|
||||
internal::base::debug::Alias(&tmp_size);
|
||||
|
||||
// Note: Don't add anything that may allocate here. Depending on the
|
||||
// allocator, this may be called from within the allocator (e.g. with
|
||||
// PartitionAlloc), and would deadlock as our locks are not recursive.
|
||||
//
|
||||
// Additionally, this is unlikely to work, since allocating from an OOM
|
||||
// handler is likely to fail.
|
||||
//
|
||||
// Use PA_IMMEDIATE_CRASH() so that the top frame in the crash is our code,
|
||||
// rather than using abort() or similar; this avoids the crash server needing
|
||||
// to be able to successfully unwind through libc to get to the correct
|
||||
// address, which is particularly an issue on Android.
|
||||
PA_IMMEDIATE_CRASH();
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
void TerminateBecauseOutOfMemory(size_t size) {
|
||||
internal::OnNoMemoryInternal(size);
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
// The crash is generated in a PA_NOINLINE function so that we can classify the
|
||||
// crash as an OOM solely by analyzing the stack trace. It is tagged as
|
||||
// PA_NOT_TAIL_CALLED to ensure that its parent function stays on the stack.
|
||||
[[noreturn]] PA_NOINLINE void PA_NOT_TAIL_CALLED OnNoMemory(size_t size) {
|
||||
RunPartitionAllocOomCallback();
|
||||
TerminateBecauseOutOfMemory(size);
|
||||
PA_IMMEDIATE_CRASH();
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
70
src/base/allocator/partition_allocator/oom.h
Normal file
70
src/base/allocator/partition_allocator/oom.h
Normal file
@ -0,0 +1,70 @@
|
||||
// Copyright 2016 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include "base/allocator/partition_allocator/allocation_guard.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/win/windows_types.h"
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// Terminates process. Should be called only for out of memory errors.
|
||||
// |size| is the size of the failed allocation, or 0 if not known.
|
||||
// Crash reporting classifies such crashes as OOM.
|
||||
// Must be allocation-safe.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void TerminateBecauseOutOfMemory(size_t size);
|
||||
|
||||
// Records the size of the allocation that caused the current OOM crash, for
|
||||
// consumption by Breakpad.
|
||||
// TODO: this can be removed when Breakpad is no longer supported.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) extern size_t g_oom_size;
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
namespace win {
|
||||
|
||||
// Custom Windows exception code chosen to indicate an out of memory error.
|
||||
// See https://msdn.microsoft.com/en-us/library/het71c37.aspx.
|
||||
// "To make sure that you do not define a code that conflicts with an existing
|
||||
// exception code" ... "The resulting error code should therefore have the
|
||||
// highest four bits set to hexadecimal E."
|
||||
// 0xe0000008 was chosen arbitrarily, as 0x00000008 is ERROR_NOT_ENOUGH_MEMORY.
|
||||
const DWORD kOomExceptionCode = 0xe0000008;
|
||||
|
||||
} // namespace win
|
||||
#endif
|
||||
|
||||
namespace internal {
|
||||
|
||||
// The crash is generated in a PA_NOINLINE function so that we can classify the
|
||||
// crash as an OOM solely by analyzing the stack trace. It is tagged as
|
||||
// PA_NOT_TAIL_CALLED to ensure that its parent function stays on the stack.
|
||||
[[noreturn]] PA_COMPONENT_EXPORT(PARTITION_ALLOC) void PA_NOT_TAIL_CALLED
|
||||
OnNoMemory(size_t size);
|
||||
|
||||
// OOM_CRASH(size) - Specialization of IMMEDIATE_CRASH which will raise a custom
|
||||
// exception on Windows to signal this is OOM and not a normal assert.
|
||||
// OOM_CRASH(size) is called by users of PageAllocator (including
|
||||
// PartitionAlloc) to signify an allocation failure from the platform.
|
||||
#define OOM_CRASH(size) \
|
||||
do { \
|
||||
/* Raising an exception might allocate, allow that. */ \
|
||||
::partition_alloc::ScopedAllowAllocations guard{}; \
|
||||
::partition_alloc::internal::OnNoMemory(size); \
|
||||
} while (0)
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_H_
|
27
src/base/allocator/partition_allocator/oom_callback.cc
Normal file
27
src/base/allocator/partition_allocator/oom_callback.cc
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright 2018 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/oom_callback.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
PartitionAllocOomCallback g_oom_callback;
|
||||
} // namespace
|
||||
|
||||
void SetPartitionAllocOomCallback(PartitionAllocOomCallback callback) {
|
||||
PA_DCHECK(!g_oom_callback);
|
||||
g_oom_callback = callback;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
void RunPartitionAllocOomCallback() {
|
||||
if (g_oom_callback)
|
||||
g_oom_callback();
|
||||
}
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
26
src/base/allocator/partition_allocator/oom_callback.h
Normal file
26
src/base/allocator/partition_allocator/oom_callback.h
Normal file
@ -0,0 +1,26 @@
|
||||
// Copyright 2018 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_CALLBACK_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_CALLBACK_H_
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
using PartitionAllocOomCallback = void (*)();
|
||||
|
||||
// Registers a callback to be invoked during an OOM_CRASH(). OOM_CRASH is
|
||||
// invoked by users of PageAllocator (including PartitionAlloc) to signify an
|
||||
// allocation failure from the platform.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void SetPartitionAllocOomCallback(PartitionAllocOomCallback callback);
|
||||
|
||||
namespace internal {
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) void RunPartitionAllocOomCallback();
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_CALLBACK_H_
|
382
src/base/allocator/partition_allocator/page_allocator.cc
Normal file
382
src/base/allocator/partition_allocator/page_allocator.cc
Normal file
@ -0,0 +1,382 @@
|
||||
// Copyright 2013 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_space_randomization.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_internal.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/bits.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/thread_annotations.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include "base/allocator/partition_allocator/page_allocator_internals_win.h"
|
||||
#elif BUILDFLAG(IS_POSIX)
|
||||
#include "base/allocator/partition_allocator/page_allocator_internals_posix.h"
|
||||
#elif BUILDFLAG(IS_FUCHSIA)
|
||||
#include "base/allocator/partition_allocator/page_allocator_internals_fuchsia.h"
|
||||
#else
|
||||
#error Platform not supported.
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
|
||||
internal::Lock g_reserve_lock;
|
||||
|
||||
// We may reserve/release address space on different threads.
|
||||
internal::Lock& GetReserveLock() {
|
||||
return g_reserve_lock;
|
||||
}
|
||||
|
||||
std::atomic<size_t> g_total_mapped_address_space;
|
||||
|
||||
// We only support a single block of reserved address space.
|
||||
uintptr_t s_reservation_address PA_GUARDED_BY(GetReserveLock()) = 0;
|
||||
size_t s_reservation_size PA_GUARDED_BY(GetReserveLock()) = 0;
|
||||
|
||||
uintptr_t AllocPagesIncludingReserved(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
uintptr_t ret =
|
||||
internal::SystemAllocPages(address, length, accessibility, page_tag);
|
||||
if (!ret) {
|
||||
const bool cant_alloc_length = internal::kHintIsAdvisory || !address;
|
||||
if (cant_alloc_length) {
|
||||
// The system cannot allocate |length| bytes. Release any reserved address
|
||||
// space and try once more.
|
||||
ReleaseReservation();
|
||||
ret =
|
||||
internal::SystemAllocPages(address, length, accessibility, page_tag);
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Trims memory at |base_address| to given |trim_length| and |alignment|.
|
||||
//
|
||||
// On failure, on Windows, this function returns 0 and frees memory at
|
||||
// |base_address|.
|
||||
uintptr_t TrimMapping(uintptr_t base_address,
|
||||
size_t base_length,
|
||||
size_t trim_length,
|
||||
uintptr_t alignment,
|
||||
uintptr_t alignment_offset,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
PA_DCHECK(base_length >= trim_length);
|
||||
PA_DCHECK(internal::base::bits::IsPowerOfTwo(alignment));
|
||||
PA_DCHECK(alignment_offset < alignment);
|
||||
uintptr_t new_base =
|
||||
NextAlignedWithOffset(base_address, alignment, alignment_offset);
|
||||
PA_DCHECK(new_base >= base_address);
|
||||
size_t pre_slack = new_base - base_address;
|
||||
size_t post_slack = base_length - pre_slack - trim_length;
|
||||
PA_DCHECK(base_length == trim_length || pre_slack || post_slack);
|
||||
PA_DCHECK(pre_slack < base_length);
|
||||
PA_DCHECK(post_slack < base_length);
|
||||
return internal::TrimMappingInternal(base_address, base_length, trim_length,
|
||||
accessibility, pre_slack, post_slack);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// Align |address| up to the closest, non-smaller address, that gives
|
||||
// |requested_offset| remainder modulo |alignment|.
|
||||
//
|
||||
// Examples for alignment=1024 and requested_offset=64:
|
||||
// 64 -> 64
|
||||
// 65 -> 1088
|
||||
// 1024 -> 1088
|
||||
// 1088 -> 1088
|
||||
// 1089 -> 2112
|
||||
// 2048 -> 2112
|
||||
uintptr_t NextAlignedWithOffset(uintptr_t address,
|
||||
uintptr_t alignment,
|
||||
uintptr_t requested_offset) {
|
||||
PA_DCHECK(internal::base::bits::IsPowerOfTwo(alignment));
|
||||
PA_DCHECK(requested_offset < alignment);
|
||||
|
||||
uintptr_t actual_offset = address & (alignment - 1);
|
||||
uintptr_t new_address;
|
||||
if (actual_offset <= requested_offset)
|
||||
new_address = address + requested_offset - actual_offset;
|
||||
else
|
||||
new_address = address + alignment + requested_offset - actual_offset;
|
||||
PA_DCHECK(new_address >= address);
|
||||
PA_DCHECK(new_address - address < alignment);
|
||||
PA_DCHECK(new_address % alignment == requested_offset);
|
||||
|
||||
return new_address;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
uintptr_t SystemAllocPages(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
PA_DCHECK(!(length & internal::PageAllocationGranularityOffsetMask()));
|
||||
PA_DCHECK(!(hint & internal::PageAllocationGranularityOffsetMask()));
|
||||
uintptr_t ret =
|
||||
internal::SystemAllocPagesInternal(hint, length, accessibility, page_tag);
|
||||
if (ret)
|
||||
g_total_mapped_address_space.fetch_add(length, std::memory_order_relaxed);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
uintptr_t AllocPages(size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
return AllocPagesWithAlignOffset(0, length, align, 0, accessibility,
|
||||
page_tag);
|
||||
}
|
||||
uintptr_t AllocPages(uintptr_t address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
return AllocPagesWithAlignOffset(address, length, align, 0, accessibility,
|
||||
page_tag);
|
||||
}
|
||||
void* AllocPages(void* address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
return reinterpret_cast<void*>(
|
||||
AllocPages(reinterpret_cast<uintptr_t>(address), length, align,
|
||||
accessibility, page_tag));
|
||||
}
|
||||
|
||||
uintptr_t AllocPagesWithAlignOffset(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
size_t align_offset,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
PA_DCHECK(length >= internal::PageAllocationGranularity());
|
||||
PA_DCHECK(!(length & internal::PageAllocationGranularityOffsetMask()));
|
||||
PA_DCHECK(align >= internal::PageAllocationGranularity());
|
||||
// Alignment must be power of 2 for masking math to work.
|
||||
PA_DCHECK(internal::base::bits::IsPowerOfTwo(align));
|
||||
PA_DCHECK(align_offset < align);
|
||||
PA_DCHECK(!(align_offset & internal::PageAllocationGranularityOffsetMask()));
|
||||
PA_DCHECK(!(address & internal::PageAllocationGranularityOffsetMask()));
|
||||
uintptr_t align_offset_mask = align - 1;
|
||||
uintptr_t align_base_mask = ~align_offset_mask;
|
||||
PA_DCHECK(!address || (address & align_offset_mask) == align_offset);
|
||||
|
||||
// If the client passed null as the address, choose a good one.
|
||||
if (!address) {
|
||||
address = (GetRandomPageBase() & align_base_mask) + align_offset;
|
||||
}
|
||||
|
||||
// First try to force an exact-size, aligned allocation from our random base.
|
||||
#if defined(ARCH_CPU_32_BITS)
|
||||
// On 32 bit systems, first try one random aligned address, and then try an
|
||||
// aligned address derived from the value of |ret|.
|
||||
constexpr int kExactSizeTries = 2;
|
||||
#else
|
||||
// On 64 bit systems, try 3 random aligned addresses.
|
||||
constexpr int kExactSizeTries = 3;
|
||||
#endif
|
||||
|
||||
for (int i = 0; i < kExactSizeTries; ++i) {
|
||||
uintptr_t ret =
|
||||
AllocPagesIncludingReserved(address, length, accessibility, page_tag);
|
||||
if (ret) {
|
||||
// If the alignment is to our liking, we're done.
|
||||
if ((ret & align_offset_mask) == align_offset)
|
||||
return ret;
|
||||
// Free the memory and try again.
|
||||
FreePages(ret, length);
|
||||
} else {
|
||||
// |ret| is null; if this try was unhinted, we're OOM.
|
||||
if (internal::kHintIsAdvisory || !address)
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if defined(ARCH_CPU_32_BITS)
|
||||
// For small address spaces, try the first aligned address >= |ret|. Note
|
||||
// |ret| may be null, in which case |address| becomes null. If
|
||||
// |align_offset| is non-zero, this calculation may get us not the first,
|
||||
// but the next matching address.
|
||||
address = ((ret + align_offset_mask) & align_base_mask) + align_offset;
|
||||
#else // defined(ARCH_CPU_64_BITS)
|
||||
// Keep trying random addresses on systems that have a large address space.
|
||||
address = NextAlignedWithOffset(GetRandomPageBase(), align, align_offset);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Make a larger allocation so we can force alignment.
|
||||
size_t try_length = length + (align - internal::PageAllocationGranularity());
|
||||
PA_CHECK(try_length >= length);
|
||||
uintptr_t ret;
|
||||
|
||||
do {
|
||||
// Continue randomizing only on POSIX.
|
||||
address = internal::kHintIsAdvisory ? GetRandomPageBase() : 0;
|
||||
ret = AllocPagesIncludingReserved(address, try_length, accessibility,
|
||||
page_tag);
|
||||
// The retries are for Windows, where a race can steal our mapping on
|
||||
// resize.
|
||||
} while (ret && (ret = TrimMapping(ret, try_length, length, align,
|
||||
align_offset, accessibility)) == 0);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void FreePages(uintptr_t address, size_t length) {
|
||||
PA_DCHECK(!(address & internal::PageAllocationGranularityOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::PageAllocationGranularityOffsetMask()));
|
||||
internal::FreePagesInternal(address, length);
|
||||
PA_DCHECK(g_total_mapped_address_space.load(std::memory_order_relaxed) > 0);
|
||||
g_total_mapped_address_space.fetch_sub(length, std::memory_order_relaxed);
|
||||
}
|
||||
void FreePages(void* address, size_t length) {
|
||||
FreePages(reinterpret_cast<uintptr_t>(address), length);
|
||||
}
|
||||
|
||||
bool TrySetSystemPagesAccess(uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
return internal::TrySetSystemPagesAccessInternal(address, length,
|
||||
accessibility);
|
||||
}
|
||||
bool TrySetSystemPagesAccess(void* address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
return TrySetSystemPagesAccess(reinterpret_cast<uintptr_t>(address), length,
|
||||
accessibility);
|
||||
}
|
||||
|
||||
void SetSystemPagesAccess(uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
internal::SetSystemPagesAccessInternal(address, length, accessibility);
|
||||
}
|
||||
|
||||
void DecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
PA_DCHECK(!(address & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
internal::DecommitSystemPagesInternal(address, length,
|
||||
accessibility_disposition);
|
||||
}
|
||||
void DecommitSystemPages(
|
||||
void* address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
DecommitSystemPages(reinterpret_cast<uintptr_t>(address), length,
|
||||
accessibility_disposition);
|
||||
}
|
||||
|
||||
void DecommitAndZeroSystemPages(uintptr_t address, size_t length) {
|
||||
PA_DCHECK(!(address & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
internal::DecommitAndZeroSystemPagesInternal(address, length);
|
||||
}
|
||||
void DecommitAndZeroSystemPages(void* address, size_t length) {
|
||||
DecommitAndZeroSystemPages(reinterpret_cast<uintptr_t>(address), length);
|
||||
}
|
||||
|
||||
void RecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
PA_DCHECK(!(address & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(accessibility != PageAccessibilityConfiguration::kInaccessible);
|
||||
internal::RecommitSystemPagesInternal(address, length, accessibility,
|
||||
accessibility_disposition);
|
||||
}
|
||||
|
||||
bool TryRecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// Duplicated because we want errors to be reported at a lower level in the
|
||||
// crashing case.
