mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-12-18 09:58:46 +03:00
Import chromium-130.0.6723.40
This commit is contained in:
commit
4bbac2d040
78
src/.clang-format
Normal file
78
src/.clang-format
Normal file
@ -0,0 +1,78 @@
|
||||
# Defines the Chromium style for automatic reformatting.
|
||||
# http://clang.llvm.org/docs/ClangFormatStyleOptions.html
|
||||
BasedOnStyle: Chromium
|
||||
# This defaults to 'Auto'. Explicitly set it for a while, so that
|
||||
# 'vector<vector<int> >' in existing files gets formatted to
|
||||
# 'vector<vector<int>>'. ('Auto' means that clang-format will only use
|
||||
# 'int>>' if the file already contains at least one such instance.)
|
||||
Standard: Cpp11
|
||||
|
||||
# TODO(crbug.com/1392808): Remove when InsertBraces has been upstreamed into
|
||||
# the Chromium style (is implied by BasedOnStyle: Chromium).
|
||||
InsertBraces: true
|
||||
InsertNewlineAtEOF: true
|
||||
|
||||
# Sort #includes by following
|
||||
# https://google.github.io/styleguide/cppguide.html#Names_and_Order_of_Includes
|
||||
#
|
||||
# ref: https://clang.llvm.org/docs/ClangFormatStyleOptions.html#includeblocks
|
||||
IncludeBlocks: Regroup
|
||||
# ref: https://clang.llvm.org/docs/ClangFormatStyleOptions.html#includecategories
|
||||
IncludeCategories:
|
||||
# The win32 api has all sorts of implicit include order dependencies :-/
|
||||
# Give a few headers special priorities that make sure they appear before
|
||||
# all other headers.
|
||||
# Sync this with SerializeIncludes in tools/add_header.py.
|
||||
# TODO(crbug.com/329138753): remove include sorting from tools/add_header.py
|
||||
# after confirming clang-format sort works well.
|
||||
# LINT.IfChange(winheader)
|
||||
- Regex: '^<objbase\.h>' # This has to be before initguid.h.
|
||||
Priority: 1
|
||||
- Regex: '^<(initguid|mmdeviceapi|windows|winsock2|ws2tcpip|shobjidl|atlbase|ole2|unknwn|tchar|ocidl)\.h>'
|
||||
Priority: 2
|
||||
# LINT.ThenChange(/tools/add_header.py:winheader)
|
||||
# UIAutomation*.h need to be after base/win/atl.h.
|
||||
# Note the low priority number.
|
||||
- Regex: '^<UIAutomation.*\.h>'
|
||||
Priority: 6
|
||||
# Other C system headers.
|
||||
- Regex: '^<.*\.h>'
|
||||
Priority: 3
|
||||
# C++ standard library headers.
|
||||
- Regex: '^<.*'
|
||||
Priority: 4
|
||||
# Other libraries.
|
||||
- Regex: '.*'
|
||||
Priority: 5
|
||||
# ref: https://clang.llvm.org/docs/ClangFormatStyleOptions.html#includeismainregex
|
||||
IncludeIsMainRegex: "\
|
||||
(_(32|64|android|apple|chromeos|freebsd|fuchsia|fuzzer|ios|linux|mac|nacl|openbsd|posix|stubs?|win))?\
|
||||
(_(unit|browser|perf)?tests?)?$"
|
||||
|
||||
# Make sure code like:
|
||||
# IPC_BEGIN_MESSAGE_MAP()
|
||||
# IPC_MESSAGE_HANDLER(WidgetHostViewHost_Update, OnUpdate)
|
||||
# IPC_END_MESSAGE_MAP()
|
||||
# gets correctly indented.
|
||||
MacroBlockBegin: "^\
|
||||
BEGIN_MSG_MAP|\
|
||||
BEGIN_MSG_MAP_EX|\
|
||||
BEGIN_SAFE_MSG_MAP_EX|\
|
||||
CR_BEGIN_MSG_MAP_EX|\
|
||||
IPC_BEGIN_MESSAGE_MAP|\
|
||||
IPC_BEGIN_MESSAGE_MAP_WITH_PARAM|\
|
||||
IPC_PROTOBUF_MESSAGE_TRAITS_BEGIN|\
|
||||
IPC_STRUCT_BEGIN|\
|
||||
IPC_STRUCT_BEGIN_WITH_PARENT|\
|
||||
IPC_STRUCT_TRAITS_BEGIN|\
|
||||
POLPARAMS_BEGIN|\
|
||||
PPAPI_BEGIN_MESSAGE_MAP$"
|
||||
MacroBlockEnd: "^\
|
||||
CR_END_MSG_MAP|\
|
||||
END_MSG_MAP|\
|
||||
IPC_END_MESSAGE_MAP|\
|
||||
IPC_PROTOBUF_MESSAGE_TRAITS_END|\
|
||||
IPC_STRUCT_END|\
|
||||
IPC_STRUCT_TRAITS_END|\
|
||||
POLPARAMS_END|\
|
||||
PPAPI_END_MESSAGE_MAP$"
|
59
src/.gitattributes
vendored
Normal file
59
src/.gitattributes
vendored
Normal file
@ -0,0 +1,59 @@
|
||||
# Stop Windows python license check presubmit errors by forcing LF checkout.
|
||||
*.py text eol=lf
|
||||
|
||||
# Force LF checkout of the pins files to avoid transport_security_state_generator errors.
|
||||
/net/http/*.pins text eol=lf
|
||||
|
||||
# Force LF checkout for all source files
|
||||
*.bin binary
|
||||
*.c text eol=lf
|
||||
*.cc text eol=lf
|
||||
*.cpp text eol=lf
|
||||
*.csv text eol=lf
|
||||
*.grd text eol=lf
|
||||
*.grdp text eol=lf
|
||||
*.gn text eol=lf
|
||||
*.gni text eol=lf
|
||||
*.h text eol=lf
|
||||
*.html text eol=lf
|
||||
*.idl text eol=lf
|
||||
*.in text eol=lf
|
||||
*.inc text eol=lf
|
||||
*.java text eol=lf
|
||||
*.js text eol=lf
|
||||
*.json text eol=lf
|
||||
*.json5 text eol=lf
|
||||
*.md text eol=lf
|
||||
*.mm text eol=lf
|
||||
*.mojom text eol=lf
|
||||
*.pdf -diff
|
||||
*.proto text eol=lf
|
||||
*.rs text eol=lf
|
||||
*.sh text eol=lf
|
||||
*.spec text eol=lf
|
||||
*.sql text eol=lf
|
||||
*.toml text eol=lf
|
||||
*.txt text eol=lf
|
||||
*.xml text eol=lf
|
||||
*.xslt text eol=lf
|
||||
.clang-format text eol=lf
|
||||
.eslintrc.js text eol=lf
|
||||
.git-blame-ignore-revs text eol=lf
|
||||
.gitattributes text eol=lf
|
||||
.gitignore text eol=lf
|
||||
.vpython text eol=lf
|
||||
codereview.settings text eol=lf
|
||||
DEPS text eol=lf
|
||||
ATL_OWNERS text eol=lf
|
||||
LICENSE text eol=lf
|
||||
LICENSE.* text eol=lf
|
||||
MAJOR_BRANCH_DATE text eol=lf
|
||||
OWNERS text eol=lf
|
||||
README text eol=lf
|
||||
README.* text eol=lf
|
||||
WATCHLISTS text eol=lf
|
||||
VERSION text eol=lf
|
||||
DIR_METADATA text eol=lf
|
||||
|
||||
# Skip Tricium by default on files in third_party.
|
||||
third_party/** -tricium
|
175
src/.gn
Normal file
175
src/.gn
Normal file
@ -0,0 +1,175 @@
|
||||
# This file is used by the GN meta build system to find the root of the source
|
||||
# tree and to set startup options. For documentation on the values set in this
|
||||
# file, run "gn help dotfile" at the command line.
|
||||
|
||||
import("//build/dotfile_settings.gni")
|
||||
import("//third_party/angle/dotfile_settings.gni")
|
||||
|
||||
# The location of the build configuration file.
|
||||
buildconfig = "//build/config/BUILDCONFIG.gn"
|
||||
|
||||
# The python interpreter to use by default. On Windows, this will look
|
||||
# for python3.exe and python3.bat.
|
||||
script_executable = "python3"
|
||||
|
||||
# These arguments override the default values for items in a declare_args
|
||||
# block. "gn args" in turn can override these.
|
||||
#
|
||||
# In general the value for a build arg in the declare_args block should be the
|
||||
# default. In some cases, a DEPS-ed in project will want different defaults for
|
||||
# being built as part of Chrome vs. being built standalone. In this case, the
|
||||
# Chrome defaults should go here. There should be no overrides here for
|
||||
# values declared in the main Chrome repository.
|
||||
#
|
||||
# Important note for defining defaults: This file is executed before the
|
||||
# BUILDCONFIG.gn file. That file sets up the global variables like "is_ios".
|
||||
# This means that the default_args can not depend on the platform,
|
||||
# architecture, or other build parameters. If you really need that, the other
|
||||
# repo should define a flag that toggles on a behavior that implements the
|
||||
# additional logic required by Chrome to set the variables.
|
||||
default_args = {
|
||||
# TODO(brettw) bug 684096: Chrome on iOS does not build v8, so "gn gen" prints
|
||||
# a warning that "Build argument has no effect". When adding a v8 variable, it
|
||||
# also needs to be defined to src/ios/BUILD.gn (respectively removed from both
|
||||
# location when it is removed).
|
||||
|
||||
v8_enable_gdbjit = false
|
||||
v8_imminent_deprecation_warnings = false
|
||||
|
||||
# Don't include webrtc's builtin task queue implementation.
|
||||
rtc_link_task_queue_impl = false
|
||||
|
||||
# When building with Chromium, `webrtc::Location` is replaced by
|
||||
# `base::Location`. Since WebRTC doesn't use `public_deps` (webrtc:8603), it
|
||||
# would fail to propagate the dependency internally. Instead WebRTC let its
|
||||
# embedders to define it globally for all of its targets.
|
||||
rtc_common_public_deps = [ "//base" ]
|
||||
|
||||
# Don't include the iLBC audio codec.
|
||||
# TODO(bugs.webrtc.org/8396): Once WebRTC gets rid of its internal
|
||||
# deps on codecs, we can remove this.
|
||||
rtc_include_ilbc = false
|
||||
|
||||
# Changes some setup for the Crashpad build to set them to build against
|
||||
# Chromium's zlib, base, etc.
|
||||
crashpad_dependencies = "chromium"
|
||||
|
||||
# Override ANGLE's Vulkan dependencies.
|
||||
angle_vulkan_headers_dir = "//third_party/vulkan-headers/src"
|
||||
angle_vulkan_loader_dir = "//third_party/vulkan-loader/src"
|
||||
angle_vulkan_tools_dir = "//third_party/vulkan-tools/src"
|
||||
angle_vulkan_validation_layers_dir =
|
||||
"//third_party/vulkan-validation-layers/src"
|
||||
|
||||
# Override VMA's Vulkan dependencies.
|
||||
vma_vulkan_headers_dir = "//third_party/vulkan-headers/src"
|
||||
|
||||
# Overwrite default args declared in the Fuchsia sdk
|
||||
fuchsia_sdk_readelf_exec =
|
||||
"//third_party/llvm-build/Release+Asserts/bin/llvm-readelf"
|
||||
|
||||
# Overwrite default args declared in the pdfium library
|
||||
pdf_partition_alloc_dir = "//base/allocator/partition_allocator"
|
||||
|
||||
devtools_visibility = [ "*" ]
|
||||
|
||||
clang_unsafe_buffers_paths = "//build/config/unsafe_buffers_paths.txt"
|
||||
}
|
||||
|
||||
# These are the targets to skip header checking by default. The files in targets
|
||||
# matching these patterns (see "gn help label_pattern" for format) will not have
|
||||
# their includes checked for proper dependencies when you run either
|
||||
# "gn check" or "gn gen --check".
|
||||
no_check_targets = [
|
||||
# //v8, https://crbug.com/v8/7330
|
||||
"//v8/src/inspector:inspector", # 20 errors
|
||||
"//v8/test/cctest:cctest_sources", # 15 errors
|
||||
"//v8/test/unittests:inspector_unittests_sources", # 2 errors
|
||||
"//v8:cppgc_base", # 1 error
|
||||
"//v8:v8_internal_headers", # 11 errors
|
||||
"//v8:v8_libplatform", # 2 errors
|
||||
]
|
||||
|
||||
# These are the list of GN files that run exec_script. This whitelist exists
|
||||
# to force additional review for new uses of exec_script, which is strongly
|
||||
# discouraged.
|
||||
#
|
||||
# PLEASE READ
|
||||
#
|
||||
# You should almost never need to add new exec_script calls. exec_script is
|
||||
# slow, especially on Windows, and can cause confusing effects. Although
|
||||
# individually each call isn't slow or necessarily very confusing, at the scale
|
||||
# of our repo things get out of hand quickly. By strongly pushing back on all
|
||||
# additions, we keep the build fast and clean. If you think you need to add a
|
||||
# new call, please consider:
|
||||
#
|
||||
# - Do not use a script to check for the existence of a file or directory to
|
||||
# enable a different mode. Instead, use GN build args to enable or disable
|
||||
# functionality and set options. An example is checking for a file in the
|
||||
# src-internal repo to see if the corresponding src-internal feature should
|
||||
# be enabled. There are several things that can go wrong with this:
|
||||
#
|
||||
# - It's mysterious what causes some things to happen. Although in many cases
|
||||
# such behavior can be conveniently automatic, GN optimizes for explicit
|
||||
# and obvious behavior so people can more easily diagnose problems.
|
||||
#
|
||||
# - The user can't enable a mode for one build and not another. With GN build
|
||||
# args, the user can choose the exact configuration of multiple builds
|
||||
# using one checkout. But implicitly basing flags on the state of the
|
||||
# checkout, this functionality is broken.
|
||||
#
|
||||
# - It's easy to get stale files. If for example the user edits the gclient
|
||||
# to stop checking out src-internal (or any other optional thing), it's
|
||||
# easy to end up with stale files still mysteriously triggering build
|
||||
# conditions that are no longer appropriate (yes, this happens in real
|
||||
# life).
|
||||
#
|
||||
# - Do not use a script to iterate files in a directory (glob):
|
||||
#
|
||||
# - This has the same "stale file" problem as the above discussion. Various
|
||||
# operations can leave untracked files in the source tree which can cause
|
||||
# surprising effects.
|
||||
#
|
||||
# - It becomes impossible to use "git grep" to find where a certain file is
|
||||
# referenced. This operation is very common and people really do get
|
||||
# confused when things aren't listed.
|
||||
#
|
||||
# - It's easy to screw up. One common case is a build-time script that packs
|
||||
# up a directory. The author notices that the script isn't re-run when the
|
||||
# directory is updated, so adds a glob so all the files are listed as
|
||||
# inputs. This seems to work great... until a file is deleted. When a
|
||||
# file is deleted, all the inputs the glob lists will still be up to date
|
||||
# and no command-lines will have been changed. The action will not be
|
||||
# re-run and the build will be broken. It is possible to get this correct
|
||||
# using glob, and it's possible to mess it up without glob, but globs make
|
||||
# this situation much easier to create. if the build always lists the
|
||||
# files and passes them to a script, it will always be correct.
|
||||
|
||||
exec_script_whitelist =
|
||||
build_dotfile_settings.exec_script_whitelist +
|
||||
angle_dotfile_settings.exec_script_whitelist +
|
||||
[
|
||||
# Whitelist entries for //build should go into
|
||||
# //build/dotfile_settings.gni instead, so that they can be shared
|
||||
# with other repos. The entries in this list should be only for files
|
||||
# in the Chromium repo outside of //build.
|
||||
"//build_overrides/build.gni",
|
||||
|
||||
"//chrome/android/webapk/shell_apk/prepare_upload_dir/BUILD.gn",
|
||||
"//chrome/version.gni",
|
||||
|
||||
# TODO(dgn): Layer violation but breaks the build otherwise, see
|
||||
# https://crbug.com/474506.
|
||||
"//clank/java/BUILD.gn",
|
||||
"//clank/native/BUILD.gn",
|
||||
|
||||
"//google_apis/BUILD.gn",
|
||||
"//printing/BUILD.gn",
|
||||
|
||||
"//remoting/host/installer/linux/BUILD.gn",
|
||||
"//remoting/remoting_version.gni",
|
||||
"//remoting/host/installer/win/generate_clsids.gni",
|
||||
|
||||
"//tools/grit/grit_rule.gni",
|
||||
"//tools/gritsettings/BUILD.gn",
|
||||
]
|
1714
src/AUTHORS
Normal file
1714
src/AUTHORS
Normal file
File diff suppressed because it is too large
Load Diff
1837
src/BUILD.gn
Normal file
1837
src/BUILD.gn
Normal file
File diff suppressed because it is too large
Load Diff
27
src/LICENSE
Normal file
27
src/LICENSE
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright 2015 The Chromium Authors
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google LLC nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
5498
src/base/BUILD.gn
Normal file
5498
src/base/BUILD.gn
Normal file
File diff suppressed because it is too large
Load Diff
44
src/base/DEPS
Normal file
44
src/base/DEPS
Normal file
@ -0,0 +1,44 @@
|
||||
include_rules = [
|
||||
"+third_party/ashmem",
|
||||
"+third_party/apple_apsl",
|
||||
"+third_party/boringssl/src/include",
|
||||
"+third_party/ced",
|
||||
# We are moving the old jni_generator to jni_zero, some references will remain
|
||||
# in //base.
|
||||
"+third_party/jni_zero",
|
||||
"+third_party/libunwindstack/src/libunwindstack/include",
|
||||
"+third_party/lss",
|
||||
"+third_party/modp_b64",
|
||||
"+third_party/perfetto/include",
|
||||
"+third_party/perfetto/protos/perfetto",
|
||||
# Conversions between base and Rust types (e.g. base::span <-> rust::Slice)
|
||||
# require the cxx.h header from cxx. This is only used if Rust is enabled
|
||||
# in the gn build; see //base/BUILD.gn's conditional dependency on
|
||||
# //build/rust:cxx_cppdeps.
|
||||
"+third_party/rust/cxx",
|
||||
"+third_party/test_fonts",
|
||||
# JSON Deserialization.
|
||||
"+third_party/rust/serde_json_lenient/v0_2/wrapper",
|
||||
"+third_party/zlib",
|
||||
|
||||
# These are implicitly brought in from the root, and we don't want them.
|
||||
"-ipc",
|
||||
"-url",
|
||||
|
||||
# ICU dependendencies must be separate from the rest of base.
|
||||
"-i18n",
|
||||
|
||||
# //base/util can use //base but not vice versa.
|
||||
"-util",
|
||||
]
|
||||
|
||||
specific_include_rules = {
|
||||
# Special case
|
||||
"process/current_process(|_test)\.h": [
|
||||
"+third_party/perfetto/protos/perfetto/trace/track_event/chrome_process_descriptor.pbzero.h",
|
||||
],
|
||||
# To evaluate the performance effects of using absl's flat_hash_map.
|
||||
"supports_user_data\.cc": [
|
||||
"+third_party/abseil-cpp/absl/container/flat_hash_map.h",
|
||||
]
|
||||
}
|
6
src/base/DIR_METADATA
Normal file
6
src/base/DIR_METADATA
Normal file
@ -0,0 +1,6 @@
|
||||
monorail: {
|
||||
component: "Internals>Core"
|
||||
}
|
||||
buganizer_public: {
|
||||
component_id: 1456128
|
||||
}
|
53
src/base/OWNERS
Normal file
53
src/base/OWNERS
Normal file
@ -0,0 +1,53 @@
|
||||
# See //base/README.md to find qualification for being an owner.
|
||||
|
||||
set noparent
|
||||
# NOTE: keep this in sync with global-owners-override@chromium.org owners
|
||||
# by emailing lsc-policy@chromium.org when this list changes.
|
||||
altimin@chromium.org
|
||||
danakj@chromium.org
|
||||
dcheng@chromium.org
|
||||
fdoray@chromium.org
|
||||
gab@chromium.org
|
||||
kylechar@chromium.org
|
||||
mark@chromium.org
|
||||
pkasting@chromium.org
|
||||
thakis@chromium.org
|
||||
thestig@chromium.org
|
||||
wez@chromium.org
|
||||
# NOTE: keep this in sync with global-owners-override@chromium.org owners
|
||||
# by emailing lsc-policy@chromium.org when this list changes.
|
||||
|
||||
# per-file rules:
|
||||
# These are for the common case of adding or renaming files. If you're doing
|
||||
# structural changes, please get a review from a reviewer in this file.
|
||||
per-file BUILD.gn=*
|
||||
|
||||
# For Android-specific changes:
|
||||
per-file ..._android*=file://base/android/OWNERS
|
||||
|
||||
# For Fuchsia-specific changes:
|
||||
per-file ..._fuchsia*=file://build/fuchsia/OWNERS
|
||||
|
||||
# For Windows-specific changes:
|
||||
per-file ..._win*=file://base/win/OWNERS
|
||||
|
||||
per-file feature_list*=asvitkine@chromium.org
|
||||
per-file feature_list*=isherman@chromium.org
|
||||
|
||||
# Logging-related changes:
|
||||
per-file check*=olivierli@chromium.org
|
||||
per-file check*=pbos@chromium.org
|
||||
per-file dcheck*=olivierli@chromium.org
|
||||
per-file dcheck*=pbos@chromium.org
|
||||
per-file logging*=olivierli@chromium.org
|
||||
per-file logging*=pbos@chromium.org
|
||||
per-file notimplemented.h=olivierli@chromium.org
|
||||
per-file notimplemented.h=pbos@chromium.org
|
||||
per-file notreached.h=olivierli@chromium.org
|
||||
per-file notreached.h=pbos@chromium.org
|
||||
|
||||
# Restricted since rand_util.h also backs the cryptographically secure RNG.
|
||||
per-file rand_util*=set noparent
|
||||
per-file rand_util*=file://ipc/SECURITY_OWNERS
|
||||
|
||||
per-file safe_numerics_unittest.cc=file://base/numerics/OWNERS
|
159
src/base/PRESUBMIT.py
Normal file
159
src/base/PRESUBMIT.py
Normal file
@ -0,0 +1,159 @@
|
||||
# Copyright 2012 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
"""Chromium presubmit script for src/base.
|
||||
|
||||
See http://dev.chromium.org/developers/how-tos/depottools/presubmit-scripts
|
||||
for more details on the presubmit API built into depot_tools.
|
||||
"""
|
||||
|
||||
def CheckChangeLintsClean(input_api, output_api):
|
||||
"""Makes sure that the code is cpplint clean."""
|
||||
# lint_filters=[] stops the OFF_BY_DEFAULT_LINT_FILTERS from being disabled,
|
||||
# finding many more issues. verbose_level=1 finds a small number of additional
|
||||
# issues.
|
||||
# The only valid extensions for cpplint are .cc, .h, .cpp, .cu, and .ch.
|
||||
# Only process those extensions which are used in Chromium, in directories
|
||||
# that currently lint clean.
|
||||
CLEAN_CPP_FILES_ONLY = (r'base/win/.*\.(cc|h)$', )
|
||||
source_file_filter = lambda x: input_api.FilterSourceFile(
|
||||
x,
|
||||
files_to_check=CLEAN_CPP_FILES_ONLY,
|
||||
files_to_skip=input_api.DEFAULT_FILES_TO_SKIP)
|
||||
return input_api.canned_checks.CheckChangeLintsClean(
|
||||
input_api, output_api, source_file_filter=source_file_filter,
|
||||
lint_filters=[], verbose_level=1)
|
||||
|
||||
|
||||
def _CheckNoInterfacesInBase(input_api, output_api):
|
||||
"""Checks to make sure no files in libbase.a have |@interface|."""
|
||||
pattern = input_api.re.compile(r'^\s*@interface', input_api.re.MULTILINE)
|
||||
files = []
|
||||
for f in input_api.AffectedSourceFiles(input_api.FilterSourceFile):
|
||||
if (f.LocalPath().startswith('base/') and
|
||||
not "/ios/" in f.LocalPath() and
|
||||
not "/test/" in f.LocalPath() and
|
||||
not f.LocalPath().endswith('.java') and
|
||||
not f.LocalPath().endswith('_unittest.mm') and
|
||||
not f.LocalPath().endswith('_spi.h')):
|
||||
contents = input_api.ReadFile(f)
|
||||
if pattern.search(contents):
|
||||
files.append(f)
|
||||
|
||||
if len(files):
|
||||
return [ output_api.PresubmitError(
|
||||
'Objective-C interfaces or categories are forbidden in libbase. ' +
|
||||
'See http://groups.google.com/a/chromium.org/group/chromium-dev/' +
|
||||
'browse_thread/thread/efb28c10435987fd',
|
||||
files) ]
|
||||
return []
|
||||
|
||||
|
||||
def _FindLocations(input_api, search_regexes, files_to_check, files_to_skip):
|
||||
"""Returns locations matching one of the search_regexes."""
|
||||
def FilterFile(affected_file):
|
||||
return input_api.FilterSourceFile(
|
||||
affected_file,
|
||||
files_to_check=files_to_check,
|
||||
files_to_skip=files_to_skip)
|
||||
|
||||
no_presubmit = r"// no-presubmit-check"
|
||||
locations = []
|
||||
for f in input_api.AffectedSourceFiles(FilterFile):
|
||||
for line_num, line in f.ChangedContents():
|
||||
for search_regex in search_regexes:
|
||||
if (input_api.re.search(search_regex, line) and
|
||||
not input_api.re.search(no_presubmit, line)):
|
||||
locations.append(" %s:%d" % (f.LocalPath(), line_num))
|
||||
break
|
||||
return locations
|
||||
|
||||
|
||||
def _CheckNoTraceEventInclude(input_api, output_api):
|
||||
"""Verify that //base includes base_tracing.h instead of trace event headers.
|
||||
|
||||
Checks that files outside trace event implementation include the
|
||||
base_tracing.h header instead of specific trace event implementation headers
|
||||
to maintain compatibility with the gn flag "enable_base_tracing = false".
|
||||
"""
|
||||
discouraged_includes = [
|
||||
r'^#include "base/trace_event/(?!base_tracing\.h|base_tracing_forward\.h)',
|
||||
r'^#include "third_party/perfetto/include/',
|
||||
]
|
||||
|
||||
files_to_check = [
|
||||
r".*\.(h|cc|mm)$",
|
||||
]
|
||||
files_to_skip = [
|
||||
r".*/test/.*",
|
||||
r".*/trace_event/.*",
|
||||
r".*/tracing/.*",
|
||||
]
|
||||
|
||||
locations = _FindLocations(input_api, discouraged_includes, files_to_check,
|
||||
files_to_skip)
|
||||
if locations:
|
||||
return [ output_api.PresubmitError(
|
||||
'Base code should include "base/trace_event/base_tracing.h" instead\n' +
|
||||
'of trace_event implementation headers. If you need to include an\n' +
|
||||
'implementation header, verify that "gn check" and base_unittests\n' +
|
||||
'still pass with gn arg "enable_base_tracing = false" and add\n' +
|
||||
'"// no-presubmit-check" after the include. \n' +
|
||||
'\n'.join(locations)) ]
|
||||
return []
|
||||
|
||||
|
||||
def _WarnPbzeroIncludes(input_api, output_api):
|
||||
"""Warn to check enable_base_tracing=false when including a pbzero header.
|
||||
|
||||
Emits a warning when including a perfetto pbzero header, encouraging the
|
||||
user to verify that //base still builds with enable_base_tracing=false.
|
||||
"""
|
||||
warn_includes = [
|
||||
r'^#include "third_party/perfetto/protos/',
|
||||
r'^#include "base/tracing/protos/',
|
||||
]
|
||||
|
||||
files_to_check = [
|
||||
r".*\.(h|cc|mm)$",
|
||||
]
|
||||
files_to_skip = [
|
||||
r".*/test/.*",
|
||||
r".*/trace_event/.*",
|
||||
r".*/tracing/.*",
|
||||
]
|
||||
|
||||
locations = _FindLocations(input_api, warn_includes, files_to_check,
|
||||
files_to_skip)
|
||||
if locations:
|
||||
return [ output_api.PresubmitPromptWarning(
|
||||
'Please verify that "gn check" and base_unittests still pass with\n' +
|
||||
'gn arg "enable_base_tracing = false" when adding typed trace\n' +
|
||||
'events to //base. You can use "#if BUILDFLAG(ENABLE_BASE_TRACING)"\n' +
|
||||
'to exclude pbzero headers and anything not supported by\n' +
|
||||
'//base/trace_event/trace_event_stub.h.\n' +
|
||||
'\n'.join(locations)) ]
|
||||
return []
|
||||
|
||||
|
||||
def _CommonChecks(input_api, output_api):
|
||||
"""Checks common to both upload and commit."""
|
||||
results = []
|
||||
results.extend(_CheckNoInterfacesInBase(input_api, output_api))
|
||||
results.extend(_CheckNoTraceEventInclude(input_api, output_api))
|
||||
results.extend(_WarnPbzeroIncludes(input_api, output_api))
|
||||
results.extend(CheckChangeLintsClean(input_api, output_api))
|
||||
return results
|
||||
|
||||
|
||||
def CheckChangeOnUpload(input_api, output_api):
|
||||
results = []
|
||||
results.extend(_CommonChecks(input_api, output_api))
|
||||
return results
|
||||
|
||||
|
||||
def CheckChangeOnCommit(input_api, output_api):
|
||||
results = []
|
||||
results.extend(_CommonChecks(input_api, output_api))
|
||||
return results
|
87
src/base/README.md
Normal file
87
src/base/README.md
Normal file
@ -0,0 +1,87 @@
|
||||
# What is this
|
||||
Contains a written down set of principles and other information on //base.
|
||||
Please add to it!
|
||||
|
||||
## About //base:
|
||||
|
||||
Chromium is a very mature project. Most things that are generally useful are
|
||||
already here and things not here aren't generally useful.
|
||||
|
||||
The bar for adding stuff to base is that it must have demonstrated wide
|
||||
applicability. Prefer to add things closer to where they're used (i.e. "not
|
||||
base"), and pull into base only when needed. In a project our size,
|
||||
sometimes even duplication is OK and inevitable.
|
||||
|
||||
Adding a new logging macro `DPVELOG_NE` is not more clear than just
|
||||
writing the stuff you want to log in a regular logging statement, even
|
||||
if it makes your calling code longer. Just add it to your own code.
|
||||
|
||||
If the code in question does not need to be used inside base, but will have
|
||||
multiple consumers across the codebase, consider placing it in a new directory
|
||||
under components/ instead.
|
||||
|
||||
base is written for the Chromium project and is not intended to be used
|
||||
outside it. Using base outside of src.git is explicitly not supported,
|
||||
and base makes no guarantees about API (or even ABI) stability (like all
|
||||
other code in Chromium). New code that depends on base/ must be in
|
||||
src.git. Code that's not in src.git but pulled in through DEPS (for
|
||||
example, v8) cannot use base.
|
||||
|
||||
## Qualifications for being in //base OWNERS
|
||||
* interest and ability to learn low level/high detail/complex c++ stuff
|
||||
* inclination to always ask why and understand everything (including external
|
||||
interactions like win32) rather than just hoping the author did it right
|
||||
* mentorship/experience
|
||||
* demonstrated good judgement (esp with regards to public APIs) over a length
|
||||
of time
|
||||
|
||||
Owners are added when a contributor has shown the above qualifications and
|
||||
when they express interest. There isn't an upper bound on the number of OWNERS.
|
||||
|
||||
## Design and naming
|
||||
* Be sure to use the base namespace.
|
||||
* STL-like constructs should adhere as closely to STL as possible. Functions
|
||||
and behaviors not present in STL should only be added when they are related
|
||||
to the specific data structure implemented by the container.
|
||||
* For STL-like constructs our policy is that they should use STL-like naming
|
||||
even when it may conflict with the style guide. So functions and class names
|
||||
should be lower case with underscores. Non-STL-like classes and functions
|
||||
should use Google naming.