|
||||
PA_DCHECK(!(address & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(accessibility != PageAccessibilityConfiguration::kInaccessible);
|
||||
return internal::TryRecommitSystemPagesInternal(
|
||||
address, length, accessibility, accessibility_disposition);
|
||||
}
|
||||
|
||||
void DiscardSystemPages(uintptr_t address, size_t length) {
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
internal::DiscardSystemPagesInternal(address, length);
|
||||
}
|
||||
void DiscardSystemPages(void* address, size_t length) {
|
||||
DiscardSystemPages(reinterpret_cast<uintptr_t>(address), length);
|
||||
}
|
||||
|
||||
bool ReserveAddressSpace(size_t size) {
|
||||
// To avoid deadlock, call only SystemAllocPages.
|
||||
internal::ScopedGuard guard(GetReserveLock());
|
||||
if (!s_reservation_address) {
|
||||
uintptr_t mem = internal::SystemAllocPages(
|
||||
0, size, PageAccessibilityConfiguration::kInaccessible,
|
||||
PageTag::kChromium);
|
||||
if (mem) {
|
||||
// We guarantee this alignment when reserving address space.
|
||||
PA_DCHECK(!(mem & internal::PageAllocationGranularityOffsetMask()));
|
||||
s_reservation_address = mem;
|
||||
s_reservation_size = size;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ReleaseReservation() {
|
||||
// To avoid deadlock, call only FreePages.
|
||||
internal::ScopedGuard guard(GetReserveLock());
|
||||
if (!s_reservation_address)
|
||||
return false;
|
||||
|
||||
FreePages(s_reservation_address, s_reservation_size);
|
||||
s_reservation_address = 0;
|
||||
s_reservation_size = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool HasReservationForTesting() {
|
||||
internal::ScopedGuard guard(GetReserveLock());
|
||||
return s_reservation_address;
|
||||
}
|
||||
|
||||
uint32_t GetAllocPageErrorCode() {
|
||||
return internal::s_allocPageErrorCode;
|
||||
}
|
||||
|
||||
size_t GetTotalMappedSize() {
|
||||
return g_total_mapped_address_space;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
332
src/base/allocator/partition_allocator/page_allocator.h
Normal file
332
src/base/allocator/partition_allocator/page_allocator.h
Normal file
@ -0,0 +1,332 @@
|
||||
// Copyright 2013 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
enum class PageAccessibilityConfiguration {
|
||||
kInaccessible,
|
||||
kRead,
|
||||
kReadWrite,
|
||||
// This flag is mapped to kReadWrite on systems that
|
||||
// don't support MTE.
|
||||
kReadWriteTagged,
|
||||
// This flag is mapped to kReadExecute on systems
|
||||
// that don't support Arm's BTI.
|
||||
kReadExecuteProtected,
|
||||
kReadExecute,
|
||||
// This flag is deprecated and will go away soon.
|
||||
// TODO(bbudge) Remove this as soon as V8 doesn't need RWX pages.
|
||||
kReadWriteExecute,
|
||||
};
|
||||
|
||||
// Use for De/RecommitSystemPages API.
|
||||
enum class PageAccessibilityDisposition {
|
||||
// Enforces permission update (Decommit will set to
|
||||
// PageAccessibilityConfiguration::kInaccessible;
|
||||
// Recommit will set to whatever was requested, other than
|
||||
// PageAccessibilityConfiguration::kInaccessible).
|
||||
kRequireUpdate,
|
||||
// Will not update permissions, if the platform supports that (POSIX & Fuchsia
|
||||
// only).
|
||||
kAllowKeepForPerf,
|
||||
};
|
||||
|
||||
// macOS supports tagged memory regions, to help in debugging. On Android,
|
||||
// these tags are used to name anonymous mappings.
|
||||
enum class PageTag {
|
||||
kFirst = 240, // Minimum tag value.
|
||||
kBlinkGC = 252, // Blink GC pages.
|
||||
kPartitionAlloc = 253, // PartitionAlloc, no matter the partition.
|
||||
kChromium = 254, // Chromium page.
|
||||
kV8 = 255, // V8 heap pages.
|
||||
kLast = kV8 // Maximum tag value.
|
||||
};
|
||||
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
uintptr_t NextAlignedWithOffset(uintptr_t ptr,
|
||||
uintptr_t alignment,
|
||||
uintptr_t requested_offset);
|
||||
|
||||
// Allocates one or more pages.
|
||||
//
|
||||
// The requested |address| is just a hint; the actual address returned may
|
||||
// differ. The returned address will be aligned to |align_offset| modulo |align|
|
||||
// bytes.
|
||||
//
|
||||
// |length|, |align| and |align_offset| are in bytes, and must be a multiple of
|
||||
// |PageAllocationGranularity()|. |length| and |align| must be non-zero.
|
||||
// |align_offset| must be less than |align|. |align| must be a power of two.
|
||||
//
|
||||
// If |address| is 0/nullptr, then a suitable and randomized address will be
|
||||
// chosen automatically.
|
||||
//
|
||||
// |accessibility| controls the permission of the allocated pages.
|
||||
// PageAccessibilityConfiguration::kInaccessible means uncommitted.
|
||||
//
|
||||
// |page_tag| is used on some platforms to identify the source of the
|
||||
// allocation. Use PageTag::kChromium as a catch-all category.
|
||||
//
|
||||
// This call will return 0/nullptr if the allocation cannot be satisfied.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
uintptr_t AllocPages(size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
uintptr_t AllocPages(uintptr_t address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void* AllocPages(void* address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
uintptr_t AllocPagesWithAlignOffset(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
size_t align_offset,
|
||||
PageAccessibilityConfiguration page_accessibility,
|
||||
PageTag page_tag);
|
||||
|
||||
// Frees one or more pages starting at |address| and continuing for |length|
|
||||
// bytes.
|
||||
//
|
||||
// |address| and |length| must match a previous call to |AllocPages|. Therefore,
|
||||
// |address| must be aligned to |PageAllocationGranularity()| bytes, and
|
||||
// |length| must be a multiple of |PageAllocationGranularity()|.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void FreePages(uintptr_t address, size_t length);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void FreePages(void* address, size_t length);
|
||||
|
||||
// Marks one or more system pages, starting at |address| with the given
|
||||
// |page_accessibility|. |length| must be a multiple of |SystemPageSize()|
|
||||
// bytes.
|
||||
//
|
||||
// Returns true if the permission change succeeded. In most cases you must
|
||||
// |CHECK| the result.
|
||||
[[nodiscard]] PA_COMPONENT_EXPORT(PARTITION_ALLOC) bool TrySetSystemPagesAccess(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility);
|
||||
[[nodiscard]] PA_COMPONENT_EXPORT(PARTITION_ALLOC) bool TrySetSystemPagesAccess(
|
||||
void* address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility);
|
||||
|
||||
// Marks one or more system pages, starting at |address| with the given
|
||||
// |page_accessibility|. |length| must be a multiple of |SystemPageSize()|
|
||||
// bytes.
|
||||
//
|
||||
// Performs a CHECK that the operation succeeds.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void SetSystemPagesAccess(uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void SetSystemPagesAccess(void* address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility);
|
||||
|
||||
// Decommits one or more system pages starting at |address| and continuing for
|
||||
// |length| bytes. |address| and |length| must be aligned to a system page
|
||||
// boundary.
|
||||
//
|
||||
// This API will crash if the operation cannot be performed!
|
||||
//
|
||||
// If disposition is PageAccessibilityDisposition::kRequireUpdate (recommended),
|
||||
// the decommitted pages will be made inaccessible before the call returns.
|
||||
// While it is always a programming error to access decommitted pages without
|
||||
// first recommitting them, callers may use
|
||||
// PageAccessibilityDisposition::kAllowKeepForPerf to allow the implementation
|
||||
// to skip changing permissions (use with care), for performance reasons (see
|
||||
// crrev.com/c/2567282 and crrev.com/c/2563038 for perf regressions encountered
|
||||
// in the past). Implementations may choose to always modify permissions, hence
|
||||
// accessing those pages may or may not trigger a fault.
|
||||
//
|
||||
// Decommitting means that physical resources (RAM or swap/pagefile) backing the
|
||||
// allocated virtual address range may be released back to the system, but the
|
||||
// address space is still allocated to the process (possibly using up page table
|
||||
// entries or other accounting resources). There is no guarantee that the pages
|
||||
// are zeroed, unless |DecommittedMemoryIsAlwaysZeroed()| is true.
|
||||
//
|
||||
// This operation may not be atomic on some platforms.
|
||||
//
|
||||
// Note: "Committed memory" is a Windows Memory Subsystem concept that ensures
|
||||
// processes will not fault when touching a committed memory region. There is
|
||||
// no analogue in the POSIX & Fuchsia memory API where virtual memory pages are
|
||||
// best-effort allocated resources on the first touch. If
|
||||
// PageAccessibilityDisposition::kRequireUpdate disposition is used, this API
|
||||
// behaves in a platform-agnostic way by simulating the Windows "decommit" state
|
||||
// by both discarding the region (allowing the OS to avoid swap operations)
|
||||
// *and* changing the page protections so accesses fault.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void DecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void DecommitSystemPages(
|
||||
void* address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition);
|
||||
|
||||
// Decommits one or more system pages starting at |address| and continuing for
|
||||
// |length| bytes. |address| and |length| must be aligned to a system page
|
||||
// boundary.
|
||||
//
|
||||
// In contrast to |DecommitSystemPages|, this API guarantees that the pages are
|
||||
// zeroed and will always mark the region as inaccessible (the equivalent of
|
||||
// setting them to PageAccessibilityConfiguration::kInaccessible).
|
||||
//
|
||||
// This API will crash if the operation cannot be performed.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void DecommitAndZeroSystemPages(uintptr_t address, size_t length);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void DecommitAndZeroSystemPages(void* address, size_t length);
|
||||
|
||||
// Whether decommitted memory is guaranteed to be zeroed when it is
|
||||
// recommitted. Do not assume that this will not change over time.
|
||||
constexpr PA_COMPONENT_EXPORT(
|
||||
PARTITION_ALLOC) bool DecommittedMemoryIsAlwaysZeroed() {
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
return false;
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
// (Re)Commits one or more system pages, starting at |address| and continuing
|
||||
// for |length| bytes with the given |page_accessibility| (must not be
|
||||
// PageAccessibilityConfiguration::kInaccessible). |address| and |length|
|
||||
// must be aligned to a system page boundary.
|
||||
//
|
||||
// This API will crash if the operation cannot be performed!
|
||||
//
|
||||
// If disposition is PageAccessibilityConfiguration::kRequireUpdate, the calls
|
||||
// updates the pages to |page_accessibility|. This can be used regardless of
|
||||
// what disposition was used to decommit the pages.
|
||||
// PageAccessibilityConfiguration::kAllowKeepForPerf allows the implementation
|
||||
// to leave the page permissions, if that improves performance. This option can
|
||||
// only be used if the pages were previously accessible and decommitted with
|
||||
// that same option.
|
||||
//
|
||||
// The memory will be zeroed when it is committed for the first time. However,
|
||||
// there is no such guarantee when memory is recommitted, unless
|
||||
// |DecommittedMemoryIsAlwaysZeroed()| is true.
|
||||
//
|
||||
// This operation may not be atomic on some platforms.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void RecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition);
|
||||
|
||||
// Like RecommitSystemPages(), but returns false instead of crashing.
|
||||
[[nodiscard]] PA_COMPONENT_EXPORT(PARTITION_ALLOC) bool TryRecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition);
|
||||
|
||||
// Discard one or more system pages starting at |address| and continuing for
|
||||
// |length| bytes. |length| must be a multiple of |SystemPageSize()|.
|
||||
//
|
||||
// Discarding is a hint to the system that the page is no longer required. The
|
||||
// hint may:
|
||||
// - Do nothing.
|
||||
// - Discard the page immediately, freeing up physical pages.
|
||||
// - Discard the page at some time in the future in response to memory
|
||||
// pressure.
|
||||
//
|
||||
// Only committed pages should be discarded. Discarding a page does not decommit
|
||||
// it, and it is valid to discard an already-discarded page. A read or write to
|
||||
// a discarded page will not fault.
|
||||
//
|
||||
// Reading from a discarded page may return the original page content, or a page
|
||||
// full of zeroes.
|
||||
//
|
||||
// Writing to a discarded page is the only guaranteed way to tell the system
|
||||
// that the page is required again. Once written to, the content of the page is
|
||||
// guaranteed stable once more. After being written to, the page content may be
|
||||
// based on the original page content, or a page of zeroes.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void DiscardSystemPages(uintptr_t address, size_t length);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void DiscardSystemPages(void* address, size_t length);
|
||||
|
||||
// Rounds up |address| to the next multiple of |SystemPageSize()|. Returns
|
||||
// 0 for an |address| of 0.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
RoundUpToSystemPage(uintptr_t address) {
|
||||
return (address + internal::SystemPageOffsetMask()) &
|
||||
internal::SystemPageBaseMask();
|
||||
}
|
||||
|
||||
// Rounds down |address| to the previous multiple of |SystemPageSize()|. Returns
|
||||
// 0 for an |address| of 0.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
RoundDownToSystemPage(uintptr_t address) {
|
||||
return address & internal::SystemPageBaseMask();
|
||||
}
|
||||
|
||||
// Rounds up |address| to the next multiple of |PageAllocationGranularity()|.
|
||||
// Returns 0 for an |address| of 0.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
RoundUpToPageAllocationGranularity(uintptr_t address) {
|
||||
return (address + internal::PageAllocationGranularityOffsetMask()) &
|
||||
internal::PageAllocationGranularityBaseMask();
|
||||
}
|
||||
|
||||
// Rounds down |address| to the previous multiple of
|
||||
// |PageAllocationGranularity()|. Returns 0 for an |address| of 0.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE uintptr_t
|
||||
RoundDownToPageAllocationGranularity(uintptr_t address) {
|
||||
return address & internal::PageAllocationGranularityBaseMask();
|
||||
}
|
||||
|
||||
// Reserves (at least) |size| bytes of address space, aligned to
|
||||
// |PageAllocationGranularity()|. This can be called early on to make it more
|
||||
// likely that large allocations will succeed. Returns true if the reservation
|
||||
// succeeded, false if the reservation failed or a reservation was already made.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) bool ReserveAddressSpace(size_t size);
|
||||
|
||||
// Releases any reserved address space. |AllocPages| calls this automatically on
|
||||
// an allocation failure. External allocators may also call this on failure.
|
||||
//
|
||||
// Returns true when an existing reservation was released.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) bool ReleaseReservation();
|
||||
|
||||
// Returns true if there is currently an address space reservation.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) bool HasReservationForTesting();
|
||||
|
||||
// Returns |errno| (POSIX) or the result of |GetLastError| (Windows) when |mmap|
|
||||
// (POSIX) or |VirtualAlloc| (Windows) fails.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) uint32_t GetAllocPageErrorCode();
|
||||
|
||||
// Returns the total amount of mapped pages from all clients of
|
||||
// PageAllocator. These pages may or may not be committed. This is mostly useful
|
||||
// to assess address space pressure.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) size_t GetTotalMappedSize();
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_H_
|
@ -0,0 +1,169 @@
|
||||
// Copyright 2018 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_CONSTANTS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_CONSTANTS_H_
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)
|
||||
|
||||
#include <mach/vm_page_size.h>
|
||||
|
||||
// Although page allocator constants are not constexpr, they are run-time
|
||||
// constant. Because the underlying variables they access, such as vm_page_size,
|
||||
// are not marked const, the compiler normally has no way to know that they
|
||||
// don’t change and must obtain their values whenever it can't prove that they
|
||||
// haven't been modified, even if they had already been obtained previously.