|
||||
|
||||
## Performance testing
|
||||
|
||||
Since the primitives provided by //base are used very widely, it is important to
|
||||
ensure they scale to the necessary workloads and perform well under all
|
||||
supported platforms. The `base_perftests` target is a suite of
|
||||
synthetic microbenchmarks that measure performance in various scenarios:
|
||||
|
||||
* BasicPostTaskPerfTest: Exercises MessageLoopTaskRunner's multi-threaded
|
||||
queue in isolation.
|
||||
* ConditionVariablePerfTest: Measures thread switching cost of condition
|
||||
variables.
|
||||
* IntegratedPostTaskPerfTest: Exercises the full MessageLoop/RunLoop
|
||||
machinery.
|
||||
* JSONPerfTest: Tests JSONWriter and JSONReader performance.
|
||||
* MessageLoopPerfTest: Measures the speed of task posting in various
|
||||
configurations.
|
||||
* ObserverListPerfTest: Exercises adding, removing and signalling observers.
|
||||
* PartitionLockPerfTest: Tests the implementation of Lock used in
|
||||
PartitionAlloc
|
||||
* PthreadEventPerfTest: Establishes the baseline thread switching cost using
|
||||
pthreads.
|
||||
* RandUtilPerfTest: Measures the time it takes to generate random numbers.
|
||||
* ScheduleWorkTest: Measures the overhead of MessagePump::ScheduleWork.
|
||||
* SequenceManagerPerfTest: Benchmarks SequenceManager scheduling with various
|
||||
underlying task runners.
|
||||
* TaskObserverPerfTest: Measures the incremental cost of adding task
|
||||
observers.
|
||||
* TaskPerfTest: Checks the cost of posting tasks between threads.
|
||||
* ThreadLocalStoragePerfTest: Exercises different mechanisms for accessing
|
||||
data associated with the current thread (C++ `thread_local`, the
|
||||
implementation in //base, the POSIX/WinAPI directly)
|
||||
* WaitableEvent{Thread,}PerfTest: Measures waitable events in single and
|
||||
multithreaded scenarios.
|
||||
|
||||
Regressions in these benchmarks can generally by caused by 1) operating system
|
||||
changes, 2) compiler version or flag changes or 3) changes in //base code
|
||||
itself.
|
12
src/base/SECURITY_OWNERS
Normal file
12
src/base/SECURITY_OWNERS
Normal file
@ -0,0 +1,12 @@
|
||||
# Changes to code that runs at high privilege and which has a high risk of
|
||||
# memory corruption, such as parsers for complex inputs, require a security
|
||||
# review to avoid introducing sandbox escapes.
|
||||
#
|
||||
# Although this file is in base/, it may apply to more than just base, OWNERS
|
||||
# files outside of base may also include this file.
|
||||
#
|
||||
# Security team: If you are uncomfortable reviewing a particular bit of code
|
||||
# yourself, don't hesitate to seek help from another security team member!
|
||||
# Nobody knows everything, and the only way to learn is from experience.
|
||||
dcheng@chromium.org
|
||||
tsepez@chromium.org
|
33
src/base/allocator/BUILD.gn
Normal file
33
src/base/allocator/BUILD.gn
Normal file
@ -0,0 +1,33 @@
|
||||
# Copyright 2013 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//base/allocator/allocator.gni")
|
||||
import("//base/allocator/partition_allocator/partition_alloc.gni")
|
||||
import("//build/buildflag_header.gni")
|
||||
import("//build/config/compiler/compiler.gni")
|
||||
import("//build/config/dcheck_always_on.gni")
|
||||
|
||||
buildflag_header("buildflags") {
|
||||
header = "buildflags.h"
|
||||
|
||||
use_partition_alloc_as_gwp_asan_store =
|
||||
enable_backup_ref_ptr_support && use_raw_ptr_backup_ref_impl
|
||||
|
||||
flags = [ "USE_PARTITION_ALLOC_AS_GWP_ASAN_STORE=$use_partition_alloc_as_gwp_asan_store" ]
|
||||
}
|
||||
|
||||
if (is_apple) {
|
||||
source_set("early_zone_registration_apple") {
|
||||
sources = [
|
||||
"early_zone_registration_apple.cc",
|
||||
"early_zone_registration_apple.h",
|
||||
"partition_allocator/src/partition_alloc/shim/early_zone_registration_constants.h",
|
||||
]
|
||||
|
||||
deps = [
|
||||
":buildflags",
|
||||
"//base/allocator/partition_allocator:buildflags",
|
||||
]
|
||||
}
|
||||
}
|
6
src/base/allocator/DIR_METADATA
Normal file
6
src/base/allocator/DIR_METADATA
Normal file
@ -0,0 +1,6 @@
|
||||
monorail: {
|
||||
component: "Internals"
|
||||
}
|
||||
buganizer_public: {
|
||||
component_id: 1456292
|
||||
}
|
6
src/base/allocator/OWNERS
Normal file
6
src/base/allocator/OWNERS
Normal file
@ -0,0 +1,6 @@
|
||||
lizeb@chromium.org
|
||||
wfh@chromium.org
|
||||
|
||||
per-file allocator.gni=file://base/allocator/partition_allocator/OWNERS
|
||||
per-file partition_alloc*=file://base/allocator/partition_allocator/OWNERS
|
||||
per-file BUILD.gn=file://base/allocator/partition_allocator/OWNERS
|
155
src/base/allocator/README.md
Normal file
155
src/base/allocator/README.md
Normal file
@ -0,0 +1,155 @@
|
||||
This document describes how malloc / new calls are routed in the various Chrome
|
||||
platforms.
|
||||
|
||||
Bear in mind that the chromium codebase does not always just use `malloc()`.
|
||||
Some examples:
|
||||
- Large parts of the renderer (Blink) use two home-brewed allocators,
|
||||
PartitionAlloc and BlinkGC (Oilpan).
|
||||
- Some subsystems, such as the V8 JavaScript engine, handle memory management
|
||||
autonomously.
|
||||
- Various parts of the codebase use abstractions such as `SharedMemory` or
|
||||
`DiscardableMemory` which, similarly to the above, have their own page-level
|
||||
memory management.
|
||||
|
||||
Background
|
||||
----------
|
||||
The `allocator` target defines at compile-time the platform-specific choice of
|
||||
the allocator and extra-hooks which services calls to malloc/new. The relevant
|
||||
build-time flags involved are `use_allocator_shim` and
|
||||
`use_partition_alloc_as_malloc`.
|
||||
|
||||
By default, these are true on all platforms except iOS (not yet supported) and
|
||||
NaCl (no plan to support).
|
||||
Furthermore, when building with a sanitizer (e.g. `asan`, `msan`, ...) both the
|
||||
allocator and the shim layer are disabled.
|
||||
|
||||
|
||||
Layering and build deps
|
||||
-----------------------
|
||||
The `allocator` target provides the linker flags required for the Windows shim
|
||||
layer. The `base` target is (almost) the only one depending on `allocator`. No
|
||||
other targets should depend on it, with the exception of the very few
|
||||
executables / dynamic libraries that don't depend, either directly or
|
||||
indirectly, on `base` within the scope of a linker unit.
|
||||
|
||||
More importantly, **no other place outside of `/base` should depend on the
|
||||
specific allocator**.
|
||||
If such a functional dependency is required that should be achieved using
|
||||
abstractions in `base` (see `/base/memory/`)
|
||||
|
||||
**Why `base` depends on `allocator`?**
|
||||
Because it needs to provide services that depend on the actual allocator
|
||||
implementation. In the past `base` used to pretend to be allocator-agnostic
|
||||
and get the dependencies injected by other layers. This ended up being an
|
||||
inconsistent mess.
|
||||
See the [allocator cleanup doc][url-allocator-cleanup] for more context.
|
||||
|
||||
Linker unit targets (executables and shared libraries) that depend in some way
|
||||
on `base` (most of the targets in the codebase) automatically get the correct
|
||||
set of linker flags to pull in the Windows shim-layer (if needed).
|
||||
|
||||
|
||||
Source code
|
||||
-----------
|
||||
This directory contains just the allocator (i.e. shim) layer that switches
|
||||
between the different underlying memory allocation implementations.
|
||||
|
||||
|
||||
Unified allocator shim
|
||||
----------------------
|
||||
On most platforms, Chrome overrides the malloc / operator new symbols (and
|
||||
corresponding free / delete and other variants). This is to enforce security
|
||||
checks and lately to enable the
|
||||
[memory-infra heap profiler][url-memory-infra-heap-profiler].
|
||||
Historically each platform had its special logic for defining the allocator
|
||||
symbols in different places of the codebase. The unified allocator shim is
|
||||
a project aimed to unify the symbol definition and allocator routing logic in
|
||||
a central place.
|
||||
|
||||
- Full documentation: [Allocator shim design doc][url-allocator-shim].
|
||||
- Current state: Available and enabled by default on Android, CrOS, Linux,
|
||||
Mac OS and Windows.
|
||||
- Tracking bug: [crbug.com/550886](https://crbug.com/550886).
|
||||
- Build-time flag: `use_allocator_shim`.
|
||||
|
||||
**Overview of the unified allocator shim**
|
||||
The allocator shim consists of three stages:
|
||||
```
|
||||
+-------------------------+ +-----------------------+ +----------------+
|
||||
| malloc & friends | -> | shim layer | -> | Routing to |
|
||||
| symbols definition | | implementation | | allocator |
|
||||
+-------------------------+ +-----------------------+ +----------------+
|
||||
| - libc symbols (malloc, | | - Security checks | | - glibc |
|
||||
| calloc, free, ...) | | - Chain of dispatchers| | - Android |
|
||||
| - C++ symbols (operator | | that can intercept | | bionic |
|
||||
| new, delete, ...) | | and override | | - WinHeap |
|
||||
| - glibc weak symbols | | allocations | | - Partition |
|
||||
| (__libc_malloc, ...) | +-----------------------+ | Alloc |
|
||||
+-------------------------+ +----------------+
|
||||
```
|
||||
|
||||
**1. malloc symbols definition**
|
||||
This stage takes care of overriding the symbols `malloc`, `free`,
|
||||
`operator new`, `operator delete` and friends and routing those calls inside the
|
||||
allocator shim (next point).
|
||||
This is taken care of by the headers in `allocator_shim_override_*`.
|
||||
|
||||
*On Windows*: Windows' UCRT (Universal C Runtime) exports weak symbols, that we
|
||||
can override in `allocator_shim_override_ucrt_symbols_win.h`.
|
||||
|
||||
*On Linux/CrOS*: the allocator symbols are defined as exported global symbols
|
||||
in `allocator_shim_override_libc_symbols.h` (for `malloc`, `free` and friends)
|
||||
and in `allocator_shim_override_cpp_symbols.h` (for `operator new`,
|
||||
`operator delete` and friends).
|
||||
This enables proper interposition of malloc symbols referenced by the main
|
||||
executable and any third party libraries. Symbol resolution on Linux is a breadth first search that starts from the root link unit, that is the executable
|
||||
(see EXECUTABLE AND LINKABLE FORMAT (ELF) - Portable Formats Specification).
|
||||
The Linux/CrOS shim was introduced by
|
||||
[crrev.com/1675143004](https://crrev.com/1675143004).
|
||||
|
||||
*On Android*: load-time symbol interposition (unlike the Linux/CrOS case) is not
|
||||
possible. This is because Android processes are `fork()`-ed from the Android
|
||||
zygote, which pre-loads libc.so and only later native code gets loaded via
|
||||
`dlopen()` (symbols from `dlopen()`-ed libraries get a different resolution
|
||||
scope).
|
||||
In this case, the approach instead of wrapping symbol resolution at link time
|
||||
(i.e. during the build), via the `--Wl,-wrap,malloc` linker flag.
|
||||
The use of this wrapping flag causes:
|
||||
- All references to allocator symbols in the Chrome codebase to be rewritten as
|
||||
references to `__wrap_malloc` and friends. The `__wrap_malloc` symbols are
|
||||
defined in the `allocator_shim_override_linker_wrapped_symbols.h` and
|
||||
route allocator calls inside the shim layer.
|
||||
- The reference to the original `malloc` symbols (which typically is defined by
|
||||
the system's libc.so) are accessible via the special `__real_malloc` and
|
||||
friends symbols (which will be relocated, at load time, against `malloc`).
|
||||
|
||||
In summary, this approach is transparent to the dynamic loader, which still sees
|
||||
undefined symbol references to malloc symbols.
|
||||
These symbols will be resolved against libc.so as usual.
|
||||
More details in [crrev.com/1719433002](https://crrev.com/1719433002).
|
||||
|
||||
**2. Shim layer implementation**
|
||||
This stage contains the actual shim implementation. This consists of:
|
||||
- A singly linked list of dispatchers (structs with function pointers to `malloc`-like functions). Dispatchers can be dynamically inserted at runtime
|
||||
(using the `InsertAllocatorDispatch` API). They can intercept and override
|
||||
allocator calls.
|
||||
- The security checks (suicide on malloc-failure via `std::new_handler`, etc).
|
||||
This happens inside `allocator_shim.cc`
|
||||
|
||||
**3. Final allocator routing**
|
||||
The final element of the aforementioned dispatcher chain is statically defined
|
||||
at build time and ultimately routes the allocator calls to the actual allocator
|
||||
(as described in the *Background* section above). This is taken care of by the
|
||||
headers in `allocator_shim_default_dispatch_to_*` files.
|
||||
|
||||
|
||||
Related links
|
||||
-------------
|
||||
- [Unified allocator shim doc - Feb 2016][url-allocator-shim]
|
||||
- [Allocator cleanup doc - Jan 2016][url-allocator-cleanup]
|
||||
- [Proposal to use PartitionAlloc as default allocator](https://crbug.com/339604)
|
||||
- [Memory-Infra: Tools to profile memory usage in Chrome](/docs/memory-infra/README.md)
|
||||
|
||||
[url-allocator-cleanup]: https://docs.google.com/document/d/1V77Kgp_4tfaaWPEZVxNevoD02wXiatnAv7Ssgr0hmjg/edit?usp=sharing
|
||||
[url-memory-infra-heap-profiler]: /docs/memory-infra/heap_profiler.md
|
||||
[url-allocator-shim]: https://docs.google.com/document/d/1yKlO1AO4XjpDad9rjcBOI15EKdAGsuGO_IeZy0g0kxo/edit?usp=sharing
|
27
src/base/allocator/allocator.gni
Normal file
27
src/base/allocator/allocator.gni
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright 2019 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//base/allocator/partition_allocator/partition_alloc.gni")
|
||||
|
||||
# Chromium-specific asserts. External embedders _may_ elect to use these
|
||||
# features even without PA-E.
|
||||
if (!use_partition_alloc_as_malloc) {
|
||||
# In theory, BackupRefPtr will work just fine without
|
||||
# PartitionAlloc-Everywhere, but its scope would be limited to partitions
|
||||
# that are invoked explicitly (not via malloc). These are only Blink
|
||||
# partition, where we currently don't even use raw_ptr<T>.
|
||||
assert(!enable_backup_ref_ptr_support,
|
||||
"Chromium does not use BRP without PA-E")
|
||||
|
||||
# Pointer compression works only if all pointers are guaranteed to be
|
||||
# allocated by PA (in one of its core pools, to be precise). In theory,
|
||||
# this could be useful with partitions that are invoked explicitly. In
|
||||
# practice, the pointers we have in mind for compression (scoped_refptr<>,
|
||||
# unique_ptr<>) require PA-E.
|
||||
assert(!enable_pointer_compression_support,
|
||||
"Pointer compressions likely doesn't make sense without PA-E")
|
||||
}
|
||||
|
||||
assert(use_allocator_shim || !use_partition_alloc_as_malloc,
|
||||
"PartitionAlloc-Everywhere requires the allocator shim")
|
39
src/base/allocator/allocator_check.cc
Normal file
39
src/base/allocator/allocator_check.cc
Normal file
@ -0,0 +1,39 @@
|
||||
// Copyright 2016 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/allocator_check.h"
|
||||
|
||||
#include "build/build_config.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include "partition_alloc/shim/winheap_stubs_win.h"
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#include "partition_alloc/shim/allocator_interception_apple.h"
|
||||
#endif
|
||||
|
||||
namespace base::allocator {
|
||||
|
||||
bool IsAllocatorInitialized() {
|
||||
#if BUILDFLAG(IS_WIN) && PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
// Set by allocator_shim_override_ucrt_symbols_win.h when the
|
||||
// shimmed _set_new_mode() is called.
|
||||
return allocator_shim::g_is_win_shim_layer_initialized;
|
||||
#elif BUILDFLAG(IS_APPLE) && !defined(MEMORY_TOOL_REPLACES_ALLOCATOR) && \
|
||||
!PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && \
|
||||
PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
// From allocator_interception_mac.mm.
|
||||
return allocator_shim::g_replaced_default_zone;
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace base::allocator
|
18
src/base/allocator/allocator_check.h
Normal file
18
src/base/allocator/allocator_check.h
Normal file
@ -0,0 +1,18 @@
|
||||
// Copyright 2016 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_CHECK_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_CHECK_H_
|
||||
|
||||
#include "base/base_export.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
BASE_EXPORT bool IsAllocatorInitialized();
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_CHECK_H_
|
24
src/base/allocator/dispatcher/configuration.h
Normal file
24
src/base/allocator/dispatcher/configuration.h
Normal file
@ -0,0 +1,24 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_CONFIGURATION_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_CONFIGURATION_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
namespace base::allocator::dispatcher::configuration {
|
||||
|
||||
// The maximum number of optional observers that may be present depending on
|
||||
// command line parameters.
|
||||
constexpr size_t kMaximumNumberOfOptionalObservers = 4;
|
||||
|
||||
// The total number of observers including mandatory and optional observers.
|
||||
// Primarily the number of observers affects the performance at allocation time.
|
||||
// The current value of 4 doesn't have hard evidence. Keep in mind that
|
||||
// also a single observer can severely impact performance.
|
||||
constexpr size_t kMaximumNumberOfObservers = 4;
|
||||
|
||||
} // namespace base::allocator::dispatcher::configuration
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_CONFIGURATION_H_
|
114
src/base/allocator/dispatcher/dispatcher.cc
Normal file
114
src/base/allocator/dispatcher/dispatcher.cc
Normal file
@ -0,0 +1,114 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/dispatcher/dispatcher.h"
|
||||
|
||||
#include "base/allocator/dispatcher/internal/dispatch_data.h"
|
||||
#include "base/check.h"
|
||||
#include "base/dcheck_is_on.h"
|
||||
#include "base/no_destructor.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/shim/allocator_shim.h"
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
#include <atomic>
|
||||
#endif
|
||||
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
#include "partition_alloc/partition_alloc_hooks.h"
|
||||
#endif
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
// The private implementation of Dispatcher.
|
||||
struct Dispatcher::Impl {
|
||||
void Initialize(const internal::DispatchData& dispatch_data) {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK(!is_initialized_check_flag_.test_and_set());
|
||||
#endif
|
||||
|
||||
dispatch_data_ = dispatch_data;
|
||||
ConnectToEmitters(dispatch_data_);
|
||||
}
|
||||
|
||||
void Reset() {
|
||||
#if DCHECK_IS_ON()
|
||||
DCHECK([&]() {
|
||||
auto const was_set = is_initialized_check_flag_.test_and_set();
|
||||
is_initialized_check_flag_.clear();
|
||||
return was_set;
|
||||
}());
|
||||
#endif
|
||||
|
||||
DisconnectFromEmitters(dispatch_data_);
|
||||
dispatch_data_ = {};
|
||||
}
|
||||
|
||||
private:
|
||||
// Connect the hooks to the memory subsystem. In some cases, most notably when
|
||||
// we have no observers at all, the hooks will be invalid and must NOT be
|
||||
// connected. This way we prevent notifications although no observers are
|
||||
// present.
|
||||
static void ConnectToEmitters(const internal::DispatchData& dispatch_data) {
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
if (auto* const allocator_dispatch = dispatch_data.GetAllocatorDispatch()) {
|
||||
allocator_shim::InsertAllocatorDispatch(allocator_dispatch);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
{
|
||||
auto* const allocation_hook = dispatch_data.GetAllocationObserverHook();
|
||||
auto* const free_hook = dispatch_data.GetFreeObserverHook();
|
||||
if (allocation_hook && free_hook) {
|
||||
partition_alloc::PartitionAllocHooks::SetObserverHooks(allocation_hook,
|
||||
free_hook);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void DisconnectFromEmitters(internal::DispatchData& dispatch_data) {
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
if (auto* const allocator_dispatch = dispatch_data.GetAllocatorDispatch()) {
|
||||
allocator_shim::RemoveAllocatorDispatchForTesting(
|
||||
allocator_dispatch); // IN-TEST
|
||||
}
|
||||
#endif
|
||||
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
partition_alloc::PartitionAllocHooks::SetObserverHooks(nullptr, nullptr);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Information on the hooks.
|
||||
internal::DispatchData dispatch_data_;
|
||||
#if DCHECK_IS_ON()
|
||||
// Indicator if the dispatcher has been initialized before.
|
||||
#if !defined(__cpp_lib_atomic_value_initialization) || \
|
||||
__cpp_lib_atomic_value_initialization < 201911L
|
||||
std::atomic_flag is_initialized_check_flag_ = ATOMIC_FLAG_INIT;
|
||||
#else
|
||||
std::atomic_flag is_initialized_check_flag_;
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
||||
Dispatcher::Dispatcher() : impl_(std::make_unique<Impl>()) {}
|
||||
|
||||
Dispatcher::~Dispatcher() = default;
|
||||
|
||||
Dispatcher& Dispatcher::GetInstance() {
|
||||
static base::NoDestructor<Dispatcher> instance;
|
||||
return *instance;
|
||||
}
|
||||
|
||||
void Dispatcher::Initialize(const internal::DispatchData& dispatch_data) {
|
||||
impl_->Initialize(dispatch_data);
|
||||
}
|
||||
|
||||
void Dispatcher::ResetForTesting() {
|
||||
impl_->Reset();
|
||||
}
|
||||
} // namespace base::allocator::dispatcher
|
75
src/base/allocator/dispatcher/dispatcher.h
Normal file
75
src/base/allocator/dispatcher/dispatcher.h
Normal file
@ -0,0 +1,75 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_DISPATCHER_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_DISPATCHER_H_
|
||||
|
||||
#include "base/allocator/dispatcher/internal/dispatcher_internal.h"
|
||||
#include "base/base_export.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
namespace internal {
|
||||
struct DispatchData;
|
||||
}
|
||||
|
||||
// Dispatcher serves as the top level instance for managing the dispatch
|
||||
// mechanism. The class instance manages connections to the various memory
|
||||
// subsystems such as PartitionAlloc. To keep the public interface as lean as
|
||||
// possible it uses a pimpl pattern.
|
||||
class BASE_EXPORT Dispatcher {
|
||||
public:
|
||||
static Dispatcher& GetInstance();
|
||||
|
||||
Dispatcher();
|
||||
|
||||
// Initialize the dispatch mechanism with the given tuple of observers. The
|
||||
// observers must be valid (it is only DCHECKed internally at initialization,
|
||||
// but not verified further)
|
||||
// If Initialize is called multiple times, the first one wins. All later
|
||||
// invocations are silently ignored. Initialization is protected from
|
||||
// concurrent invocations. In case of concurrent accesses, the first one to
|
||||
// get the lock wins.
|
||||
// The dispatcher invokes following functions on the observers:
|
||||
// void OnAllocation(void* address,
|
||||
// size_t size,
|
||||
// AllocationSubsystem sub_system,
|
||||
// const char* type_name);
|
||||
// void OnFree(void* address);
|
||||
//
|
||||
// Note: The dispatcher mechanism does NOT bring systematic protection against
|
||||
// recursive invocations. That is, observers which allocate memory on the
|
||||
// heap, i.e. through dynamically allocated containers or by using the
|
||||
// CHECK-macro, are responsible to break these recursions!
|
||||
template <typename... ObserverTypes>
|
||||
void Initialize(const std::tuple<ObserverTypes...>& observers) {
|
||||
// Get the hooks for running these observers and pass them to further
|
||||
// initialization
|
||||
Initialize(internal::GetNotificationHooks(observers));
|
||||
}
|
||||
|
||||
// The following functions provide an interface to setup and tear down the
|
||||
// dispatcher when testing. This must NOT be used from production code since
|
||||
// the hooks cannot be removed reliably under all circumstances.
|
||||
template <typename ObserverType>
|
||||
void InitializeForTesting(ObserverType* observer) {
|
||||
Initialize(std::make_tuple(observer));
|
||||
}
|
||||
|
||||
void ResetForTesting();
|
||||
|
||||
private:
|
||||
// structure and pointer to the private implementation.
|
||||
struct Impl;
|
||||
std::unique_ptr<Impl> const impl_;
|
||||
|
||||
~Dispatcher();
|
||||
|
||||
void Initialize(const internal::DispatchData& dispatch_data);
|
||||
};
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_DISPATCHER_H_
|
205
src/base/allocator/dispatcher/initializer.h
Normal file
205
src/base/allocator/dispatcher/initializer.h
Normal file
@ -0,0 +1,205 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_INITIALIZER_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_INITIALIZER_H_
|
||||
|
||||
#include "base/allocator/dispatcher/configuration.h"
|
||||
#include "base/allocator/dispatcher/dispatcher.h"
|
||||
#include "base/allocator/dispatcher/internal/tools.h"
|
||||
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
namespace internal {
|
||||
|
||||
// Filter the passed observers and perform initialization of the passed
|
||||
// dispatcher.
|
||||
template <size_t CurrentIndex,
|
||||
typename DispatcherType,
|
||||
typename CheckObserverPredicate,
|
||||
typename VerifiedObservers,
|
||||
typename UnverifiedObservers,
|
||||
size_t... IndicesToSelect>
|
||||
inline void DoInitialize(DispatcherType& dispatcher,
|
||||
CheckObserverPredicate check_observer,
|
||||
const VerifiedObservers& verified_observers,
|
||||
const UnverifiedObservers& unverified_observers,
|
||||
std::index_sequence<IndicesToSelect...> indices) {
|
||||
if constexpr (CurrentIndex < std::tuple_size_v<UnverifiedObservers>) {
|
||||
// We still have some items left to handle.
|
||||
if (check_observer(std::get<CurrentIndex>(unverified_observers))) {
|
||||
// The current observer is valid. Hence, append the index of the current
|
||||
// item to the set of indices and head on to the next item.
|
||||
DoInitialize<CurrentIndex + 1>(
|
||||
dispatcher, check_observer, verified_observers, unverified_observers,
|
||||
std::index_sequence<IndicesToSelect..., CurrentIndex>{});
|
||||
} else {
|
||||
// The current observer is not valid. Hence, head on to the next item with
|
||||
// an unaltered list of indices.
|
||||
DoInitialize<CurrentIndex + 1>(dispatcher, check_observer,
|
||||
verified_observers, unverified_observers,
|
||||
indices);
|
||||
}
|
||||
} else if constexpr (CurrentIndex == std::tuple_size_v<UnverifiedObservers>) {
|
||||
// So we have met the end of the tuple of observers to verify.
|
||||
// Hence, we extract the additional valid observers, append to the tuple of
|
||||
// already verified observers and hand over to the dispatcher.
|
||||
auto observers = std::tuple_cat(
|
||||
verified_observers,
|
||||
std::make_tuple(std::get<IndicesToSelect>(unverified_observers)...));
|
||||
|
||||
// Do a final check that neither the maximum total number of observers nor
|
||||
// the maximum number of optional observers is exceeded.
|
||||
static_assert(std::tuple_size_v<decltype(observers)> <=
|
||||
configuration::kMaximumNumberOfObservers);
|
||||
static_assert(sizeof...(IndicesToSelect) <=
|
||||
configuration::kMaximumNumberOfOptionalObservers);
|
||||
|
||||
dispatcher.Initialize(std::move(observers));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// The result of concatenating two tuple-types.
|
||||
template <typename... tuples>
|
||||
using TupleCat = decltype(std::tuple_cat(std::declval<tuples>()...));
|
||||
|
||||
// Initializer collects mandatory and optional observers and initializes the
|
||||
// passed Dispatcher with only the enabled observers.
|
||||
//
|
||||
// In some situations, presence of observers depends on runtime. i.e. command
|
||||
// line parameters or CPU features. With 3 optional observers we already have 8
|
||||
// different combinations. Initializer takes the job of dealing with all
|
||||
// combinations from the user. It allows users to pass all observers (including
|
||||
// nullptr for disabled optional observers) and initializes the Dispatcher with
|
||||
// only the enabled observers.
|
||||
//
|
||||
// Since this process results in a combinatoric explosion, Initializer
|
||||
// distinguishes between optional and mandatory observers. Mandatory observers
|
||||
// are not included in the filtering process and must always be enabled (not
|
||||
// nullptr).
|
||||
//
|
||||
// To allow the Initializer to track the number and exact type of observers, it
|
||||
// is implemented as a templated class which holds information on the types in
|
||||
// the std::tuples passed as template parameters. Therefore, whenever any type
|
||||
// observer it set, the initializer changes its type to reflect this.
|
||||
template <typename MandatoryObservers = std::tuple<>,
|
||||
typename OptionalObservers = std::tuple<>>
|
||||
struct BASE_EXPORT Initializer {
|
||||
Initializer() = default;
|
||||
Initializer(MandatoryObservers mandatory_observers,
|
||||
OptionalObservers optional_observers)
|
||||
: mandatory_observers_(std::move(mandatory_observers)),
|
||||
optional_observers_(std::move(optional_observers)) {}
|
||||
|
||||
// Set the mandatory observers. The number of observers that can be set is
|
||||
// limited by configuration::maximum_number_of_observers.
|
||||
template <typename... NewMandatoryObservers,
|
||||
std::enable_if_t<
|
||||
internal::LessEqual((sizeof...(NewMandatoryObservers) +
|
||||
std::tuple_size_v<OptionalObservers>),
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
Initializer<std::tuple<NewMandatoryObservers*...>, OptionalObservers>
|
||||
SetMandatoryObservers(NewMandatoryObservers*... mandatory_observers) const {
|
||||
return {std::make_tuple(mandatory_observers...), GetOptionalObservers()};
|
||||
}
|
||||
|
||||
// Add mandatory observers. The number of observers that can be added is
|
||||
// limited by the current number of observers, see
|
||||
// configuration::maximum_number_of_observers.
|
||||
template <typename... AdditionalMandatoryObservers,
|
||||
std::enable_if_t<internal::LessEqual(
|
||||
std::tuple_size_v<MandatoryObservers> +
|
||||
sizeof...(AdditionalMandatoryObservers) +
|
||||
std::tuple_size_v<OptionalObservers>,
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
Initializer<TupleCat<MandatoryObservers,
|
||||
std::tuple<AdditionalMandatoryObservers*...>>,
|
||||
OptionalObservers>
|
||||
AddMandatoryObservers(
|
||||
AdditionalMandatoryObservers*... additional_mandatory_observers) const {
|
||||
return {std::tuple_cat(GetMandatoryObservers(),
|
||||
std::make_tuple(additional_mandatory_observers...)),
|
||||
GetOptionalObservers()};
|
||||
}
|
||||
|
||||
// Set the optional observers. The number of observers that can be set is
|
||||
// limited by configuration::maximum_number_of_optional_observers as well as
|
||||
// configuration::maximum_number_of_observers.
|
||||
template <
|
||||
typename... NewOptionalObservers,
|
||||
std::enable_if_t<
|
||||
internal::LessEqual(
|
||||
sizeof...(NewOptionalObservers),
|
||||
configuration::kMaximumNumberOfOptionalObservers) &&
|
||||
internal::LessEqual((sizeof...(NewOptionalObservers) +
|
||||
std::tuple_size_v<MandatoryObservers>),
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
Initializer<MandatoryObservers, std::tuple<NewOptionalObservers*...>>
|
||||
SetOptionalObservers(NewOptionalObservers*... optional_observers) const {
|
||||
return {GetMandatoryObservers(), std::make_tuple(optional_observers...)};
|
||||
}
|
||||
|
||||
// Add optional observers. The number of observers that can be added is
|
||||
// limited by the current number of optional observers,
|
||||
// configuration::maximum_number_of_optional_observers as well as
|
||||
// configuration::maximum_number_of_observers.
|
||||
template <
|
||||
typename... AdditionalOptionalObservers,
|
||||
std::enable_if_t<
|
||||
internal::LessEqual(
|
||||
std::tuple_size_v<OptionalObservers> +
|
||||
sizeof...(AdditionalOptionalObservers),
|
||||
configuration::kMaximumNumberOfOptionalObservers) &&
|
||||
internal::LessEqual((std::tuple_size_v<OptionalObservers> +
|
||||
sizeof...(AdditionalOptionalObservers) +
|
||||
std::tuple_size_v<MandatoryObservers>),
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
Initializer<
|
||||
MandatoryObservers,
|
||||
TupleCat<OptionalObservers, std::tuple<AdditionalOptionalObservers*...>>>
|
||||
AddOptionalObservers(
|
||||
AdditionalOptionalObservers*... additional_optional_observers) const {
|
||||
return {GetMandatoryObservers(),
|
||||
std::tuple_cat(GetOptionalObservers(),
|
||||
std::make_tuple(additional_optional_observers...))};
|
||||
}
|
||||
|
||||
// Perform the actual initialization on the passed dispatcher.
|
||||
// The dispatcher is passed as a template only to provide better testability.
|
||||
template <typename DispatcherType>
|
||||
void DoInitialize(DispatcherType& dispatcher) const {
|
||||
internal::DoInitialize<0>(dispatcher, internal::IsValidObserver{},
|
||||
GetMandatoryObservers(), GetOptionalObservers(),
|
||||
{});
|
||||
}
|
||||
|
||||
const MandatoryObservers& GetMandatoryObservers() const {
|
||||
return mandatory_observers_;
|
||||
}
|
||||
|
||||
const OptionalObservers& GetOptionalObservers() const {
|
||||
return optional_observers_;
|
||||
}
|
||||
|
||||
private:
|
||||
MandatoryObservers mandatory_observers_;
|
||||
OptionalObservers optional_observers_;
|
||||
};
|
||||
|
||||
// Convenience function for creating an empty Initializer.
|
||||
inline Initializer<> CreateInitializer() {
|
||||
return {};
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_INITIALIZER_H_
|
43
src/base/allocator/dispatcher/internal/dispatch_data.cc
Normal file
43
src/base/allocator/dispatcher/internal/dispatch_data.cc
Normal file
@ -0,0 +1,43 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/dispatcher/internal/dispatch_data.h"
|
||||
|
||||
#include "partition_alloc/buildflags.h"
|
||||
|
||||
namespace base::allocator::dispatcher::internal {
|
||||
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
|
||||
DispatchData& DispatchData::SetAllocationObserverHooks(
|
||||
AllocationObserverHook* allocation_observer_hook,
|
||||
FreeObserverHook* free_observer_hook) {
|
||||
allocation_observer_hook_ = allocation_observer_hook;
|
||||
free_observer_hook_ = free_observer_hook;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
DispatchData::AllocationObserverHook* DispatchData::GetAllocationObserverHook()
|
||||
const {
|
||||
return allocation_observer_hook_;
|
||||
}
|
||||
|
||||
DispatchData::FreeObserverHook* DispatchData::GetFreeObserverHook() const {
|
||||
return free_observer_hook_;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
DispatchData& DispatchData::SetAllocatorDispatch(
|
||||
AllocatorDispatch* allocator_dispatch) {
|
||||
allocator_dispatch_ = allocator_dispatch;
|
||||
return *this;
|
||||
}
|
||||
|
||||
AllocatorDispatch* DispatchData::GetAllocatorDispatch() const {
|
||||
return allocator_dispatch_;
|
||||
}
|
||||
#endif
|
||||
} // namespace base::allocator::dispatcher::internal
|
58
src/base/allocator/dispatcher/internal/dispatch_data.h
Normal file
58
src/base/allocator/dispatcher/internal/dispatch_data.h
Normal file
@ -0,0 +1,58 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCH_DATA_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCH_DATA_H_
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "build/build_config.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
#include "partition_alloc/partition_alloc_hooks.h"
|
||||
#endif
|
||||
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
#include "partition_alloc/shim/allocator_shim.h"
|
||||
#endif
|
||||
|
||||
namespace base::allocator::dispatcher::internal {
|
||||
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
using allocator_shim::AllocatorDispatch;
|
||||
#endif
|
||||
|
||||
// A simple utility class to pass all the information required to properly hook
|
||||
// into the memory allocation subsystems from DispatcherImpl to the Dispatcher.
|
||||
struct BASE_EXPORT DispatchData {
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
using AllocationObserverHook =
|
||||
partition_alloc::PartitionAllocHooks::AllocationObserverHook;
|
||||
using FreeObserverHook =
|
||||
partition_alloc::PartitionAllocHooks::FreeObserverHook;
|
||||
|
||||
DispatchData& SetAllocationObserverHooks(AllocationObserverHook*,
|
||||
FreeObserverHook*);
|
||||
AllocationObserverHook* GetAllocationObserverHook() const;
|
||||
FreeObserverHook* GetFreeObserverHook() const;
|
||||
|
||||
private:
|
||||
AllocationObserverHook* allocation_observer_hook_ = nullptr;
|
||||
FreeObserverHook* free_observer_hook_ = nullptr;
|
||||
|
||||
public:
|
||||
#endif
|
||||
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
DispatchData& SetAllocatorDispatch(AllocatorDispatch* allocator_dispatch);
|
||||
AllocatorDispatch* GetAllocatorDispatch() const;
|
||||
|
||||
private:
|
||||
AllocatorDispatch* allocator_dispatch_ = nullptr;
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace base::allocator::dispatcher::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCH_DATA_H_
|
378
src/base/allocator/dispatcher/internal/dispatcher_internal.h
Normal file
378
src/base/allocator/dispatcher/internal/dispatcher_internal.h
Normal file
@ -0,0 +1,378 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCHER_INTERNAL_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCHER_INTERNAL_H_
|
||||
|
||||
#include "base/allocator/dispatcher/configuration.h"
|
||||
#include "base/allocator/dispatcher/internal/dispatch_data.h"
|
||||
#include "base/allocator/dispatcher/internal/tools.h"
|
||||
#include "base/allocator/dispatcher/memory_tagging.h"
|
||||
#include "base/allocator/dispatcher/notification_data.h"
|
||||
#include "base/allocator/dispatcher/subsystem.h"
|
||||
#include "base/check.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
#include "partition_alloc/partition_alloc_allocation_data.h"
|
||||
#endif
|
||||
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
#include "partition_alloc/shim/allocator_shim.h"
|
||||
#endif
|
||||
|
||||
#include <tuple>
|
||||
|
||||
namespace base::allocator::dispatcher::internal {
|
||||
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
using allocator_shim::AllocatorDispatch;
|
||||
#endif
|
||||
|
||||
template <typename CheckObserverPredicate,
|
||||
typename... ObserverTypes,
|
||||
size_t... Indices>
|
||||
void inline PerformObserverCheck(const std::tuple<ObserverTypes...>& observers,
|
||||
std::index_sequence<Indices...>,
|
||||
CheckObserverPredicate check_observer) {
|
||||
([](bool b) { DCHECK(b); }(check_observer(std::get<Indices>(observers))),
|
||||
...);
|
||||
}
|
||||
|
||||
template <typename... ObserverTypes, size_t... Indices>
|
||||
ALWAYS_INLINE void PerformAllocationNotification(
|
||||
const std::tuple<ObserverTypes...>& observers,
|
||||
std::index_sequence<Indices...>,
|
||||
const AllocationNotificationData& notification_data) {
|
||||
((std::get<Indices>(observers)->OnAllocation(notification_data)), ...);
|
||||
}
|
||||
|
||||
template <typename... ObserverTypes, size_t... Indices>
|
||||
ALWAYS_INLINE void PerformFreeNotification(
|
||||
const std::tuple<ObserverTypes...>& observers,
|
||||
std::index_sequence<Indices...>,
|
||||
const FreeNotificationData& notification_data) {
|
||||
((std::get<Indices>(observers)->OnFree(notification_data)), ...);
|
||||
}
|
||||
|
||||
// DispatcherImpl provides hooks into the various memory subsystems. These hooks
|
||||
// are responsible for dispatching any notification to the observers.
|
||||
// In order to provide as many information on the exact type of the observer and
|
||||
// prevent any conditional jumps in the hot allocation path, observers are
|
||||
// stored in a std::tuple. DispatcherImpl performs a CHECK at initialization
|
||||
// time to ensure they are valid.
|
||||
template <typename... ObserverTypes>
|
||||
struct DispatcherImpl {
|
||||
using AllObservers = std::index_sequence_for<ObserverTypes...>;
|
||||
|
||||
template <std::enable_if_t<
|
||||
internal::LessEqual(sizeof...(ObserverTypes),
|
||||
configuration::kMaximumNumberOfObservers),
|
||||
bool> = true>
|
||||
static DispatchData GetNotificationHooks(
|
||||
std::tuple<ObserverTypes*...> observers) {
|
||||
s_observers = std::move(observers);
|
||||
|
||||
PerformObserverCheck(s_observers, AllObservers{}, IsValidObserver{});
|
||||
|
||||
return CreateDispatchData();
|
||||
}
|
||||
|
||||
private:
|
||||
static DispatchData CreateDispatchData() {
|
||||
return DispatchData()
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
.SetAllocationObserverHooks(&PartitionAllocatorAllocationHook,
|
||||
&PartitionAllocatorFreeHook)
|
||||
#endif
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
.SetAllocatorDispatch(&allocator_dispatch_)
|
||||
#endif
|
||||
;
|
||||
}
|
||||
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
static void PartitionAllocatorAllocationHook(
|
||||
const partition_alloc::AllocationNotificationData& pa_notification_data) {
|
||||
AllocationNotificationData dispatcher_notification_data(
|
||||
pa_notification_data.address(), pa_notification_data.size(),
|
||||
pa_notification_data.type_name(),
|
||||
AllocationSubsystem::kPartitionAllocator);
|
||||
|
||||
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
dispatcher_notification_data.SetMteReportingMode(
|
||||
ConvertToMTEMode(pa_notification_data.mte_reporting_mode()));
|
||||
#endif
|
||||
|
||||
DoNotifyAllocation(dispatcher_notification_data);
|
||||
}
|
||||
|
||||
static void PartitionAllocatorFreeHook(
|
||||
const partition_alloc::FreeNotificationData& pa_notification_data) {
|
||||
FreeNotificationData dispatcher_notification_data(
|
||||
pa_notification_data.address(),
|
||||
AllocationSubsystem::kPartitionAllocator);
|
||||
|
||||
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
dispatcher_notification_data.SetMteReportingMode(
|
||||
ConvertToMTEMode(pa_notification_data.mte_reporting_mode()));
|
||||
#endif
|
||||
|
||||
DoNotifyFree(dispatcher_notification_data);
|
||||
}
|
||||
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
static void* AllocFn(size_t size, void* context) {
|
||||
void* const address =
|
||||
allocator_dispatch_.next->alloc_function(size, context);
|
||||
|
||||
DoNotifyAllocationForShim(address, size);
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AllocUncheckedFn(size_t size, void* context) {
|
||||
void* const address =
|
||||
allocator_dispatch_.next->alloc_unchecked_function(size, context);
|
||||
|
||||
DoNotifyAllocationForShim(address, size);
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AllocZeroInitializedFn(size_t n, size_t size, void* context) {
|
||||
void* const address =
|
||||
allocator_dispatch_.next->alloc_zero_initialized_function(n, size,
|
||||
context);
|
||||
|
||||
DoNotifyAllocationForShim(address, n * size);
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AllocAlignedFn(size_t alignment, size_t size, void* context) {
|
||||
void* const address = allocator_dispatch_.next->alloc_aligned_function(
|
||||
alignment, size, context);
|
||||
|
||||
DoNotifyAllocationForShim(address, size);
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* ReallocFn(void* address, size_t size, void* context) {
|
||||
// Note: size == 0 actually performs free.
|
||||
DoNotifyFreeForShim(address);
|
||||
void* const reallocated_address =
|
||||
allocator_dispatch_.next->realloc_function(address, size, context);
|
||||
|
||||
DoNotifyAllocationForShim(reallocated_address, size);
|
||||
|
||||
return reallocated_address;
|
||||
}
|
||||
|
||||
static void* ReallocUncheckedFn(void* address, size_t size, void* context) {
|
||||
// Note: size == 0 actually performs free.
|
||||
DoNotifyFreeForShim(address);
|
||||
void* const reallocated_address =
|
||||
allocator_dispatch_.next->realloc_unchecked_function(address, size,
|
||||
context);
|
||||
|
||||
DoNotifyAllocationForShim(reallocated_address, size);
|
||||
|
||||
return reallocated_address;
|
||||
}
|
||||
|
||||
static void FreeFn(void* address, void* context) {
|
||||
// Note: DoNotifyFree should be called before free_function (here and in
|
||||
// other places). That is because observers need to handle the allocation
|
||||
// being freed before calling free_function, as once the latter is executed
|
||||
// the address becomes available and can be allocated by another thread.
|
||||
// That would be racy otherwise.
|
||||
DoNotifyFreeForShim(address);
|
||||
MUSTTAIL return allocator_dispatch_.next->free_function(address, context);
|
||||
}
|
||||
|
||||
static unsigned BatchMallocFn(size_t size,
|
||||
void** results,
|
||||
unsigned num_requested,
|
||||
void* context) {
|
||||
unsigned const num_allocated =
|
||||
allocator_dispatch_.next->batch_malloc_function(size, results,
|
||||
num_requested, context);
|
||||
for (unsigned i = 0; i < num_allocated; ++i) {
|
||||
DoNotifyAllocationForShim(results[i], size);
|
||||
}
|
||||
return num_allocated;
|
||||
}
|
||||
|
||||
static void BatchFreeFn(void** to_be_freed,
|
||||
unsigned num_to_be_freed,
|
||||
void* context) {
|
||||
for (unsigned i = 0; i < num_to_be_freed; ++i) {
|
||||
DoNotifyFreeForShim(to_be_freed[i]);
|
||||
}
|
||||
|
||||
MUSTTAIL return allocator_dispatch_.next->batch_free_function(
|
||||
to_be_freed, num_to_be_freed, context);
|
||||
}
|
||||
|
||||
static void FreeDefiniteSizeFn(void* address, size_t size, void* context) {
|
||||
DoNotifyFreeForShim(address);
|
||||
MUSTTAIL return allocator_dispatch_.next->free_definite_size_function(
|
||||
address, size, context);
|
||||
}
|
||||
|
||||
static void TryFreeDefaultFn(void* address, void* context) {
|
||||
DoNotifyFreeForShim(address);
|
||||
MUSTTAIL return allocator_dispatch_.next->try_free_default_function(
|
||||
address, context);
|
||||
}
|
||||
|
||||
static void* AlignedMallocFn(size_t size, size_t alignment, void* context) {
|
||||
void* const address = allocator_dispatch_.next->aligned_malloc_function(
|
||||
size, alignment, context);
|
||||
|
||||
DoNotifyAllocationForShim(address, size);
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AlignedMallocUncheckedFn(size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
void* const address =
|
||||
allocator_dispatch_.next->aligned_malloc_unchecked_function(
|
||||
size, alignment, context);
|
||||
|
||||
DoNotifyAllocationForShim(address, size);
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AlignedReallocFn(void* address,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
// Note: size == 0 actually performs free.
|
||||
DoNotifyFreeForShim(address);
|
||||
address = allocator_dispatch_.next->aligned_realloc_function(
|
||||
address, size, alignment, context);
|
||||
|
||||
DoNotifyAllocationForShim(address, size);
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
static void* AlignedReallocUncheckedFn(void* address,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
// Note: size == 0 actually performs free.
|
||||
DoNotifyFreeForShim(address);
|
||||
address = allocator_dispatch_.next->aligned_realloc_unchecked_function(
|
||||
address, size, alignment, context);
|
||||
|
||||
DoNotifyAllocationForShim(address, size);
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
static void AlignedFreeFn(void* address, void* context) {
|
||||
DoNotifyFreeForShim(address);
|
||||
MUSTTAIL return allocator_dispatch_.next->aligned_free_function(address,
|
||||
context);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE static void DoNotifyAllocationForShim(void* address,
|
||||
size_t size) {
|
||||
AllocationNotificationData notification_data(
|
||||
address, size, nullptr, AllocationSubsystem::kAllocatorShim);
|
||||
|
||||
DoNotifyAllocation(notification_data);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE static void DoNotifyFreeForShim(void* address) {
|
||||
FreeNotificationData notification_data(address,
|
||||
AllocationSubsystem::kAllocatorShim);
|
||||
|
||||
DoNotifyFree(notification_data);
|
||||
}
|
||||
|
||||
static AllocatorDispatch allocator_dispatch_;
|
||||
#endif // PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
|
||||
ALWAYS_INLINE static void DoNotifyAllocation(
|
||||
const AllocationNotificationData& notification_data) {
|
||||
PerformAllocationNotification(s_observers, AllObservers{},
|
||||
notification_data);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE static void DoNotifyFree(
|
||||
const FreeNotificationData& notification_data) {
|
||||
PerformFreeNotification(s_observers, AllObservers{}, notification_data);
|
||||
}
|
||||
|
||||
static std::tuple<ObserverTypes*...> s_observers;
|
||||
};
|
||||
|
||||
template <typename... ObserverTypes>
|
||||
std::tuple<ObserverTypes*...> DispatcherImpl<ObserverTypes...>::s_observers;
|
||||
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
template <typename... ObserverTypes>
|
||||
AllocatorDispatch DispatcherImpl<ObserverTypes...>::allocator_dispatch_ = {
|
||||
AllocFn, // alloc_function
|
||||
AllocUncheckedFn, // alloc_unchecked_function
|
||||
AllocZeroInitializedFn, // alloc_zero_initialized_function
|
||||
AllocAlignedFn, // alloc_aligned_function
|
||||
ReallocFn, // realloc_function
|
||||
ReallocUncheckedFn, // realloc_unchecked_function
|
||||
FreeFn, // free_function
|
||||
nullptr, // get_size_estimate_function
|
||||
nullptr, // good_size_function
|
||||
nullptr, // claimed_address_function
|
||||
BatchMallocFn, // batch_malloc_function
|
||||
BatchFreeFn, // batch_free_function
|
||||
FreeDefiniteSizeFn, // free_definite_size_function
|
||||
TryFreeDefaultFn, // try_free_default_function
|
||||
AlignedMallocFn, // aligned_malloc_function
|
||||
AlignedMallocUncheckedFn, // aligned_malloc_unchecked_function
|
||||
AlignedReallocFn, // aligned_realloc_function
|
||||
AlignedReallocUncheckedFn, // aligned_realloc_unchecked_function
|
||||
AlignedFreeFn, // aligned_free_function
|
||||
nullptr // next
|
||||
};
|
||||
#endif // PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
|
||||
// Specialization of DispatcherImpl in case we have no observers to notify. In
|
||||
// this special case we return a set of null pointers as the Dispatcher must not
|
||||
// install any hooks at all.
|
||||
template <>
|
||||
struct DispatcherImpl<> {
|
||||
static DispatchData GetNotificationHooks(std::tuple<> /*observers*/) {
|
||||
return DispatchData()
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
|
||||
.SetAllocationObserverHooks(nullptr, nullptr)
|
||||
#endif
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
.SetAllocatorDispatch(nullptr)
|
||||
#endif
|
||||
;
|
||||
}
|
||||
};
|
||||
|
||||
// A little utility function that helps using DispatcherImpl by providing
|
||||
// automated type deduction for templates.
|
||||
template <typename... ObserverTypes>
|
||||
inline DispatchData GetNotificationHooks(
|
||||
std::tuple<ObserverTypes*...> observers) {
|
||||
return DispatcherImpl<ObserverTypes...>::GetNotificationHooks(
|
||||
std::move(observers));
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_INTERNAL_DISPATCHER_INTERNAL_H_
|
29
src/base/allocator/dispatcher/internal/tools.h
Normal file
29
src/base/allocator/dispatcher/internal/tools.h
Normal file
@ -0,0 +1,29 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_INTERNAL_TOOLS_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_INTERNAL_TOOLS_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
namespace base::allocator::dispatcher::internal {
|
||||
|
||||
constexpr bool LessEqual(size_t lhs, size_t rhs) {
|
||||
return lhs <= rhs;
|
||||
}
|
||||
|
||||
constexpr bool Equal(size_t lhs, size_t rhs) {
|
||||
return lhs == rhs;
|
||||
}
|
||||
|
||||
struct IsValidObserver {
|
||||
template <typename T>
|
||||
constexpr bool operator()(T const* ptr) const noexcept {
|
||||
return ptr != nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace base::allocator::dispatcher::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_INTERNAL_TOOLS_H_
|
20
src/base/allocator/dispatcher/memory_tagging.cc
Normal file
20
src/base/allocator/dispatcher/memory_tagging.cc
Normal file
@ -0,0 +1,20 @@
|
||||
// Copyright 2023 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/dispatcher/memory_tagging.h"
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
static_assert(
|
||||
MTEMode::kUndefined ==
|
||||
ConvertToMTEMode(partition_alloc::TagViolationReportingMode::kUndefined));
|
||||
static_assert(
|
||||
MTEMode::kDisabled ==
|
||||
ConvertToMTEMode(partition_alloc::TagViolationReportingMode::kDisabled));
|
||||
static_assert(
|
||||
MTEMode::kSynchronous ==
|
||||
ConvertToMTEMode(partition_alloc::TagViolationReportingMode::kSynchronous));
|
||||
static_assert(MTEMode::kAsynchronous ==
|
||||
ConvertToMTEMode(
|
||||
partition_alloc::TagViolationReportingMode::kAsynchronous));
|
||||
} // namespace base::allocator::dispatcher
|
42
src/base/allocator/dispatcher/memory_tagging.h
Normal file
42
src/base/allocator/dispatcher/memory_tagging.h
Normal file
@ -0,0 +1,42 @@
|
||||
// Copyright 2023 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_MEMORY_TAGGING_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_MEMORY_TAGGING_H_
|
||||
|
||||
#include "partition_alloc/tagging.h"
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
// The various modes of Arm's MTE extension. The enum values should match their
|
||||
// pendants in partition_alloc::TagViolationReportingMode, otherwise the below
|
||||
// conversion function would involve a translation table or conditional jumps.
|
||||
enum class MTEMode {
|
||||
// Default settings
|
||||
kUndefined,
|
||||
// MTE explicitly disabled.
|
||||
kDisabled,
|
||||
// Precise tag violation reports, higher overhead. Good for unittests
|
||||
// and security critical threads.
|
||||
kSynchronous,
|
||||
// Imprecise tag violation reports (async mode). Lower overhead.
|
||||
kAsynchronous,
|
||||
};
|
||||
|
||||
constexpr MTEMode ConvertToMTEMode(
|
||||
partition_alloc::TagViolationReportingMode pa_mte_reporting_mode) {
|
||||
switch (pa_mte_reporting_mode) {
|
||||
case partition_alloc::TagViolationReportingMode::kUndefined:
|
||||
return MTEMode::kUndefined;
|
||||
case partition_alloc::TagViolationReportingMode::kDisabled:
|
||||
return MTEMode::kDisabled;
|
||||
case partition_alloc::TagViolationReportingMode::kSynchronous:
|
||||
return MTEMode::kSynchronous;
|
||||
case partition_alloc::TagViolationReportingMode::kAsynchronous:
|
||||
return MTEMode::kAsynchronous;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_MEMORY_TAGGING_H_
|
110
src/base/allocator/dispatcher/notification_data.h
Normal file
110
src/base/allocator/dispatcher/notification_data.h
Normal file
@ -0,0 +1,110 @@
|
||||
// Copyright 2023 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_NOTIFICATION_DATA_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_NOTIFICATION_DATA_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/dispatcher/memory_tagging.h"
|
||||
#include "base/allocator/dispatcher/subsystem.h"
|
||||
#include "base/base_export.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
// Definitions of the parameter structures passed to the observer hooks. They
|
||||
// are similar to the structures defined by PartitionAllocator but provide
|
||||
// further information.
|
||||
|
||||
// The notification data for the allocation path.
|
||||
class BASE_EXPORT AllocationNotificationData {
|
||||
public:
|
||||
constexpr AllocationNotificationData(void* address,
|
||||
size_t size,
|
||||
const char* type_name,
|
||||
AllocationSubsystem allocation_subsystem)
|
||||
: address_(address),
|
||||
size_(size),
|
||||
type_name_(type_name),
|
||||
allocation_subsystem_(allocation_subsystem) {}
|
||||
|
||||
constexpr void* address() const { return address_; }
|
||||
|
||||
constexpr size_t size() const { return size_; }
|
||||
|
||||
constexpr const char* type_name() const { return type_name_; }
|
||||
|
||||
constexpr AllocationSubsystem allocation_subsystem() const {
|
||||
return allocation_subsystem_;
|
||||
}
|
||||
|
||||
// In the allocation observer path, it's interesting which reporting mode is
|
||||
// enabled.
|
||||
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
constexpr AllocationNotificationData& SetMteReportingMode(MTEMode mode) {
|
||||
mte_reporting_mode_ = mode;
|
||||
return *this;
|
||||
}
|
||||
#endif // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
|
||||
constexpr MTEMode mte_reporting_mode() const {
|
||||
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
return mte_reporting_mode_;
|
||||
#else
|
||||
return MTEMode::kUndefined;
|
||||
#endif // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
}
|
||||
|
||||
private:
|
||||
void* address_ = nullptr;
|
||||
size_t size_ = 0;
|
||||
const char* type_name_ = nullptr;
|
||||
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
MTEMode mte_reporting_mode_ = MTEMode::kUndefined;
|
||||
#endif // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
AllocationSubsystem allocation_subsystem_;
|
||||
};
|
||||
|
||||
// The notification data for the free path.
|
||||
class BASE_EXPORT FreeNotificationData {
|
||||
public:
|
||||
constexpr explicit FreeNotificationData(
|
||||
void* address,
|
||||
AllocationSubsystem allocation_subsystem)
|
||||
: address_(address), allocation_subsystem_(allocation_subsystem) {}
|
||||
|
||||
constexpr void* address() const { return address_; }
|
||||
|
||||
constexpr AllocationSubsystem allocation_subsystem() const {
|
||||
return allocation_subsystem_;
|
||||
}
|
||||
|
||||
// In the free observer path, it's interesting which reporting mode is
|
||||
// enabled.
|
||||
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
constexpr FreeNotificationData& SetMteReportingMode(MTEMode mode) {
|
||||
mte_reporting_mode_ = mode;
|
||||
return *this;
|
||||
}
|
||||
#endif // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
|
||||
constexpr MTEMode mte_reporting_mode() const {
|
||||
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
return mte_reporting_mode_;
|
||||
#else
|
||||
return MTEMode::kUndefined;
|
||||
#endif // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
}
|
||||
|
||||
private:
|
||||
void* address_ = nullptr;
|
||||
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
MTEMode mte_reporting_mode_ = MTEMode::kUndefined;
|
||||
#endif // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
AllocationSubsystem allocation_subsystem_;
|
||||
};
|
||||
|
||||
} // namespace base::allocator::dispatcher
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_NOTIFICATION_DATA_H_
|
61
src/base/allocator/dispatcher/reentry_guard.cc
Normal file
61
src/base/allocator/dispatcher/reentry_guard.cc
Normal file
@ -0,0 +1,61 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/dispatcher/reentry_guard.h"
|
||||
|
||||
#include "base/check.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/debug/crash_logging.h"
|
||||
#include "base/strings/string_number_conversions.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID)
|
||||
#include <pthread.h>
|
||||
#endif
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID)
|
||||
// pthread_key_t has different signedness on Mac and Android. Store the null
|
||||
// value in a strongly-typed constant to avoid "comparison of integers of
|
||||
// different signs" warnings when comparing with 0.
|
||||
constexpr pthread_key_t kNullKey = 0;
|
||||
|
||||
pthread_key_t ReentryGuard::entered_key_ = kNullKey;
|
||||
|
||||
void ReentryGuard::InitTLSSlot() {
|
||||
if (entered_key_ == kNullKey) {
|
||||
int error = pthread_key_create(&entered_key_, nullptr);
|
||||
CHECK(!error);
|
||||
// Touch the TLS slot immediately to force any allocations.
|
||||
// TODO(crbug.com/40062835): Use this technique to avoid allocations
|
||||
// in PoissonAllocationSampler::ScopedMuteThreadSamples, which will make
|
||||
// ReentryGuard redundant.
|
||||
pthread_setspecific(entered_key_, nullptr);
|
||||
}
|
||||
|
||||
DCHECK_NE(entered_key_, kNullKey);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void ReentryGuard::InitTLSSlot() {}
|
||||
|
||||
#endif
|
||||
|
||||
void ReentryGuard::RecordTLSSlotToCrashKey() {
|
||||
// Record the key in crash dumps to detect when it's higher than 32
|
||||
// (PTHREAD_KEY_2NDLEVEL_SIZE).
|
||||
// TODO(crbug.com/40062835): Remove this after diagnosing reentry crashes.
|
||||
static auto* const crash_key = base::debug::AllocateCrashKeyString(
|
||||
"reentry_guard_tls_slot", base::debug::CrashKeySize::Size32);
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID)
|
||||
base::debug::SetCrashKeyString(crash_key, base::NumberToString(entered_key_));
|
||||
#else
|
||||
base::debug::SetCrashKeyString(crash_key, "unused");
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher
|
76
src/base/allocator/dispatcher/reentry_guard.h
Normal file
76
src/base/allocator/dispatcher/reentry_guard.h
Normal file
@ -0,0 +1,76 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_REENTRY_GUARD_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_REENTRY_GUARD_H_
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "base/check.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID)
|
||||
#include <pthread.h>
|
||||
#endif
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID)
|
||||
|
||||
// The macOS implementation of libmalloc sometimes calls malloc recursively,
|
||||
// delegating allocations between zones. That causes our hooks being called
|
||||
// twice. The scoped guard allows us to detect that.
|
||||
//
|
||||
// Besides that the implementations of thread_local on macOS and Android
|
||||
// seem to allocate memory lazily on the first access to thread_local variables
|
||||
// (and on Android at least thread_local is implemented on top of pthread so is
|
||||
// strictly worse for performance). Make use of pthread TLS instead of C++
|
||||
// thread_local there.
|
||||
struct BASE_EXPORT ReentryGuard {
|
||||
ALWAYS_INLINE ReentryGuard() : allowed_(!pthread_getspecific(entered_key_)) {
|
||||
pthread_setspecific(entered_key_, reinterpret_cast<void*>(true));
|
||||
}
|
||||
|
||||
ALWAYS_INLINE ~ReentryGuard() {
|
||||
if (allowed_) [[likely]] {
|
||||
pthread_setspecific(entered_key_, nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
explicit operator bool() const noexcept { return allowed_; }
|
||||
|
||||
// This function must be called before installing any allocator hooks because
|
||||
// some TLS implementations may allocate (eg. glibc will require a malloc call
|
||||
// to allocate storage for a higher slot number (>= PTHREAD_KEY_2NDLEVEL_SIZE
|
||||
// == 32). This touches the thread-local storage so that any malloc happens
|
||||
// before installing the hooks.
|
||||
static void InitTLSSlot();
|
||||
|
||||
// InitTLSSlot() is called before crash keys are available. At some point
|
||||
// after SetCrashKeyImplementation() is called, this function should be
|
||||
// called to record `entered_key_` to a crash key for debugging. This may
|
||||
// allocate so it must not be called from inside an allocator hook.
|
||||
static void RecordTLSSlotToCrashKey();
|
||||
|
||||
private:
|
||||
static pthread_key_t entered_key_;
|
||||
const bool allowed_;
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
// Use [[maybe_unused]] as this lightweight stand-in for the more heavyweight
|
||||
// ReentryGuard above will otherwise trigger the "unused code" warnings.