|
||||
// Attaching __attribute__((const)) to these declarations allows these redundant
|
||||
// accesses to be omitted under optimization such as common subexpression
|
||||
// elimination.
|
||||
#define PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR __attribute__((const))
|
||||
|
||||
#elif BUILDFLAG(IS_LINUX) && defined(ARCH_CPU_ARM64)
|
||||
// This should work for all POSIX (if needed), but currently all other
|
||||
// supported OS/architecture combinations use either hard-coded values
|
||||
// (such as x86) or have means to determine these values without needing
|
||||
// atomics (such as macOS on arm64).
|
||||
|
||||
// Page allocator constants are run-time constant
|
||||
#define PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR __attribute__((const))
|
||||
|
||||
#include <unistd.h>
|
||||
#include <atomic>
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// Holds the current page size and shift, where size = 1 << shift
|
||||
// Use PageAllocationGranularity(), PageAllocationGranularityShift()
|
||||
// to initialize and retrieve these values safely.
|
||||
struct PageCharacteristics {
|
||||
std::atomic<size_t> size;
|
||||
std::atomic<size_t> shift;
|
||||
};
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
extern PageCharacteristics page_characteristics;
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#else
|
||||
|
||||
// When defined, page size constants are fixed at compile time. When not
|
||||
// defined, they may vary at run time.
|
||||
#define PAGE_ALLOCATOR_CONSTANTS_ARE_CONSTEXPR 1
|
||||
|
||||
// Use this macro to declare a function as constexpr or not based on whether
|
||||
// PAGE_ALLOCATOR_CONSTANTS_ARE_CONSTEXPR is defined.
|
||||
#define PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR constexpr
|
||||
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// Forward declaration, implementation below
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
PageAllocationGranularity();
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
PageAllocationGranularityShift() {
|
||||
#if BUILDFLAG(IS_WIN) || defined(ARCH_CPU_PPC64)
|
||||
// Modern ppc64 systems support 4kB (shift = 12) and 64kB (shift = 16) page
|
||||
// sizes. Since 64kB is the de facto standard on the platform and binaries
|
||||
// compiled for 64kB are likely to work on 4kB systems, 64kB is a good choice
|
||||
// here.
|
||||
return 16; // 64kB
|
||||
#elif defined(_MIPS_ARCH_LOONGSON)
|
||||
return 14; // 16kB
|
||||
#elif BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)
|
||||
return static_cast<size_t>(vm_page_shift);
|
||||
#elif BUILDFLAG(IS_LINUX) && defined(ARCH_CPU_ARM64)
|
||||
// arm64 supports 4kb (shift = 12), 16kb (shift = 14), and 64kb (shift = 16)
|
||||
// page sizes. Retrieve from or initialize cache.
|
||||
size_t shift = page_characteristics.shift.load(std::memory_order_relaxed);
|
||||
if (PA_UNLIKELY(shift == 0)) {
|
||||
shift = static_cast<size_t>(
|
||||
__builtin_ctz((unsigned int)PageAllocationGranularity()));
|
||||
page_characteristics.shift.store(shift, std::memory_order_relaxed);
|
||||
}
|
||||
return shift;
|
||||
#else
|
||||
return 12; // 4kB
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
PageAllocationGranularity() {
|
||||
#if BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)
|
||||
// This is literally equivalent to |1 << PageAllocationGranularityShift()|
|
||||
// below, but was separated out for IS_APPLE to avoid << on a non-constexpr.
|
||||
return vm_page_size;
|
||||
#elif BUILDFLAG(IS_LINUX) && defined(ARCH_CPU_ARM64)
|
||||
// arm64 supports 4kb, 16kb, and 64kb page sizes. Retrieve from or
|
||||
// initialize cache.
|
||||
size_t size = page_characteristics.size.load(std::memory_order_relaxed);
|
||||
if (PA_UNLIKELY(size == 0)) {
|
||||
size = static_cast<size_t>(getpagesize());
|
||||
page_characteristics.size.store(size, std::memory_order_relaxed);
|
||||
}
|
||||
return size;
|
||||
#else
|
||||
return 1 << PageAllocationGranularityShift();
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
PageAllocationGranularityOffsetMask() {
|
||||
return PageAllocationGranularity() - 1;
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
PageAllocationGranularityBaseMask() {
|
||||
return ~PageAllocationGranularityOffsetMask();
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
SystemPageShift() {
|
||||
// On Windows allocation granularity is higher than the page size. This comes
|
||||
// into play when reserving address space range (allocation granularity),
|
||||
// compared to committing pages into memory (system page granularity).
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
return 12; // 4096=1<<12
|
||||
#else
|
||||
return PageAllocationGranularityShift();
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
SystemPageSize() {
|
||||
#if (BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)) || \
|
||||
(BUILDFLAG(IS_LINUX) && defined(ARCH_CPU_ARM64))
|
||||
// This is literally equivalent to |1 << SystemPageShift()| below, but was
|
||||
// separated out for 64-bit IS_APPLE and arm64 on Linux to avoid << on a
|
||||
// non-constexpr.
|
||||
return PageAllocationGranularity();
|
||||
#else
|
||||
return 1 << SystemPageShift();
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
SystemPageOffsetMask() {
|
||||
return SystemPageSize() - 1;
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR PA_ALWAYS_INLINE size_t
|
||||
SystemPageBaseMask() {
|
||||
return ~SystemPageOffsetMask();
|
||||
}
|
||||
|
||||
constexpr size_t kPageMetadataShift = 5; // 32 bytes per partition page.
|
||||
constexpr size_t kPageMetadataSize = 1 << kPageMetadataShift;
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_CONSTANTS_H_
|
@ -0,0 +1,22 @@
|
||||
// Copyright 2018 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNAL_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNAL_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
uintptr_t SystemAllocPages(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag);
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNAL_H_
|
@ -0,0 +1,238 @@
|
||||
// Copyright 2019 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
//
|
||||
// This file implements memory allocation primitives for PageAllocator using
|
||||
// Fuchsia's VMOs (Virtual Memory Objects). VMO API is documented in
|
||||
// https://fuchsia.dev/fuchsia-src/zircon/objects/vm_object . A VMO is a kernel
|
||||
// object that corresponds to a set of memory pages. VMO pages may be mapped
|
||||
// to an address space. The code below creates VMOs for each memory allocations
|
||||
// and maps them to the default address space of the current process.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_FUCHSIA_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_FUCHSIA_H_
|
||||
|
||||
#include <lib/zx/vmar.h>
|
||||
#include <lib/zx/vmo.h>
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/fuchsia/fuchsia_logging.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
// Returns VMO name for a PageTag.
|
||||
const char* PageTagToName(PageTag tag) {
|
||||
switch (tag) {
|
||||
case PageTag::kBlinkGC:
|
||||
return "cr_blink_gc";
|
||||
case PageTag::kPartitionAlloc:
|
||||
return "cr_partition_alloc";
|
||||
case PageTag::kChromium:
|
||||
return "cr_chromium";
|
||||
case PageTag::kV8:
|
||||
return "cr_v8";
|
||||
default:
|
||||
PA_DCHECK(false);
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
zx_vm_option_t PageAccessibilityToZxVmOptions(
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
switch (accessibility) {
|
||||
case PageAccessibilityConfiguration::kRead:
|
||||
return ZX_VM_PERM_READ;
|
||||
case PageAccessibilityConfiguration::kReadWrite:
|
||||
case PageAccessibilityConfiguration::kReadWriteTagged:
|
||||
return ZX_VM_PERM_READ | ZX_VM_PERM_WRITE;
|
||||
case PageAccessibilityConfiguration::kReadExecuteProtected:
|
||||
case PageAccessibilityConfiguration::kReadExecute:
|
||||
return ZX_VM_PERM_READ | ZX_VM_PERM_EXECUTE;
|
||||
case PageAccessibilityConfiguration::kReadWriteExecute:
|
||||
return ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_PERM_EXECUTE;
|
||||
default:
|
||||
PA_NOTREACHED();
|
||||
[[fallthrough]];
|
||||
case PageAccessibilityConfiguration::kInaccessible:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// zx_vmar_map() will fail if the VMO cannot be mapped at |vmar_offset|, i.e.
|
||||
// |hint| is not advisory.
|
||||
constexpr bool kHintIsAdvisory = false;
|
||||
|
||||
std::atomic<int32_t> s_allocPageErrorCode{0};
|
||||
|
||||
uintptr_t SystemAllocPagesInternal(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
zx::vmo vmo;
|
||||
zx_status_t status = zx::vmo::create(length, 0, &vmo);
|
||||
if (status != ZX_OK) {
|
||||
PA_ZX_DLOG(INFO, status) << "zx_vmo_create";
|
||||
return 0;
|
||||
}
|
||||
|
||||
const char* vmo_name = PageTagToName(page_tag);
|
||||
status = vmo.set_property(ZX_PROP_NAME, vmo_name, strlen(vmo_name));
|
||||
|
||||
// VMO names are used only for debugging, so failure to set a name is not
|
||||
// fatal.
|
||||
PA_ZX_DCHECK(status == ZX_OK, status);
|
||||
|
||||
if (page_tag == PageTag::kV8) {
|
||||
// V8 uses JIT. Call zx_vmo_replace_as_executable() to allow code execution
|
||||
// in the new VMO.
|
||||
status = vmo.replace_as_executable(zx::resource(), &vmo);
|
||||
if (status != ZX_OK) {
|
||||
PA_ZX_DLOG(INFO, status) << "zx_vmo_replace_as_executable";
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
zx_vm_option_t options = PageAccessibilityToZxVmOptions(accessibility);
|
||||
|
||||
uint64_t vmar_offset = 0;
|
||||
if (hint) {
|
||||
vmar_offset = hint;
|
||||
options |= ZX_VM_SPECIFIC;
|
||||
}
|
||||
|
||||
uint64_t address;
|
||||
status =
|
||||
zx::vmar::root_self()->map(options, vmar_offset, vmo,
|
||||
/*vmo_offset=*/0, length, &address);
|
||||
if (status != ZX_OK) {
|
||||
// map() is expected to fail if |hint| is set to an already-in-use location.
|
||||
if (!hint) {
|
||||
PA_ZX_DLOG(ERROR, status) << "zx_vmar_map";
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
uintptr_t TrimMappingInternal(uintptr_t base_address,
|
||||
size_t base_length,
|
||||
size_t trim_length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
size_t pre_slack,
|
||||
size_t post_slack) {
|
||||
PA_DCHECK(base_length == trim_length + pre_slack + post_slack);
|
||||
|
||||
// Unmap head if necessary.
|
||||
if (pre_slack) {
|
||||
zx_status_t status = zx::vmar::root_self()->unmap(base_address, pre_slack);
|
||||
PA_ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
// Unmap tail if necessary.
|
||||
if (post_slack) {
|
||||
zx_status_t status = zx::vmar::root_self()->unmap(
|
||||
base_address + pre_slack + trim_length, post_slack);
|
||||
PA_ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
return base_address + pre_slack;
|
||||
}
|
||||
|
||||
bool TrySetSystemPagesAccessInternal(
|
||||
uint64_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
zx_status_t status = zx::vmar::root_self()->protect(
|
||||
PageAccessibilityToZxVmOptions(accessibility), address, length);
|
||||
return status == ZX_OK;
|
||||
}
|
||||
|
||||
void SetSystemPagesAccessInternal(
|
||||
uint64_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
zx_status_t status = zx::vmar::root_self()->protect(
|
||||
PageAccessibilityToZxVmOptions(accessibility), address, length);
|
||||
PA_ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
void FreePagesInternal(uint64_t address, size_t length) {
|
||||
zx_status_t status = zx::vmar::root_self()->unmap(address, length);
|
||||
PA_ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
void DiscardSystemPagesInternal(uint64_t address, size_t length) {
|
||||
// TODO(https://crbug.com/1022062): Mark pages as discardable, rather than
|
||||
// forcibly de-committing them immediately, when Fuchsia supports it.
|
||||
zx_status_t status = zx::vmar::root_self()->op_range(
|
||||
ZX_VMO_OP_DECOMMIT, address, length, nullptr, 0);
|
||||
PA_ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
void DecommitSystemPagesInternal(
|
||||
uint64_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
SetSystemPagesAccess(address, length,
|
||||
PageAccessibilityConfiguration::kInaccessible);
|
||||
}
|
||||
|
||||
// TODO(https://crbug.com/1022062): Review whether this implementation is
|
||||
// still appropriate once DiscardSystemPagesInternal() migrates to a "lazy"
|
||||
// discardable API.
|
||||
DiscardSystemPagesInternal(address, length);
|
||||
}
|
||||
|
||||
void DecommitAndZeroSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
SetSystemPagesAccess(address, length,
|
||||
PageAccessibilityConfiguration::kInaccessible);
|
||||
|
||||
// TODO(https://crbug.com/1022062): this implementation will likely no longer
|
||||
// be appropriate once DiscardSystemPagesInternal() migrates to a "lazy"
|
||||
// discardable API.
|
||||
DiscardSystemPagesInternal(address, length);
|
||||
}
|
||||
|
||||
void RecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// On Fuchsia systems, the caller needs to simply read the memory to recommit
|
||||
// it. However, if decommit changed the permissions, recommit has to change
|
||||
// them back.
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
SetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
}
|
||||
|
||||
bool TryRecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// On Fuchsia systems, the caller needs to simply read the memory to recommit
|
||||
// it. However, if decommit changed the permissions, recommit has to change
|
||||
// them back.
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
return TrySetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_FUCHSIA_H_
|
@ -0,0 +1,46 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/cpu.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
|
||||
#include <sys/mman.h>
|
||||
|
||||
// PA_PROT_BTI requests a page that supports BTI landing pads.
|
||||
#define PA_PROT_BTI 0x10
|
||||
// PA_PROT_MTE requests a page that's suitable for memory tagging.
|
||||
#define PA_PROT_MTE 0x20
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
int GetAccessFlags(PageAccessibilityConfiguration accessibility) {
|
||||
switch (accessibility) {
|
||||
case PageAccessibilityConfiguration::kRead:
|
||||
return PROT_READ;
|
||||
case PageAccessibilityConfiguration::kReadWriteTagged:
|
||||
#if defined(ARCH_CPU_ARM64)
|
||||
return PROT_READ | PROT_WRITE |
|
||||
(base::CPU::GetInstanceNoAllocation().has_mte() ? PA_PROT_MTE : 0);
|
||||
#else
|
||||
[[fallthrough]];
|
||||
#endif
|
||||
case PageAccessibilityConfiguration::kReadWrite:
|
||||
return PROT_READ | PROT_WRITE;
|
||||
case PageAccessibilityConfiguration::kReadExecuteProtected:
|
||||
return PROT_READ | PROT_EXEC |
|
||||
(base::CPU::GetInstanceNoAllocation().has_bti() ? PA_PROT_BTI : 0);
|
||||
case PageAccessibilityConfiguration::kReadExecute:
|
||||
return PROT_READ | PROT_EXEC;
|
||||
case PageAccessibilityConfiguration::kReadWriteExecute:
|
||||
return PROT_READ | PROT_WRITE | PROT_EXEC;
|
||||
default:
|
||||
PA_NOTREACHED();
|
||||
[[fallthrough]];
|
||||
case PageAccessibilityConfiguration::kInaccessible:
|
||||
return PROT_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
@ -0,0 +1,370 @@
|
||||
// Copyright 2018 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_POSIX_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_POSIX_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cerrno>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
|
||||
#include <sys/mman.h>
|
||||
|
||||
#include "base/allocator/partition_allocator/oom.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/debug/debugging_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/posix/eintr_wrapper.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/mac/foundation_util.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/mac/mac_util.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/mac/scoped_cftyperef.h"
|
||||
|
||||
#include <Availability.h>
|
||||
#include <Security/Security.h>
|
||||
#include <mach/mach.h>
|
||||
#endif
|
||||
#if BUILDFLAG(IS_ANDROID)
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
||||
#include <sys/resource.h>
|
||||
#endif
|
||||
|
||||
#ifndef MAP_ANONYMOUS
|
||||
#define MAP_ANONYMOUS MAP_ANON
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_MAC)
|
||||
|
||||
// SecTaskGetCodeSignStatus is marked as unavailable on macOS, although it’s
|
||||
// available on iOS and other Apple operating systems. It is, in fact, present
|
||||
// on the system since macOS 10.12.
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wavailability"
|
||||
uint32_t SecTaskGetCodeSignStatus(SecTaskRef task) API_AVAILABLE(macos(10.12));
|
||||
#pragma clang diagnostic pop
|
||||
|
||||
#endif // BUILDFLAG(IS_MAC)
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID)
|
||||
const char* PageTagToName(PageTag tag) {
|
||||
// Important: All the names should be string literals. As per prctl.h in
|
||||
// //third_party/android_ndk the kernel keeps a pointer to the name instead
|
||||
// of copying it.
|
||||
//
|
||||
// Having the name in .rodata ensures that the pointer remains valid as
|
||||
// long as the mapping is alive.
|
||||
switch (tag) {
|
||||
case PageTag::kBlinkGC:
|
||||
return "blink_gc";
|
||||
case PageTag::kPartitionAlloc:
|
||||
return "partition_alloc";
|
||||
case PageTag::kChromium:
|
||||
return "chromium";
|
||||
case PageTag::kV8:
|
||||
return "v8";
|
||||
default:
|
||||
PA_DCHECK(false);
|
||||
return "";
|
||||
}
|
||||
}
|
||||
#endif // BUILDFLAG(IS_ANDROID)
|
||||
|
||||
#if BUILDFLAG(IS_MAC)
|
||||
// Tests whether the version of macOS supports the MAP_JIT flag and if the
|
||||
// current process is signed with the hardened runtime and the allow-jit
|
||||
// entitlement, returning whether MAP_JIT should be used to allocate regions
|
||||
// that will contain JIT-compiled executable code.
|
||||
bool UseMapJit() {
|
||||
if (!base::mac::IsAtLeastOS10_14()) {
|
||||
// MAP_JIT existed before macOS 10.14, but had somewhat different semantics.
|
||||
// Only one MAP_JIT region was permitted per process, but calling code here
|
||||
// will very likely require more than one such region. Since MAP_JIT is not
|
||||
// strictly necessary to write code to a region and then execute it on these
|
||||
// older OSes, don’t use it at all.
|
||||
return false;
|
||||
}
|
||||
|
||||
// Until determining that the hardened runtime is enabled, early returns will
|
||||
// return true, so that MAP_JIT will be used. This is important on arm64,
|
||||
// which only allows pages to be simultaneously writable and executable when
|
||||
// in a region allocated with MAP_JIT, regardless of code signing options. On
|
||||
// arm64, an attempt to set a non-MAP_JIT page as simultaneously writable and
|
||||
// executable fails with EPERM. Although this is not enforced on x86_64,
|
||||
// MAP_JIT is harmless in that case.
|
||||
|
||||
base::ScopedCFTypeRef<SecTaskRef> task(
|
||||
SecTaskCreateFromSelf(kCFAllocatorDefault));
|
||||
if (!task) {
|
||||
return true;
|
||||
}
|
||||
|
||||
uint32_t flags = SecTaskGetCodeSignStatus(task);
|
||||
if (!(flags & kSecCodeSignatureRuntime)) {
|
||||
// The hardened runtime is not enabled. Note that kSecCodeSignatureRuntime
|
||||
// == CS_RUNTIME.
|
||||
return true;
|
||||
}
|
||||
|
||||
// The hardened runtime is enabled. From this point on, early returns must
|
||||
// return false, indicating that MAP_JIT is not to be used. It’s an error
|
||||
// (EINVAL) to use MAP_JIT with the hardened runtime unless the JIT
|
||||
// entitlement is specified.
|
||||
|
||||
base::ScopedCFTypeRef<CFTypeRef> jit_entitlement(
|
||||
SecTaskCopyValueForEntitlement(
|
||||
task.get(), CFSTR("com.apple.security.cs.allow-jit"), nullptr));
|
||||
if (!jit_entitlement)
|
||||
return false;
|
||||
|
||||
return base::mac::CFCast<CFBooleanRef>(jit_entitlement.get()) ==
|
||||
kCFBooleanTrue;
|
||||
}
|
||||
#endif // BUILDFLAG(IS_MAC)
|
||||
|
||||
} // namespace
|
||||
|
||||
// |mmap| uses a nearby address if the hint address is blocked.
|
||||
constexpr bool kHintIsAdvisory = true;
|
||||
std::atomic<int32_t> s_allocPageErrorCode{0};
|
||||
|
||||
int GetAccessFlags(PageAccessibilityConfiguration accessibility);
|
||||
|
||||
uintptr_t SystemAllocPagesInternal(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// Use a custom tag to make it easier to distinguish Partition Alloc regions
|
||||
// in vmmap(1). Tags between 240-255 are supported.
|
||||
PA_DCHECK(PageTag::kFirst <= page_tag);
|
||||
PA_DCHECK(PageTag::kLast >= page_tag);
|
||||
int fd = VM_MAKE_TAG(static_cast<int>(page_tag));
|
||||
#else
|
||||
int fd = -1;
|
||||
#endif
|
||||
|
||||
int access_flag = GetAccessFlags(accessibility);
|
||||
int map_flags = MAP_ANONYMOUS | MAP_PRIVATE;
|
||||
|
||||
#if BUILDFLAG(IS_MAC)
|
||||
// On macOS 10.14 and higher, executables that are code signed with the
|
||||
// "runtime" option cannot execute writable memory by default. They can opt
|
||||
// into this capability by specifying the "com.apple.security.cs.allow-jit"
|
||||
// code signing entitlement and allocating the region with the MAP_JIT flag.
|
||||
static const bool kUseMapJit = UseMapJit();
|
||||
if (page_tag == PageTag::kV8 && kUseMapJit) {
|
||||
map_flags |= MAP_JIT;
|
||||
}
|
||||
#endif
|
||||
|
||||
void* ret = mmap(reinterpret_cast<void*>(hint), length, access_flag,
|
||||
map_flags, fd, 0);
|
||||
if (ret == MAP_FAILED) {
|
||||
s_allocPageErrorCode = errno;
|
||||
ret = nullptr;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID)
|
||||
// On Android, anonymous mappings can have a name attached to them. This is
|
||||
// useful for debugging, and double-checking memory attribution.
|
||||
if (ret) {
|
||||
// No error checking on purpose, testing only.
|
||||
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ret, length,
|
||||
PageTagToName(page_tag));
|
||||
}
|
||||
#endif
|
||||
|
||||
return reinterpret_cast<uintptr_t>(ret);
|
||||
}
|
||||
|
||||
bool TrySetSystemPagesAccessInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
return 0 == PA_HANDLE_EINTR(mprotect(reinterpret_cast<void*>(address), length,
|
||||
GetAccessFlags(accessibility)));
|
||||
}
|
||||
|
||||
void SetSystemPagesAccessInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
int access_flags = GetAccessFlags(accessibility);
|
||||
const int ret = PA_HANDLE_EINTR(
|
||||
mprotect(reinterpret_cast<void*>(address), length, access_flags));
|
||||
|
||||
// On Linux, man mprotect(2) states that ENOMEM is returned when (1) internal
|
||||
// kernel data structures cannot be allocated, (2) the address range is
|
||||
// invalid, or (3) this would split an existing mapping in a way that would
|
||||
// exceed the maximum number of allowed mappings.
|
||||
//
|
||||
// Neither are very likely, but we still get a lot of crashes here. This is
|
||||
// because setrlimit(RLIMIT_DATA)'s limit is checked and enforced here, if the
|
||||
// access flags match a "data" mapping, which in our case would be MAP_PRIVATE
|
||||
// | MAP_ANONYMOUS, and PROT_WRITE. see the call to may_expand_vm() in
|
||||
// mm/mprotect.c in the kernel for details.
|
||||
//
|
||||
// In this case, we are almost certainly bumping into the sandbox limit, mark
|
||||
// the crash as OOM. See SandboxLinux::LimitAddressSpace() for details.
|
||||
if (ret == -1 && errno == ENOMEM && (access_flags & PROT_WRITE))
|
||||
OOM_CRASH(length);
|
||||
|
||||
PA_PCHECK(0 == ret);
|
||||
}
|
||||
|
||||
void FreePagesInternal(uintptr_t address, size_t length) {
|
||||
PA_PCHECK(0 == munmap(reinterpret_cast<void*>(address), length));
|
||||
}
|
||||
|
||||
uintptr_t TrimMappingInternal(uintptr_t base_address,
|
||||
size_t base_length,
|
||||
size_t trim_length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
size_t pre_slack,
|
||||
size_t post_slack) {
|
||||
uintptr_t ret = base_address;
|
||||
// We can resize the allocation run. Release unneeded memory before and after
|
||||
// the aligned range.
|
||||
if (pre_slack) {
|
||||
FreePages(base_address, pre_slack);
|
||||
ret = base_address + pre_slack;
|
||||
}
|
||||
if (post_slack) {
|
||||
FreePages(ret + trim_length, post_slack);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void DecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// In POSIX, there is no decommit concept. Discarding is an effective way of
|
||||
// implementing the Windows semantics where the OS is allowed to not swap the
|
||||
// pages in the region.
|
||||
DiscardSystemPages(address, length);
|
||||
|
||||
bool change_permissions =
|
||||
accessibility_disposition == PageAccessibilityDisposition::kRequireUpdate;
|
||||
#if BUILDFLAG(PA_DCHECK_IS_ON)
|
||||
// This is not guaranteed, show that we're serious.
|
||||
//
|
||||
// More specifically, several callers have had issues with assuming that
|
||||
// memory is zeroed, this would hopefully make these bugs more visible. We
|
||||
// don't memset() everything, because ranges can be very large, and doing it
|
||||
// over the entire range could make Chrome unusable with
|
||||
// BUILDFLAG(PA_DCHECK_IS_ON).
|
||||
//
|
||||
// Only do it when we are about to change the permissions, since we don't know
|
||||
// the previous permissions, and cannot restore them.
|
||||
if (!DecommittedMemoryIsAlwaysZeroed() && change_permissions) {
|
||||
// Memory may not be writable.
|
||||
size_t size = std::min(length, 2 * SystemPageSize());
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
PA_CHECK(mprotect(ptr, size, PROT_WRITE) == 0);
|
||||
memset(ptr, 0xcc, size);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Make pages inaccessible, unless the caller requested to keep permissions.
|
||||
//
|
||||
// Note, there is a small window between these calls when the pages can be
|
||||
// incorrectly touched and brought back to memory. Not ideal, but doing those
|
||||
// operations in the opposite order resulted in PMF regression on Mac (see
|
||||
// crbug.com/1153021).
|
||||
if (change_permissions) {
|
||||
SetSystemPagesAccess(address, length,
|
||||
PageAccessibilityConfiguration::kInaccessible);
|
||||
}
|
||||
}
|
||||
|
||||
void DecommitAndZeroSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html: "If
|
||||
// a MAP_FIXED request is successful, then any previous mappings [...] for
|
||||
// those whole pages containing any part of the address range [pa,pa+len)
|
||||
// shall be removed, as if by an appropriate call to munmap(), before the
|
||||
// new mapping is established." As a consequence, the memory will be
|
||||
// zero-initialized on next access.
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
void* ret = mmap(ptr, length, PROT_NONE,
|
||||
MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
|
||||
PA_CHECK(ptr == ret);
|
||||
}
|
||||
|
||||
void RecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// On POSIX systems, the caller needs to simply read the memory to recommit
|
||||
// it. However, if decommit changed the permissions, recommit has to change
|
||||
// them back.
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
SetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// On macOS, to update accounting, we need to make another syscall. For more
|
||||
// details, see https://crbug.com/823915.
|
||||
madvise(reinterpret_cast<void*>(address), length, MADV_FREE_REUSE);
|
||||
#endif
|
||||
}
|
||||
|
||||
bool TryRecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// On POSIX systems, the caller needs to simply read the memory to recommit
|
||||
// it. However, if decommit changed the permissions, recommit has to change
|
||||
// them back.
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
bool ok = TrySetSystemPagesAccess(address, length, accessibility);
|
||||
if (!ok)
|
||||
return false;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// On macOS, to update accounting, we need to make another syscall. For more
|
||||
// details, see https://crbug.com/823915.
|
||||
madvise(reinterpret_cast<void*>(address), length, MADV_FREE_REUSE);
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void DiscardSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
int ret = madvise(ptr, length, MADV_FREE_REUSABLE);
|
||||
if (ret) {
|
||||
// MADV_FREE_REUSABLE sometimes fails, so fall back to MADV_DONTNEED.
|
||||
ret = madvise(ptr, length, MADV_DONTNEED);
|
||||
}
|
||||
PA_PCHECK(ret == 0);
|
||||
#else
|
||||
// We have experimented with other flags, but with suboptimal results.
|
||||
//
|
||||
// MADV_FREE (Linux): Makes our memory measurements less predictable;
|
||||
// performance benefits unclear.
|
||||
//
|
||||
// Therefore, we just do the simple thing: MADV_DONTNEED.
|
||||
PA_PCHECK(0 == madvise(ptr, length, MADV_DONTNEED));
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_POSIX_H_
|
@ -0,0 +1,199 @@
|
||||
// Copyright 2018 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_WIN_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_WIN_H_
|
||||
|
||||
#include <versionhelpers.h>
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/oom.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_internal.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
// On Windows, discarded pages are not returned to the system immediately and
|
||||
// not guaranteed to be zeroed when returned to the application.
|
||||
using DiscardVirtualMemoryFunction = DWORD(WINAPI*)(PVOID virtualAddress,
|
||||
SIZE_T size);
|
||||
DiscardVirtualMemoryFunction s_discard_virtual_memory =
|
||||
reinterpret_cast<DiscardVirtualMemoryFunction>(-1);
|
||||
|
||||
} // namespace
|
||||
|
||||
// |VirtualAlloc| will fail if allocation at the hint address is blocked.
|
||||
constexpr bool kHintIsAdvisory = false;
|
||||
std::atomic<int32_t> s_allocPageErrorCode{ERROR_SUCCESS};
|
||||
|
||||
int GetAccessFlags(PageAccessibilityConfiguration accessibility) {
|
||||
switch (accessibility) {
|
||||
case PageAccessibilityConfiguration::kRead:
|
||||
return PAGE_READONLY;
|
||||
case PageAccessibilityConfiguration::kReadWrite:
|
||||
case PageAccessibilityConfiguration::kReadWriteTagged:
|
||||
return PAGE_READWRITE;
|
||||
case PageAccessibilityConfiguration::kReadExecute:
|
||||
case PageAccessibilityConfiguration::kReadExecuteProtected:
|
||||
return PAGE_EXECUTE_READ;
|
||||
case PageAccessibilityConfiguration::kReadWriteExecute:
|
||||
return PAGE_EXECUTE_READWRITE;
|
||||
default:
|
||||
PA_NOTREACHED();
|
||||
[[fallthrough]];
|
||||
case PageAccessibilityConfiguration::kInaccessible:
|
||||
return PAGE_NOACCESS;
|
||||
}
|
||||
}
|
||||
|
||||
uintptr_t SystemAllocPagesInternal(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
DWORD access_flag = GetAccessFlags(accessibility);
|
||||
const DWORD type_flags =
|
||||
(accessibility != PageAccessibilityConfiguration::kInaccessible)
|
||||
? (MEM_RESERVE | MEM_COMMIT)
|
||||
: MEM_RESERVE;
|
||||
void* ret = VirtualAlloc(reinterpret_cast<void*>(hint), length, type_flags,
|
||||
access_flag);
|
||||
if (ret == nullptr) {
|
||||
s_allocPageErrorCode = GetLastError();
|
||||
}
|
||||
return reinterpret_cast<uintptr_t>(ret);
|
||||
}
|
||||
|
||||
uintptr_t TrimMappingInternal(uintptr_t base_address,
|
||||
size_t base_length,
|
||||
size_t trim_length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
size_t pre_slack,
|
||||
size_t post_slack) {
|
||||
uintptr_t ret = base_address;
|
||||
if (pre_slack || post_slack) {
|
||||
// We cannot resize the allocation run. Free it and retry at the aligned
|
||||
// address within the freed range.