|
||||
struct [[maybe_unused]] BASE_EXPORT ReentryGuard {
|
||||
constexpr explicit operator bool() const noexcept { return true; }
|
||||
|
||||
static void InitTLSSlot();
|
||||
static void RecordTLSSlotToCrashKey();
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_REENTRY_GUARD_H_
|
27
src/base/allocator/dispatcher/subsystem.h
Normal file
27
src/base/allocator/dispatcher/subsystem.h
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_SUBSYSTEM_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_SUBSYSTEM_H_
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
|
||||
// Identifiers for the memory subsystem handling the allocation. Some observers
|
||||
// require more detailed information on who is performing the allocation, i.e.
|
||||
// SamplingHeapProfiler.
|
||||
enum class AllocationSubsystem {
|
||||
// Allocation is handled by PartitionAllocator.
|
||||
kPartitionAllocator = 1,
|
||||
// Allocation is handled by AllocatorShims.
|
||||
kAllocatorShim = 2,
|
||||
// Represents a simulated allocation event during testing and is used to
|
||||
// filter out these allocations from real ones.
|
||||
//
|
||||
// Included for backward compatibility, this value becomes obsolete once the
|
||||
// old allocation hooks are removed from PoissonAllocationSampler.
|
||||
kManualForTesting = 3,
|
||||
};
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_SUBSYSTEM_H_
|
27
src/base/allocator/dispatcher/testing/dispatcher_test.h
Normal file
27
src/base/allocator/dispatcher/testing/dispatcher_test.h
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_TESTING_DISPATCHER_TEST_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_TESTING_DISPATCHER_TEST_H_
|
||||
|
||||
#include "testing/gtest/include/gtest/gtest.h"
|
||||
|
||||
namespace base::allocator::dispatcher::testing {
|
||||
|
||||
// DispatcherTest provides some common initialization which most of the
|
||||
// unittests of the dispatcher require. DispatcherTest should not be used
|
||||
// directly. Instead, derive your test fixture from it.
|
||||
struct DispatcherTest : public ::testing::Test {
|
||||
// Perform some commonly required initialization, at them moment
|
||||
// - Initialize the TLS slot for the ReentryGuard
|
||||
DispatcherTest();
|
||||
|
||||
protected:
|
||||
// Protected d'tor only to prevent direct usage of this class.
|
||||
~DispatcherTest() override;
|
||||
};
|
||||
|
||||
} // namespace base::allocator::dispatcher::testing
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_TESTING_DISPATCHER_TEST_H_
|
33
src/base/allocator/dispatcher/testing/observer_mock.h
Normal file
33
src/base/allocator/dispatcher/testing/observer_mock.h
Normal file
@ -0,0 +1,33 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_TESTING_OBSERVER_MOCK_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_TESTING_OBSERVER_MOCK_H_
|
||||
|
||||
#include "testing/gmock/include/gmock/gmock.h"
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
class AllocationNotificationData;
|
||||
class FreeNotificationData;
|
||||
|
||||
namespace testing {
|
||||
|
||||
// ObserverMock is a small mock class based on GoogleMock.
|
||||
// It complies to the interface enforced by the dispatcher. The template
|
||||
// parameter serves only to create distinct types of observers if required.
|
||||
template <typename T = void>
|
||||
struct ObserverMock {
|
||||
MOCK_METHOD(void,
|
||||
OnAllocation,
|
||||
(const AllocationNotificationData& notification_data),
|
||||
());
|
||||
MOCK_METHOD(void,
|
||||
OnFree,
|
||||
(const FreeNotificationData& notification_data),
|
||||
());
|
||||
};
|
||||
} // namespace testing
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_TESTING_OBSERVER_MOCK_H_
|
50
src/base/allocator/dispatcher/testing/tools.h
Normal file
50
src/base/allocator/dispatcher/testing/tools.h
Normal file
@ -0,0 +1,50 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_TESTING_TOOLS_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_TESTING_TOOLS_H_
|
||||
|
||||
#include <array>
|
||||
#include <tuple>
|
||||
#include <utility>
|
||||
|
||||
namespace base::allocator::dispatcher::testing {
|
||||
|
||||
namespace internal {
|
||||
template <size_t Size, typename Type, typename... AppendedTypes>
|
||||
struct DefineTupleFromSingleType {
|
||||
using type = typename DefineTupleFromSingleType<Size - 1,
|
||||
Type,
|
||||
AppendedTypes...,
|
||||
Type>::type;
|
||||
};
|
||||
|
||||
template <typename Type, typename... AppendedTypes>
|
||||
struct DefineTupleFromSingleType<0, Type, AppendedTypes...> {
|
||||
using type = std::tuple<AppendedTypes...>;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
template <size_t Size, typename Type>
|
||||
struct DefineTupleFromSingleType {
|
||||
using type = typename internal::DefineTupleFromSingleType<Size, Type>::type;
|
||||
};
|
||||
|
||||
template <typename Type, size_t Size, size_t... Indices>
|
||||
typename internal::DefineTupleFromSingleType<Size, Type*>::type
|
||||
CreateTupleOfPointers(std::array<Type, Size>& items,
|
||||
std::index_sequence<Indices...>) {
|
||||
return std::make_tuple((&items[Indices])...);
|
||||
}
|
||||
|
||||
template <typename Type, size_t Size>
|
||||
typename internal::DefineTupleFromSingleType<Size, Type*>::type
|
||||
CreateTupleOfPointers(std::array<Type, Size>& items) {
|
||||
return CreateTupleOfPointers(items, std::make_index_sequence<Size>{});
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher::testing
|
||||
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_TESTING_TOOLS_H_
|
167
src/base/allocator/dispatcher/tls.cc
Normal file
167
src/base/allocator/dispatcher/tls.cc
Normal file
@ -0,0 +1,167 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/dispatcher/tls.h"
|
||||
|
||||
#include <string_view>
|
||||
|
||||
#if USE_LOCAL_TLS_EMULATION()
|
||||
|
||||
#include "base/check.h"
|
||||
#include "base/dcheck_is_on.h"
|
||||
#include "base/debug/crash_logging.h"
|
||||
#include "base/immediate_crash.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#include <sys/mman.h>
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX)
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
|
||||
namespace base::allocator::dispatcher::internal {
|
||||
namespace {
|
||||
base::debug::CrashKeySize GetCrashKeySize(const std::string& crash_key_name) {
|
||||
if (std::size(crash_key_name) <= 32ul) {
|
||||
return base::debug::CrashKeySize::Size32;
|
||||
}
|
||||
if (std::size(crash_key_name) <= 64ul) {
|
||||
return base::debug::CrashKeySize::Size64;
|
||||
}
|
||||
if (std::size(crash_key_name) <= 256ul) {
|
||||
return base::debug::CrashKeySize::Size256;
|
||||
}
|
||||
CHECK(std::size(crash_key_name) <= 1024ul);
|
||||
|
||||
return base::debug::CrashKeySize::Size1024;
|
||||
}
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
void Swap(std::atomic_bool& lh_op, std::atomic_bool& rh_op) {
|
||||
auto lh_op_value = lh_op.load(std::memory_order_relaxed);
|
||||
auto rh_op_value = rh_op.load(std::memory_order_relaxed);
|
||||
|
||||
CHECK(lh_op.compare_exchange_strong(lh_op_value, rh_op_value));
|
||||
CHECK(rh_op.compare_exchange_strong(rh_op_value, lh_op_value));
|
||||
}
|
||||
#endif
|
||||
} // namespace
|
||||
|
||||
void* MMapAllocator::AllocateMemory(size_t size_in_bytes) {
|
||||
void* const mmap_res = mmap(nullptr, size_in_bytes, PROT_READ | PROT_WRITE,
|
||||
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
||||
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX)
|
||||
#if defined(PR_SET_VMA) && defined(PR_SET_VMA_ANON_NAME)
|
||||
if (mmap_res != MAP_FAILED) {
|
||||
// Allow the anonymous memory region allocated by mmap(MAP_ANONYMOUS) to
|
||||
// be identified in /proc/$PID/smaps. This helps improve visibility into
|
||||
// Chromium's memory usage on Android.
|
||||
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, mmap_res, size_in_bytes,
|
||||
"tls-mmap-allocator");
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
return (mmap_res != MAP_FAILED) ? mmap_res : nullptr;
|
||||
}
|
||||
|
||||
bool MMapAllocator::FreeMemoryForTesting(void* pointer_to_allocated,
|
||||
size_t size_in_bytes) {
|
||||
auto const munmap_res = munmap(pointer_to_allocated, size_in_bytes);
|
||||
return (munmap_res == 0);
|
||||
}
|
||||
|
||||
PThreadTLSSystem::PThreadTLSSystem() = default;
|
||||
|
||||
PThreadTLSSystem::PThreadTLSSystem(PThreadTLSSystem&& other) {
|
||||
std::swap(crash_key_, other.crash_key_);
|
||||
std::swap(data_access_key_, other.data_access_key_);
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
Swap(initialized_, other.initialized_);
|
||||
#endif
|
||||
}
|
||||
|
||||
PThreadTLSSystem& PThreadTLSSystem::operator=(PThreadTLSSystem&& other) {
|
||||
std::swap(crash_key_, other.crash_key_);
|
||||
std::swap(data_access_key_, other.data_access_key_);
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
Swap(initialized_, other.initialized_);
|
||||
#endif
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool PThreadTLSSystem::Setup(
|
||||
OnThreadTerminationFunction thread_termination_function,
|
||||
const std::string_view instance_id) {
|
||||
#if DCHECK_IS_ON()
|
||||
// Initialize must happen outside of the allocation path. Therefore, it is
|
||||
// secure to verify with DCHECK.
|
||||
DCHECK(!initialized_.exchange(true, std::memory_order_acq_rel));
|
||||
#endif
|
||||
|
||||
auto const key_create_res =
|
||||
pthread_key_create(&data_access_key_, thread_termination_function);
|
||||
|
||||
// On some platforms creating a new pthread-key requires an allocation when a
|
||||
// given number of keys has been created. I.e. in glibc this limit is denoted
|
||||
// by PTHREAD_KEY_2NDLEVEL_SIZE. However, this value is neither present on all
|
||||
// systems nor accessible from here. Hence, we do not do any checks here.
|
||||
// However, we strongly recommend to setup the TLS system as early as possible
|
||||
// to avoid exceeding this limit.
|
||||
|
||||
// Some crashes might be caused by the initialization being performed too late
|
||||
// and running into the problems mentioned above. Since there's no way to
|
||||
// handle this issue programmatically, we include the key into the crashpad
|
||||
// report to allow for later inspection.
|
||||
std::string crash_key_name = "tls_system-";
|
||||
crash_key_name += instance_id;
|
||||
|
||||
crash_key_ = base::debug::AllocateCrashKeyString(
|
||||
crash_key_name.c_str(), GetCrashKeySize(crash_key_name));
|
||||
base::debug::SetCrashKeyString(crash_key_,
|
||||
base::NumberToString(data_access_key_));
|
||||
|
||||
return (0 == key_create_res);
|
||||
}
|
||||
|
||||
bool PThreadTLSSystem::TearDownForTesting() {
|
||||
#if DCHECK_IS_ON()
|
||||
// TearDownForTesting must happen outside of the allocation path. Therefore,
|
||||
// it is secure to verify with DCHECK.
|
||||
DCHECK(initialized_.exchange(false, std::memory_order_acq_rel));
|
||||
#endif
|
||||
|
||||
base::debug::ClearCrashKeyString(crash_key_);
|
||||
crash_key_ = nullptr;
|
||||
|
||||
auto const key_delete_res = pthread_key_delete(data_access_key_);
|
||||
return (0 == key_delete_res);
|
||||
}
|
||||
|
||||
void* PThreadTLSSystem::GetThreadSpecificData() {
|
||||
#if DCHECK_IS_ON()
|
||||
if (!initialized_.load(std::memory_order_acquire)) {
|
||||
return nullptr;
|
||||
}
|
||||
#endif
|
||||
|
||||
return pthread_getspecific(data_access_key_);
|
||||
}
|
||||
|
||||
bool PThreadTLSSystem::SetThreadSpecificData(void* data) {
|
||||
#if DCHECK_IS_ON()
|
||||
if (!initialized_.load(std::memory_order_acquire)) {
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
return (0 == pthread_setspecific(data_access_key_, data));
|
||||
}
|
||||
|
||||
} // namespace base::allocator::dispatcher::internal
|
||||
|
||||
#endif // USE_LOCAL_TLS_EMULATION()
|
483
src/base/allocator/dispatcher/tls.h
Normal file
483
src/base/allocator/dispatcher/tls.h
Normal file
@ -0,0 +1,483 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_DISPATCHER_TLS_H_
|
||||
#define BASE_ALLOCATOR_DISPATCHER_TLS_H_
|
||||
|
||||
#include <string_view>
|
||||
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_POSIX) // the current allocation mechanism (mmap) and TLS
|
||||
// support (pthread) are both defined by POSIX
|
||||
#define USE_LOCAL_TLS_EMULATION() true
|
||||
#else
|
||||
#define USE_LOCAL_TLS_EMULATION() false
|
||||
#endif
|
||||
|
||||
#if USE_LOCAL_TLS_EMULATION()
|
||||
#include <algorithm>
|
||||
#include <atomic>
|
||||
#include <memory>
|
||||
#include <mutex>
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "base/check.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "partition_alloc/partition_alloc_constants.h"
|
||||
|
||||
#include <pthread.h>
|
||||
|
||||
#if HAS_FEATURE(thread_sanitizer)
|
||||
#define DISABLE_TSAN_INSTRUMENTATION __attribute__((no_sanitize("thread")))
|
||||
#else
|
||||
#define DISABLE_TSAN_INSTRUMENTATION
|
||||
#endif
|
||||
|
||||
#define STR_HELPER(x) #x
|
||||
#define STR(x) STR_HELPER(x)
|
||||
|
||||
// Verify that a condition holds and cancel the process in case it doesn't. The
|
||||
// functionality is similar to RAW_CHECK but includes more information in the
|
||||
// logged messages. It is non allocating to prevent recursions.
|
||||
#define TLS_RAW_CHECK(error_message, condition) \
|
||||
TLS_RAW_CHECK_IMPL(error_message, condition, __FILE__, __LINE__)
|
||||
|
||||
#define TLS_RAW_CHECK_IMPL(error_message, condition, file, line) \
|
||||
do { \
|
||||
if (!(condition)) { \
|
||||
constexpr const char* message = \
|
||||
"TLS System: " error_message " Failed condition '" #condition \
|
||||
"' in (" file "@" STR(line) ").\n"; \
|
||||
::logging::RawCheckFailure(message); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
namespace base::debug {
|
||||
struct CrashKeyString;
|
||||
}
|
||||
|
||||
namespace base::allocator::dispatcher {
|
||||
namespace internal {
|
||||
|
||||
// Allocate memory using POSIX' mmap and unmap functionality. The allocator
|
||||
// implements the allocator interface required by ThreadLocalStorage.
|
||||
struct BASE_EXPORT MMapAllocator {
|
||||
// The minimum size of a memory chunk when allocating. Even for chunks with
|
||||
// fewer bytes, at least AllocationChunkSize bytes are allocated. For mmap, this
|
||||
// is usually the page size of the system.
|
||||
// For various OS-CPU combinations, partition_alloc::PartitionPageSize() is not
|
||||
// constexpr. Hence, we can not use this value but define it locally.
|
||||
#if defined(PAGE_ALLOCATOR_CONSTANTS_ARE_CONSTEXPR) && \
|
||||
PAGE_ALLOCATOR_CONSTANTS_ARE_CONSTEXPR
|
||||
constexpr static size_t AllocationChunkSize =
|
||||
partition_alloc::PartitionPageSize();
|
||||
#elif BUILDFLAG(IS_APPLE)
|
||||
constexpr static size_t AllocationChunkSize = 16384;
|
||||
#elif BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_64_BITS)
|
||||
constexpr static size_t AllocationChunkSize = 16384;
|
||||
#elif BUILDFLAG(IS_LINUX) && defined(ARCH_CPU_ARM64)
|
||||
constexpr static size_t AllocationChunkSize = 16384;
|
||||
#else
|
||||
constexpr static size_t AllocationChunkSize = 4096;
|
||||
#endif
|
||||
|
||||
// Allocate size_in_bytes bytes of raw memory. Return nullptr if allocation
|
||||
// fails.
|
||||
void* AllocateMemory(size_t size_in_bytes);
|
||||
// Free the raw memory pointed to by pointer_to_allocated. Returns a boolean
|
||||
// value indicating if the free was successful.
|
||||
bool FreeMemoryForTesting(void* pointer_to_allocated, size_t size_in_bytes);
|
||||
};
|
||||
|
||||
// The allocator used by default for the thread local storage.
|
||||
using DefaultAllocator = MMapAllocator;
|
||||
|
||||
using OnThreadTerminationFunction = void (*)(void*);
|
||||
|
||||
// The TLS system used by default for the thread local storage. It stores and
|
||||
// retrieves thread specific data pointers.
|
||||
class BASE_EXPORT PThreadTLSSystem {
|
||||
public:
|
||||
PThreadTLSSystem();
|
||||
|
||||
PThreadTLSSystem(const PThreadTLSSystem&) = delete;
|
||||
PThreadTLSSystem(PThreadTLSSystem&&);
|
||||
PThreadTLSSystem& operator=(const PThreadTLSSystem&) = delete;
|
||||
PThreadTLSSystem& operator=(PThreadTLSSystem&&);
|
||||
|
||||
// Initialize the TLS system to store a data set for different threads.
|
||||
// @param thread_termination_function An optional function which will be
|
||||
// invoked upon termination of a thread.
|
||||
bool Setup(OnThreadTerminationFunction thread_termination_function,
|
||||
const std::string_view instance_id);
|
||||
// Tear down the TLS system. After completing tear down, the thread
|
||||
// termination function passed to Setup will not be invoked anymore.
|
||||
bool TearDownForTesting();
|
||||
|
||||
// Get the pointer to the data associated to the current thread. Returns
|
||||
// nullptr if the TLS system is not initialized or no data was set before.
|
||||
void* GetThreadSpecificData();
|
||||
// Set the pointer to the data associated to the current thread. Return true
|
||||
// if stored successfully, false otherwise.
|
||||
bool SetThreadSpecificData(void* data);
|
||||
|
||||
private:
|
||||
base::debug::CrashKeyString* crash_key_ = nullptr;
|
||||
pthread_key_t data_access_key_ = 0;
|
||||
#if DCHECK_IS_ON()
|
||||
// From POSIX standard at https://www.open-std.org/jtc1/sc22/open/n4217.pdf:
|
||||
// The effect of calling pthread_getspecific() or pthread_setspecific() with a
|
||||
// key value not obtained from pthread_key_create() or after key has been
|
||||
// deleted with pthread_key_delete() is undefined.
|
||||
//
|
||||
// Unfortunately, POSIX doesn't define a special value of pthread_key_t
|
||||
// indicating an invalid key which would allow us to detect accesses outside
|
||||
// of initialized state. Hence, to prevent us from drifting into the evil
|
||||
// realm of undefined behaviour we store whether we're somewhere between Setup
|
||||
// and Teardown.
|
||||
std::atomic_bool initialized_{false};
|
||||
#endif
|
||||
};
|
||||
|
||||
using DefaultTLSSystem = PThreadTLSSystem;
|
||||
|
||||
// In some scenarios, most notably when testing, the allocator and TLS system
|
||||
// passed to |ThreadLocalStorage| are not copyable and have to be wrapped, i.e.
|
||||
// using std::reference_wrapper. |dereference| is a small helper to retrieve the
|
||||
// underlying value.
|
||||
template <typename T>
|
||||
T& dereference(T& ref) {
|
||||
return ref;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T& dereference(std::reference_wrapper<T>& ref) {
|
||||
// std::reference_wrapper requires a valid reference for construction,
|
||||
// therefore, no need in checking here.
|
||||
return ref.get();
|
||||
}
|
||||
|
||||
// Store thread local data. The data is organized in chunks, where each chunk
|
||||
// holds |ItemsPerChunk|. Each item may be free or used.
|
||||
//
|
||||
// When a thread requests data, the chunks are searched for a free data item,
|
||||
// which is registered for this thread and marked as |used|. Further requests by
|
||||
// this thread will then always return the same item. When a thread terminates,
|
||||
// the item will be reset and return to the pool of free items.
|
||||
//
|
||||
// Upon construction, the first chunk is created. If a thread requests data and
|
||||
// there is no free item available, another chunk is created. Upon destruction,
|
||||
// all memory is freed. Pointers to data items become invalid!
|
||||
//
|
||||
// Constructor and destructor are not thread safe.
|
||||
//
|
||||
// @tparam PayloadType The item type to be stored.
|
||||
// @tparam AllocatorType The allocator being used. An allocator must provide
|
||||
// the following interface:
|
||||
// void* AllocateMemory(size_t size_in_bytes); // Allocate size_in_bytes bytes
|
||||
// of raw memory.
|
||||
// void FreeMemory(void* pointer_to_allocated, size_t size_in_bytes); // Free
|
||||
// the raw memory pointed to by pointer_to_allocated.
|
||||
// Any failure in allocation or free must terminate the process.
|
||||
// @tparam TLSSystemType The TLS system being used. A TLS system must provide
|
||||
// the following interface:
|
||||
// bool Setup(OnThreadTerminationFunction thread_termination_function);
|
||||
// bool Destroy();
|
||||
// void* GetThreadSpecificData();
|
||||
// bool SetThreadSpecificData(void* data);
|
||||
// @tparam AllocationChunkSize The minimum size of a memory chunk that the
|
||||
// allocator can handle. We try to size the chunks so that each chunk uses this
|
||||
// size to the maximum.
|
||||
// @tparam IsDestructibleForTesting For testing purposes we allow the destructor
|
||||
// to perform clean up upon destruction. Otherwise, using the destructor will
|
||||
// result in a compilation failure.
|
||||
template <typename PayloadType,
|
||||
typename AllocatorType,
|
||||
typename TLSSystemType,
|
||||
size_t AllocationChunkSize,
|
||||
bool IsDestructibleForTesting>
|
||||
struct ThreadLocalStorage {
|
||||
explicit ThreadLocalStorage(const std::string_view instance_id)
|
||||
: root_(AllocateAndInitializeChunk()) {
|
||||
Initialize(instance_id);
|
||||
}
|
||||
|
||||
// Create a new instance of |ThreadLocalStorage| using the passed allocator
|
||||
// and TLS system. This initializes the underlying TLS system and creates the
|
||||
// first chunk of data.
|
||||
ThreadLocalStorage(const std::string_view instance_id,
|
||||
AllocatorType allocator,
|
||||
TLSSystemType tls_system)
|
||||
: allocator_(std::move(allocator)),
|
||||
tls_system_(std::move(tls_system)),
|
||||
root_(AllocateAndInitializeChunk()) {
|
||||
Initialize(instance_id);
|
||||
}
|
||||
|
||||
// Deletes an instance of |ThreadLocalStorage| and delete all the data chunks
|
||||
// created.
|
||||
~ThreadLocalStorage() {
|
||||
if constexpr (IsDestructibleForTesting) {
|
||||
TearDownForTesting();
|
||||
} else if constexpr (!IsDestructibleForTesting) {
|
||||
static_assert(
|
||||
IsDestructibleForTesting,
|
||||
"ThreadLocalStorage cannot be destructed outside of test code.");
|
||||
}
|
||||
}
|
||||
|
||||
// Explicitly prevent all forms of Copy/Move construction/assignment. For an
|
||||
// exact copy of ThreadLocalStorage we would need to copy the mapping of
|
||||
// thread to item, which we can't do at the moment. On the other side, our
|
||||
// atomic members do not support moving out of the box.
|
||||
ThreadLocalStorage(const ThreadLocalStorage&) = delete;
|
||||
ThreadLocalStorage(ThreadLocalStorage&& other) = delete;
|
||||
ThreadLocalStorage& operator=(const ThreadLocalStorage&) = delete;
|
||||
ThreadLocalStorage& operator=(ThreadLocalStorage&&) = delete;
|
||||
|
||||
// Get the data item for the current thread. If no data is registered so far,
|
||||
// find a free item in the chunks and register it for the current thread.
|
||||
PayloadType* GetThreadLocalData() {
|
||||
auto& tls_system = dereference(tls_system_);
|
||||
|
||||
auto* slot = static_cast<SingleSlot*>(tls_system.GetThreadSpecificData());
|
||||
|
||||
if (slot == nullptr) [[unlikely]] {
|
||||
slot = FindAndAllocateFreeSlot(root_.load(std::memory_order_relaxed));
|
||||
|
||||
// We might be called in the course of handling a memory allocation. We do
|
||||
// not use CHECK since they might allocate and cause a recursion.
|
||||
TLS_RAW_CHECK("Failed to set thread specific data.",
|
||||
tls_system.SetThreadSpecificData(slot));
|
||||
|
||||
// Reset the content to wipe out any previous data.
|
||||
Reset(slot->item);
|
||||
}
|
||||
|
||||
return &(slot->item);
|
||||
}
|
||||
|
||||
private:
|
||||
// Encapsulate the payload item and some administrative data.
|
||||
struct SingleSlot {
|
||||
PayloadType item;
|
||||
#if !defined(__cpp_lib_atomic_value_initialization) || \
|
||||
__cpp_lib_atomic_value_initialization < 201911L
|
||||
std::atomic_flag is_used = ATOMIC_FLAG_INIT;
|
||||
#else
|
||||
std::atomic_flag is_used;
|
||||
#endif
|
||||
};
|
||||
|
||||
template <size_t NumberOfItems>
|
||||
struct ChunkT {
|
||||
SingleSlot slots[NumberOfItems];
|
||||
// Pointer to the next chunk.
|
||||
std::atomic<ChunkT*> next_chunk = nullptr;
|
||||
// Helper flag to ensure we create the next chunk only once in a multi
|
||||
// threaded environment.
|
||||
std::once_flag create_next_chunk_flag;
|
||||
};
|
||||
|
||||
template <size_t LowerNumberOfItems,
|
||||
size_t UpperNumberOfItems,
|
||||
size_t NumberOfBytes>
|
||||
static constexpr size_t CalculateEffectiveNumberOfItemsBinSearch() {
|
||||
if constexpr (LowerNumberOfItems == UpperNumberOfItems) {
|
||||
return LowerNumberOfItems;
|
||||
}
|
||||
|
||||
constexpr size_t CurrentNumberOfItems =
|
||||
(UpperNumberOfItems - LowerNumberOfItems) / 2 + LowerNumberOfItems;
|
||||
|
||||
if constexpr (sizeof(ChunkT<CurrentNumberOfItems>) > NumberOfBytes) {
|
||||
return CalculateEffectiveNumberOfItemsBinSearch<
|
||||
LowerNumberOfItems, CurrentNumberOfItems, NumberOfBytes>();
|
||||
}
|
||||
|
||||
if constexpr (sizeof(ChunkT<CurrentNumberOfItems + 1>) < NumberOfBytes) {
|
||||
return CalculateEffectiveNumberOfItemsBinSearch<
|
||||
CurrentNumberOfItems + 1, UpperNumberOfItems, NumberOfBytes>();
|
||||
}
|
||||
|
||||
return CurrentNumberOfItems;
|
||||
}
|
||||
|
||||
// Calculate the maximum number of items we can store in one chunk without the
|
||||
// size of the chunk exceeding NumberOfBytes. To avoid things like alignment
|
||||
// and packing tampering with the calculation, instead of calculating the
|
||||
// correct number of items we use sizeof-operator against ChunkT to search for
|
||||
// the correct size. Unfortunately, the number of recursions is limited by the
|
||||
// compiler. Therefore, we use a binary search instead of a simple linear
|
||||
// search.
|
||||
template <size_t MinimumNumberOfItems, size_t NumberOfBytes>
|
||||
static constexpr size_t CalculateEffectiveNumberOfItems() {
|
||||
if constexpr (sizeof(ChunkT<MinimumNumberOfItems>) < NumberOfBytes) {
|
||||
constexpr size_t LowerNumberOfItems = MinimumNumberOfItems;
|
||||
constexpr size_t UpperNumberOfItems =
|
||||
NumberOfBytes / sizeof(PayloadType) + 1;
|
||||
return CalculateEffectiveNumberOfItemsBinSearch<
|
||||
LowerNumberOfItems, UpperNumberOfItems, NumberOfBytes>();
|
||||
}
|
||||
|
||||
return MinimumNumberOfItems;
|
||||
}
|
||||
|
||||
public:
|
||||
// The minimum number of items per chunk. It should be high enough to
|
||||
// accommodate most items in the root chunk whilst not wasting to much space
|
||||
// on unnecessary items.
|
||||
static constexpr size_t MinimumNumberOfItemsPerChunk = 75;
|
||||
// The effective number of items per chunk. We use the AllocationChunkSize as
|
||||
// a hint to calculate to effective number of items so we occupy one of these
|
||||
// memory chunks to the maximum extent possible.
|
||||
static constexpr size_t ItemsPerChunk =
|
||||
CalculateEffectiveNumberOfItems<MinimumNumberOfItemsPerChunk,
|
||||
AllocationChunkSize>();
|
||||
|
||||
private:
|
||||
using Chunk = ChunkT<ItemsPerChunk>;
|
||||
|
||||
static_assert(ItemsPerChunk >= MinimumNumberOfItemsPerChunk);
|
||||
|
||||
// Mark an item's slot ready for reuse. This function is used as thread
|
||||
// termination function in the TLS system. We do not destroy anything at this
|
||||
// point but simply mark the slot as unused.
|
||||
static void MarkSlotAsFree(void* data) {
|
||||
// We always store SingleSlots in the TLS system. Therefore, we cast to
|
||||
// SingleSlot and reset the is_used flag.
|
||||
auto* const slot = static_cast<SingleSlot*>(data);
|
||||
|
||||
// We might be called in the course of handling a memory allocation.
|
||||
// Therefore, do not use CHECK since it might allocate and cause a
|
||||
// recursion.
|
||||
TLS_RAW_CHECK("Received an invalid slot.",
|
||||
slot && slot->is_used.test_and_set());
|
||||
|
||||
slot->is_used.clear(std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
// Perform common initialization during construction of an instance.
|
||||
void Initialize(const std::string_view instance_id) {
|
||||
// The constructor must be called outside of the allocation path. Therefore,
|
||||
// it is secure to verify with CHECK.
|
||||
|
||||
// Passing MarkSlotAsFree as thread_termination_function we ensure the
|
||||
// slot/item assigned to the finished thread will be returned to the pool of
|
||||
// unused items.
|
||||
CHECK(dereference(tls_system_).Setup(&MarkSlotAsFree, instance_id));
|
||||
}
|
||||
|
||||
Chunk* AllocateAndInitializeChunk() {
|
||||
void* const uninitialized_memory =
|
||||
dereference(allocator_).AllocateMemory(sizeof(Chunk));
|
||||
|
||||
// We might be called in the course of handling a memory allocation. We do
|
||||
// not use CHECK since they might allocate and cause a recursion.
|
||||
TLS_RAW_CHECK("Failed to allocate memory for new chunk.",
|
||||
uninitialized_memory != nullptr);
|
||||
|
||||
return new (uninitialized_memory) Chunk{};
|
||||
}
|
||||
|
||||
void FreeAndDeallocateChunkForTesting(Chunk* chunk_to_erase) {
|
||||
chunk_to_erase->~Chunk();
|
||||
|
||||
// FreeAndDeallocateChunkForTesting must be called outside of the allocation
|
||||
// path. Therefore, it is secure to verify with CHECK.
|
||||
CHECK(dereference(allocator_)
|
||||
.FreeMemoryForTesting(chunk_to_erase, sizeof(Chunk)));
|
||||
}
|
||||
|
||||
// Find a free slot in the passed chunk, reserve it and return it to the
|
||||
// caller. If no free slot can be found, head on to the next chunk. If the
|
||||
// next chunk doesn't exist, create it.