|
||||
ret = base_address + pre_slack;
|
||||
FreePages(base_address, base_length);
|
||||
ret = SystemAllocPages(ret, trim_length, accessibility, PageTag::kChromium);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool TrySetSystemPagesAccessInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
if (accessibility == PageAccessibilityConfiguration::kInaccessible)
|
||||
return VirtualFree(ptr, length, MEM_DECOMMIT) != 0;
|
||||
return nullptr !=
|
||||
VirtualAlloc(ptr, length, MEM_COMMIT, GetAccessFlags(accessibility));
|
||||
}
|
||||
|
||||
void SetSystemPagesAccessInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
if (accessibility == PageAccessibilityConfiguration::kInaccessible) {
|
||||
if (!VirtualFree(ptr, length, MEM_DECOMMIT)) {
|
||||
// We check `GetLastError` for `ERROR_SUCCESS` here so that in a crash
|
||||
// report we get the error number.
|
||||
PA_CHECK(static_cast<uint32_t>(ERROR_SUCCESS) == GetLastError());
|
||||
}
|
||||
} else {
|
||||
if (!VirtualAlloc(ptr, length, MEM_COMMIT, GetAccessFlags(accessibility))) {
|
||||
int32_t error = GetLastError();
|
||||
if (error == ERROR_COMMITMENT_LIMIT)
|
||||
OOM_CRASH(length);
|
||||
// We check `GetLastError` for `ERROR_SUCCESS` here so that in a crash
|
||||
// report we get the error number.
|
||||
PA_CHECK(ERROR_SUCCESS == error);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FreePagesInternal(uintptr_t address, size_t length) {
|
||||
PA_CHECK(VirtualFree(reinterpret_cast<void*>(address), 0, MEM_RELEASE));
|
||||
}
|
||||
|
||||
void DecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// Ignore accessibility_disposition, because decommitting is equivalent to
|
||||
// making pages inaccessible.
|
||||
SetSystemPagesAccess(address, length,
|
||||
PageAccessibilityConfiguration::kInaccessible);
|
||||
}
|
||||
|
||||
void DecommitAndZeroSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
// https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualfree:
|
||||
// "If a page is decommitted but not released, its state changes to reserved.
|
||||
// Subsequently, you can call VirtualAlloc to commit it, or VirtualFree to
|
||||
// release it. Attempts to read from or write to a reserved page results in an
|
||||
// access violation exception."
|
||||
// https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
|
||||
// for MEM_COMMIT: "The function also guarantees that when the caller later
|
||||
// initially accesses the memory, the contents will be zero."
|
||||
PA_CHECK(VirtualFree(reinterpret_cast<void*>(address), length, MEM_DECOMMIT));
|
||||
}
|
||||
|
||||
void RecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// Ignore accessibility_disposition, because decommitting is equivalent to
|
||||
// making pages inaccessible.
|
||||
SetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
|
||||
bool TryRecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// Ignore accessibility_disposition, because decommitting is equivalent to
|
||||
// making pages inaccessible.
|
||||
return TrySetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
|
||||
void DiscardSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
if (s_discard_virtual_memory ==
|
||||
reinterpret_cast<DiscardVirtualMemoryFunction>(-1)) {
|
||||
// DiscardVirtualMemory's minimum supported client is Windows 8.1 Update.
|
||||
// So skip GetProcAddress("DiscardVirtualMemory") if windows version is
|
||||
// smaller than Windows 8.1.
|
||||
if (IsWindows8Point1OrGreater()) {
|
||||
s_discard_virtual_memory =
|
||||
reinterpret_cast<DiscardVirtualMemoryFunction>(GetProcAddress(
|
||||
GetModuleHandle(L"Kernel32.dll"), "DiscardVirtualMemory"));
|
||||
} else {
|
||||
s_discard_virtual_memory = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
// Use DiscardVirtualMemory when available because it releases faster than
|
||||
// MEM_RESET.
|
||||
DWORD ret = 1;
|
||||
if (s_discard_virtual_memory) {
|
||||
ret = s_discard_virtual_memory(ptr, length);
|
||||
}
|
||||
// DiscardVirtualMemory is buggy in Win10 SP0, so fall back to MEM_RESET on
|
||||
// failure.
|
||||
if (ret) {
|
||||
PA_CHECK(VirtualAlloc(ptr, length, MEM_RESET, PAGE_READWRITE));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_WIN_H_
|
@ -0,0 +1,272 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_address_space.h"
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/bits.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/debug/alias.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_IOS)
|
||||
#include <mach-o/dyld.h>
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include <windows.h>
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace {
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
bool IsLegacyWindowsVersion() {
|
||||
// Use ::RtlGetVersion instead of ::GetVersionEx or helpers from
|
||||
// VersionHelpers.h because those alternatives change their behavior depending
|
||||
// on whether or not the calling executable has a compatibility manifest
|
||||
// resource. It's better for the allocator to not depend on that to decide the
|
||||
// pool size.
|
||||
// Assume legacy if ::RtlGetVersion is not available or it fails.
|
||||
using RtlGetVersion = LONG(WINAPI*)(OSVERSIONINFOEX*);
|
||||
const RtlGetVersion rtl_get_version = reinterpret_cast<RtlGetVersion>(
|
||||
::GetProcAddress(::GetModuleHandle(L"ntdll.dll"), "RtlGetVersion"));
|
||||
if (!rtl_get_version)
|
||||
return true;
|
||||
|
||||
OSVERSIONINFOEX version_info = {};
|
||||
version_info.dwOSVersionInfoSize = sizeof(version_info);
|
||||
if (rtl_get_version(&version_info) != ERROR_SUCCESS)
|
||||
return true;
|
||||
|
||||
// Anything prior to Windows 8.1 is considered legacy for the allocator.
|
||||
// Windows 8.1 is major 6 with minor 3.
|
||||
return version_info.dwMajorVersion < 6 ||
|
||||
(version_info.dwMajorVersion == 6 && version_info.dwMinorVersion < 3);
|
||||
}
|
||||
#endif // defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
|
||||
PA_NOINLINE void HandleGigaCageAllocFailureOutOfVASpace() {
|
||||
PA_NO_CODE_FOLDING();
|
||||
PA_CHECK(false);
|
||||
}
|
||||
|
||||
PA_NOINLINE void HandleGigaCageAllocFailureOutOfCommitCharge() {
|
||||
PA_NO_CODE_FOLDING();
|
||||
PA_CHECK(false);
|
||||
}
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
|
||||
PA_NOINLINE void HandleGigaCageAllocFailure() {
|
||||
PA_NO_CODE_FOLDING();
|
||||
uint32_t alloc_page_error_code = GetAllocPageErrorCode();
|
||||
PA_DEBUG_DATA_ON_STACK("error", static_cast<size_t>(alloc_page_error_code));
|
||||
// It's important to easily differentiate these two failures on Windows, so
|
||||
// crash with different stacks.
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
if (alloc_page_error_code == ERROR_NOT_ENOUGH_MEMORY) {
|
||||
// The error code says NOT_ENOUGH_MEMORY, but since we only do MEM_RESERVE,
|
||||
// it must be VA space exhaustion.
|
||||
HandleGigaCageAllocFailureOutOfVASpace();
|
||||
} else if (alloc_page_error_code == ERROR_COMMITMENT_LIMIT) {
|
||||
// On Windows <8.1, MEM_RESERVE increases commit charge to account for
|
||||
// not-yet-committed PTEs needed to cover that VA space, if it was to be
|
||||
// committed (see crbug.com/1101421#c16).
|
||||
HandleGigaCageAllocFailureOutOfCommitCharge();
|
||||
} else
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
{
|
||||
PA_CHECK(false);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
alignas(kPartitionCachelineSize)
|
||||
PartitionAddressSpace::GigaCageSetup PartitionAddressSpace::setup_;
|
||||
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
#if BUILDFLAG(IS_IOS)
|
||||
namespace {
|
||||
bool IsIOSTestProcess() {
|
||||
// On iOS, only applications with the extended virtual addressing entitlement
|
||||
// can use a large address space. Since Earl Grey test runner apps cannot get
|
||||
// entitlements, they must use a much smaller pool size.
|
||||
uint32_t executable_length = 0;
|
||||
_NSGetExecutablePath(NULL, &executable_length);
|
||||
PA_DCHECK(executable_length > 0);
|
||||
|
||||
// 'new' cannot be used here, since this function is called during
|
||||
// PartitionAddressSpace initialization, at which point 'new' interception
|
||||
// is already active. 'malloc' is safe to use, since on Apple platforms,
|
||||
// InitializeDefaultAllocatorPartitionRoot() is called before 'malloc'
|
||||
// interception is set up.
|
||||
char* executable_path = (char*)malloc(executable_length);
|
||||
int rv = _NSGetExecutablePath(executable_path, &executable_length);
|
||||
PA_DCHECK(!rv);
|
||||
size_t executable_path_length =
|
||||
std::char_traits<char>::length(executable_path);
|
||||
|
||||
const char kTestProcessSuffix[] = "Runner";
|
||||
size_t test_process_suffix_length =
|
||||
std::char_traits<char>::length(kTestProcessSuffix);
|
||||
|
||||
if (executable_path_length < test_process_suffix_length)
|
||||
return false;
|
||||
|
||||
return !std::char_traits<char>::compare(
|
||||
executable_path + (executable_path_length - test_process_suffix_length),
|
||||
kTestProcessSuffix, test_process_suffix_length);
|
||||
}
|
||||
} // namespace
|
||||
|
||||
PA_ALWAYS_INLINE size_t PartitionAddressSpace::RegularPoolSize() {
|
||||
return IsIOSTestProcess() ? kRegularPoolSizeForIOSTestProcess
|
||||
: kRegularPoolSize;
|
||||
}
|
||||
PA_ALWAYS_INLINE size_t PartitionAddressSpace::BRPPoolSize() {
|
||||
return IsIOSTestProcess() ? kBRPPoolSizeForIOSTestProcess : kBRPPoolSize;
|
||||
}
|
||||
#else
|
||||
PA_ALWAYS_INLINE size_t PartitionAddressSpace::RegularPoolSize() {
|
||||
return IsLegacyWindowsVersion() ? kRegularPoolSizeForLegacyWindows
|
||||
: kRegularPoolSize;
|
||||
}
|
||||
PA_ALWAYS_INLINE size_t PartitionAddressSpace::BRPPoolSize() {
|
||||
return IsLegacyWindowsVersion() ? kBRPPoolSizeForLegacyWindows : kBRPPoolSize;
|
||||
}
|
||||
#endif // BUILDFLAG(IS_IOS)
|
||||
#endif // defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
|
||||
void PartitionAddressSpace::Init() {
|
||||
if (IsInitialized())
|
||||
return;
|
||||
|
||||
size_t regular_pool_size = RegularPoolSize();
|
||||
setup_.regular_pool_base_address_ = AllocPages(
|
||||
regular_pool_size, regular_pool_size,
|
||||
PageAccessibilityConfiguration::kInaccessible, PageTag::kPartitionAlloc);
|
||||
if (!setup_.regular_pool_base_address_)
|
||||
HandleGigaCageAllocFailure();
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
setup_.regular_pool_base_mask_ = ~(regular_pool_size - 1);
|
||||
#endif
|
||||
PA_DCHECK(!(setup_.regular_pool_base_address_ & (regular_pool_size - 1)));
|
||||
setup_.regular_pool_ = AddressPoolManager::GetInstance().Add(
|
||||
setup_.regular_pool_base_address_, regular_pool_size);
|
||||
PA_CHECK(setup_.regular_pool_ == kRegularPoolHandle);
|
||||
PA_DCHECK(!IsInRegularPool(setup_.regular_pool_base_address_ - 1));
|
||||
PA_DCHECK(IsInRegularPool(setup_.regular_pool_base_address_));
|
||||
PA_DCHECK(IsInRegularPool(setup_.regular_pool_base_address_ +
|
||||
regular_pool_size - 1));
|
||||
PA_DCHECK(
|
||||
!IsInRegularPool(setup_.regular_pool_base_address_ + regular_pool_size));
|
||||
|
||||
size_t brp_pool_size = BRPPoolSize();
|
||||
// Reserve an extra allocation granularity unit before the BRP pool, but keep
|
||||
// the pool aligned at BRPPoolSize(). A pointer immediately past an allocation
|
||||
// is a valid pointer, and having a "forbidden zone" before the BRP pool
|
||||
// prevents such a pointer from "sneaking into" the pool.
|
||||
const size_t kForbiddenZoneSize = PageAllocationGranularity();
|
||||
uintptr_t base_address = AllocPagesWithAlignOffset(
|
||||
0, brp_pool_size + kForbiddenZoneSize, brp_pool_size,
|
||||
brp_pool_size - kForbiddenZoneSize,
|
||||
PageAccessibilityConfiguration::kInaccessible, PageTag::kPartitionAlloc);
|
||||
if (!base_address)
|
||||
HandleGigaCageAllocFailure();
|
||||
setup_.brp_pool_base_address_ = base_address + kForbiddenZoneSize;
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
setup_.brp_pool_base_mask_ = ~(brp_pool_size - 1);
|
||||
#endif
|
||||
PA_DCHECK(!(setup_.brp_pool_base_address_ & (brp_pool_size - 1)));
|
||||
setup_.brp_pool_ = AddressPoolManager::GetInstance().Add(
|
||||
setup_.brp_pool_base_address_, brp_pool_size);
|
||||
PA_CHECK(setup_.brp_pool_ == kBRPPoolHandle);
|
||||
PA_DCHECK(!IsInBRPPool(setup_.brp_pool_base_address_ - 1));
|
||||
PA_DCHECK(IsInBRPPool(setup_.brp_pool_base_address_));
|
||||
PA_DCHECK(IsInBRPPool(setup_.brp_pool_base_address_ + brp_pool_size - 1));
|
||||
PA_DCHECK(!IsInBRPPool(setup_.brp_pool_base_address_ + brp_pool_size));
|
||||
|
||||
#if PA_STARSCAN_USE_CARD_TABLE
|
||||
// Reserve memory for PCScan quarantine card table.
|
||||
uintptr_t requested_address = setup_.regular_pool_base_address_;
|
||||
uintptr_t actual_address = AddressPoolManager::GetInstance().Reserve(
|
||||
setup_.regular_pool_, requested_address, kSuperPageSize);
|
||||
PA_CHECK(requested_address == actual_address)
|
||||
<< "QuarantineCardTable is required to be allocated at the beginning of "
|
||||
"the regular pool";
|
||||
#endif // PA_STARSCAN_USE_CARD_TABLE
|
||||
}
|
||||
|
||||
void PartitionAddressSpace::InitConfigurablePool(uintptr_t pool_base,
|
||||
size_t size) {
|
||||
// The ConfigurablePool must only be initialized once.
|
||||
PA_CHECK(!IsConfigurablePoolInitialized());
|
||||
|
||||
// The other Pools must be initialized first.
|
||||
Init();
|
||||
|
||||
PA_CHECK(pool_base);
|
||||
PA_CHECK(size <= kConfigurablePoolMaxSize);
|
||||
PA_CHECK(size >= kConfigurablePoolMinSize);
|
||||
PA_CHECK(base::bits::IsPowerOfTwo(size));
|
||||
PA_CHECK(pool_base % size == 0);
|
||||
|
||||
setup_.configurable_pool_base_address_ = pool_base;
|
||||
setup_.configurable_pool_base_mask_ = ~(size - 1);
|
||||
|
||||
setup_.configurable_pool_ = AddressPoolManager::GetInstance().Add(
|
||||
setup_.configurable_pool_base_address_, size);
|
||||
PA_CHECK(setup_.configurable_pool_ == kConfigurablePoolHandle);
|
||||
}
|
||||
|
||||
void PartitionAddressSpace::UninitForTesting() {
|
||||
FreePages(setup_.regular_pool_base_address_, RegularPoolSize());
|
||||
// For BRP pool, the allocation region includes a "forbidden zone" before the
|
||||
// pool.
|
||||
const size_t kForbiddenZoneSize = PageAllocationGranularity();
|
||||
FreePages(setup_.brp_pool_base_address_ - kForbiddenZoneSize,
|
||||
BRPPoolSize() + kForbiddenZoneSize);
|
||||
// Do not free pages for the configurable pool, because its memory is owned
|
||||
// by someone else, but deinitialize it nonetheless.
|
||||
setup_.regular_pool_base_address_ = kUninitializedPoolBaseAddress;
|
||||
setup_.brp_pool_base_address_ = kUninitializedPoolBaseAddress;
|
||||
setup_.configurable_pool_base_address_ = kUninitializedPoolBaseAddress;
|
||||
setup_.configurable_pool_base_mask_ = 0;
|
||||
setup_.regular_pool_ = 0;
|
||||
setup_.brp_pool_ = 0;
|
||||
setup_.configurable_pool_ = 0;
|
||||
AddressPoolManager::GetInstance().ResetForTesting();
|
||||
}
|
||||
|
||||
void PartitionAddressSpace::UninitConfigurablePoolForTesting() {
|
||||
AddressPoolManager::GetInstance().Remove(setup_.configurable_pool_);
|
||||
setup_.configurable_pool_base_address_ = kUninitializedPoolBaseAddress;
|
||||
setup_.configurable_pool_base_mask_ = 0;
|
||||
setup_.configurable_pool_ = 0;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_LINUX) && defined(ARCH_CPU_ARM64)
|
||||
|
||||
PageCharacteristics page_characteristics;
|
||||
|
||||
#endif // BUILDFLAG(IS_LINUX) && defined(ARCH_CPU_ARM64)
|
||||
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
} // namespace partition_alloc::internal
|
352
src/base/allocator/partition_allocator/partition_address_space.h
Normal file
352
src/base/allocator/partition_allocator/partition_address_space.h
Normal file
@ -0,0 +1,352 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ADDRESS_SPACE_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ADDRESS_SPACE_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager_types.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/bits.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
#include "base/allocator/partition_allocator/tagging.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
// The feature is not applicable to 32-bit address space.