|
||||
SingleSlot* FindAndAllocateFreeSlot(Chunk* const chunk) {
|
||||
SingleSlot* const slot = std::find_if_not(
|
||||
std::begin(chunk->slots), std::end(chunk->slots),
|
||||
[](SingleSlot& candidate_slot) {
|
||||
return candidate_slot.is_used.test_and_set(std::memory_order_relaxed);
|
||||
});
|
||||
|
||||
// So we found a slot. Happily return it to the caller.
|
||||
if (slot != std::end(chunk->slots)) {
|
||||
return slot;
|
||||
}
|
||||
|
||||
// Ok, there are no more free slots in this chunk. First, ensure the next
|
||||
// chunk is valid and create one if necessary.
|
||||
std::call_once(chunk->create_next_chunk_flag, [&] {
|
||||
// From https://eel.is/c++draft/thread.once.callonce#3
|
||||
//
|
||||
// Synchronization: For any given once_flag: all active executions occur
|
||||
// in a total order; completion of an active execution synchronizes with
|
||||
// the start of the next one in this total order; and the returning
|
||||
// execution synchronizes with the return from all passive executions.
|
||||
//
|
||||
// Therefore, we do only a relaxed store here, call_once synchronizes with
|
||||
// other threads.
|
||||
chunk->next_chunk.store(AllocateAndInitializeChunk(),
|
||||
std::memory_order_relaxed);
|
||||
});
|
||||
|
||||
return FindAndAllocateFreeSlot(chunk->next_chunk);
|
||||
}
|
||||
|
||||
template <bool IsDestructibleForTestingP = IsDestructibleForTesting>
|
||||
typename std::enable_if<IsDestructibleForTestingP>::type
|
||||
TearDownForTesting() {
|
||||
// The destructor must be called outside of the allocation path. Therefore,
|
||||
// it is secure to verify with CHECK.
|
||||
|
||||
// All accessing threads must be terminated by now. For additional security
|
||||
// we tear down the TLS system first. This way we ensure that
|
||||
// MarkSlotAsFree is not called anymore and we have no accesses from the
|
||||
// TLS system's side.
|
||||
CHECK(dereference(tls_system_).TearDownForTesting());
|
||||
|
||||
// Delete all data chunks.
|
||||
for (auto* chunk = root_.load(); chunk != nullptr;) {
|
||||
auto* next_chunk = chunk->next_chunk.load();
|
||||
FreeAndDeallocateChunkForTesting(chunk);
|
||||
chunk = next_chunk;
|
||||
}
|
||||
}
|
||||
|
||||
// Reset a single item to its default value.
|
||||
// Since items are re-used, they may be accessed from different threads,
|
||||
// causing TSan to trigger. Therefore, the reset is exempt from TSan
|
||||
// instrumentation.
|
||||
DISABLE_TSAN_INSTRUMENTATION void Reset(PayloadType& item) { item = {}; }
|
||||
|
||||
AllocatorType allocator_;
|
||||
TLSSystemType tls_system_;
|
||||
std::atomic<Chunk*> const root_;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// The ThreadLocalStorage visible to the user. This uses the internal default
|
||||
// allocator and TLS system.
|
||||
template <typename StorageType,
|
||||
typename AllocatorType = internal::DefaultAllocator,
|
||||
typename TLSSystemType = internal::DefaultTLSSystem,
|
||||
size_t AllocationChunkSize = AllocatorType::AllocationChunkSize,
|
||||
bool IsDestructibleForTesting = false>
|
||||
using ThreadLocalStorage =
|
||||
internal::ThreadLocalStorage<StorageType,
|
||||
AllocatorType,
|
||||
TLSSystemType,
|
||||
AllocationChunkSize,
|
||||
IsDestructibleForTesting>;
|
||||
|
||||
} // namespace base::allocator::dispatcher
|
||||
|
||||
#undef TLS_RAW_CHECK_IMPL
|
||||
#undef TLS_RAW_CHECK
|
||||
#undef STR
|
||||
#undef STR_HELPER
|
||||
|
||||
#endif // USE_LOCAL_TLS_EMULATION()
|
||||
#endif // BASE_ALLOCATOR_DISPATCHER_TLS_H_
|
266
src/base/allocator/early_zone_registration_apple.cc
Normal file
266
src/base/allocator/early_zone_registration_apple.cc
Normal file
@ -0,0 +1,266 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/early_zone_registration_apple.h"
|
||||
|
||||
#include <mach/mach.h>
|
||||
#include <malloc/malloc.h>
|
||||
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/shim/early_zone_registration_constants.h"
|
||||
|
||||
// BASE_EXPORT tends to be defined as soon as anything from //base is included.
|
||||
#if defined(BASE_EXPORT)
|
||||
#error "This file cannot depend on //base"
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
#if !PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
void EarlyMallocZoneRegistration() {}
|
||||
void AllowDoublePartitionAllocZoneRegistration() {}
|
||||
|
||||
#else
|
||||
|
||||
extern "C" {
|
||||
// abort_report_np() records the message in a special section that both the
|
||||
// system CrashReporter and Crashpad collect in crash reports. See also in
|
||||
// chrome_exe_main_mac.cc.
|
||||
void abort_report_np(const char* fmt, ...);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
malloc_zone_t* GetDefaultMallocZone() {
|
||||
// malloc_default_zone() does not return... the default zone, but the
|
||||
// initial one. The default one is the first element of the default zone
|
||||
// array.
|
||||
unsigned int zone_count = 0;
|
||||
vm_address_t* zones = nullptr;
|
||||
kern_return_t result = malloc_get_all_zones(
|
||||
mach_task_self(), /*reader=*/nullptr, &zones, &zone_count);
|
||||
if (result != KERN_SUCCESS) {
|
||||
abort_report_np("Cannot enumerate malloc() zones");
|
||||
}
|
||||
return reinterpret_cast<malloc_zone_t*>(zones[0]);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void EarlyMallocZoneRegistration() {
|
||||
// Must have static storage duration, as raw pointers are passed to
|
||||
// libsystem_malloc.
|
||||
static malloc_zone_t g_delegating_zone;
|
||||
static malloc_introspection_t g_delegating_zone_introspect;
|
||||
static malloc_zone_t* g_default_zone;
|
||||
|
||||
// Make sure that the default zone is instantiated.
|
||||
malloc_zone_t* purgeable_zone = malloc_default_purgeable_zone();
|
||||
|
||||
g_default_zone = GetDefaultMallocZone();
|
||||
|
||||
// The delegating zone:
|
||||
// - Forwards all allocations to the existing default zone
|
||||
// - Does *not* claim to own any memory, meaning that it will always be
|
||||
// skipped in free() in libsystem_malloc.dylib.
|
||||
//
|
||||
// This is a temporary zone, until it gets replaced by PartitionAlloc, inside
|
||||
// the main library. Since the main library depends on many external
|
||||
// libraries, we cannot install PartitionAlloc as the default zone without
|
||||
// concurrency issues.
|
||||
//
|
||||
// Instead, what we do is here, while the process is single-threaded:
|
||||
// - Register the delegating zone as the default one.
|
||||
// - Set the original (libsystem_malloc's) one as the second zone
|
||||
//
|
||||
// Later, when PartitionAlloc initializes, we replace the default (delegating)
|
||||
// zone with ours. The end state is:
|
||||
// 1. PartitionAlloc zone
|
||||
// 2. libsystem_malloc zone
|
||||
|
||||
// Set up of the delegating zone. Note that it doesn't just forward calls to
|
||||
// the default zone. This is because the system zone's malloc_zone_t pointer
|
||||
// actually points to a larger struct, containing allocator metadata. So if we
|
||||
// pass as the first parameter the "simple" delegating zone pointer, then we
|
||||
// immediately crash inside the system zone functions. So we need to replace
|
||||
// the zone pointer as well.
|
||||
//
|
||||
// Calls fall into 4 categories:
|
||||
// - Allocation calls: forwarded to the real system zone
|
||||
// - "Is this pointer yours" calls: always answer no
|
||||
// - free(): Should never be called, but is in practice, see comments below.
|
||||
// - Diagnostics and debugging: these are typically called for every
|
||||
// zone. They are no-ops for us, as we don't want to double-count, or lock
|
||||
// the data structures of the real zone twice.
|
||||
|
||||
// Allocation: Forward to the real zone.
|
||||
g_delegating_zone.malloc = [](malloc_zone_t* zone, size_t size) {
|
||||
return g_default_zone->malloc(g_default_zone, size);
|
||||
};
|
||||
g_delegating_zone.calloc = [](malloc_zone_t* zone, size_t num_items,
|
||||
size_t size) {
|
||||
return g_default_zone->calloc(g_default_zone, num_items, size);
|
||||
};
|
||||
g_delegating_zone.valloc = [](malloc_zone_t* zone, size_t size) {
|
||||
return g_default_zone->valloc(g_default_zone, size);
|
||||
};
|
||||
g_delegating_zone.realloc = [](malloc_zone_t* zone, void* ptr, size_t size) {
|
||||
return g_default_zone->realloc(g_default_zone, ptr, size);
|
||||
};
|
||||
g_delegating_zone.batch_malloc = [](malloc_zone_t* zone, size_t size,
|
||||
void** results, unsigned num_requested) {
|
||||
return g_default_zone->batch_malloc(g_default_zone, size, results,
|
||||
num_requested);
|
||||
};
|
||||
g_delegating_zone.memalign = [](malloc_zone_t* zone, size_t alignment,
|
||||
size_t size) {
|
||||
return g_default_zone->memalign(g_default_zone, alignment, size);
|
||||
};
|
||||
|
||||
// Does ptr belong to this zone? Return value is != 0 if so.
|
||||
g_delegating_zone.size = [](malloc_zone_t* zone, const void* ptr) -> size_t {
|
||||
return 0;
|
||||
};
|
||||
|
||||
// Free functions.
|
||||
// The normal path for freeing memory is:
|
||||
// 1. Try all zones in order, call zone->size(ptr)
|
||||
// 2. If zone->size(ptr) != 0, call zone->free(ptr) (or free_definite_size)
|
||||
// 3. If no zone matches, crash.
|
||||
//
|
||||
// Since this zone always returns 0 in size() (see above), then zone->free()
|
||||
// should never be called. Unfortunately, this is not the case, as some places
|
||||
// in CoreFoundation call malloc_zone_free(zone, ptr) directly. So rather than
|
||||
// crashing, forward the call. It's the caller's responsibility to use the
|
||||
// same zone for free() as for the allocation (this is in the contract of
|
||||
// malloc_zone_free()).
|
||||
//
|
||||
// However, note that the sequence of calls size() -> free() is not possible
|
||||
// for this zone, as size() always returns 0.
|
||||
g_delegating_zone.free = [](malloc_zone_t* zone, void* ptr) {
|
||||
return g_default_zone->free(g_default_zone, ptr);
|
||||
};
|
||||
g_delegating_zone.free_definite_size = [](malloc_zone_t* zone, void* ptr,
|
||||
size_t size) {
|
||||
return g_default_zone->free_definite_size(g_default_zone, ptr, size);
|
||||
};
|
||||
g_delegating_zone.batch_free = [](malloc_zone_t* zone, void** to_be_freed,
|
||||
unsigned num_to_be_freed) {
|
||||
return g_default_zone->batch_free(g_default_zone, to_be_freed,
|
||||
num_to_be_freed);
|
||||
};
|
||||
#if PA_TRY_FREE_DEFAULT_IS_AVAILABLE
|
||||
g_delegating_zone.try_free_default = [](malloc_zone_t* zone, void* ptr) {
|
||||
return g_default_zone->try_free_default(g_default_zone, ptr);
|
||||
};
|
||||
#endif
|
||||
|
||||
// Diagnostics and debugging.
|
||||
//
|
||||
// Do nothing to reduce memory footprint, the real
|
||||
// zone will do it.
|
||||
g_delegating_zone.pressure_relief = [](malloc_zone_t* zone,
|
||||
size_t goal) -> size_t { return 0; };
|
||||
|
||||
// Introspection calls are not all optional, for instance locking and
|
||||
// unlocking before/after fork() is not optional.
|
||||
//
|
||||
// Nothing to enumerate.
|
||||
g_delegating_zone_introspect.enumerator =
|
||||
[](task_t task, void*, unsigned type_mask, vm_address_t zone_address,
|
||||
memory_reader_t reader,
|
||||
vm_range_recorder_t recorder) -> kern_return_t {
|
||||
return KERN_SUCCESS;
|
||||
};
|
||||
// Need to provide a real implementation, it is used for e.g. array sizing.
|
||||
g_delegating_zone_introspect.good_size = [](malloc_zone_t* zone,
|
||||
size_t size) {
|
||||
return g_default_zone->introspect->good_size(g_default_zone, size);
|
||||
};
|
||||
// Nothing to do.
|
||||
g_delegating_zone_introspect.check = [](malloc_zone_t* zone) -> boolean_t {
|
||||
return true;
|
||||
};
|
||||
g_delegating_zone_introspect.print = [](malloc_zone_t* zone,
|
||||
boolean_t verbose) {};
|
||||
g_delegating_zone_introspect.log = [](malloc_zone_t*, void*) {};
|
||||
// Do not forward the lock / unlock calls. Since the default zone is still
|
||||
// there, we should not lock here, as it would lock the zone twice (all
|
||||
// zones are locked before fork().). Rather, do nothing, since this fake
|
||||
// zone does not need any locking.
|
||||
g_delegating_zone_introspect.force_lock = [](malloc_zone_t* zone) {};
|
||||
g_delegating_zone_introspect.force_unlock = [](malloc_zone_t* zone) {};
|
||||
g_delegating_zone_introspect.reinit_lock = [](malloc_zone_t* zone) {};
|
||||
// No stats.
|
||||
g_delegating_zone_introspect.statistics = [](malloc_zone_t* zone,
|
||||
malloc_statistics_t* stats) {};
|
||||
// We are not locked.
|
||||
g_delegating_zone_introspect.zone_locked =
|
||||
[](malloc_zone_t* zone) -> boolean_t { return false; };
|
||||
// Don't support discharge checking.
|
||||
g_delegating_zone_introspect.enable_discharge_checking =
|
||||
[](malloc_zone_t* zone) -> boolean_t { return false; };
|
||||
g_delegating_zone_introspect.disable_discharge_checking =
|
||||
[](malloc_zone_t* zone) {};
|
||||
g_delegating_zone_introspect.discharge = [](malloc_zone_t* zone,
|
||||
void* memory) {};
|
||||
|
||||
// Could use something lower to support fewer functions, but this is
|
||||
// consistent with the real zone installed by PartitionAlloc.
|
||||
g_delegating_zone.version = allocator_shim::kZoneVersion;
|
||||
g_delegating_zone.introspect = &g_delegating_zone_introspect;
|
||||
// This name is used in PartitionAlloc's initialization to determine whether
|
||||
// it should replace the delegating zone.
|
||||
g_delegating_zone.zone_name = allocator_shim::kDelegatingZoneName;
|
||||
|
||||
// Register puts the new zone at the end, unregister swaps the new zone with
|
||||
// the last one.
|
||||
// The zone array is, after these lines, in order:
|
||||
// 1. |g_default_zone|...|g_delegating_zone|
|
||||
// 2. |g_delegating_zone|...| (no more default)
|
||||
// 3. |g_delegating_zone|...|g_default_zone|
|
||||
malloc_zone_register(&g_delegating_zone);
|
||||
malloc_zone_unregister(g_default_zone);
|
||||
malloc_zone_register(g_default_zone);
|
||||
|
||||
// Make sure that the purgeable zone is after the default one.
|
||||
// Will make g_default_zone take the purgeable zone spot
|
||||
malloc_zone_unregister(purgeable_zone);
|
||||
// Add back the purgeable zone as the last one.
|
||||
malloc_zone_register(purgeable_zone);
|
||||
|
||||
// Final configuration:
|
||||
// |g_delegating_zone|...|g_default_zone|purgeable_zone|
|
||||
|
||||
// Sanity check.
|
||||
if (GetDefaultMallocZone() != &g_delegating_zone) {
|
||||
abort_report_np("Failed to install the delegating zone as default.");
|
||||
}
|
||||
}
|
||||
|
||||
void AllowDoublePartitionAllocZoneRegistration() {
|
||||
unsigned int zone_count = 0;
|
||||
vm_address_t* zones = nullptr;
|
||||
kern_return_t result = malloc_get_all_zones(
|
||||
mach_task_self(), /*reader=*/nullptr, &zones, &zone_count);
|
||||
if (result != KERN_SUCCESS) {
|
||||
abort_report_np("Cannot enumerate malloc() zones");
|
||||
}
|
||||
|
||||
// If PartitionAlloc is one of the zones, *change* its name so that
|
||||
// registration can happen multiple times. This works because zone
|
||||
// registration only keeps a pointer to the struct, it does not copy the data.
|
||||
for (unsigned int i = 0; i < zone_count; i++) {
|
||||
malloc_zone_t* zone = reinterpret_cast<malloc_zone_t*>(zones[i]);
|
||||
if (zone->zone_name &&
|
||||
strcmp(zone->zone_name, allocator_shim::kPartitionAllocZoneName) == 0) {
|
||||
zone->zone_name = "RenamedPartitionAlloc";
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
} // namespace partition_alloc
|
29
src/base/allocator/early_zone_registration_apple.h
Normal file
29
src/base/allocator/early_zone_registration_apple.h
Normal file
@ -0,0 +1,29 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_EARLY_ZONE_REGISTRATION_APPLE_H_
|
||||
#define BASE_ALLOCATOR_EARLY_ZONE_REGISTRATION_APPLE_H_
|
||||
|
||||
// This is an Apple-only file, used to register PartitionAlloc's zone *before*
|
||||
// the process becomes multi-threaded.
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// Must be called *once*, *before* the process becomes multi-threaded.
|
||||
void EarlyMallocZoneRegistration();
|
||||
|
||||
// Tricks the registration code to believe that PartitionAlloc was not already
|
||||
// registered. This allows a future library load to register PartitionAlloc's
|
||||
// zone as well, rather than bailing out.
|
||||
//
|
||||
// This is mutually exclusive with EarlyMallocZoneRegistration(), and should
|
||||
// ideally be removed. Indeed, by allowing two zones to be registered, we still
|
||||
// end up with a split heap, and more memory usage.
|
||||
//
|
||||
// This is a hack for https://crbug.com/1274236.
|
||||
void AllowDoublePartitionAllocZoneRegistration();
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_EARLY_ZONE_REGISTRATION_APPLE_H_
|
76
src/base/allocator/miracle_parameter.cc
Normal file
76
src/base/allocator/miracle_parameter.cc
Normal file
@ -0,0 +1,76 @@
|
||||
// Copyright 2023 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/miracle_parameter.h"
|
||||
|
||||
#include "base/command_line.h"
|
||||
#include "base/strings/strcat.h"
|
||||
#include "base/system/sys_info.h"
|
||||
|
||||
namespace base::miracle_parameter {
|
||||
|
||||
std::string GetParamNameWithSuffix(const std::string& param_name) {
|
||||
// `base::SysInfo::AmountOfPhysicalMemoryMB()` refers to CommandLine
|
||||
// internally. If the CommandLine is not initialized, we return early to avoid
|
||||
// a crash.
|
||||
if (!base::CommandLine::InitializedForCurrentProcess()) {
|
||||
return param_name;
|
||||
}
|
||||
int physical_memory_mb = base::SysInfo::AmountOfPhysicalMemoryMB();
|
||||
const char* suffix =
|
||||
physical_memory_mb < kMiracleParameterMemory512MB ? "ForLessThan512MB"
|
||||
: physical_memory_mb < kMiracleParameterMemory1GB ? "For512MBTo1GB"
|
||||
: physical_memory_mb < kMiracleParameterMemory2GB ? "For1GBTo2GB"
|
||||
: physical_memory_mb < kMiracleParameterMemory4GB ? "For2GBTo4GB"
|
||||
: physical_memory_mb < kMiracleParameterMemory8GB ? "For4GBTo8GB"
|
||||
: physical_memory_mb < kMiracleParameterMemory16GB ? "For8GBTo16GB"
|
||||
: "For16GBAndAbove";
|
||||
return base::StrCat({param_name, suffix});
|
||||
}
|
||||
|
||||
std::string GetMiracleParameterAsString(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
const std::string& default_value) {
|
||||
return GetFieldTrialParamByFeatureAsString(
|
||||
feature, GetParamNameWithSuffix(param_name),
|
||||
GetFieldTrialParamByFeatureAsString(feature, param_name, default_value));
|
||||
}
|
||||
|
||||
double GetMiracleParameterAsDouble(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
double default_value) {
|
||||
return base::GetFieldTrialParamByFeatureAsDouble(
|
||||
feature, GetParamNameWithSuffix(param_name),
|
||||
base::GetFieldTrialParamByFeatureAsDouble(feature, param_name,
|
||||
default_value));
|
||||
}
|
||||
|
||||
int GetMiracleParameterAsInt(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
int default_value) {
|
||||
return base::GetFieldTrialParamByFeatureAsInt(
|
||||
feature, GetParamNameWithSuffix(param_name),
|
||||
base::GetFieldTrialParamByFeatureAsInt(feature, param_name,
|
||||
default_value));
|
||||
}
|
||||
|
||||
bool GetMiracleParameterAsBool(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
bool default_value) {
|
||||
return base::GetFieldTrialParamByFeatureAsBool(
|
||||
feature, GetParamNameWithSuffix(param_name),
|
||||
base::GetFieldTrialParamByFeatureAsBool(feature, param_name,
|
||||
default_value));
|
||||
}
|
||||
|
||||
base::TimeDelta GetMiracleParameterAsTimeDelta(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
base::TimeDelta default_value) {
|
||||
return base::GetFieldTrialParamByFeatureAsTimeDelta(
|
||||
feature, GetParamNameWithSuffix(param_name),
|
||||
base::GetFieldTrialParamByFeatureAsTimeDelta(feature, param_name,
|
||||
default_value));
|
||||
}
|
||||
|
||||
} // namespace base::miracle_parameter
|
177
src/base/allocator/miracle_parameter.h
Normal file
177
src/base/allocator/miracle_parameter.h
Normal file
@ -0,0 +1,177 @@
|
||||
// Copyright 2023 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_MIRACLE_PARAMETER_H_
|
||||
#define BASE_ALLOCATOR_MIRACLE_PARAMETER_H_
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "base/containers/span.h"
|
||||
#include "base/feature_list.h"
|
||||
#include "base/metrics/field_trial_params.h"
|
||||
|
||||
// This is a mirror copy of the //components/miracle_parameter/ to resolve the
|
||||
// dependency cycle of (base->miracle_parameter->base).
|
||||
// Eventually the miracle_parameter component will have a public interface in
|
||||
// //base/ and this could be removed.
|
||||
// TODO(crbug.com/40279826): remove miracle_parameter from
|
||||
// //base/allocator/.
|
||||
|
||||
namespace base {
|
||||
|
||||
namespace miracle_parameter {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename Enum>
|
||||
Enum GetFieldTrialParamByFeatureAsEnum(
|
||||
const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
const Enum default_value,
|
||||
const base::span<const typename base::FeatureParam<Enum>::Option>&
|
||||
options) {
|
||||
std::string string_value =
|
||||
base::GetFieldTrialParamValueByFeature(feature, param_name);
|
||||
if (string_value.empty()) {
|
||||
return default_value;
|
||||
}
|
||||
|
||||
for (const auto& option : options) {
|
||||
if (string_value == option.name) {
|
||||
return option.value;
|
||||
}
|
||||
}
|
||||
|
||||
base::LogInvalidEnumValue(feature, param_name, string_value,
|
||||
static_cast<int>(default_value));
|
||||
return default_value;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
constexpr int kMiracleParameterMemory512MB = 512;
|
||||
constexpr int kMiracleParameterMemory1GB = 1024;
|
||||
constexpr int kMiracleParameterMemory2GB = 2 * 1024;
|
||||
constexpr int kMiracleParameterMemory4GB = 4 * 1024;
|
||||
constexpr int kMiracleParameterMemory8GB = 8 * 1024;
|
||||
constexpr int kMiracleParameterMemory16GB = 16 * 1024;
|
||||
|
||||
// GetParamNameWithSuffix put a parameter name suffix based on
|
||||
// the amount of physical memory.
|
||||
//
|
||||
// - "ForLessThan512MB" for less than 512MB memory devices.
|
||||
// - "For512MBTo1GB" for 512MB to 1GB memory devices.
|
||||
// - "For1GBTo2GB" for 1GB to 2GB memory devices.
|
||||
// - "For2GBTo4GB" for 2GB to 4GB memory devices.
|
||||
// - "For4GBTo8GB" for 4GB to 8GB memory devices.
|
||||
// - "For8GBTo16GB" for 8GB to 16GB memory devices.
|
||||
// - "For16GBAndAbove" for 16GB memory and above devices.
|
||||
BASE_EXPORT
|
||||
std::string GetParamNameWithSuffix(const std::string& param_name);
|
||||
|
||||
// Provides a similar behavior with FeatureParam<std::string> except the return
|
||||
// value is determined by the amount of physical memory.
|
||||
BASE_EXPORT
|
||||
std::string GetMiracleParameterAsString(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
const std::string& default_value);
|
||||
|
||||
// Provides a similar behavior with FeatureParam<double> except the return value
|
||||
// is determined by the amount of physical memory.
|
||||
BASE_EXPORT
|
||||
double GetMiracleParameterAsDouble(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
double default_value);
|
||||
|
||||
// Provides a similar behavior with FeatureParam<int> except the return value is
|
||||
// determined by the amount of physical memory.
|
||||
BASE_EXPORT
|
||||
int GetMiracleParameterAsInt(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
int default_value);
|
||||
|
||||
// Provides a similar behavior with FeatureParam<bool> except the return value
|
||||
// is determined by the amount of physical memory.
|
||||
BASE_EXPORT
|
||||
bool GetMiracleParameterAsBool(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
bool default_value);
|
||||
|
||||
// Provides a similar behavior with FeatureParam<base::TimeDelta> except the
|
||||
// return value is determined by the amount of physical memory.
|
||||
BASE_EXPORT
|
||||
base::TimeDelta GetMiracleParameterAsTimeDelta(const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
base::TimeDelta default_value);
|
||||
|
||||
// Provides a similar behavior with FeatureParam<Enum> except the return value
|
||||
// is determined by the amount of physical memory.
|
||||
template <typename Enum>
|
||||
Enum GetMiracleParameterAsEnum(
|
||||
const base::Feature& feature,
|
||||
const std::string& param_name,
|
||||
const Enum default_value,
|
||||
const base::span<const typename base::FeatureParam<Enum>::Option> options) {
|
||||
return GetFieldTrialParamByFeatureAsEnum(
|
||||
feature, GetParamNameWithSuffix(param_name),
|
||||
GetFieldTrialParamByFeatureAsEnum(feature, param_name, default_value,
|
||||
options),
|
||||
options);
|
||||
}
|
||||
|
||||
#define MIRACLE_PARAMETER_FOR_STRING(function_name, feature, param_name, \
|
||||
default_value) \
|
||||
std::string function_name() { \
|
||||
static const std::string value = \
|
||||
miracle_parameter::GetMiracleParameterAsString(feature, param_name, \
|
||||
default_value); \
|
||||
return value; \
|
||||
}
|
||||
|
||||
#define MIRACLE_PARAMETER_FOR_DOUBLE(function_name, feature, param_name, \
|
||||
default_value) \
|
||||
double function_name() { \
|
||||
static const double value = \
|
||||
miracle_parameter::GetMiracleParameterAsDouble(feature, param_name, \
|
||||
default_value); \
|
||||
return value; \
|
||||
}
|
||||
|
||||
#define MIRACLE_PARAMETER_FOR_INT(function_name, feature, param_name, \
|
||||
default_value) \
|
||||
int function_name() { \
|
||||
static const int value = miracle_parameter::GetMiracleParameterAsInt( \
|
||||
feature, param_name, default_value); \
|
||||
return value; \
|
||||
}
|
||||
|
||||
#define MIRACLE_PARAMETER_FOR_BOOL(function_name, feature, param_name, \
|
||||
default_value) \
|
||||
bool function_name() { \
|
||||
static const bool value = miracle_parameter::GetMiracleParameterAsBool( \
|
||||
feature, param_name, default_value); \
|
||||
return value; \
|
||||
}
|
||||
|
||||
#define MIRACLE_PARAMETER_FOR_TIME_DELTA(function_name, feature, param_name, \
|
||||
default_value) \
|
||||
base::TimeDelta function_name() { \
|
||||
static const base::TimeDelta value = \
|
||||
miracle_parameter::GetMiracleParameterAsTimeDelta(feature, param_name, \
|
||||
default_value); \
|
||||
return value; \
|
||||
}
|
||||
|
||||
#define MIRACLE_PARAMETER_FOR_ENUM(function_name, feature, param_name, \
|
||||
default_value, type, options) \
|
||||
type function_name() { \
|
||||
static const type value = miracle_parameter::GetMiracleParameterAsEnum( \
|
||||
feature, param_name, default_value, base::make_span(options)); \
|
||||
return value; \
|
||||
}
|
||||
|
||||
} // namespace miracle_parameter
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_MIRACLE_PARAMETER_H_
|
489
src/base/allocator/partition_alloc_features.cc
Normal file
489
src/base/allocator/partition_alloc_features.cc
Normal file
@ -0,0 +1,489 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_alloc_features.h"
|
||||
|
||||
#include "base/allocator/miracle_parameter.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/feature_list.h"
|
||||
#include "base/features.h"
|
||||
#include "base/metrics/field_trial_params.h"
|
||||
#include "base/time/time.h"
|
||||
#include "build/build_config.h"
|
||||
#include "build/chromecast_buildflags.h"
|
||||
#include "build/chromeos_buildflags.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/partition_alloc_base/time/time.h"
|
||||
#include "partition_alloc/partition_alloc_constants.h"
|
||||
#include "partition_alloc/partition_root.h"
|
||||
#include "partition_alloc/shim/allocator_shim_dispatch_to_noop_on_free.h"
|
||||
#include "partition_alloc/thread_cache.h"
|
||||
|
||||
namespace base {
|
||||
namespace features {
|
||||
|
||||
BASE_FEATURE(kPartitionAllocUnretainedDanglingPtr,
|
||||
"PartitionAllocUnretainedDanglingPtr",
|
||||
FEATURE_ENABLED_BY_DEFAULT);
|
||||
|
||||
constexpr FeatureParam<UnretainedDanglingPtrMode>::Option
|
||||
kUnretainedDanglingPtrModeOption[] = {
|
||||
{UnretainedDanglingPtrMode::kCrash, "crash"},
|
||||
{UnretainedDanglingPtrMode::kDumpWithoutCrashing,
|
||||
"dump_without_crashing"},
|
||||
};
|
||||
const base::FeatureParam<UnretainedDanglingPtrMode>
|
||||
kUnretainedDanglingPtrModeParam = {
|
||||
&kPartitionAllocUnretainedDanglingPtr,
|
||||
"mode",
|
||||
UnretainedDanglingPtrMode::kCrash,
|
||||
&kUnretainedDanglingPtrModeOption,
|
||||
};
|
||||
|
||||
BASE_FEATURE(kPartitionAllocDanglingPtr,
|
||||
"PartitionAllocDanglingPtr",
|
||||
#if PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_FEATURE_FLAG)
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#endif
|
||||
);
|
||||
|
||||
constexpr FeatureParam<DanglingPtrMode>::Option kDanglingPtrModeOption[] = {
|
||||
{DanglingPtrMode::kCrash, "crash"},
|
||||
{DanglingPtrMode::kLogOnly, "log_only"},
|
||||
};
|
||||
const base::FeatureParam<DanglingPtrMode> kDanglingPtrModeParam{
|
||||
&kPartitionAllocDanglingPtr,
|
||||
"mode",
|
||||
DanglingPtrMode::kCrash,
|
||||
&kDanglingPtrModeOption,
|
||||
};
|
||||
constexpr FeatureParam<DanglingPtrType>::Option kDanglingPtrTypeOption[] = {
|
||||
{DanglingPtrType::kAll, "all"},
|
||||
{DanglingPtrType::kCrossTask, "cross_task"},
|
||||
};
|
||||
const base::FeatureParam<DanglingPtrType> kDanglingPtrTypeParam{
|
||||
&kPartitionAllocDanglingPtr,
|
||||
"type",
|
||||
DanglingPtrType::kAll,
|
||||
&kDanglingPtrTypeOption,
|
||||
};
|
||||
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// Use a larger maximum thread cache cacheable bucket size.