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Reserves address space for PartitionAllocator.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
|
||||
public:
|
||||
// BRP stands for BackupRefPtr. GigaCage is split into pools, one which
|
||||
// supports BackupRefPtr and one that doesn't.
|
||||
static PA_ALWAYS_INLINE internal::pool_handle GetRegularPool() {
|
||||
return setup_.regular_pool_;
|
||||
}
|
||||
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
static PA_ALWAYS_INLINE uintptr_t RegularPoolBaseMask() {
|
||||
return setup_.regular_pool_base_mask_;
|
||||
}
|
||||
#else
|
||||
static PA_ALWAYS_INLINE constexpr uintptr_t RegularPoolBaseMask() {
|
||||
return kRegularPoolBaseMask;
|
||||
}
|
||||
#endif
|
||||
|
||||
static PA_ALWAYS_INLINE internal::pool_handle GetBRPPool() {
|
||||
return setup_.brp_pool_;
|
||||
}
|
||||
|
||||
// The Configurable Pool can be created inside an existing mapping and so will
|
||||
// be located outside PartitionAlloc's GigaCage.
|
||||
static PA_ALWAYS_INLINE internal::pool_handle GetConfigurablePool() {
|
||||
return setup_.configurable_pool_;
|
||||
}
|
||||
|
||||
static PA_ALWAYS_INLINE std::pair<pool_handle, uintptr_t> GetPoolAndOffset(
|
||||
uintptr_t address) {
|
||||
// When USE_BACKUP_REF_PTR is off, BRP pool isn't used.
|
||||
#if !BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
PA_DCHECK(!IsInBRPPool(address));
|
||||
#endif
|
||||
pool_handle pool = 0;
|
||||
uintptr_t base = 0;
|
||||
if (IsInRegularPool(address)) {
|
||||
pool = GetRegularPool();
|
||||
base = setup_.regular_pool_base_address_;
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
} else if (IsInBRPPool(address)) {
|
||||
pool = GetBRPPool();
|
||||
base = setup_.brp_pool_base_address_;
|
||||
#endif // BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
} else if (IsInConfigurablePool(address)) {
|
||||
pool = GetConfigurablePool();
|
||||
base = setup_.configurable_pool_base_address_;
|
||||
} else {
|
||||
PA_NOTREACHED();
|
||||
}
|
||||
return std::make_pair(pool, address - base);
|
||||
}
|
||||
static PA_ALWAYS_INLINE constexpr size_t ConfigurablePoolMaxSize() {
|
||||
return kConfigurablePoolMaxSize;
|
||||
}
|
||||
static PA_ALWAYS_INLINE constexpr size_t ConfigurablePoolMinSize() {
|
||||
return kConfigurablePoolMinSize;
|
||||
}
|
||||
|
||||
// Initialize the GigaCage and the Pools inside of it.
|
||||
// This function must only be called from the main thread.
|
||||
static void Init();
|
||||
// Initialize the ConfigurablePool at the given address |pool_base|. It must
|
||||
// be aligned to the size of the pool. The size must be a power of two and
|
||||
// must be within [ConfigurablePoolMinSize(), ConfigurablePoolMaxSize()]. This
|
||||
// function must only be called from the main thread.
|
||||
static void InitConfigurablePool(uintptr_t pool_base, size_t size);
|
||||
static void UninitForTesting();
|
||||
static void UninitConfigurablePoolForTesting();
|
||||
|
||||
static PA_ALWAYS_INLINE bool IsInitialized() {
|
||||
// Either neither or both regular and BRP pool are initialized. The
|
||||
// configurable pool is initialized separately.
|
||||
if (setup_.regular_pool_) {
|
||||
PA_DCHECK(setup_.brp_pool_ != 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
PA_DCHECK(setup_.brp_pool_ == 0);
|
||||
return false;
|
||||
}
|
||||
|
||||
static PA_ALWAYS_INLINE bool IsConfigurablePoolInitialized() {
|
||||
return setup_.configurable_pool_base_address_ !=
|
||||
kUninitializedPoolBaseAddress;
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
static PA_ALWAYS_INLINE bool IsInRegularPool(uintptr_t address) {
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
const uintptr_t regular_pool_base_mask = setup_.regular_pool_base_mask_;
|
||||
#else
|
||||
constexpr uintptr_t regular_pool_base_mask = kRegularPoolBaseMask;
|
||||
#endif
|
||||
return (address & regular_pool_base_mask) ==
|
||||
setup_.regular_pool_base_address_;
|
||||
}
|
||||
|
||||
static PA_ALWAYS_INLINE uintptr_t RegularPoolBase() {
|
||||
return setup_.regular_pool_base_address_;
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
static PA_ALWAYS_INLINE bool IsInBRPPool(uintptr_t address) {
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
const uintptr_t brp_pool_base_mask = setup_.brp_pool_base_mask_;
|
||||
#else
|
||||
constexpr uintptr_t brp_pool_base_mask = kBRPPoolBaseMask;
|
||||
#endif
|
||||
return (address & brp_pool_base_mask) == setup_.brp_pool_base_address_;
|
||||
}
|
||||
// Returns false for nullptr.
|
||||
static PA_ALWAYS_INLINE bool IsInConfigurablePool(uintptr_t address) {
|
||||
return (address & setup_.configurable_pool_base_mask_) ==
|
||||
setup_.configurable_pool_base_address_;
|
||||
}
|
||||
|
||||
static PA_ALWAYS_INLINE uintptr_t ConfigurablePoolBase() {
|
||||
return setup_.configurable_pool_base_address_;
|
||||
}
|
||||
|
||||
static PA_ALWAYS_INLINE uintptr_t OffsetInBRPPool(uintptr_t address) {
|
||||
PA_DCHECK(IsInBRPPool(address));
|
||||
return address - setup_.brp_pool_base_address_;
|
||||
}
|
||||
|
||||
// PartitionAddressSpace is static_only class.
|
||||
PartitionAddressSpace() = delete;
|
||||
PartitionAddressSpace(const PartitionAddressSpace&) = delete;
|
||||
void* operator new(size_t) = delete;
|
||||
void* operator new(size_t, void*) = delete;
|
||||
|
||||
private:
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
static PA_ALWAYS_INLINE size_t RegularPoolSize();
|
||||
static PA_ALWAYS_INLINE size_t BRPPoolSize();
|
||||
#else
|
||||
// The pool sizes should be as large as maximum whenever possible.
|
||||
constexpr static PA_ALWAYS_INLINE size_t RegularPoolSize() {
|
||||
return kRegularPoolSize;
|
||||
}
|
||||
constexpr static PA_ALWAYS_INLINE size_t BRPPoolSize() {
|
||||
return kBRPPoolSize;
|
||||
}
|
||||
#endif // defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
|
||||
// On 64-bit systems, GigaCage is split into disjoint pools. The BRP pool, is
|
||||
// where all allocations have a BRP ref-count, thus pointers pointing there
|
||||
// can use a BRP protection against UaF. Allocations in the other pools don't
|
||||
// have that.
|
||||
//
|
||||
// Pool sizes have to be the power of two. Each pool will be aligned at its
|
||||
// own size boundary.
|
||||
//
|
||||
// NOTE! The BRP pool must be preceded by a reserved region, where allocations
|
||||
// are forbidden. This is to prevent a pointer immediately past a non-GigaCage
|
||||
// allocation from falling into the BRP pool, thus triggering BRP mechanism
|
||||
// and likely crashing. This "forbidden zone" can be as small as 1B, but it's
|
||||
// simpler to just reserve an allocation granularity unit.
|
||||
//
|
||||
// The ConfigurablePool is an optional Pool that can be created inside an
|
||||
// existing mapping by the embedder, and so will be outside of the GigaCage.
|
||||
// This Pool can be used when certain PA allocations must be located inside a
|
||||
// given virtual address region. One use case for this Pool is V8's virtual
|
||||
// memory cage, which requires that ArrayBuffers be located inside of it.
|
||||
static constexpr size_t kRegularPoolSize = kPoolMaxSize;
|
||||
static constexpr size_t kBRPPoolSize = kPoolMaxSize;
|
||||
static_assert(base::bits::IsPowerOfTwo(kRegularPoolSize) &&
|
||||
base::bits::IsPowerOfTwo(kBRPPoolSize));
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
// We can't afford pool sizes as large as kPoolMaxSize on Windows <8.1 (see
|
||||
// crbug.com/1101421 and crbug.com/1217759).
|
||||
static constexpr size_t kRegularPoolSizeForLegacyWindows = 4 * kGiB;
|
||||
static constexpr size_t kBRPPoolSizeForLegacyWindows = 4 * kGiB;
|
||||
static_assert(kRegularPoolSizeForLegacyWindows < kRegularPoolSize);
|
||||
static_assert(kBRPPoolSizeForLegacyWindows < kBRPPoolSize);
|
||||
static_assert(base::bits::IsPowerOfTwo(kRegularPoolSizeForLegacyWindows) &&
|
||||
base::bits::IsPowerOfTwo(kBRPPoolSizeForLegacyWindows));
|
||||
#endif // defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
static constexpr size_t kConfigurablePoolMaxSize = kPoolMaxSize;
|
||||
static constexpr size_t kConfigurablePoolMinSize = 1 * kGiB;
|
||||
static_assert(kConfigurablePoolMinSize <= kConfigurablePoolMaxSize);
|
||||
static_assert(base::bits::IsPowerOfTwo(kConfigurablePoolMaxSize) &&
|
||||
base::bits::IsPowerOfTwo(kConfigurablePoolMinSize));
|
||||
|
||||
#if BUILDFLAG(IS_IOS)
|
||||
|
||||
#if !defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
#error iOS is only supported with a dynamically sized GigaCase.
|
||||
#endif
|
||||
|
||||
// We can't afford pool sizes as large as kPoolMaxSize in iOS EarlGrey tests,
|
||||
// since the test process cannot use an extended virtual address space (see
|
||||
// crbug.com/1250788).
|
||||
static constexpr size_t kRegularPoolSizeForIOSTestProcess = kGiB / 4;
|
||||
static constexpr size_t kBRPPoolSizeForIOSTestProcess = kGiB / 4;
|
||||
static_assert(kRegularPoolSizeForIOSTestProcess < kRegularPoolSize);
|
||||
static_assert(kBRPPoolSizeForIOSTestProcess < kBRPPoolSize);
|
||||
static_assert(base::bits::IsPowerOfTwo(kRegularPoolSizeForIOSTestProcess) &&
|
||||
base::bits::IsPowerOfTwo(kBRPPoolSizeForIOSTestProcess));
|
||||
#endif // BUILDFLAG(IOS_IOS)
|
||||
|
||||
#if !defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
// Masks used to easy determine belonging to a pool.
|
||||
static constexpr uintptr_t kRegularPoolOffsetMask =
|
||||
static_cast<uintptr_t>(kRegularPoolSize) - 1;
|
||||
static constexpr uintptr_t kRegularPoolBaseMask = ~kRegularPoolOffsetMask;
|
||||
static constexpr uintptr_t kBRPPoolOffsetMask =
|
||||
static_cast<uintptr_t>(kBRPPoolSize) - 1;
|
||||
static constexpr uintptr_t kBRPPoolBaseMask = ~kBRPPoolOffsetMask;
|
||||
#endif // !defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
|
||||
// This must be set to such a value that IsIn*Pool() always returns false when
|
||||
// the pool isn't initialized.
|
||||
static constexpr uintptr_t kUninitializedPoolBaseAddress =
|
||||
static_cast<uintptr_t>(-1);
|
||||
|
||||
struct GigaCageSetup {
|
||||
// Before PartitionAddressSpace::Init(), no allocation are allocated from a
|
||||
// reserved address space. Therefore, set *_pool_base_address_ initially to
|
||||
// -1, so that PartitionAddressSpace::IsIn*Pool() always returns false.
|
||||
constexpr GigaCageSetup()
|
||||
: regular_pool_base_address_(kUninitializedPoolBaseAddress),
|
||||
brp_pool_base_address_(kUninitializedPoolBaseAddress),
|
||||
configurable_pool_base_address_(kUninitializedPoolBaseAddress),
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
regular_pool_base_mask_(0),
|
||||
brp_pool_base_mask_(0),
|
||||
#endif
|
||||
configurable_pool_base_mask_(0),
|
||||
regular_pool_(0),
|
||||
brp_pool_(0),
|
||||
configurable_pool_(0) {
|
||||
}
|
||||
|
||||
// Using a union to enforce padding.
|
||||
union {
|
||||
struct {
|
||||
uintptr_t regular_pool_base_address_;
|
||||
uintptr_t brp_pool_base_address_;
|
||||
uintptr_t configurable_pool_base_address_;
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
uintptr_t regular_pool_base_mask_;
|
||||
uintptr_t brp_pool_base_mask_;
|
||||
#endif
|
||||
uintptr_t configurable_pool_base_mask_;
|
||||
|
||||
pool_handle regular_pool_;
|
||||
pool_handle brp_pool_;
|
||||
pool_handle configurable_pool_;
|
||||
};
|
||||
|
||||
char one_cacheline_[kPartitionCachelineSize];
|
||||
};
|
||||
};
|
||||
static_assert(sizeof(GigaCageSetup) % kPartitionCachelineSize == 0,
|
||||
"GigaCageSetup has to fill a cacheline(s)");
|
||||
|
||||
// See the comment describing the address layout above.
|
||||
//
|
||||
// These are write-once fields, frequently accessed thereafter. Make sure they
|
||||
// don't share a cacheline with other, potentially writeable data, through
|
||||
// alignment and padding.
|
||||
alignas(kPartitionCachelineSize) static GigaCageSetup setup_;
|
||||
};
|
||||
|
||||
PA_ALWAYS_INLINE std::pair<pool_handle, uintptr_t> GetPoolAndOffset(
|
||||
uintptr_t address) {
|
||||
return PartitionAddressSpace::GetPoolAndOffset(address);
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE pool_handle GetPool(uintptr_t address) {
|
||||
return std::get<0>(GetPoolAndOffset(address));
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE uintptr_t OffsetInBRPPool(uintptr_t address) {
|
||||
return PartitionAddressSpace::OffsetInBRPPool(address);
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAlloc(uintptr_t address) {
|
||||
// When ENABLE_BACKUP_REF_PTR_SUPPORT is off, BRP pool isn't used.
|
||||
#if !BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
PA_DCHECK(!internal::PartitionAddressSpace::IsInBRPPool(address));
|
||||
#endif
|
||||
return internal::PartitionAddressSpace::IsInRegularPool(address)
|
||||
#if BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
|| internal::PartitionAddressSpace::IsInBRPPool(address)
|
||||
#endif
|
||||
|| internal::PartitionAddressSpace::IsInConfigurablePool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocRegularPool(uintptr_t address) {
|
||||
return internal::PartitionAddressSpace::IsInRegularPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocBRPPool(uintptr_t address) {
|
||||
return internal::PartitionAddressSpace::IsInBRPPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocConfigurablePool(
|
||||
uintptr_t address) {
|
||||
return internal::PartitionAddressSpace::IsInConfigurablePool(address);
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE bool IsConfigurablePoolAvailable() {
|
||||
return internal::PartitionAddressSpace::IsConfigurablePoolInitialized();
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ADDRESS_SPACE_H_
|
96
src/base/allocator/partition_allocator/partition_alloc-inl.h
Normal file
96
src/base/allocator/partition_allocator/partition_alloc-inl.h
Normal file
@ -0,0 +1,96 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_INL_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_INL_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/debug/debugging_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_ref_count.h"
|
||||
#include "base/allocator/partition_allocator/random.h"
|
||||
#include "base/allocator/partition_allocator/tagging.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
// Prefetch *x into memory.
|
||||
#if defined(__clang__) || defined(COMPILER_GCC)
|
||||
#define PA_PREFETCH(x) __builtin_prefetch(x)
|
||||
#else
|
||||
#define PA_PREFETCH(x)
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// This is a `memset` that resists being optimized away. Adapted from
|
||||
// boringssl/src/crypto/mem.c. (Copying and pasting is bad, but //base can't
|
||||
// depend on //third_party, and this is small enough.)
|
||||
#if defined(COMPILER_MSVC) && !defined(__clang__)
|
||||
// MSVC only supports inline assembly on x86. This preprocessor directive
|
||||
// is intended to be a replacement for the same.
|
||||
//
|
||||
// TODO(crbug.com/1351310): Make sure inlining doesn't degrade this into
|
||||
// a no-op or similar. The documentation doesn't say.
|
||||
#pragma optimize("", off)
|
||||
#endif
|
||||
PA_ALWAYS_INLINE void SecureMemset(void* ptr, uint8_t value, size_t size) {
|
||||
memset(ptr, value, size);
|
||||
|
||||
#if !defined(COMPILER_MSVC) || defined(__clang__)
|
||||
// As best as we can tell, this is sufficient to break any optimisations that
|
||||
// might try to eliminate "superfluous" memsets. If there's an easy way to
|
||||
// detect memset_s, it would be better to use that.
|
||||
__asm__ __volatile__("" : : "r"(ptr) : "memory");
|
||||
#endif // !defined(COMPILER_MSVC) || defined(__clang__)
|
||||
}
|
||||
#if defined(COMPILER_MSVC) && !defined(__clang__)
|
||||
#pragma optimize("", on)
|
||||
#endif
|
||||
|
||||
// Used to memset() memory for debugging purposes only.
|
||||
PA_ALWAYS_INLINE void DebugMemset(void* ptr, int value, size_t size) {
|
||||
// Only set the first 512kiB of the allocation. This is enough to detect uses
|
||||
// of uininitialized / freed memory, and makes tests run significantly
|
||||
// faster. Note that for direct-mapped allocations, memory is decomitted at
|
||||
// free() time, so freed memory usage cannot happen.
|
||||
size_t size_to_memset = std::min(size, size_t{1} << 19);
|
||||
memset(ptr, value, size_to_memset);
|
||||
}
|
||||
|
||||
// Returns true if we've hit the end of a random-length period. We don't want to
|
||||
// invoke `RandomValue` too often, because we call this function in a hot spot
|
||||
// (`Free`), and `RandomValue` incurs the cost of atomics.
|
||||
#if !BUILDFLAG(PA_DCHECK_IS_ON)
|
||||
PA_ALWAYS_INLINE bool RandomPeriod() {
|
||||
static thread_local uint8_t counter = 0;
|
||||
if (PA_UNLIKELY(counter == 0)) {
|
||||
// It's OK to truncate this value.
|
||||
counter = static_cast<uint8_t>(RandomValue());
|
||||
}
|
||||
// If `counter` is 0, this will wrap. That is intentional and OK.
|
||||
counter--;
|
||||
return counter == 0;
|
||||
}
|
||||
#endif // !BUILDFLAG(PA_DCHECK_IS_ON)
|
||||
|
||||
PA_ALWAYS_INLINE uintptr_t ObjectInnerPtr2Addr(const void* ptr) {
|
||||
return UntagPtr(ptr);
|
||||
}
|
||||
PA_ALWAYS_INLINE uintptr_t ObjectPtr2Addr(const void* object) {
|
||||
// TODO(bartekn): Check that |object| is indeed an object start.
|
||||
return ObjectInnerPtr2Addr(object);
|
||||
}
|
||||
PA_ALWAYS_INLINE void* SlotStartAddr2Ptr(uintptr_t slot_start) {
|
||||
// TODO(bartekn): Check that |slot_start| is indeed a slot start.
|
||||
return TagAddr(slot_start);
|
||||
}
|
||||
PA_ALWAYS_INLINE uintptr_t SlotStartPtr2Addr(const void* slot_start) {
|
||||
// TODO(bartekn): Check that |slot_start| is indeed a slot start.
|
||||
return UntagPtr(slot_start);
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_INL_H_
|
151
src/base/allocator/partition_allocator/partition_alloc.cc
Normal file
151
src/base/allocator/partition_allocator/partition_alloc.cc
Normal file
@ -0,0 +1,151 @@
|
||||
// Copyright 2013 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager.h"
|
||||
#include "base/allocator/partition_allocator/memory_reclaimer.h"
|
||||
#include "base/allocator/partition_allocator/partition_address_space.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/debug/debugging_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_hooks.h"
|
||||
#include "base/allocator/partition_allocator/partition_direct_map_extent.h"
|
||||
#include "base/allocator/partition_allocator/partition_oom.h"
|
||||
#include "base/allocator/partition_allocator/partition_page.h"
|
||||
#include "base/allocator/partition_allocator/partition_root.h"
|
||||
#include "base/allocator/partition_allocator/partition_stats.h"
|
||||
|
||||
#if BUILDFLAG(STARSCAN)
|
||||
#include "base/allocator/partition_allocator/starscan/pcscan.h"
|
||||
#endif // BUILDFLAG(STARSCAN)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
void PartitionAllocGlobalInit(OomFunction on_out_of_memory) {
|
||||
// This is from page_allocator_constants.h and doesn't really fit here, but
|
||||
// there isn't a centralized initialization function in page_allocator.cc, so
|
||||
// there's no good place in that file to do a STATIC_ASSERT_OR_PA_CHECK.
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
(internal::SystemPageSize() & internal::SystemPageOffsetMask()) == 0,
|
||||
"SystemPageSize() must be power of 2");
|
||||
|
||||
// Two partition pages are used as guard / metadata page so make sure the
|
||||
// super page size is bigger.
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
internal::PartitionPageSize() * 4 <= internal::kSuperPageSize,
|
||||
"ok super page size");
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
(internal::kSuperPageSize & internal::SystemPageOffsetMask()) == 0,
|
||||
"ok super page multiple");
|
||||
// Four system pages gives us room to hack out a still-guard-paged piece
|
||||
// of metadata in the middle of a guard partition page.
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
internal::SystemPageSize() * 4 <= internal::PartitionPageSize(),
|
||||
"ok partition page size");
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
(internal::PartitionPageSize() & internal::SystemPageOffsetMask()) == 0,
|
||||
"ok partition page multiple");
|
||||
static_assert(sizeof(internal::PartitionPage<internal::ThreadSafe>) <=
|
||||
internal::kPageMetadataSize,
|
||||
"PartitionPage should not be too big");
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
internal::kPageMetadataSize * internal::NumPartitionPagesPerSuperPage() <=
|
||||
internal::SystemPageSize(),
|
||||
"page metadata fits in hole");
|
||||
|
||||
// Limit to prevent callers accidentally overflowing an int size.
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
internal::MaxDirectMapped() <=
|
||||
(1UL << 31) + internal::DirectMapAllocationGranularity(),
|
||||
"maximum direct mapped allocation");
|
||||
|
||||
// Check that some of our zanier calculations worked out as expected.
|
||||
static_assert(internal::kSmallestBucket == internal::kAlignment,
|
||||
"generic smallest bucket");
|
||||
static_assert(internal::kMaxBucketed == 983040, "generic max bucketed");
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
internal::MaxSystemPagesPerRegularSlotSpan() <= 16,
|
||||
"System pages per slot span must be no greater than 16.");
|
||||
|
||||
#if BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
internal::GetPartitionRefCountIndexMultiplierShift() <
|
||||
std::numeric_limits<size_t>::max() / 2,
|
||||
"Calculation in GetPartitionRefCountIndexMultiplierShift() must not "
|
||||
"underflow.");
|
||||
// Check that the GetPartitionRefCountIndexMultiplierShift() calculation is
|
||||
// correct.
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
(1 << internal::GetPartitionRefCountIndexMultiplierShift()) ==
|
||||
(internal::SystemPageSize() /
|
||||
(sizeof(internal::PartitionRefCount) *
|
||||
(internal::kSuperPageSize / internal::SystemPageSize()))),
|
||||
"Bitshift must match the intended multiplication.");
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
((sizeof(internal::PartitionRefCount) *
|
||||
(internal::kSuperPageSize / internal::SystemPageSize()))
|
||||
<< internal::GetPartitionRefCountIndexMultiplierShift()) <=
|
||||
internal::SystemPageSize(),
|
||||
"PartitionRefCount Bitmap size must be smaller than or equal to "
|
||||
"<= SystemPageSize().");
|
||||
#endif // BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)
|
||||
|
||||
PA_DCHECK(on_out_of_memory);
|
||||
internal::g_oom_handling_function = on_out_of_memory;
|
||||
}
|
||||
|
||||
void PartitionAllocGlobalUninitForTesting() {
|
||||
#if BUILDFLAG(STARSCAN)
|
||||
internal::PCScan::UninitForTesting(); // IN-TEST
|
||||
#endif // BUILDFLAG(STARSCAN)
|
||||
#if !BUILDFLAG(ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT)
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
internal::PartitionAddressSpace::UninitForTesting();
|
||||
#else
|
||||
internal::AddressPoolManager::GetInstance().ResetForTesting();
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
#endif // !BUILDFLAG(ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT)
|
||||
internal::g_oom_handling_function = nullptr;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <bool thread_safe>
|
||||
PartitionAllocator<thread_safe>::~PartitionAllocator() {
|
||||
MemoryReclaimer::Instance()->UnregisterPartition(&partition_root_);
|
||||
}
|
||||
|
||||
template <bool thread_safe>
|
||||
void PartitionAllocator<thread_safe>::init(PartitionOptions opts) {
|
||||
#if BUILDFLAG(ENABLE_PARTITION_ALLOC_AS_MALLOC_SUPPORT)
|
||||
PA_CHECK(opts.thread_cache == PartitionOptions::ThreadCache::kDisabled)
|
||||
<< "Cannot use a thread cache when PartitionAlloc is malloc().";
|
||||
#endif
|
||||
partition_root_.Init(opts);
|
||||
MemoryReclaimer::Instance()->RegisterPartition(&partition_root_);
|
||||
}
|
||||
|
||||
template PartitionAllocator<internal::ThreadSafe>::~PartitionAllocator();
|
||||
template void PartitionAllocator<internal::ThreadSafe>::init(PartitionOptions);
|
||||
|
||||
#if (BUILDFLAG(PA_DCHECK_IS_ON) || \
|
||||
BUILDFLAG(ENABLE_BACKUP_REF_PTR_SLOW_CHECKS)) && \
|
||||
BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
void CheckThatSlotOffsetIsZero(uintptr_t address) {
|
||||
// Add kPartitionPastAllocationAdjustment, because
|
||||
// PartitionAllocGetSlotStartInBRPPool will subtract it.
|
||||
PA_CHECK(PartitionAllocGetSlotStartInBRPPool(
|
||||
address + kPartitionPastAllocationAdjustment) == address);
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
86
src/base/allocator/partition_allocator/partition_alloc.gni
Normal file
86
src/base/allocator/partition_allocator/partition_alloc.gni
Normal file
@ -0,0 +1,86 @@
|
||||
# Copyright 2022 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//build/config/sanitizers/sanitizers.gni")
|
||||
import("//build_overrides/partition_alloc.gni")
|
||||
|
||||
if (use_partition_alloc_as_malloc_default) {
|
||||
_default_allocator = "partition"
|
||||
} else {
|
||||
_default_allocator = "none"
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Temporarily move |use_allocator| to partition_alloc.gni, because
|
||||
# some bots use |use_allocator|="none" with
|
||||
# |use_partition_alloc_as_malloc_default|=true. This causes PA_CHECK()
|
||||
# failure at PartitionAllocator::init().
|
||||
# TODO(1151236): Replace |use_allocator|="none" and |use_allocator|=
|
||||
# "partition" with |use_partition_alloc_as_malloc|=false and
|
||||
# |use_partition_alloc_as_malloc|=true, and remove |use_allocator| from
|
||||
# args.gn of all trybots. //base/allocator will look at
|
||||
# |use_partition_alloc_as_malloc| and will generate buildflags.
|
||||
# Memory allocator to use. Set to "none" to use default allocator.
|
||||
use_allocator = _default_allocator
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
use_freeslot_bitmap = false
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Set use_backup_ref_ptr true to use BackupRefPtr (BRP) as the implementation
|
||||
# of raw_ptr<T>, and enable PartitionAlloc support for it.
|
||||
enable_backup_ref_ptr_support =
|
||||
enable_backup_ref_ptr_support_default && use_allocator == "partition"
|
||||
|
||||
enable_mte_checked_ptr_support =
|
||||
enable_mte_checked_ptr_support_default && use_allocator == "partition"
|
||||
}
|
||||
|
||||
assert(!(enable_backup_ref_ptr_support && enable_mte_checked_ptr_support),
|
||||
"MTECheckedPtrSupport conflicts with BRPSupport.")