|
||||
BASE_FEATURE(kPartitionAllocLargeThreadCacheSize,
|
||||
"PartitionAllocLargeThreadCacheSize",
|
||||
FEATURE_ENABLED_BY_DEFAULT);
|
||||
|
||||
MIRACLE_PARAMETER_FOR_INT(GetPartitionAllocLargeThreadCacheSizeValue,
|
||||
kPartitionAllocLargeThreadCacheSize,
|
||||
"PartitionAllocLargeThreadCacheSizeValue",
|
||||
::partition_alloc::kThreadCacheLargeSizeThreshold)
|
||||
|
||||
MIRACLE_PARAMETER_FOR_INT(
|
||||
GetPartitionAllocLargeThreadCacheSizeValueForLowRAMAndroid,
|
||||
kPartitionAllocLargeThreadCacheSize,
|
||||
"PartitionAllocLargeThreadCacheSizeValueForLowRAMAndroid",
|
||||
::partition_alloc::kThreadCacheDefaultSizeThreshold)
|
||||
|
||||
BASE_FEATURE(kPartitionAllocLargeEmptySlotSpanRing,
|
||||
"PartitionAllocLargeEmptySlotSpanRing",
|
||||
#if BUILDFLAG(IS_MAC)
|
||||
FEATURE_ENABLED_BY_DEFAULT);
|
||||
#else
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
#endif
|
||||
|
||||
BASE_FEATURE(kPartitionAllocWithAdvancedChecks,
|
||||
"PartitionAllocWithAdvancedChecks",
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
constexpr FeatureParam<PartitionAllocWithAdvancedChecksEnabledProcesses>::Option
|
||||
kPartitionAllocWithAdvancedChecksEnabledProcessesOptions[] = {
|
||||
{PartitionAllocWithAdvancedChecksEnabledProcesses::kBrowserOnly,
|
||||
"browser-only"},
|
||||
{PartitionAllocWithAdvancedChecksEnabledProcesses::kBrowserAndRenderer,
|
||||
"browser-and-renderer"},
|
||||
{PartitionAllocWithAdvancedChecksEnabledProcesses::kNonRenderer,
|
||||
"non-renderer"},
|
||||
{PartitionAllocWithAdvancedChecksEnabledProcesses::kAllProcesses,
|
||||
"all-processes"}};
|
||||
const base::FeatureParam<PartitionAllocWithAdvancedChecksEnabledProcesses>
|
||||
kPartitionAllocWithAdvancedChecksEnabledProcessesParam{
|
||||
&kPartitionAllocWithAdvancedChecks, "enabled-processes",
|
||||
PartitionAllocWithAdvancedChecksEnabledProcesses::kBrowserOnly,
|
||||
&kPartitionAllocWithAdvancedChecksEnabledProcessesOptions};
|
||||
|
||||
BASE_FEATURE(kPartitionAllocSchedulerLoopQuarantine,
|
||||
"PartitionAllocSchedulerLoopQuarantine",
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
// Scheduler Loop Quarantine's per-branch capacity in bytes.
|
||||
const base::FeatureParam<int>
|
||||
kPartitionAllocSchedulerLoopQuarantineBranchCapacity{
|
||||
&kPartitionAllocSchedulerLoopQuarantine,
|
||||
"PartitionAllocSchedulerLoopQuarantineBranchCapacity", 0};
|
||||
|
||||
BASE_FEATURE(kPartitionAllocZappingByFreeFlags,
|
||||
"PartitionAllocZappingByFreeFlags",
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
BASE_FEATURE(kPartitionAllocBackupRefPtr,
|
||||
"PartitionAllocBackupRefPtr",
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_FEATURE_FLAG)
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#endif
|
||||
);
|
||||
|
||||
constexpr FeatureParam<BackupRefPtrEnabledProcesses>::Option
|
||||
kBackupRefPtrEnabledProcessesOptions[] = {
|
||||
{BackupRefPtrEnabledProcesses::kBrowserOnly, "browser-only"},
|
||||
{BackupRefPtrEnabledProcesses::kBrowserAndRenderer,
|
||||
"browser-and-renderer"},
|
||||
{BackupRefPtrEnabledProcesses::kNonRenderer, "non-renderer"},
|
||||
{BackupRefPtrEnabledProcesses::kAllProcesses, "all-processes"}};
|
||||
|
||||
const base::FeatureParam<BackupRefPtrEnabledProcesses>
|
||||
kBackupRefPtrEnabledProcessesParam{
|
||||
&kPartitionAllocBackupRefPtr, "enabled-processes",
|
||||
#if PA_BUILDFLAG(IS_MAC) && PA_BUILDFLAG(PA_ARCH_CPU_ARM64)
|
||||
BackupRefPtrEnabledProcesses::kNonRenderer,
|
||||
#else
|
||||
BackupRefPtrEnabledProcesses::kAllProcesses,
|
||||
#endif
|
||||
&kBackupRefPtrEnabledProcessesOptions};
|
||||
|
||||
constexpr FeatureParam<BackupRefPtrMode>::Option kBackupRefPtrModeOptions[] = {
|
||||
{BackupRefPtrMode::kDisabled, "disabled"},
|
||||
{BackupRefPtrMode::kEnabled, "enabled"},
|
||||
};
|
||||
|
||||
const base::FeatureParam<BackupRefPtrMode> kBackupRefPtrModeParam{
|
||||
&kPartitionAllocBackupRefPtr, "brp-mode", BackupRefPtrMode::kEnabled,
|
||||
&kBackupRefPtrModeOptions};
|
||||
|
||||
BASE_FEATURE(kPartitionAllocMemoryTagging,
|
||||
"PartitionAllocMemoryTagging",
|
||||
#if PA_BUILDFLAG(USE_FULL_MTE)
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#endif
|
||||
);
|
||||
|
||||
constexpr FeatureParam<MemtagMode>::Option kMemtagModeOptions[] = {
|
||||
{MemtagMode::kSync, "sync"},
|
||||
{MemtagMode::kAsync, "async"}};
|
||||
|
||||
const base::FeatureParam<MemtagMode> kMemtagModeParam{
|
||||
&kPartitionAllocMemoryTagging, "memtag-mode",
|
||||
#if PA_BUILDFLAG(USE_FULL_MTE)
|
||||
MemtagMode::kSync,
|
||||
#else
|
||||
MemtagMode::kAsync,
|
||||
#endif
|
||||
&kMemtagModeOptions};
|
||||
|
||||
constexpr FeatureParam<RetagMode>::Option kRetagModeOptions[] = {
|
||||
{RetagMode::kIncrement, "increment"},
|
||||
{RetagMode::kRandom, "random"},
|
||||
};
|
||||
|
||||
const base::FeatureParam<RetagMode> kRetagModeParam{
|
||||
&kPartitionAllocMemoryTagging, "retag-mode", RetagMode::kIncrement,
|
||||
&kRetagModeOptions};
|
||||
|
||||
constexpr FeatureParam<MemoryTaggingEnabledProcesses>::Option
|
||||
kMemoryTaggingEnabledProcessesOptions[] = {
|
||||
{MemoryTaggingEnabledProcesses::kBrowserOnly, "browser-only"},
|
||||
{MemoryTaggingEnabledProcesses::kNonRenderer, "non-renderer"},
|
||||
{MemoryTaggingEnabledProcesses::kAllProcesses, "all-processes"}};
|
||||
|
||||
const base::FeatureParam<MemoryTaggingEnabledProcesses>
|
||||
kMemoryTaggingEnabledProcessesParam{
|
||||
&kPartitionAllocMemoryTagging, "enabled-processes",
|
||||
#if PA_BUILDFLAG(USE_FULL_MTE)
|
||||
MemoryTaggingEnabledProcesses::kAllProcesses,
|
||||
#else
|
||||
MemoryTaggingEnabledProcesses::kBrowserOnly,
|
||||
#endif
|
||||
&kMemoryTaggingEnabledProcessesOptions};
|
||||
|
||||
BASE_FEATURE(kKillPartitionAllocMemoryTagging,
|
||||
"KillPartitionAllocMemoryTagging",
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocPermissiveMte);
|
||||
BASE_FEATURE(kPartitionAllocPermissiveMte,
|
||||
"PartitionAllocPermissiveMte",
|
||||
#if PA_BUILDFLAG(USE_FULL_MTE)
|
||||
// We want to actually crash if USE_FULL_MTE is enabled.
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#endif
|
||||
);
|
||||
|
||||
const base::FeatureParam<bool> kBackupRefPtrAsanEnableDereferenceCheckParam{
|
||||
&kPartitionAllocBackupRefPtr, "asan-enable-dereference-check", true};
|
||||
const base::FeatureParam<bool> kBackupRefPtrAsanEnableExtractionCheckParam{
|
||||
&kPartitionAllocBackupRefPtr, "asan-enable-extraction-check",
|
||||
false}; // Not much noise at the moment to enable by default.
|
||||
const base::FeatureParam<bool> kBackupRefPtrAsanEnableInstantiationCheckParam{
|
||||
&kPartitionAllocBackupRefPtr, "asan-enable-instantiation-check", true};
|
||||
|
||||
// If enabled, switches the bucket distribution to a denser one.
|
||||
//
|
||||
// We enable this by default everywhere except for 32-bit Android, since we saw
|
||||
// regressions there.
|
||||
BASE_FEATURE(kPartitionAllocUseDenserDistribution,
|
||||
"PartitionAllocUseDenserDistribution",
|
||||
#if BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_32_BITS)
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#endif // BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_32_BITS)
|
||||
);
|
||||
const base::FeatureParam<BucketDistributionMode>::Option
|
||||
kPartitionAllocBucketDistributionOption[] = {
|
||||
{BucketDistributionMode::kDefault, "default"},
|
||||
{BucketDistributionMode::kDenser, "denser"},
|
||||
};
|
||||
const base::FeatureParam<BucketDistributionMode>
|
||||
kPartitionAllocBucketDistributionParam {
|
||||
&kPartitionAllocUseDenserDistribution, "mode",
|
||||
#if BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_32_BITS)
|
||||
BucketDistributionMode::kDefault,
|
||||
#else
|
||||
BucketDistributionMode::kDenser,
|
||||
#endif // BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_32_BITS)
|
||||
&kPartitionAllocBucketDistributionOption
|
||||
};
|
||||
|
||||
BASE_FEATURE(kPartitionAllocMemoryReclaimer,
|
||||
"PartitionAllocMemoryReclaimer",
|
||||
FEATURE_ENABLED_BY_DEFAULT);
|
||||
const base::FeatureParam<TimeDelta> kPartitionAllocMemoryReclaimerInterval = {
|
||||
&kPartitionAllocMemoryReclaimer, "interval",
|
||||
TimeDelta(), // Defaults to zero.
|
||||
};
|
||||
|
||||
// Configures whether we set a lower limit for renderers that do not have a main
|
||||
// frame, similar to the limit that is already done for backgrounded renderers.
|
||||
BASE_FEATURE(kLowerPAMemoryLimitForNonMainRenderers,
|
||||
"LowerPAMemoryLimitForNonMainRenderers",
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
|
||||
// Whether to straighten free lists for larger slot spans in PurgeMemory() ->
|
||||
// ... -> PartitionPurgeSlotSpan().
|
||||
BASE_FEATURE(kPartitionAllocStraightenLargerSlotSpanFreeLists,
|
||||
"PartitionAllocStraightenLargerSlotSpanFreeLists",
|
||||
FEATURE_ENABLED_BY_DEFAULT);
|
||||
const base::FeatureParam<
|
||||
partition_alloc::StraightenLargerSlotSpanFreeListsMode>::Option
|
||||
kPartitionAllocStraightenLargerSlotSpanFreeListsModeOption[] = {
|
||||
{partition_alloc::StraightenLargerSlotSpanFreeListsMode::
|
||||
kOnlyWhenUnprovisioning,
|
||||
"only-when-unprovisioning"},
|
||||
{partition_alloc::StraightenLargerSlotSpanFreeListsMode::kAlways,
|
||||
"always"},
|
||||
};
|
||||
const base::FeatureParam<partition_alloc::StraightenLargerSlotSpanFreeListsMode>
|
||||
kPartitionAllocStraightenLargerSlotSpanFreeListsMode = {
|
||||
&kPartitionAllocStraightenLargerSlotSpanFreeLists,
|
||||
"mode",
|
||||
partition_alloc::StraightenLargerSlotSpanFreeListsMode::
|
||||
kOnlyWhenUnprovisioning,
|
||||
&kPartitionAllocStraightenLargerSlotSpanFreeListsModeOption,
|
||||
};
|
||||
|
||||
// Whether to sort free lists for smaller slot spans in PurgeMemory().
|
||||
BASE_FEATURE(kPartitionAllocSortSmallerSlotSpanFreeLists,
|
||||
"PartitionAllocSortSmallerSlotSpanFreeLists",
|
||||
FEATURE_ENABLED_BY_DEFAULT);
|
||||
|
||||
// Whether to sort the active slot spans in PurgeMemory().
|
||||
BASE_FEATURE(kPartitionAllocSortActiveSlotSpans,
|
||||
"PartitionAllocSortActiveSlotSpans",
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
// Whether to retry allocations when commit fails.
|
||||
BASE_FEATURE(kPageAllocatorRetryOnCommitFailure,
|
||||
"PageAllocatorRetryOnCommitFailure",
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS)
|
||||
// A parameter to exclude or not exclude PartitionAllocSupport from
|
||||
// PartialLowModeOnMidRangeDevices. This is used to see how it affects
|
||||
// renderer performances, e.g. blink_perf.parser benchmark.
|
||||
// The feature: kPartialLowEndModeOnMidRangeDevices is defined in
|
||||
// //base/features.cc. Since the following feature param is related to
|
||||
// PartitionAlloc, define the param here.
|
||||
const FeatureParam<bool> kPartialLowEndModeExcludePartitionAllocSupport{
|
||||
&kPartialLowEndModeOnMidRangeDevices, "exclude-partition-alloc-support",
|
||||
false};
|
||||
#endif
|
||||
|
||||
BASE_FEATURE(kEnableConfigurableThreadCacheMultiplier,
|
||||
"EnableConfigurableThreadCacheMultiplier",
|
||||
base::FEATURE_DISABLED_BY_DEFAULT);
|
||||
|
||||
MIRACLE_PARAMETER_FOR_DOUBLE(GetThreadCacheMultiplier,
|
||||
kEnableConfigurableThreadCacheMultiplier,
|
||||
"ThreadCacheMultiplier",
|
||||
2.)
|
||||
|
||||
MIRACLE_PARAMETER_FOR_DOUBLE(GetThreadCacheMultiplierForAndroid,
|
||||
kEnableConfigurableThreadCacheMultiplier,
|
||||
"ThreadCacheMultiplierForAndroid",
|
||||
1.)
|
||||
|
||||
constexpr partition_alloc::internal::base::TimeDelta ToPartitionAllocTimeDelta(
|
||||
base::TimeDelta time_delta) {
|
||||
return partition_alloc::internal::base::Microseconds(
|
||||
time_delta.InMicroseconds());
|
||||
}
|
||||
|
||||
constexpr base::TimeDelta FromPartitionAllocTimeDelta(
|
||||
partition_alloc::internal::base::TimeDelta time_delta) {
|
||||
return base::Microseconds(time_delta.InMicroseconds());
|
||||
}
|
||||
|
||||
BASE_FEATURE(kEnableConfigurableThreadCachePurgeInterval,
|
||||
"EnableConfigurableThreadCachePurgeInterval",
|
||||
base::FEATURE_DISABLED_BY_DEFAULT);
|
||||
|
||||
MIRACLE_PARAMETER_FOR_TIME_DELTA(
|
||||
GetThreadCacheMinPurgeIntervalValue,
|
||||
kEnableConfigurableThreadCachePurgeInterval,
|
||||
"ThreadCacheMinPurgeInterval",
|
||||
FromPartitionAllocTimeDelta(partition_alloc::kMinPurgeInterval))
|
||||
|
||||
MIRACLE_PARAMETER_FOR_TIME_DELTA(
|
||||
GetThreadCacheMaxPurgeIntervalValue,
|
||||
kEnableConfigurableThreadCachePurgeInterval,
|
||||
"ThreadCacheMaxPurgeInterval",
|
||||
FromPartitionAllocTimeDelta(partition_alloc::kMaxPurgeInterval))
|
||||
|
||||
MIRACLE_PARAMETER_FOR_TIME_DELTA(
|
||||
GetThreadCacheDefaultPurgeIntervalValue,
|
||||
kEnableConfigurableThreadCachePurgeInterval,
|
||||
"ThreadCacheDefaultPurgeInterval",
|
||||
FromPartitionAllocTimeDelta(partition_alloc::kDefaultPurgeInterval))
|
||||
|
||||
const partition_alloc::internal::base::TimeDelta
|
||||
GetThreadCacheMinPurgeInterval() {
|
||||
return ToPartitionAllocTimeDelta(GetThreadCacheMinPurgeIntervalValue());
|
||||
}
|
||||
|
||||
const partition_alloc::internal::base::TimeDelta
|
||||
GetThreadCacheMaxPurgeInterval() {
|
||||
return ToPartitionAllocTimeDelta(GetThreadCacheMaxPurgeIntervalValue());
|
||||
}
|
||||
|
||||
const partition_alloc::internal::base::TimeDelta
|
||||
GetThreadCacheDefaultPurgeInterval() {
|
||||
return ToPartitionAllocTimeDelta(GetThreadCacheDefaultPurgeIntervalValue());
|
||||
}
|
||||
|
||||
BASE_FEATURE(kEnableConfigurableThreadCacheMinCachedMemoryForPurging,
|
||||
"EnableConfigurableThreadCacheMinCachedMemoryForPurging",
|
||||
base::FEATURE_DISABLED_BY_DEFAULT);
|
||||
|
||||
MIRACLE_PARAMETER_FOR_INT(
|
||||
GetThreadCacheMinCachedMemoryForPurgingBytes,
|
||||
kEnableConfigurableThreadCacheMinCachedMemoryForPurging,
|
||||
"ThreadCacheMinCachedMemoryForPurgingBytes",
|
||||
partition_alloc::kMinCachedMemoryForPurgingBytes)
|
||||
|
||||
// An apparent quarantine leak in the buffer partition unacceptably
|
||||
// bloats memory when MiraclePtr is enabled in the renderer process.
|
||||
// We believe we have found and patched the leak, but out of an
|
||||
// abundance of caution, we provide this toggle that allows us to
|
||||
// wholly disable MiraclePtr in the buffer partition, if necessary.
|
||||
//
|
||||
// TODO(crbug.com/40064499): this is unneeded once
|
||||
// MiraclePtr-for-Renderer launches.
|
||||
BASE_FEATURE(kPartitionAllocDisableBRPInBufferPartition,
|
||||
"PartitionAllocDisableBRPInBufferPartition",
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
|
||||
#if PA_BUILDFLAG(USE_FREELIST_DISPATCHER)
|
||||
BASE_FEATURE(kUsePoolOffsetFreelists,
|
||||
"PartitionAllocUsePoolOffsetFreelists",
|
||||
base::FEATURE_DISABLED_BY_DEFAULT);
|
||||
#endif
|
||||
|
||||
BASE_FEATURE(kPartitionAllocMakeFreeNoOpOnShutdown,
|
||||
"PartitionAllocMakeFreeNoOpOnShutdown",
|
||||
#if PA_BUILDFLAG(IS_CHROMEOS)
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#endif
|
||||
);
|
||||
|
||||
constexpr FeatureParam<WhenFreeBecomesNoOp>::Option
|
||||
kPartitionAllocMakeFreeNoOpOnShutdownOptions[] = {
|
||||
{WhenFreeBecomesNoOp::kBeforePreShutdown, "before-preshutdown"},
|
||||
{WhenFreeBecomesNoOp::kBeforeHaltingStartupTracingController,
|
||||
"before-halting-startup-tracing-controller"},
|
||||
{
|
||||
WhenFreeBecomesNoOp::kBeforeShutDownThreads,
|
||||
"before-shutdown-threads",
|
||||
},
|
||||
{
|
||||
WhenFreeBecomesNoOp::kInShutDownThreads,
|
||||
"in-shutdown-threads",
|
||||
},
|
||||
{
|
||||
WhenFreeBecomesNoOp::kAfterShutDownThreads,
|
||||
"after-shutdown-threads",
|
||||
},
|
||||
};
|
||||
|
||||
const base::FeatureParam<WhenFreeBecomesNoOp>
|
||||
kPartitionAllocMakeFreeNoOpOnShutdownParam{
|
||||
&kPartitionAllocMakeFreeNoOpOnShutdown, "callsite",
|
||||
WhenFreeBecomesNoOp::kBeforePreShutdown,
|
||||
&kPartitionAllocMakeFreeNoOpOnShutdownOptions};
|
||||
|
||||
void MakeFreeNoOp(WhenFreeBecomesNoOp callsite) {
|
||||
CHECK(base::FeatureList::GetInstance());
|
||||
// Ignoring `free()` during Shutdown would allow developers to introduce new
|
||||
// dangling pointers. So we want to avoid ignoring free when it is enabled.
|
||||
// Note: For now, the DanglingPointerDetector is only enabled on 5 bots, and
|
||||
// on linux non-official configuration.
|
||||
// TODO(b/40802063): Reconsider this decision after the experiment.
|
||||
#if PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
|
||||
if (base::FeatureList::IsEnabled(features::kPartitionAllocDanglingPtr)) {
|
||||
return;
|
||||
}
|
||||
#endif // PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
|
||||
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
if (base::FeatureList::IsEnabled(kPartitionAllocMakeFreeNoOpOnShutdown) &&
|
||||
kPartitionAllocMakeFreeNoOpOnShutdownParam.Get() == callsite) {
|
||||
allocator_shim::InsertNoOpOnFreeAllocatorShimOnShutDown();
|
||||
}
|
||||
#endif // PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
}
|
||||
|
||||
BASE_FEATURE(kPartitionAllocAdjustSizeWhenInForeground,
|
||||
"PartitionAllocAdjustSizeWhenInForeground",
|
||||
#if BUILDFLAG(IS_MAC)
|
||||
FEATURE_ENABLED_BY_DEFAULT);
|
||||
#else
|
||||
FEATURE_DISABLED_BY_DEFAULT);
|
||||
#endif
|
||||
|
||||
BASE_FEATURE(kPartitionAllocUseSmallSingleSlotSpans,
|
||||
"PartitionAllocUseSmallSingleSlotSpans",
|
||||
base::FEATURE_DISABLED_BY_DEFAULT);
|
||||
|
||||
} // namespace features
|
||||
} // namespace base
|
243
src/base/allocator/partition_alloc_features.h
Normal file
243
src/base/allocator/partition_alloc_features.h
Normal file
@ -0,0 +1,243 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/feature_list.h"
|
||||
#include "base/metrics/field_trial_params.h"
|
||||
#include "base/time/time.h"
|
||||
#include "build/build_config.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/partition_alloc_base/time/time.h"
|
||||
#include "partition_alloc/partition_root.h"
|
||||
|
||||
namespace base {
|
||||
namespace features {
|
||||
|
||||
extern const BASE_EXPORT Feature kPartitionAllocUnretainedDanglingPtr;
|
||||
enum class UnretainedDanglingPtrMode {
|
||||
kCrash,
|
||||
kDumpWithoutCrashing,
|
||||
};
|
||||
extern const BASE_EXPORT base::FeatureParam<UnretainedDanglingPtrMode>
|
||||
kUnretainedDanglingPtrModeParam;
|
||||
|
||||
// See /docs/dangling_ptr.md
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocDanglingPtr);
|
||||
enum class DanglingPtrMode {
|
||||
// Crash immediately after detecting a dangling raw_ptr.
|
||||
kCrash, // (default)
|
||||
|
||||
// Log the signature of every occurrences without crashing. It is used by
|
||||
// bots.
|
||||
// Format "[DanglingSignature]\t<1>\t<2>\t<3>\t<4>"
|
||||
// 1. The function which freed the memory while it was still referenced.
|
||||
// 2. The task in which the memory was freed.
|
||||
// 3. The function which released the raw_ptr reference.
|
||||
// 4. The task in which the raw_ptr was released.
|
||||
kLogOnly,
|
||||
|
||||
// Note: This will be extended with a single shot DumpWithoutCrashing.
|
||||
};
|
||||
extern const BASE_EXPORT base::FeatureParam<DanglingPtrMode>
|
||||
kDanglingPtrModeParam;
|
||||
enum class DanglingPtrType {
|
||||
// Act on any dangling raw_ptr released after being freed.
|
||||
kAll, // (default)
|
||||
|
||||
// Detect when freeing memory and releasing the dangling raw_ptr happens in
|
||||
// a different task. Those are more likely to cause use after free.
|
||||
kCrossTask,
|
||||
|
||||
// Note: This will be extended with LongLived
|
||||
};
|
||||
extern const BASE_EXPORT base::FeatureParam<DanglingPtrType>
|
||||
kDanglingPtrTypeParam;
|
||||
|
||||
enum class PartitionAllocWithAdvancedChecksEnabledProcesses {
|
||||
// Enabled only in the browser process.
|
||||
kBrowserOnly,
|
||||
// Enabled only in the browser and renderer processes.
|
||||
kBrowserAndRenderer,
|
||||
// Enabled in all processes, except renderer.
|
||||
kNonRenderer,
|
||||
// Enabled in all processes.
|
||||
kAllProcesses,
|
||||
};
|
||||
|
||||
#if PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocLargeThreadCacheSize);
|
||||
BASE_EXPORT int GetPartitionAllocLargeThreadCacheSizeValue();
|
||||
BASE_EXPORT int GetPartitionAllocLargeThreadCacheSizeValueForLowRAMAndroid();
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocLargeEmptySlotSpanRing);
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocWithAdvancedChecks);
|
||||
extern const BASE_EXPORT
|
||||
base::FeatureParam<PartitionAllocWithAdvancedChecksEnabledProcesses>
|
||||
kPartitionAllocWithAdvancedChecksEnabledProcessesParam;
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocSchedulerLoopQuarantine);
|
||||
// Scheduler Loop Quarantine's per-thread capacity in bytes.
|
||||
extern const BASE_EXPORT base::FeatureParam<int>
|
||||
kPartitionAllocSchedulerLoopQuarantineBranchCapacity;
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocZappingByFreeFlags);
|
||||
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
enum class BackupRefPtrEnabledProcesses {
|
||||
// BRP enabled only in the browser process.
|
||||
kBrowserOnly,
|
||||
// BRP enabled only in the browser and renderer processes.
|
||||
kBrowserAndRenderer,
|
||||
// BRP enabled in all processes, except renderer.
|
||||
kNonRenderer,
|
||||
// BRP enabled in all processes.
|
||||
kAllProcesses,
|
||||
};
|
||||
|
||||
enum class BackupRefPtrMode {
|
||||
// BRP is disabled across all partitions. Equivalent to the Finch flag being
|
||||
// disabled.
|
||||
kDisabled,
|
||||
|
||||
// BRP is enabled in the main partition, as well as certain Renderer-only
|
||||
// partitions (if enabled in Renderer at all).
|
||||
kEnabled,
|
||||
};
|
||||
|
||||
enum class MemtagMode {
|
||||
// memtagMode will be SYNC.
|
||||
kSync,
|
||||
// memtagMode will be ASYNC.
|
||||
kAsync,
|
||||
};
|
||||
|
||||
enum class RetagMode {
|
||||
// Allocations are retagged by incrementing the current tag.
|
||||
kIncrement,
|
||||
|
||||
// Allocations are retagged with a random tag.
|
||||
kRandom,
|
||||
};
|
||||
|
||||
enum class MemoryTaggingEnabledProcesses {
|
||||
// Memory tagging enabled only in the browser process.
|
||||
kBrowserOnly,
|
||||
// Memory tagging enabled in all processes, except renderer.
|
||||
kNonRenderer,
|
||||
// Memory tagging enabled in all processes.
|
||||
kAllProcesses,
|
||||
};
|
||||
|
||||
enum class BucketDistributionMode : uint8_t {
|
||||
kDefault,
|
||||
kDenser,
|
||||
};
|
||||
|
||||
// Parameter for 'kPartitionAllocMakeFreeNoOpOnShutdown' feature which
|
||||
// controls when free() becomes a no-op during Shutdown()
|
||||
enum class WhenFreeBecomesNoOp {
|
||||
kBeforePreShutdown,
|
||||
kBeforeHaltingStartupTracingController,
|
||||
kBeforeShutDownThreads,
|
||||
kInShutDownThreads,
|
||||
kAfterShutDownThreads,
|
||||
};
|
||||
|
||||
// Inserts a no-op on 'free()' allocator shim at the front of the
|
||||
// dispatch chain if called from the appropriate callsite.
|
||||
BASE_EXPORT void MakeFreeNoOp(WhenFreeBecomesNoOp callsite);
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocMakeFreeNoOpOnShutdown);
|
||||
extern const BASE_EXPORT base::FeatureParam<WhenFreeBecomesNoOp>
|
||||
kPartitionAllocMakeFreeNoOpOnShutdownParam;
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocBackupRefPtr);
|
||||
extern const BASE_EXPORT base::FeatureParam<BackupRefPtrEnabledProcesses>
|
||||
kBackupRefPtrEnabledProcessesParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<BackupRefPtrMode>
|
||||
kBackupRefPtrModeParam;
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocMemoryTagging);
|
||||
extern const BASE_EXPORT base::FeatureParam<MemtagMode> kMemtagModeParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<RetagMode> kRetagModeParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<MemoryTaggingEnabledProcesses>
|
||||
kMemoryTaggingEnabledProcessesParam;
|
||||
// Kill switch for memory tagging. Skips any code related to memory tagging when
|
||||
// enabled.
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kKillPartitionAllocMemoryTagging);
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocPermissiveMte);
|
||||
extern const BASE_EXPORT base::FeatureParam<bool>
|
||||
kBackupRefPtrAsanEnableDereferenceCheckParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<bool>
|
||||
kBackupRefPtrAsanEnableExtractionCheckParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<bool>
|
||||
kBackupRefPtrAsanEnableInstantiationCheckParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<BucketDistributionMode>
|
||||
kPartitionAllocBucketDistributionParam;
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kLowerPAMemoryLimitForNonMainRenderers);
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocUseDenserDistribution);
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocMemoryReclaimer);
|
||||
extern const BASE_EXPORT base::FeatureParam<TimeDelta>
|
||||
kPartitionAllocMemoryReclaimerInterval;
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(
|
||||
kPartitionAllocStraightenLargerSlotSpanFreeLists);
|
||||
extern const BASE_EXPORT
|
||||
base::FeatureParam<partition_alloc::StraightenLargerSlotSpanFreeListsMode>
|
||||
kPartitionAllocStraightenLargerSlotSpanFreeListsMode;
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocSortSmallerSlotSpanFreeLists);
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocSortActiveSlotSpans);
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPageAllocatorRetryOnCommitFailure);
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS)
|
||||
extern const base::FeatureParam<bool>
|
||||
kPartialLowEndModeExcludePartitionAllocSupport;
|
||||
#endif
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kEnableConfigurableThreadCacheMultiplier);
|
||||
BASE_EXPORT double GetThreadCacheMultiplier();
|
||||
BASE_EXPORT double GetThreadCacheMultiplierForAndroid();
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kEnableConfigurableThreadCachePurgeInterval);
|
||||
extern const partition_alloc::internal::base::TimeDelta
|
||||
GetThreadCacheMinPurgeInterval();
|
||||
extern const partition_alloc::internal::base::TimeDelta
|
||||
GetThreadCacheMaxPurgeInterval();
|
||||
extern const partition_alloc::internal::base::TimeDelta
|
||||
GetThreadCacheDefaultPurgeInterval();
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(
|
||||
kEnableConfigurableThreadCacheMinCachedMemoryForPurging);
|
||||
BASE_EXPORT int GetThreadCacheMinCachedMemoryForPurgingBytes();
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocDisableBRPInBufferPartition);
|
||||
|
||||
// This feature is additionally gated behind a buildflag because
|
||||
// pool offset freelists cannot be represented when PartitionAlloc uses
|
||||
// 32-bit pointers.
|
||||
#if PA_BUILDFLAG(USE_FREELIST_DISPATCHER)
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kUsePoolOffsetFreelists);
|
||||
#endif
|
||||
|
||||
// When set, partitions use a larger ring buffer and free memory less
|
||||
// aggressively when in the foreground.