|
||||
|
||||
declare_args() {
|
||||
enable_partition_alloc_as_malloc_support =
|
||||
use_partition_alloc_as_malloc_default && use_allocator == "partition"
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# - put_ref_count_in_previous_slot: place the ref-count at the end of the
|
||||
# previous slot (or in metadata if a slot starts on the page boundary), as
|
||||
# opposed to the beginning of the slot.
|
||||
# - enable_backup_ref_ptr_slow_checks: enable additional safety checks that
|
||||
# are too expensive to have on by default.
|
||||
# - enable_dangling_raw_ptr_checks: enable checking raw_ptr do not become
|
||||
# dangling during their lifetime.
|
||||
put_ref_count_in_previous_slot =
|
||||
put_ref_count_in_previous_slot_default && enable_backup_ref_ptr_support
|
||||
|
||||
enable_backup_ref_ptr_slow_checks =
|
||||
enable_backup_ref_ptr_slow_checks_default && enable_backup_ref_ptr_support
|
||||
enable_dangling_raw_ptr_checks =
|
||||
enable_dangling_raw_ptr_checks_default && enable_backup_ref_ptr_support
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
enable_shadow_metadata = false
|
||||
}
|
||||
|
||||
# put_ref_count_in_previous_slot can only be used if
|
||||
# enable_backup_ref_ptr_support is true.
|
||||
assert(
|
||||
enable_backup_ref_ptr_support || !put_ref_count_in_previous_slot,
|
||||
"Can't put ref count in the previous slot if BackupRefPtr isn't enabled at all")
|
||||
|
||||
# enable_backup_ref_ptr_slow_checks can only be used if enable_backup_ref_ptr_support
|
||||
# is true.
|
||||
assert(enable_backup_ref_ptr_support || !enable_backup_ref_ptr_slow_checks,
|
||||
"Can't enable additional BackupRefPtr checks if it isn't enabled at all")
|
||||
|
||||
# enable_dangling_raw_ptr_checks can only be used if enable_backup_ref_ptr_support
|
||||
# is true.
|
||||
assert(
|
||||
enable_backup_ref_ptr_support || !enable_dangling_raw_ptr_checks,
|
||||
"Can't enable dangling raw_ptr checks if BackupRefPtr isn't enabled at all")
|
76
src/base/allocator/partition_allocator/partition_alloc.h
Normal file
76
src/base/allocator/partition_allocator/partition_alloc.h
Normal file
@ -0,0 +1,76 @@
|
||||
// Copyright 2013 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_H_
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/component_export.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
|
||||
#include "base/allocator/partition_allocator/partition_oom.h"
|
||||
#include "base/allocator/partition_allocator/partition_root.h"
|
||||
|
||||
// *** HOUSEKEEPING RULES ***
|
||||
//
|
||||
// Throughout PartitionAlloc code, we avoid using generic variable names like
|
||||
// |ptr| or |address|, and prefer names like |object|, |slot_start|, instead.
|
||||
// This helps emphasize that terms like "object" and "slot" represent two
|
||||
// different worlds. "Slot" is an indivisible allocation unit, internal to
|
||||
// PartitionAlloc. It is generally represented as an address (uintptr_t), since
|
||||
// arithmetic operations on it aren't uncommon, and for that reason it isn't
|
||||
// MTE-tagged either. "Object" is the allocated memory that the app is given via
|
||||
// interfaces like Alloc(), Free(), etc. An object is fully contained within a
|
||||
// slot, and may be surrounded by internal PartitionAlloc structures or empty
|
||||
// space. Is is generally represented as a pointer to its beginning (most
|
||||
// commonly void*), and is MTE-tagged so it's safe to access.
|
||||
//
|
||||
// The best way to transition between these to worlds is via
|
||||
// PartitionRoot::ObjectToSlotStart() and ::SlotStartToObject(). These take care
|
||||
// of shifting between slot/object start, MTE-tagging/untagging and the cast for
|
||||
// you. There are cases where these functions are insufficient. Internal
|
||||
// PartitionAlloc structures, like free-list pointers, BRP ref-count, cookie,
|
||||
// etc. are located in-slot thus accessing them requires an MTE tag.
|
||||
// SlotStartPtr2Addr() and SlotStartAddr2Ptr() take care of this.
|
||||
// There are cases where we have to do pointer arithmetic on an object pointer
|
||||
// (like check belonging to a pool, etc.), in which case we want to strip MTE
|
||||
// tag. ObjectInnerPtr2Addr() and ObjectPtr2Addr() take care of that.
|
||||
//
|
||||
// Avoid using UntagPtr/Addr() and TagPtr/Addr() directly, if possible. And
|
||||
// definitely avoid using reinterpret_cast between uintptr_t and pointer worlds.
|
||||
// When you do, add a comment explaining why it's safe from the point of MTE
|
||||
// tagging.
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void PartitionAllocGlobalInit(OomFunction on_out_of_memory);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void PartitionAllocGlobalUninitForTesting();
|
||||
|
||||
namespace internal {
|
||||
template <bool thread_safe>
|
||||
struct PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAllocator {
|
||||
PartitionAllocator() = default;
|
||||
~PartitionAllocator();
|
||||
|
||||
void init(PartitionOptions);
|
||||
|
||||
PA_ALWAYS_INLINE PartitionRoot<thread_safe>* root() {
|
||||
return &partition_root_;
|
||||
}
|
||||
PA_ALWAYS_INLINE const PartitionRoot<thread_safe>* root() const {
|
||||
return &partition_root_;
|
||||
}
|
||||
|
||||
private:
|
||||
PartitionRoot<thread_safe> partition_root_;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
using PartitionAllocator = internal::PartitionAllocator<internal::ThreadSafe>;
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_H_
|
@ -0,0 +1,69 @@
|
||||
// Copyright 2011 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
// This is a low level implementation of atomic semantics for reference
|
||||
// counting. Please use base/memory/ref_counted.h directly instead.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_ATOMIC_REF_COUNT_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_ATOMIC_REF_COUNT_H_
|
||||
|
||||
#include <atomic>
|
||||
|
||||
namespace partition_alloc::internal::base {
|
||||
|
||||
class AtomicRefCount {
|
||||
public:
|
||||
constexpr AtomicRefCount() : ref_count_(0) {}
|
||||
explicit constexpr AtomicRefCount(int initial_value)
|
||||
: ref_count_(initial_value) {}
|
||||
|
||||
// Increment a reference count.
|
||||
// Returns the previous value of the count.
|
||||
int Increment() { return Increment(1); }
|
||||
|
||||
// Increment a reference count by "increment", which must exceed 0.
|
||||
// Returns the previous value of the count.
|
||||
int Increment(int increment) {
|
||||
return ref_count_.fetch_add(increment, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
// Decrement a reference count, and return whether the result is non-zero.
|
||||
// Insert barriers to ensure that state written before the reference count
|
||||
// became zero will be visible to a thread that has just made the count zero.
|
||||
bool Decrement() {
|
||||
// TODO(jbroman): Technically this doesn't need to be an acquire operation
|
||||
// unless the result is 1 (i.e., the ref count did indeed reach zero).
|
||||
// However, there are toolchain issues that make that not work as well at
|
||||
// present (notably TSAN doesn't like it).
|
||||
return ref_count_.fetch_sub(1, std::memory_order_acq_rel) != 1;
|
||||
}
|
||||
|
||||
// Return whether the reference count is one. If the reference count is used
|
||||
// in the conventional way, a reference count of 1 implies that the current
|
||||
// thread owns the reference and no other thread shares it. This call
|
||||
// performs the test for a reference count of one, and performs the memory
|
||||
// barrier needed for the owning thread to act on the object, knowing that it
|
||||
// has exclusive access to the object.
|
||||
bool IsOne() const { return ref_count_.load(std::memory_order_acquire) == 1; }
|
||||
|
||||
// Return whether the reference count is zero. With conventional object
|
||||
// referencing counting, the object will be destroyed, so the reference count
|
||||
// should never be zero. Hence this is generally used for a debug check.
|
||||
bool IsZero() const {
|
||||
return ref_count_.load(std::memory_order_acquire) == 0;
|
||||
}
|
||||
|
||||
// Returns the current reference count (with no barriers). This is subtle, and
|
||||
// should be used only for debugging.
|
||||
int SubtleRefCountForDebug() const {
|
||||
return ref_count_.load(std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
private:
|
||||
std::atomic_int ref_count_;
|
||||
};
|
||||
|
||||
} // namespace partition_alloc::internal::base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_ATOMIC_REF_COUNT_H_
|
@ -0,0 +1,48 @@
|
||||
// Copyright 2016 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_BIT_CAST_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_BIT_CAST_H_
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
|
||||
#if !PA_HAS_BUILTIN(__builtin_bit_cast)
|
||||
#include <string.h> // memcpy
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal::base {
|
||||
|
||||
// This is C++20's std::bit_cast<>().
|
||||
// It morally does what `*reinterpret_cast<Dest*>(&source)` does, but the
|
||||
// cast/deref pair is undefined behavior, while bit_cast<>() isn't.
|
||||
template <class Dest, class Source>
|
||||
#if PA_HAS_BUILTIN(__builtin_bit_cast)
|
||||
constexpr
|
||||
#else
|
||||
inline
|
||||
#endif
|
||||
Dest
|
||||
bit_cast(const Source& source) {
|
||||
#if PA_HAS_BUILTIN(__builtin_bit_cast)
|
||||
// TODO(thakis): Keep only this codepath once nacl is gone or updated.
|
||||
return __builtin_bit_cast(Dest, source);
|
||||
#else
|
||||
static_assert(sizeof(Dest) == sizeof(Source),
|
||||
"bit_cast requires source and destination to be the same size");
|
||||
static_assert(std::is_trivially_copyable_v<Dest>,
|
||||
"bit_cast requires the destination type to be copyable");
|
||||
static_assert(std::is_trivially_copyable_v<Source>,
|
||||
"bit_cast requires the source type to be copyable");
|
||||
|
||||
Dest dest;
|
||||
memcpy(&dest, &source, sizeof(dest));
|
||||
return dest;
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal::base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_BIT_CAST_H_
|
@ -0,0 +1,158 @@
|
||||
// Copyright 2013 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
// This file defines some bit utilities.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_BITS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_BITS_H_
|
||||
|
||||
#include <climits>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <type_traits>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/compiler_specific.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_base/migration_adapter.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace partition_alloc::internal::base::bits {
|
||||
|
||||
// Returns true iff |value| is a power of 2.
|
||||
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
|
||||
constexpr bool IsPowerOfTwo(T value) {
|
||||
// From "Hacker's Delight": Section 2.1 Manipulating Rightmost Bits.
|
||||
//
|
||||
// Only positive integers with a single bit set are powers of two. If only one
|
||||
// bit is set in x (e.g. 0b00000100000000) then |x-1| will have that bit set
|
||||
// to zero and all bits to its right set to 1 (e.g. 0b00000011111111). Hence
|
||||
// |x & (x-1)| is 0 iff x is a power of two.
|
||||
return value > 0 && (value & (value - 1)) == 0;
|
||||
}
|
||||
|
||||
// Round down |size| to a multiple of alignment, which must be a power of two.
|
||||
inline constexpr size_t AlignDown(size_t size, size_t alignment) {
|
||||
PA_DCHECK(IsPowerOfTwo(alignment));
|
||||
return size & ~(alignment - 1);
|
||||
}
|
||||
|
||||
// Move |ptr| back to the previous multiple of alignment, which must be a power
|
||||
// of two. Defined for types where sizeof(T) is one byte.
|
||||
template <typename T, typename = typename std::enable_if<sizeof(T) == 1>::type>
|
||||
inline T* AlignDown(T* ptr, size_t alignment) {
|
||||
return reinterpret_cast<T*>(
|
||||
AlignDown(reinterpret_cast<size_t>(ptr), alignment));
|
||||
}
|
||||
|
||||
// Round up |size| to a multiple of alignment, which must be a power of two.
|
||||
inline constexpr size_t AlignUp(size_t size, size_t alignment) {
|
||||
PA_DCHECK(IsPowerOfTwo(alignment));
|
||||
return (size + alignment - 1) & ~(alignment - 1);
|
||||
}
|
||||
|
||||
// Advance |ptr| to the next multiple of alignment, which must be a power of
|
||||
// two. Defined for types where sizeof(T) is one byte.
|
||||
template <typename T, typename = typename std::enable_if<sizeof(T) == 1>::type>
|
||||
inline T* AlignUp(T* ptr, size_t alignment) {
|
||||
return reinterpret_cast<T*>(
|
||||
AlignUp(reinterpret_cast<size_t>(ptr), alignment));
|
||||
}
|
||||
|
||||
// CountLeadingZeroBits(value) returns the number of zero bits following the
|
||||
// most significant 1 bit in |value| if |value| is non-zero, otherwise it
|
||||
// returns {sizeof(T) * 8}.
|
||||
// Example: 00100010 -> 2
|
||||
//
|
||||
// CountTrailingZeroBits(value) returns the number of zero bits preceding the
|
||||
// least significant 1 bit in |value| if |value| is non-zero, otherwise it
|
||||
// returns {sizeof(T) * 8}.
|
||||
// Example: 00100010 -> 1
|
||||
//
|
||||
// C does not have an operator to do this, but fortunately the various
|
||||
// compilers have built-ins that map to fast underlying processor instructions.
|
||||
// __builtin_clz has undefined behaviour for an input of 0, even though there's
|
||||
// clearly a return value that makes sense, and even though some processor clz
|
||||
// instructions have defined behaviour for 0. We could drop to raw __asm__ to
|
||||
// do better, but we'll avoid doing that unless we see proof that we need to.
|
||||
template <typename T, int bits = sizeof(T) * 8>
|
||||
PA_ALWAYS_INLINE constexpr
|
||||
typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
|
||||
int>::type
|
||||
CountLeadingZeroBits(T value) {
|
||||
static_assert(bits > 0, "invalid instantiation");
|
||||
#if defined(COMPILER_MSVC) && !defined(__clang__)
|
||||
// We would prefer to use the _BitScanReverse(64) intrinsics, but they
|
||||
// aren't constexpr and thus unusable here.
|
||||
if (PA_LIKELY(value)) {
|
||||
int leading_zeros = 0;
|
||||
constexpr T kMostSignificantBitMask = 1ull << (bits - 1);
|
||||
for (; !(value & kMostSignificantBitMask); value <<= 1, ++leading_zeros) {
|
||||
}
|
||||
return leading_zeros;
|
||||
}
|
||||
return bits;
|
||||
#else
|
||||
return PA_LIKELY(value)
|
||||
? bits == 64
|
||||
? __builtin_clzll(static_cast<uint64_t>(value))
|
||||
: __builtin_clz(static_cast<uint32_t>(value)) - (32 - bits)
|
||||
: bits;
|
||||
#endif // defined(COMPILER_MSVC) && !defined(__clang__)
|
||||
}
|
||||
|
||||
template <typename T, int bits = sizeof(T) * 8>
|
||||
PA_ALWAYS_INLINE constexpr
|
||||
typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
|
||||
int>::type
|
||||
CountTrailingZeroBits(T value) {
|
||||
#if defined(COMPILER_MSVC) && !defined(__clang__)
|
||||
// We would prefer to use the _BitScanForward(64) intrinsics, but they
|
||||
// aren't constexpr and thus unusable here.
|
||||
if (PA_LIKELY(value)) {
|
||||
int trailing_zeros = 0;
|
||||
constexpr T kLeastSignificantBitMask = 1ull;
|
||||
for (; !(value & kLeastSignificantBitMask); value >>= 1, ++trailing_zeros) {
|
||||
}
|
||||
return trailing_zeros;
|
||||
}
|
||||
return bits;
|
||||
|
||||
#else
|
||||
return PA_LIKELY(value) ? bits == 64
|
||||
? __builtin_ctzll(static_cast<uint64_t>(value))
|
||||
: __builtin_ctz(static_cast<uint32_t>(value))
|
||||
: bits;
|
||||
#endif // defined(COMPILER_MSVC) && !defined(__clang__)
|
||||
}
|
||||
|
||||
// Returns the integer i such as 2^i <= n < 2^(i+1).
|
||||
//
|
||||
// There is a common `BitLength` function, which returns the number of bits
|
||||
// required to represent a value. Rather than implement that function,
|
||||
// use `Log2Floor` and add 1 to the result.
|
||||
constexpr int Log2Floor(uint32_t n) {
|
||||
return 31 - CountLeadingZeroBits(n);
|
||||
}
|
||||
|
||||
// Returns the integer i such as 2^(i-1) < n <= 2^i.
|
||||
constexpr int Log2Ceiling(uint32_t n) {
|
||||
// When n == 0, we want the function to return -1.
|
||||
// When n == 0, (n - 1) will underflow to 0xFFFFFFFF, which is
|
||||
// why the statement below starts with (n ? 32 : -1).
|
||||
return (n ? 32 : -1) - CountLeadingZeroBits(n - 1);
|
||||
}
|
||||
|
||||
// Returns a value of type T with a single bit set in the left-most position.
|
||||
// Can be used instead of manually shifting a 1 to the left.
|
||||
template <typename T>
|
||||
constexpr T LeftmostBit() {
|
||||
static_assert(std::is_integral<T>::value,
|
||||
"This function can only be used with integral types.");
|
||||
T one(1u);
|
||||
return one << ((CHAR_BIT * sizeof(T) - 1));
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal::base::bits
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_BASE_BITS_H_
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user