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocAdjustSizeWhenInForeground);
|
||||
|
||||
// When enabled, uses a more nuanced heuristic to determine if slot
|
||||
// spans can be treated as "single-slot."
|
||||
//
|
||||
// See also: https://crbug.com/333443437
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocUseSmallSingleSlotSpans);
|
||||
|
||||
} // namespace features
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_
|
1327
src/base/allocator/partition_alloc_support.cc
Normal file
1327
src/base/allocator/partition_alloc_support.cc
Normal file
File diff suppressed because it is too large
Load Diff
154
src/base/allocator/partition_alloc_support.h
Normal file
154
src/base/allocator/partition_alloc_support.h
Normal file
@ -0,0 +1,154 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOC_SUPPORT_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOC_SUPPORT_H_
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "base/feature_list.h"
|
||||
#include "base/memory/scoped_refptr.h"
|
||||
#include "base/synchronization/lock.h"
|
||||
#include "base/task/sequenced_task_runner.h"
|
||||
#include "base/thread_annotations.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/partition_alloc_config.h"
|
||||
#include "partition_alloc/thread_cache.h"
|
||||
|
||||
namespace base::allocator {
|
||||
|
||||
// Starts a periodic timer on the current thread to purge all thread caches.
|
||||
BASE_EXPORT void StartThreadCachePeriodicPurge();
|
||||
|
||||
BASE_EXPORT void StartMemoryReclaimer(
|
||||
scoped_refptr<SequencedTaskRunner> task_runner);
|
||||
|
||||
BASE_EXPORT std::map<std::string, std::string> ProposeSyntheticFinchTrials();
|
||||
|
||||
// Install handlers for when dangling raw_ptr(s) have been detected. This prints
|
||||
// two StackTraces. One where the memory is freed, one where the last dangling
|
||||
// raw_ptr stopped referencing it.
|
||||
//
|
||||
// This is currently effective, only when compiled with
|
||||
// `enable_dangling_raw_ptr_checks` build flag.
|
||||
BASE_EXPORT void InstallDanglingRawPtrChecks();
|
||||
BASE_EXPORT void InstallUnretainedDanglingRawPtrChecks();
|
||||
|
||||
// Allows to re-configure PartitionAlloc at run-time.
|
||||
class BASE_EXPORT PartitionAllocSupport {
|
||||
public:
|
||||
struct BrpConfiguration {
|
||||
bool enable_brp = false;
|
||||
bool process_affected_by_brp_flag = false;
|
||||
};
|
||||
|
||||
// Reconfigure* functions re-configure PartitionAlloc. It is impossible to
|
||||
// configure PartitionAlloc before/at its initialization using information not
|
||||
// known at compile-time (e.g. process type, Finch), because by the time this
|
||||
// information is available memory allocations would have surely happened,
|
||||
// that requiring a functioning allocator.
|
||||
//
|
||||
// *Earlyish() is called as early as it is reasonably possible.
|
||||
// *AfterZygoteFork() is its complement to finish configuring process-specific
|
||||
// stuff that had to be postponed due to *Earlyish() being called with
|
||||
// |process_type==kZygoteProcess|.
|
||||
// *AfterFeatureListInit() is called in addition to the above, once
|
||||
// FeatureList has been initialized and ready to use. It is guaranteed to be
|
||||
// called on non-zygote processes or after the zygote has been forked.
|
||||
// *AfterTaskRunnerInit() is called once it is possible to post tasks, and
|
||||
// after the previous steps.
|
||||
//
|
||||
// *Earlyish() must be called exactly once. *AfterZygoteFork() must be called
|
||||
// once iff *Earlyish() was called before with |process_type==kZygoteProcess|.
|
||||
//
|
||||
// *AfterFeatureListInit() may be called more than once, but will perform its
|
||||
// re-configuration steps exactly once.
|
||||
//
|
||||
// *AfterTaskRunnerInit() may be called more than once.
|
||||
void ReconfigureForTests();
|
||||
void ReconfigureEarlyish(const std::string& process_type);
|
||||
void ReconfigureAfterZygoteFork(const std::string& process_type);
|
||||
void ReconfigureAfterFeatureListInit(
|
||||
const std::string& process_type,
|
||||
bool configure_dangling_pointer_detector = true);
|
||||
void ReconfigureAfterTaskRunnerInit(const std::string& process_type);
|
||||
|
||||
// |has_main_frame| tells us if the renderer contains a main frame.
|
||||
// The default value is intended for other process types, where the parameter
|
||||
// does not make sense.
|
||||
void OnForegrounded(bool has_main_frame = false);
|
||||
void OnBackgrounded();
|
||||
|
||||
#if PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
|
||||
static std::string ExtractDanglingPtrSignatureForTests(
|
||||
std::string stacktrace);
|
||||
#endif
|
||||
|
||||
static PartitionAllocSupport* Get();
|
||||
|
||||
static BrpConfiguration GetBrpConfiguration(const std::string& process_type);
|
||||
|
||||
// Returns true if memory tagging should be enabled if available for the given
|
||||
// process type. May be called multiple times per process.
|
||||
static bool ShouldEnableMemoryTagging(const std::string& process_type);
|
||||
|
||||
// For calling from within third_party/blink/.
|
||||
static bool ShouldEnableMemoryTaggingInRendererProcess();
|
||||
|
||||
// Returns true if PA advanced checks should be enabled if available for the
|
||||
// given process type. May be called multiple times per process.
|
||||
static bool ShouldEnablePartitionAllocWithAdvancedChecks(
|
||||
const std::string& process_type);
|
||||
|
||||
private:
|
||||
PartitionAllocSupport();
|
||||
|
||||
base::Lock lock_;
|
||||
bool called_for_tests_ GUARDED_BY(lock_) = false;
|
||||
bool called_earlyish_ GUARDED_BY(lock_) = false;
|
||||
bool called_after_zygote_fork_ GUARDED_BY(lock_) = false;
|
||||
bool called_after_feature_list_init_ GUARDED_BY(lock_) = false;
|
||||
bool called_after_thread_pool_init_ GUARDED_BY(lock_) = false;
|
||||
std::string established_process_type_ GUARDED_BY(lock_) = "INVALID";
|
||||
|
||||
#if PA_CONFIG(THREAD_CACHE_SUPPORTED) && \
|
||||
PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
size_t largest_cached_size_ =
|
||||
::partition_alloc::kThreadCacheDefaultSizeThreshold;
|
||||
#endif
|
||||
};
|
||||
|
||||
BASE_EXPORT BASE_DECLARE_FEATURE(kDisableMemoryReclaimerInBackground);
|
||||
|
||||
// Visible in header for testing.
|
||||
class BASE_EXPORT MemoryReclaimerSupport {
|
||||
public:
|
||||
static MemoryReclaimerSupport& Instance();
|
||||
MemoryReclaimerSupport();
|
||||
~MemoryReclaimerSupport();
|
||||
void Start(scoped_refptr<TaskRunner> task_runner);
|
||||
void SetForegrounded(bool in_foreground);
|
||||
|
||||
void ResetForTesting();
|
||||
bool has_pending_task_for_testing() const { return has_pending_task_; }
|
||||
static TimeDelta GetInterval();
|
||||
|
||||
// Visible for testing
|
||||
static constexpr base::TimeDelta kFirstPAPurgeOrReclaimDelay =
|
||||
base::Minutes(1);
|
||||
|
||||
private:
|
||||
void Run();
|
||||
void MaybeScheduleTask(TimeDelta delay = TimeDelta());
|
||||
|
||||
scoped_refptr<TaskRunner> task_runner_;
|
||||
bool in_foreground_ = true;
|
||||
bool has_pending_task_ = false;
|
||||
};
|
||||
|
||||
} // namespace base::allocator
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOC_SUPPORT_H_
|
8
src/base/allocator/partition_allocator/.gn
Normal file
8
src/base/allocator/partition_allocator/.gn
Normal file
@ -0,0 +1,8 @@
|
||||
# Copyright 2024 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# This is partition_alloc root GN configuration. It is used when built as a
|
||||
# standalone project. This is not used in production.
|
||||
|
||||
buildconfig = "//gn/BUILDCONFIG.gn"
|
18
src/base/allocator/partition_allocator/BUILD.gn
Normal file
18
src/base/allocator/partition_allocator/BUILD.gn
Normal file
@ -0,0 +1,18 @@
|
||||
# Copyright 2023 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
import("partition_alloc.gni")
|
||||
|
||||
group("raw_ptr") {
|
||||
public_deps = [ "src/partition_alloc:raw_ptr" ]
|
||||
}
|
||||
|
||||
group("buildflags") {
|
||||
public_deps = [ "src/partition_alloc:buildflags" ]
|
||||
}
|
||||
|
||||
if (is_clang_or_gcc) {
|
||||
group("partition_alloc") {
|
||||
public_deps = [ "src/partition_alloc:partition_alloc" ]
|
||||
}
|
||||
}
|
60
src/base/allocator/partition_allocator/DEPS
Normal file
60
src/base/allocator/partition_allocator/DEPS
Normal file
@ -0,0 +1,60 @@
|
||||
# Copyright 2021 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# PartitionAlloc library must not depend on Chromium
|
||||
# project in order to be a standalone library.
|
||||
noparent = True
|
||||
|
||||
# `partition_alloc` can depend only on itself, via its `include_dirs`.
|
||||
include_rules = [ "+partition_alloc" ]
|
||||
|
||||
# TODO(crbug.com/40158212): Depending on what is tested, split the tests in
|
||||
# between chromium and partition_alloc. Remove those exceptions:
|
||||
specific_include_rules = {
|
||||
# Dependencies on //testing:
|
||||
".*_(perf|unit)?test.*\.(h|cc)": [
|
||||
"+testing/gmock/include/gmock/gmock.h",
|
||||
"+testing/gtest/include/gtest/gtest.h",
|
||||
"+testing/perf/perf_result_reporter.h",
|
||||
],
|
||||
"gtest_util.h": [
|
||||
"+testing/gtest/include/gtest/gtest.h",
|
||||
],
|
||||
|
||||
# Dependencies on //base:
|
||||
"extended_api\.cc": [
|
||||
"+base/allocator/allocator_shim_default_dispatch_to_partition_alloc.h",
|
||||
],
|
||||
"partition_alloc_perftest\.cc": [
|
||||
"+base/allocator/dispatcher/dispatcher.h",
|
||||
"+base/debug/allocation_trace.h",
|
||||
"+base/debug/debugging_buildflags.h",
|
||||
"+base/timer/lap_timer.h",
|
||||
],
|
||||
"partition_lock_perftest\.cc": [
|
||||
"+base/timer/lap_timer.h",
|
||||
],
|
||||
"raw_ptr_unittest\.cc": [
|
||||
"+base/allocator/partition_alloc_features.h",
|
||||
"+base/allocator/partition_alloc_support.h",
|
||||
"+base/cpu.h",
|
||||
"+base/debug/asan_service.h",
|
||||
"+base/metrics/histogram_base.h",
|
||||
"+base/test/bind.h",
|
||||
"+base/test/gtest_util.h",
|
||||
"+base/test/memory/dangling_ptr_instrumentation.h",
|
||||
"+base/test/scoped_feature_list.h",
|
||||
"+base/types/to_address.h",
|
||||
],
|
||||
"raw_ref_unittest\.cc": [
|
||||
"+base/debug/asan_service.h",
|
||||
"+base/memory/raw_ptr_asan_service.h",
|
||||
"+base/test/gtest_util.h",
|
||||
],
|
||||
}
|
||||
|
||||
# In the context of a module-level DEPS, the `deps` variable must be defined.
|
||||
# Some tools relies on it. For instance dawn/tools/fetch_dawn_dependencies.py
|
||||
# This has no use in other contexts.
|
||||
deps = {}
|
8
src/base/allocator/partition_allocator/DIR_METADATA
Normal file
8
src/base/allocator/partition_allocator/DIR_METADATA
Normal file
@ -0,0 +1,8 @@
|
||||
monorail: {
|
||||
component: "Blink>MemoryAllocator>Partition"
|
||||
}
|
||||
# Also security-dev@chromium.org
|
||||
team_email: "platform-architecture-dev@chromium.org"
|
||||
buganizer_public: {
|
||||
component_id: 1456202
|
||||
}
|
8
src/base/allocator/partition_allocator/OWNERS
Normal file
8
src/base/allocator/partition_allocator/OWNERS
Normal file
@ -0,0 +1,8 @@
|
||||
bartekn@chromium.org
|
||||
haraken@chromium.org
|
||||
keishi@chromium.org
|
||||
lizeb@chromium.org
|
||||
tasak@google.com
|
||||
|
||||
per-file pointers/raw_ptr*=file://base/memory/MIRACLE_PTR_OWNERS
|
||||
per-file pointers/raw_ref*=file://base/memory/MIRACLE_PTR_OWNERS
|
229
src/base/allocator/partition_allocator/PRESUBMIT.py
Normal file
229
src/base/allocator/partition_allocator/PRESUBMIT.py
Normal file
@ -0,0 +1,229 @@
|
||||
# Copyright 2024 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
"""Chromium presubmit script for base/allocator/partition_allocator.
|
||||
|
||||
See http://dev.chromium.org/developers/how-tos/depottools/presubmit-scripts
|
||||
for more details on the presubmit API built into depot_tools.
|
||||
"""
|
||||
|
||||
PRESUBMIT_VERSION = '2.0.0'
|
||||
|
||||
# This is the base path of the partition_alloc directory when stored inside the
|
||||
# chromium repository. PRESUBMIT.py is executed from chromium.
|
||||
_PARTITION_ALLOC_BASE_PATH = 'base/allocator/partition_allocator/src/'
|
||||
|
||||
# Pattern matching C/C++ source files, for use in allowlist args.
|
||||
_SOURCE_FILE_PATTERN = r'.*\.(h|hpp|c|cc|cpp)$'
|
||||
|
||||
# Similar pattern, matching GN files.
|
||||
_BUILD_FILE_PATTERN = r'.*\.(gn|gni)$'
|
||||
|
||||
# This is adapted from Chromium's PRESUBMIT.py. The differences are:
|
||||
# - Base path: It is relative to the partition_alloc's source directory instead
|
||||
# of chromium.
|
||||
# - Stricter: A single format is allowed: `PATH_ELEM_FILE_NAME_H_`.
|
||||
def CheckForIncludeGuards(input_api, output_api):
|
||||
"""Check that header files have proper include guards"""
|
||||
|
||||
def guard_for_file(file):
|
||||
local_path = file.LocalPath()
|
||||
if input_api.is_windows:
|
||||
local_path = local_path.replace('\\', '/')
|
||||
assert local_path.startswith(_PARTITION_ALLOC_BASE_PATH)
|
||||
guard = input_api.os_path.normpath(
|
||||
local_path[len(_PARTITION_ALLOC_BASE_PATH):])
|
||||
guard = guard + '_'
|
||||
guard = guard.upper()
|
||||
guard = input_api.re.sub(r'[+\\/.-]', '_', guard)
|
||||
return guard
|
||||
|
||||
def is_partition_alloc_header_file(f):
|
||||
# We only check header files.
|
||||
return f.LocalPath().endswith('.h')
|
||||
|
||||
errors = []
|
||||
|
||||
for f in input_api.AffectedSourceFiles(is_partition_alloc_header_file):
|
||||
expected_guard = guard_for_file(f)
|
||||
|
||||
# Unlike the Chromium's top-level PRESUBMIT.py, we enforce a stricter
|
||||
# rule which accepts only `PATH_ELEM_FILE_NAME_H_` per coding style.
|
||||
guard_name_pattern = input_api.re.escape(expected_guard)
|
||||
guard_pattern = input_api.re.compile(r'#ifndef\s+(' +
|
||||
guard_name_pattern + ')')
|
||||
|
||||
guard_name = None
|
||||
guard_line_number = None
|
||||
seen_guard_end = False
|
||||
for line_number, line in enumerate(f.NewContents()):
|
||||
if guard_name is None:
|
||||
match = guard_pattern.match(line)
|
||||
if match:
|
||||
guard_name = match.group(1)
|
||||
guard_line_number = line_number
|
||||
continue
|
||||
|
||||
# The line after #ifndef should have a #define of the same name.
|
||||
if line_number == guard_line_number + 1:
|
||||
expected_line = '#define %s' % guard_name
|
||||
if line != expected_line:
|
||||
errors.append(
|
||||
output_api.PresubmitPromptWarning(
|
||||
'Missing "%s" for include guard' % expected_line,
|
||||
['%s:%d' % (f.LocalPath(), line_number + 1)],
|
||||
'Expected: %r\nGot: %r' % (expected_line, line)))
|
||||
|
||||
if not seen_guard_end and line == '#endif // %s' % guard_name:
|
||||
seen_guard_end = True
|
||||
continue
|
||||
|
||||
if seen_guard_end:
|
||||
if line.strip() != '':
|
||||
errors.append(
|
||||
output_api.PresubmitPromptWarning(
|
||||
'Include guard %s not covering the whole file' %
|
||||
(guard_name), [f.LocalPath()]))
|
||||
break # Nothing else to check and enough to warn once.
|
||||
|
||||
if guard_name is None:
|
||||
errors.append(
|
||||
output_api.PresubmitPromptWarning(
|
||||
'Missing include guard in %s\n'
|
||||
'Recommended name: %s\n' %
|
||||
(f.LocalPath(), expected_guard)))
|
||||
|
||||
return errors
|
||||
|
||||
# In .gn and .gni files, check there are no unexpected dependencies on files
|
||||
# located outside of the partition_alloc repository.
|
||||
#
|
||||
# This is important, because partition_alloc has no CQ bots on its own, but only
|
||||
# through the chromium's CQ.
|
||||
#
|
||||
# Only //build_overrides/ is allowed, as it provides embedders, a way to
|
||||
# overrides the default build settings and forward the dependencies to
|
||||
# partition_alloc.
|
||||
def CheckNoExternalImportInGn(input_api, output_api):
|
||||
# Match and capture <path> from import("<path>").
|
||||
import_re = input_api.re.compile(r'^ *import\("([^"]+)"\)')
|
||||
|
||||
sources = lambda affected_file: input_api.FilterSourceFile(
|
||||
affected_file,
|
||||
files_to_skip=[],
|
||||
files_to_check=[_BUILD_FILE_PATTERN])
|
||||
|
||||
errors = []
|
||||
for f in input_api.AffectedSourceFiles(sources):
|
||||
for line_number, line in f.ChangedContents():
|
||||
match = import_re.search(line)
|
||||
if not match:
|
||||
continue
|
||||
import_path = match.group(1)
|
||||
if import_path.startswith('//build_overrides/'):
|
||||
continue
|
||||
if not import_path.startswith('//'):
|
||||
continue;
|
||||
errors.append(output_api.PresubmitError(
|
||||
'%s:%d\nPartitionAlloc disallow external import: %s' %
|
||||
(f.LocalPath(), line_number + 1, import_path)))
|
||||
return errors;
|
||||
|
||||
# partition_alloc still supports C++17, because Skia still uses C++17.
|
||||
def CheckCpp17CompatibleHeaders(input_api, output_api):
|
||||
CPP_20_HEADERS = [
|
||||
"barrier",
|
||||
"bit",
|
||||
"compare",
|
||||
"format",
|
||||
"numbers",
|
||||
"ranges",
|
||||
"semaphore",
|
||||
"source_location",
|
||||
"span",
|
||||
"stop_token",
|
||||
"syncstream",
|
||||
"version",
|
||||
]
|
||||
|
||||
CPP_23_HEADERS = [
|
||||
"expected",
|
||||
"flat_map",
|
||||
"flat_set",
|
||||
"generator",
|
||||
"mdspan",
|
||||
"print",
|
||||
"spanstream",
|
||||
"stacktrace",
|
||||
"stdatomic.h",
|
||||
"stdfloat",
|
||||
]
|
||||
|
||||
sources = lambda affected_file: input_api.FilterSourceFile(
|
||||
affected_file,
|
||||
files_to_skip=[],
|
||||
files_to_check=[_SOURCE_FILE_PATTERN])
|
||||
|
||||
errors = []
|
||||
for f in input_api.AffectedSourceFiles(sources):
|
||||
# for line_number, line in f.ChangedContents():
|
||||
for line_number, line in enumerate(f.NewContents()):
|
||||
for header in CPP_20_HEADERS:
|
||||
if not "#include <%s>" % header in line:
|
||||
continue
|
||||
errors.append(
|
||||
output_api.PresubmitError(
|
||||
'%s:%d\nPartitionAlloc disallows C++20 headers: <%s>'
|
||||
% (f.LocalPath(), line_number + 1, header)))
|
||||
for header in CPP_23_HEADERS:
|
||||
if not "#include <%s>" % header in line:
|
||||
continue
|
||||
errors.append(
|
||||
output_api.PresubmitError(
|
||||
'%s:%d\nPartitionAlloc disallows C++23 headers: <%s>'
|
||||
% (f.LocalPath(), line_number + 1, header)))
|
||||
return errors
|
||||
|
||||
def CheckCpp17CompatibleKeywords(input_api, output_api):
|
||||
CPP_20_KEYWORDS = [
|
||||
"concept",
|
||||
"consteval",
|
||||
"constinit",
|
||||
"co_await",
|
||||
"co_return",
|
||||
"co_yield",
|
||||
"requires",
|
||||
"std::hardware_",
|
||||
"std::is_constant_evaluated",
|
||||
"std::bit_cast",
|
||||
"std::midpoint",
|
||||
"std::to_array",
|
||||
]
|
||||
# Note: C++23 doesn't introduce new keywords.
|
||||
|
||||
sources = lambda affected_file: input_api.FilterSourceFile(
|
||||
affected_file,
|
||||
# compiler_specific.h may use these keywords in guarded macros.
|
||||
files_to_skip=[r'.*partition_alloc_base/compiler_specific\.h'],
|
||||
files_to_check=[_SOURCE_FILE_PATTERN])
|
||||
|
||||
errors = []
|
||||
for f in input_api.AffectedSourceFiles(sources):
|
||||
for line_number, line in f.ChangedContents():
|
||||
for keyword in CPP_20_KEYWORDS:
|
||||
if not keyword in line:
|
||||
continue
|
||||
# Skip if part of a comment
|
||||
if '//' in line and line.index('//') < line.index(keyword):
|
||||
continue
|
||||
|
||||
# Make sure there are word separators around the keyword:
|
||||
regex = r'\b%s\b' % keyword
|
||||
if not input_api.re.search(regex, line):
|
||||
continue
|
||||
|
||||
errors.append(
|
||||
output_api.PresubmitError(
|
||||
'%s:%d\nPartitionAlloc disallows C++20 keywords: %s'
|
||||
% (f.LocalPath(), line_number + 1, keyword)))
|
||||
return errors
|
83
src/base/allocator/partition_allocator/PRESUBMIT_test.py
Executable file
83
src/base/allocator/partition_allocator/PRESUBMIT_test.py
Executable file
@ -0,0 +1,83 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2024 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
import PRESUBMIT
|
||||
|
||||
# Append chrome source root to import `PRESUBMIT_test_mocks.py`.
|
||||
sys.path.append(
|
||||
os.path.dirname(
|
||||
os.path.dirname(
|
||||
os.path.dirname(os.path.dirname(os.path.abspath(__file__))))))
|
||||
from PRESUBMIT_test_mocks import MockAffectedFile, MockInputApi, MockOutputApi
|
||||
|
||||
_PARTITION_ALLOC_BASE_PATH = 'base/allocator/partition_allocator/src/'
|
||||
|
||||
|
||||
class PartitionAllocIncludeGuardsTest(unittest.TestCase):
|
||||
|
||||
def _CheckForIncludeGuardsWithMock(self, filename, lines):
|
||||
mock_input_api = MockInputApi()
|
||||
mock_input_api.files = [MockAffectedFile(filename, lines)]
|
||||
mock_output_api = MockOutputApi()
|
||||
return PRESUBMIT.CheckForIncludeGuards(mock_input_api, mock_output_api)
|
||||
|
||||
def testExpectedGuardNameDoesNotError(self):
|
||||
lines = [
|
||||
'#ifndef PARTITION_ALLOC_RANDOM_H_',
|
||||
'#define PARTITION_ALLOC_RANDOM_H_',
|
||||
'#endif // PARTITION_ALLOC_RANDOM_H_'
|
||||
]
|
||||
errors = self._CheckForIncludeGuardsWithMock(
|
||||
_PARTITION_ALLOC_BASE_PATH + 'partition_alloc/random.h', lines)
|
||||
self.assertEqual(0, len(errors))
|
||||
|
||||
def testMissingGuardErrors(self):
|
||||
lines = []
|
||||
errors = self._CheckForIncludeGuardsWithMock(
|
||||
_PARTITION_ALLOC_BASE_PATH + 'partition_alloc/random.h', lines)
|
||||
self.assertEqual(1, len(errors))
|
||||
self.assertIn('Missing include guard', errors[0].message)
|
||||
self.assertIn('Recommended name: PARTITION_ALLOC_RANDOM_H_',
|
||||
errors[0].message)
|
||||
|
||||
def testMissingGuardInNonHeaderFileDoesNotError(self):
|
||||
lines = []
|
||||
errors = self._CheckForIncludeGuardsWithMock(
|
||||
_PARTITION_ALLOC_BASE_PATH + 'partition_alloc/random.cc', lines)
|
||||
self.assertEqual(0, len(errors))
|
||||
|
||||
def testGuardNotCoveringWholeFileErrors(self):
|
||||
lines = [
|
||||
'#ifndef PARTITION_ALLOC_RANDOM_H_',
|
||||
'#define PARTITION_ALLOC_RANDOM_H_',
|
||||
'#endif // PARTITION_ALLOC_RANDOM_H_',
|
||||
'int oh_i_forgot_to_guard_this;'
|
||||
]
|
||||
errors = self._CheckForIncludeGuardsWithMock(
|
||||
_PARTITION_ALLOC_BASE_PATH + 'partition_alloc/random.h', lines)
|
||||
self.assertEqual(1, len(errors))
|
||||
self.assertIn('not covering the whole file', errors[0].message)
|
||||
|
||||
def testMissingDefineInGuardErrors(self):
|
||||
lines = [
|
||||
'#ifndef PARTITION_ALLOC_RANDOM_H_',
|
||||
'int somehow_put_here;'
|
||||
'#define PARTITION_ALLOC_RANDOM_H_',
|
||||
'#endif // PARTITION_ALLOC_RANDOM_H_',
|
||||
]
|
||||
errors = self._CheckForIncludeGuardsWithMock(
|
||||
_PARTITION_ALLOC_BASE_PATH + 'partition_alloc/random.h', lines)
|
||||
self.assertEqual(1, len(errors))
|
||||
self.assertIn(
|
||||
'Missing "#define PARTITION_ALLOC_RANDOM_H_" for include guard',
|
||||
errors[0].message)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
203
src/base/allocator/partition_allocator/PartitionAlloc.md
Normal file
203
src/base/allocator/partition_allocator/PartitionAlloc.md
Normal file
@ -0,0 +1,203 @@
|
||||
# PartitionAlloc Design
|
||||
|
||||
This document describes PartitionAlloc at a high level, with some architectural
|
||||
details. For implementation details, see the comments in
|
||||
`partition_alloc_constants.h`.
|
||||
|
||||
## Quick Links
|
||||
|
||||
* [Glossary](./glossary.md): Definitions of terms commonly used in
|
||||
PartitionAlloc. The present document largely avoids defining terms.
|
||||
|
||||
* [Build Config](./build_config.md): Pertinent GN args, buildflags, and
|
||||
macros.
|
||||
|
||||
* [Chrome-External Builds](./external_builds.md): Further considerations
|
||||
for standalone PartitionAlloc, plus an embedder's guide for some extra
|
||||
GN args.
|
||||
|
||||
## Overview
|
||||
|
||||
PartitionAlloc is a memory allocator optimized for space efficiency,
|
||||
allocation latency, and security.
|
||||
|
||||
### Performance
|
||||
|
||||
PartitionAlloc is designed to be extremely fast in its fast paths. The fast
|
||||
paths of allocation and deallocation require very few (reasonably predictable)
|
||||
branches. The number of operations in the fast paths is minimal, leading to the
|
||||
possibility of inlining.
|
||||
|
||||
![The central allocator manages slots and spans. It is locked on a
|
||||
per-partition basis. Separately, the thread cache consumes slots
|
||||
from the central allocator, allowing it to hand out memory
|
||||
quickly to individual threads.](./src/partition_alloc/dot/layers.png)
|
||||
|
||||
However, even the fast path isn't the fastest, because it requires taking
|
||||
a per-partition lock. Although we optimized the lock, there was still room for
|
||||
improvement; to this end, we introduced the thread cache.
|
||||
The thread cache has been tailored to satisfy a vast majority of requests by
|
||||
allocating from and releasing memory to the main allocator in batches,
|
||||
amortizing lock acquisition and further improving locality while not trapping
|
||||
excess memory.
|
||||
|
||||
### Security
|
||||
|
||||
Security is one of the important goals of PartitionAlloc.
|
||||
|
||||
PartitionAlloc guarantees that different partitions exist in different regions
|
||||
of the process's address space. When the caller has freed all objects contained
|
||||
in a page in a partition, PartitionAlloc returns the physical memory to the
|
||||
operating system, but continues to reserve the region of address space.
|
||||
PartitionAlloc will only reuse an address space region for the same partition.
|
||||
|
||||
Similarly, one page can contain only objects from the same bucket.
|
||||
When freed, PartitionAlloc returns the physical memory, but continues to reserve
|
||||
the region for this very bucket.
|
||||
|
||||
The above techniques help avoid type confusion attacks. Note, however, these
|
||||
apply only to normal buckets and not to direct map, as it'd waste too much
|
||||
address space.
|
||||
|
||||
PartitionAlloc also guarantees that:
|
||||
|
||||
* Linear overflows/underflows cannot corrupt into, out of, or between
|
||||
partitions. There are guard pages at the beginning and the end of each memory
|
||||
region owned by a partition.
|
||||
|
||||
* Linear overflows/underflows cannot corrupt the allocation metadata.
|
||||
PartitionAlloc records metadata in a dedicated, out-of-line region (not
|
||||
adjacent to objects), surrounded by guard pages. (Freelist pointers are an
|
||||
exception.)
|
||||
|
||||
* Partial pointer overwrite of freelist pointer should fault.
|
||||
|
||||
* Direct map allocations have guard pages at the beginning and the end.
|
||||
|
||||
### Alignment
|
||||
|
||||
PartitionAlloc guarantees that returned pointers are aligned on
|
||||
`partition_alloc::internal::kAlignment` boundary (typically 16B on
|
||||
64-bit systems, and 8B on 32-bit).
|
||||
|
||||
PartitionAlloc also supports higher levels of alignment, that can be requested
|
||||
via `PartitionAlloc::AlignedAlloc()` or platform-specific APIs (such as
|
||||
`posix_memalign()`). The requested
|
||||
alignment has to be a power of two. PartitionAlloc reserves the right to round
|
||||
up the requested size to the nearest power of two, greater than or equal to the
|
||||
requested alignment. This may be wasteful, but allows taking advantage of
|
||||
natural PartitionAlloc alignment guarantees. Allocations with an alignment
|
||||
requirement greater than `partition_alloc::internal::kAlignment` are expected
|
||||
to be very rare.
|
||||
|
||||
## Architecture
|
||||
|
||||
### Layout in Memory
|
||||
|
||||
PartitionAlloc handles normal buckets by reserving (not committing) 2MiB super
|
||||
pages. Each super page is split into partition pages.
|
||||
The first and the last partition page are permanently inaccessible and serve
|
||||
as guard pages, with the exception of one system page in the middle of the first
|
||||
partition page that holds metadata (32B struct per partition page).
|
||||
|
||||
![A super page is shown full of slot spans. The slot spans are logically
|
||||
strung together to form buckets. At both extremes of the super page
|
||||
are guard pages. PartitionAlloc metadata is hidden inside the
|
||||
guard pages at the "front."](./src/partition_alloc/dot/super-page.png)
|
||||
|
||||
* The slot span numbers provide a visual hint of their size (in partition
|
||||
pages).
|
||||
* Colors provide a visual hint of the bucket to which the slot span belongs.
|
||||
* Although only five colors are shown, in reality, a super page holds
|
||||
tens of slot spans, some of which belong to the same bucket.
|
||||
* The system page that holds metadata tracks each partition page with one 32B
|
||||
[`PartitionPageMetadata` struct][PartitionPage], which is either
|
||||
* a [`SlotSpanMetadata`][SlotSpanMetadata] ("v"s in the diagram) or
|
||||
* a [`SubsequentPageMetadata`][SubsequentPageMetadata] ("+"s in the
|
||||
diagram).
|
||||
* Gray fill denotes guard pages (one partition page each at the head and tail
|
||||
of each super page).
|
||||
* In some configurations, PartitionAlloc stores more metadata than can
|
||||
fit in the one system page at the front. These are the bitmaps for
|
||||
`MTECheckedPtr<T>`, and they are relegated to the head of
|
||||
what would otherwise be usable space for slot spans. One, both, or
|
||||
none of these bitmaps may be present, depending on build
|
||||
configuration, runtime configuration, and type of allocation.
|
||||
See [`SuperPagePayloadBegin()`][payload-start] for details.
|
||||
|
||||
As allocation requests arrive, there is eventually a need to allocate a new slot
|
||||
span.
|
||||
Address space for such a slot span is carved out from the last super page. If
|
||||
not enough space, a new super page is allocated. Due to varying sizes of slot
|
||||
span, this may lead to leaving space unused (we never go back to fill previous
|
||||
super pages), which is fine because this memory is merely reserved, which is far
|
||||
less precious than committed memory. Note also that address space reserved for a
|
||||
slot span is never released, even if the slot span isn't used for a long time.
|
||||
|
||||
All slots in a newly allocated slot span are *free*, i.e. available for
|
||||
allocation.
|
||||
|
||||
### Freelist Pointers
|
||||
|
||||
All free slots within a slot span are chained into a singly-linked free-list,
|
||||
by writing the *next* pointer at the beginning of each slot, and the head of the
|
||||
list is written in the metadata struct.
|
||||
|
||||
However, writing a pointer in each free slot of a newly allocated span would
|
||||
require committing and faulting in physical pages upfront, which would be
|
||||
unacceptable. Therefore, PartitionAlloc has a concept of *provisioning slots*.
|
||||
Only provisioned slots are chained into the freelist.
|
||||
Once provisioned slots in a span are depleted, then another page worth of slots
|
||||
is provisioned (note, a slot that crosses a page boundary only gets
|
||||
provisioned with slots of the next page). See
|
||||
`PartitionBucket::ProvisionMoreSlotsAndAllocOne()` for more details.
|
||||
|
||||
Freelist pointers are stored at the beginning of each free slot. As such, they
|
||||
are the only metadata that is inline, i.e. stored among the
|
||||
objects. This makes them prone to overruns. On little-endian systems, the
|
||||
pointers are encoded by reversing byte order, so that partial overruns will very
|
||||
likely result in destroying the pointer, as opposed to forming a valid pointer
|
||||
to a nearby location.
|
||||
|
||||
Furthermore, a shadow of a freelist pointer is stored next to it, encoded in a
|
||||
different manner. This helps PartitionAlloc detect corruptions.
|
||||
|
||||
### Slot Span States
|
||||
|
||||
A slot span can be in any of 4 states:
|
||||
* *Full*. A full span has no free slots.
|
||||
* *Empty*. An empty span has no allocated slots, only free slots.
|
||||
* *Active*. An active span is anything in between the above two.
|
||||
* *Decommitted*. A decommitted span is a special case of an empty span, where
|
||||
all pages are decommitted from memory.
|
||||
|
||||
PartitionAlloc prioritizes getting an available slot from an active span, over
|
||||
an empty one, in hope that the latter can be soon transitioned into a
|
||||
decommitted state, thus releasing memory. There is no mechanism, however, to
|
||||
prioritize selection of a slot span based on the number of already allocated
|
||||
slots.
|
||||
|
||||
An empty span becomes decommitted either when there are too many empty spans
|
||||
(FIFO), or when `PartitionRoot::PurgeMemory()` gets invoked periodically (or in
|
||||
low memory pressure conditions). An allocation can be satisfied from
|
||||
a decommitted span if there are no active or empty spans available. The slot
|
||||
provisioning mechanism kicks back in, committing the pages gradually as needed,
|
||||
and the span becomes active. (There is currently no other way
|
||||
to unprovision slots than decommitting the entire span).
|
||||
|
||||
As mentioned above, a bucket is a collection of slot spans containing slots of
|
||||
the same size. In fact, each bucket has 3 linked-lists, chaining active, empty
|
||||
and decommitted spans (see `PartitionBucket::*_slot_spans_head`).
|
||||
There is no need for a full span list. The lists are updated lazily. An empty,
|
||||
decommitted or full span may stay on the active list for some time, until
|
||||
`PartitionBucket::SetNewActiveSlotSpan()` encounters it.
|
||||
A decommitted span may stay on the empty list for some time,
|
||||
until `PartitionBucket::SlowPathAlloc()` encounters it. However,
|
||||
the inaccuracy can't happen in the other direction, i.e. an active span can only
|
||||
be on the active list, and an empty span can only be on the active or empty
|
||||
list.
|
||||
|
||||
[PartitionPage]: https://source.chromium.org/search?q=-file:third_party/(angle|dawn)%20class:PartitionPageMetadata%20file:partition_page.h&ss=chromium
|
||||
[SlotSpanMetadata]: https://source.chromium.org/search?q=-file:third_party/(angle|dawn)%20class:SlotSpanMetadata%20file:partition_page.h&ss=chromium
|
||||
[SubsequentPageMetadata]: https://source.chromium.org/search?q=-file:third_party/(angle|dawn)%20class:SubsequentPageMetadata%20file:partition_page.h&ss=chromium
|
||||
[payload-start]: https://source.chromium.org/search?q=-file:third_party%2F(angle%7Cdawn)%20content:SuperPagePayloadBegin%20file:partition_page.h&ss=chromium
|
103
src/base/allocator/partition_allocator/build_config.md
Normal file
103
src/base/allocator/partition_allocator/build_config.md
Normal file
@ -0,0 +1,103 @@
|
||||
# Build Config
|
||||
|
||||
PartitionAlloc's behavior and operation can be influenced by many
|
||||
different settings. Broadly, these are controlled at the top-level by
|
||||
[GN args][gn-declare-args], which propagate via
|
||||
[buildflags][buildflag-header] and `#defined` clauses.
|
||||
|
||||
*** promo
|
||||
Most of what you'll want to know exists between
|
||||
|
||||
* [`//base/allocator/partition_allocator/BUILD.gn`][pa-build-gn],
|
||||
* Everything else ending in `.gn` or `.gni` in
|
||||
`//base/allocator/partition_allocator/src/partition_alloc/`,
|
||||
* [`allocator.gni`][allocator-gni],
|
||||
* [`//base/allocator/BUILD.gn`][base-allocator-build-gn], and
|
||||
* [`//base/BUILD.gn`][base-build-gn].
|
||||
***
|
||||
|
||||
*** aside
|
||||
While Chromium promotes the `#if BUILDFLAG(FOO)` construct, some of
|
||||
PartitionAlloc's behavior is governed by compound conditions `#defined`
|
||||
in [`partition_alloc_config.h`][partition-alloc-config].
|
||||
***
|
||||
|
||||
*** promo
|
||||
PartitionAlloc targets C++17. As the team develops standalone
|
||||
PartitionAlloc, this may diverge from what the rest of Chrome browser
|
||||
does, as we will be obligated to support external clients that
|
||||
may not yet support newer C++ standards.
|
||||
|
||||
See [Chrome-External Builds](./external_builds.md) for more.
|
||||
***
|
||||
|
||||
## Select GN Args
|
||||
|
||||
### `use_partition_alloc`
|
||||
|
||||
Defines whether PartitionAlloc is at all available.
|
||||
|
||||
Setting this `false` will entirely remove PartitionAlloc from the
|
||||
Chromium build. _You probably do not want this._
|
||||
|
||||
*** note
|
||||
Back when PartitionAlloc was the dedicated allocator in Blink, disabling
|
||||
it was logically identical to wholly disabling it in Chromium. This GN
|
||||
arg organically grew in scope with the advent of
|
||||
PartitionAlloc-Everywhere and must be `true` as a prerequisite for
|
||||
enabling PA-E.
|
||||
***
|
||||
|
||||
### `use_partition_alloc_as_malloc`
|
||||
|
||||
Does nothing special when value is `false`. Enables
|
||||
[PartitionAlloc-Everywhere (PA-E)][pae-public-doc] when value is `true`.
|
||||
|
||||
*** note
|
||||
* While "everywhere" (in "PartitionAlloc-Everywhere") tautologically
|
||||
includes Blink where PartitionAlloc originated, setting
|
||||
`use_partition_alloc_as_malloc = false` does not disable PA usage in Blink,
|
||||
which invokes PA explicitly (not via malloc).
|
||||
* `use_partition_alloc_as_malloc = true` must not be confused
|
||||
with `use_partition_alloc` (see above).
|
||||
***
|
||||
|
||||
## Notable Macros
|
||||
|
||||
There is an ongoing effort
|
||||
[to break out PartitionAlloc into a standalone library][pa-ee-crbug].
|
||||
Once PartitionAlloc stands alone from the larger Chrome build apparatus,
|
||||
the code loses access to some macros. This is not an immediate concern,
|
||||
but the team needs to decide either
|
||||
|
||||
* how to propagate these macros in place, or
|
||||
* how to remove them, replacing them with PA-specific build config.
|
||||
|
||||
A non-exhaustive list of work items:
|
||||
|
||||
* `OFFICIAL_BUILD` - influences crash macros and
|
||||
`PA_THREAD_CACHE_ALLOC_STATS`. These are conceptually distinct enough
|
||||
to be worth separating into dedicated build controls.
|
||||
* `IS_PARTITION_ALLOC_IMPL` - must be defined when PartitionAlloc is
|
||||
built as a shared library. This is required to export symbols.
|
||||
* `COMPONENT_BUILD` - component builds (as per
|
||||
`//docs/component_build.md`) must `#define COMPONENT_BUILD`.
|
||||
Additionally, to build Win32, invoker must `#define WIN32`.
|
||||
* `MEMORY_TOOL_REPLACES_ALLOCATOR`
|
||||
* `*_SANITIZER` - mainly influences unit tests.
|
||||
|
||||
*** note
|
||||
Over time, the above list should evolve into a list of macros / GN args
|
||||
that influence PartitionAlloc's behavior.
|
||||
***
|
||||
|
||||
[gn-declare-args]: https://gn.googlesource.com/gn/+/refs/heads/main/docs/reference.md#func_declare_args
|
||||
[buildflag-header]: https://source.chromium.org/chromium/chromium/src/+/main:build/buildflag_header.gni
|
||||
[pa-build-gn]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/BUILD.gn
|
||||
[allocator-gni]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/allocator.gni
|
||||
[base-allocator-build-gn]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/BUILD.gn
|
||||
[base-build-gn]: https://source.chromium.org/chromium/chromium/src/+/main:base/BUILD.gn
|
||||
[partition-alloc-config]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/src/partition_alloc/partition_alloc_config.h
|
||||
[pae-public-doc]: https://docs.google.com/document/d/1R1H9z5IVUAnXJgDjnts3nTJVcRbufWWT9ByXLgecSUM/preview
|
||||
[miracleptr-doc]: https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg/preview
|
||||
[pa-ee-crbug]: https://crbug.com/1151236
|
@ -0,0 +1,26 @@
|
||||
# Copyright 2022 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# By definition, PartitionAlloc standalone builds outside of chromium.
|
||||
build_with_chromium = false
|
||||
|
||||
# This is the default build configuration when building PartitionAlloc
|
||||
# as a standalone library.
|
||||
# If embedders want to use PartitionAlloc, they need to create their own
|
||||
# //build_overrides/partition_alloc.gni and define their own PartitionAlloc
|
||||
# configuration.
|
||||
use_partition_alloc_as_malloc_default = false
|
||||
use_allocator_shim_default = false
|
||||
enable_backup_ref_ptr_support_default = false
|
||||
enable_backup_ref_ptr_slow_checks_default = false
|
||||
enable_dangling_raw_ptr_checks_default = false
|
||||
|
||||
# This is the default build configuration for pointers/raw_ptr*.
|
||||
raw_ptr_zero_on_construct_default = true
|
||||
raw_ptr_zero_on_move_default = true
|
||||
raw_ptr_zero_on_destruct_default = false
|
||||
|
||||
# PartitionAlloc needs to support cpp17 for standalone builds, as long as Skia
|
||||
# supports it.
|
||||
assert_cpp20_default = false
|
76
src/base/allocator/partition_allocator/external_builds.md
Normal file
76
src/base/allocator/partition_allocator/external_builds.md
Normal file
@ -0,0 +1,76 @@
|
||||
# Chrome-External Builds
|
||||
|
||||
Work is ongoing to make PartitionAlloc a standalone library. The
|
||||
standalone repository for PartitionAlloc is hosted
|
||||
[here][standalone-PA-repo].
|
||||
|
||||
## GN Args
|
||||
|
||||
External clients should examine the args described in
|
||||
`build_overrides/partition_alloc.gni` and add them in their own source
|
||||
tree. PartitionAlloc's build will expect them at
|
||||
`//build_overrides/partition_alloc.gni`.
|
||||
|
||||
In addition, something must provide `build_with_chromium = false` to
|
||||
the PA build system.
|
||||
|
||||
## `use_partition_alloc`
|
||||
|
||||
The `use_partition_alloc` GN arg, described in
|
||||
[`build_config.md`](./build_config.md), provides a GN-level seam that
|
||||
embedders
|
||||
|
||||
1. can set in their GN args and
|
||||
2. should observe in their GN recipes to conditionally pull in
|
||||
PartitionAlloc.
|
||||
|
||||
I.E. if you have any reason to disable PartitionAlloc, you should do so
|
||||
with this GN arg. Avoid pulling in PartitionAlloc headers when the
|
||||
corresponding buildflag is false.
|
||||
|
||||
Setting `use_partition_alloc` false will also implicitly disable other
|
||||
features, e.g. nixing the compilation of BackupRefPtr as the
|
||||
implementation of `raw_ptr<T>`.
|
||||
|
||||
## Periodic Memory Reduction Routines
|
||||
|
||||
PartitionAlloc provides APIs to
|
||||
|
||||
* reclaim memory (see `memory_reclaimer.h`) and
|
||||
|
||||
* purge thread caches (see `thread_cache.h`).
|
||||
|
||||
Both of these must be called by the embedder external to PartitionAlloc.
|
||||
PA provides neither an event loop nor timers of its own, delegating this
|
||||
to its clients.
|
||||
|
||||
## Build Considerations
|
||||
|
||||
External clients create constraints on PartitionAlloc's implementation.
|
||||
|
||||
### C++17
|
||||
|
||||
PartitionAlloc targets C++17. This is aligned with our first external
|
||||
client, PDFium, and may be further constrained by other clients. These
|
||||
impositions prevent us from moving in lockstep with Chrome's target
|
||||
C++ version.
|
||||
|
||||
We do not even have guarantees of backported future features, e.g.
|
||||
C++20's designated initializers. Therefore, these cannot ship with
|
||||
PartitionAlloc.
|
||||
|
||||
### MSVC Support
|
||||
|
||||
PDFium supports MSVC. PartitionAlloc will have to match it.
|
||||
|
||||
### MSVC Constraint: No Inline Assembly
|
||||
|
||||
MSVC's syntax for `asm` blocks differs from the one widely adopted in
|
||||
parts of Chrome. But more generally,
|
||||
[MSVC doesn't support inline assembly on ARM and x64 processors][msvc-inline-assembly].
|
||||
Assembly blocks should be gated behind compiler-specific flags and
|
||||
replaced with intrinsics in the presence of `COMPILER_MSVC` (absent
|
||||
`__clang__`).
|
||||
|
||||
[standalone-PA-repo]: https://chromium.googlesource.com/chromium/src/base/allocator/partition_allocator.git
|
||||
[msvc-inline-assembly]: https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=msvc-170
|
245
src/base/allocator/partition_allocator/glossary.md
Normal file
245
src/base/allocator/partition_allocator/glossary.md
Normal file
@ -0,0 +1,245 @@
|
||||
# Glossary
|
||||
|
||||
This page describes some core terminology used in PartitionAlloc.
|
||||
A weak attempt is made to present terms "in conceptual order" s.t.
|
||||
each term depends mainly upon previously defined ones.
|
||||
|
||||
### Partition
|
||||
|
||||
A heap that is separated and protected both from other
|
||||
partitions and from non-PartitionAlloc memory. Each partition holds
|
||||
multiple buckets.
|
||||
|
||||
*** promo
|
||||
**NOTE**: In code (and comments), "partition," "root," and even
|
||||
"allocator" are all conceptually the same thing.
|
||||
***
|
||||
|
||||
## Pages
|
||||
|
||||
### System Page
|
||||
|
||||
A memory page defined by the CPU/OS. Commonly
|
||||
referred to as a "virtual page" in other contexts. This is typically
|
||||
4KiB, but it can be larger. PartitionAlloc supports up to 64KiB,
|
||||
though this constant isn't always known at compile time (depending
|
||||
on the OS).
|
||||
|
||||
### Partition Page
|
||||
|
||||
The most common granularity used by
|
||||
PartitionAlloc. Consists of exactly 4 system pages.
|
||||
|
||||
### Super Page
|
||||
|
||||
A 2MiB region, aligned on a 2MiB boundary. Not to
|
||||
be confused with OS-level terms like "large page" or "huge page",
|
||||
which are also commonly 2MiB. These have to be fully committed /
|
||||
uncommitted in memory, whereas super pages can be partially committed
|
||||
with system page granularity.
|
||||
|
||||
### Extent
|
||||
|
||||
An extent is a run of consecutive super pages (belonging
|
||||
to a single partition). Extents are to super pages what slot spans are
|
||||
to slots (see below).
|
||||
|
||||
## Slots and Spans
|
||||
|
||||
### Slot
|
||||
|
||||
An indivisible allocation unit. Slot sizes are tied to
|
||||
buckets. For example, each allocation that falls into the bucket
|
||||
(224, 256] would be satisfied with a slot of size 256. This
|
||||
applies only to normal buckets, not to direct map.
|
||||
|
||||
### Slot Span
|
||||
|
||||
A run of same-sized slots that are contiguous in
|
||||
memory. Slot span size is a multiple of partition page size, but it
|
||||
isn't always a multiple of slot size, although we try hard for this
|
||||
to be the case.
|
||||
|
||||
### Small Bucket
|
||||
|
||||
Allocations up to 4 partition pages. In these
|
||||
cases, slot spans are always between 1 and 4 partition pages in
|
||||
size. For each slot span size, the slot span is chosen to minimize
|
||||
number of pages used while keeping the rounding waste under a
|
||||
reasonable limit.
|
||||
|
||||
* For example, for a slot size 96, 64B waste is deemed acceptable
|
||||
when using a single partition page, but for slot size
|
||||
384, the potential waste of 256B wouldn't be, so 3 partition pages
|
||||
are used to achieve 0B waste.
|
||||
* PartitionAlloc may avoid waste by lowering the number of committed
|
||||
system pages compared to the number of reserved pages. For
|
||||
example, for the slot size of 896B we'd use a slot span of 2
|
||||
partition pages of 16KiB, i.e. 8 system pages of 4KiB, but commit
|
||||
only up to 7, thus resulting in perfect packing.
|
||||
|
||||
### Single-Slot Span
|
||||
|
||||
Allocations above 4 partition pages (but
|
||||
≤`kMaxBucketed`). This is because each slot span is guaranteed to
|
||||
hold exactly one slot.
|
||||
|
||||
*** promo
|
||||
Fun fact: there are sizes ≤4 partition pages that result in a
|
||||
slot span having exactly 1 slot, but nonetheless they're still
|
||||
classified as small buckets. The reason is that single-slot spans
|
||||
are often handled by a different code path, and that distinction
|
||||
is made purely based on slot size, for simplicity and efficiency.
|
||||
***
|
||||
|
||||
## Buckets
|
||||
|
||||
### Bucket
|
||||
|
||||
A collection of regions in a partition that contains
|
||||
similar-sized objects. For example, one bucket may hold objects of
|
||||
size (224, 256], another (256, 320], etc. Bucket size
|
||||
brackets are geometrically spaced,
|
||||
[going up to `kMaxBucketed`][max-bucket-comment].
|
||||
|
||||
*** promo
|
||||
Plainly put, all slots (ergo the resulting spans) of a given size
|
||||
class are logically chained into one bucket.
|
||||
***
|
||||
|
||||
![A bucket, spanning multiple super pages, collects spans whose
|
||||
slots are of a particular size class.](./src/partition_alloc/dot/bucket.png)
|
||||
|
||||
### Normal Bucket
|
||||
|
||||
Any bucket whose size ceiling does not exceed
|
||||
`kMaxBucketed`. This is the common case in PartitionAlloc, and
|
||||
the "normal" modifier is often dropped in casual reference.
|
||||
|
||||
### Direct Map (Bucket)
|
||||
|
||||
Any allocation whose size exceeds `kMaxBucketed`.
|
||||
|
||||
## Other Terms
|
||||
|
||||
### Object
|
||||
|
||||
A chunk of memory returned to the allocating invoker
|
||||
of the size requested. It doesn't have to span the entire slot,
|
||||
nor does it have to begin at the slot start. This term is commonly
|
||||
used as a parameter name in PartitionAlloc code, as opposed to
|
||||
`slot_start`.
|
||||
|
||||
### Thread Cache
|
||||
|
||||
A [thread-local structure][pa-thread-cache] that
|
||||
holds some not-too-large memory chunks, ready to be allocated. This
|
||||
speeds up in-thread allocation by reducing a lock hold to a
|
||||
thread-local storage lookup, improving cache locality.
|
||||
|
||||
### Pool
|
||||
|
||||
A large (and contiguous on 64-bit) virtual address region, housing
|
||||
super pages, etc. from which PartitionAlloc services allocations. The
|
||||
primary purpose of the pools is to provide a fast answer to the
|
||||
question, "Did PartitionAlloc allocate the memory for this pointer
|
||||
from this pool?" with a single bit-masking operation.
|
||||
|
||||
* The regular pool is a general purpose pool that contains allocations that
|
||||
aren't protected by BackupRefPtr.
|
||||
* The BRP pool contains all allocations protected by BackupRefPtr.
|
||||
* [64-bit only] The configurable pool is named generically, because its
|
||||
primary user (the [V8 Sandbox][v8-sandbox]) can configure it at runtime,
|
||||
providing a pre-existing mapping. Its allocations aren't protected by
|
||||
BackupRefPtr.
|
||||
* [64-bit only] The thread isolated pool is returning memory protected with
|
||||
per-thread permissions. At the moment, this is implemented for pkeys on x64.
|
||||
It's primary user is [V8 CFI][v8-cfi].
|
||||
|
||||
![The singular AddressPoolManager mediates access to the separate pools
|
||||
for each PartitionRoot.](./src/partition_alloc/dot/address-space.png)
|
||||
|
||||
*** promo
|
||||
Pools are downgraded into a logical concept in 32-bit environments,
|
||||
tracking a non-contiguous set of allocations using a bitmap.
|
||||
***
|
||||
|
||||
### Payload
|
||||
|
||||
The usable area of a super page in which slot spans
|
||||
reside. While generally this means "everything between the first
|
||||
and last guard partition pages in a super page," the presence of
|
||||
other metadata can bump the starting offset
|
||||
forward. While this term is entrenched in the code, the team
|
||||
considers it suboptimal and is actively looking for a replacement.
|
||||
|
||||
### Allocation Fast Path
|
||||
|
||||
A path taken during an allocation that is
|
||||
considered fast. Usually means that an allocation request can be
|
||||
immediately satisfied by grabbing a slot from the freelist of the
|
||||
first active slot span in the bucket.
|
||||
|
||||
### Allocation Slow Path
|
||||
|
||||
Anything which is not fast (see above).
|
||||
|
||||
Can involve
|
||||
|
||||
* finding another active slot span in the list,
|
||||
* provisioning more slots in a slot span,
|
||||
* bringing back a free (or decommitted) slot span,
|
||||
* allocating a new slot span, or even
|
||||
* allocating a new super page.
|
||||
|
||||
*** aside
|
||||
By "slow" we may mean something as simple as extra logic (`if`
|
||||
statements etc.), or something as costly as system calls.
|
||||
***
|
||||
|
||||
## Legacy Terms
|
||||
|
||||
These terms are (mostly) deprecated and should not be used. They are
|
||||
surfaced here to provide a ready reference for readers coming from
|
||||
older design documents or documentation.
|
||||
|
||||
### GigaCage
|
||||
|
||||
A memory region several gigabytes wide, reserved by
|
||||
PartitionAlloc upon initialization, from which nearly all allocations
|
||||
are taken. _Pools_ have overtaken GigaCage in conceptual importance,
|
||||
and so and so there is less need today to refer to "GigaCage" or the
|
||||
"cage." This is especially true given the V8 Sandbox and the
|
||||
configurable pool (see above).
|
||||
|
||||
## PartitionAlloc-Everywhere
|
||||
|
||||
Originally, PartitionAlloc was used only in Blink (Chromium's rendering engine).
|
||||
It was invoked explicitly, by calling PartitionAlloc APIs directly.
|
||||
|
||||
PartitionAlloc-Everywhere is the name of the project that brought PartitionAlloc
|
||||
to the entire-ish codebase (exclusions apply). This was done by intercepting
|
||||
`malloc()`, `free()`, `realloc()`, aforementioned `posix_memalign()`, etc. and
|
||||
routing them into PartitionAlloc. The shim located in
|
||||
`base/allocator/partition_allocator/src/partition_alloc/shim/allocator_shim_default_dispatch_to_partition_alloc.h` is
|
||||
responsible for intercepting. For more details, see
|
||||
[base/allocator/README.md](../../../base/allocator/README.md).
|
||||
|
||||
A special, catch-it-all *Malloc* partition has been created for the intercepted
|
||||
`malloc()` et al. This is to isolate from already existing Blink partitions.
|
||||
The only exception from that is Blink's *FastMalloc* partition, which was also
|
||||
catch-it-all in nature, so it's perfectly fine to merge these together, to
|
||||
minimize fragmentation.
|
||||
|
||||
As of 2022, PartitionAlloc-Everywhere is supported on
|
||||
|
||||
* Windows 32- and 64-bit
|
||||
* Linux
|
||||
* Android 32- and 64-bit
|
||||
* macOS
|
||||
* Fuchsia
|
||||
|
||||
[max-bucket-comment]: https://source.chromium.org/search?q=-file:third_party%2F(angle%7Cdawn)%20file:partition_alloc_constants.h%20symbol:kMaxBucketed$&ss=chromium
|
||||
[pa-thread-cache]: https://source.chromium.org/search?q=-file:third_party%2F(angle%7Cdawn)%20file:partition_alloc/thread_cache.h&ss=chromium
|
||||
[v8-sandbox]: https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/preview#
|
||||
[v8-cfi]: https://docs.google.com/document/d/1O2jwK4dxI3nRcOJuPYkonhTkNQfbmwdvxQMyXgeaRHo/preview#
|
107
src/base/allocator/partition_allocator/gn/BUILDCONFIG.gn
Normal file
107
src/base/allocator/partition_allocator/gn/BUILDCONFIG.gn
Normal file
@ -0,0 +1,107 @@
|
||||
# Copyright 2024 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# This is the BUILDCONFIG for building partition_alloc as a standalone project.
|
||||
#
|
||||
# The config is based on:
|
||||
# - skia: //gn/BUILDCONFIG.gn
|
||||
# - chromium: //build/config/BUILDCONFIG.gn
|
||||
|
||||
build_with_chromium = false
|
||||
is_asan = false
|
||||
|
||||
# It's best to keep the names and defaults of is_foo flags consistent with:
|
||||
# - Chrome
|
||||
# - Skia.
|
||||
|
||||
declare_args() {
|
||||
is_official_build = false
|
||||
is_component_build = false
|
||||
dcheck_always_on = true
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
is_debug = !is_official_build
|
||||
}
|
||||
|
||||
# Platform detection defaults:
|
||||
if (target_os == "") {
|
||||
target_os = host_os
|
||||
}
|
||||
if (current_os == "") {
|
||||
current_os = target_os
|
||||
}
|
||||
if (target_cpu == "") {
|
||||
target_cpu = host_cpu
|
||||
}
|
||||
if (target_cpu == "x86_64") {
|
||||
target_cpu = "x64"
|
||||
}
|
||||
if (current_cpu == "") {
|
||||
current_cpu = target_cpu
|
||||
}
|
||||
|
||||
is_android = current_os == "android"
|
||||
is_chromeos = false
|
||||
is_fuchsia = current_os == "fuchsia"
|
||||
is_ios = current_os == "ios"
|
||||
is_linux = current_os == "linux"
|
||||
is_mac = current_os == "mac"
|
||||
is_nacl = false
|
||||
is_win = current_os == "win" || current_os == "winuwp"
|
||||
is_cast_android = false
|
||||
is_castos = false
|
||||
is_chromeos_ash = false
|
||||
is_cronet_build = false
|
||||
enable_expensive_dchecks = false
|
||||
dcheck_is_configurable = false
|
||||
can_unwind_with_frame_pointers = false
|
||||
is_posix = !is_win && !is_fuchsia
|
||||
is_apple = is_mac || is_ios
|
||||
|
||||
# TODO(crbug.com/41481467): Consider expanding the standalone configuration for
|
||||
# additional OSes.
|
||||
assert(is_linux, "PartitionAlloc standalone only support Linux for now")
|
||||
is_clang = true
|
||||
|
||||
# A component is either:
|
||||
# - A static library (is_component_build=false)
|
||||
# - A shared library (is_component_build=true)
|
||||
template("component") {
|
||||
if (is_component_build) {
|
||||
_component_mode = "shared_library"
|
||||
} else {
|
||||
_component_mode = "static_library"
|
||||
}
|
||||
|
||||
target(_component_mode, target_name) {
|
||||
forward_variables_from(invoker, "*")
|
||||
}
|
||||
}
|
||||
|
||||
# Default configs
|
||||
default_configs = [
|
||||
"//gn/partition_alloc:default",
|
||||
"//gn/partition_alloc:no_exceptions",
|
||||
"//gn/partition_alloc:no_rtti",
|
||||
]
|
||||
|
||||
if (!is_debug) {
|
||||
default_configs += [
|
||||
"//gn/partition_alloc:optimize",
|
||||
"//gn/partition_alloc:NDEBUG",
|
||||
]
|
||||
}
|
||||
|
||||
# GCC-like toolchains, including Clang.
|
||||
set_default_toolchain("//gn/toolchain:clang")
|
||||
default_toolchain_name = "clang"
|
||||
|
||||
set_defaults("source_set") {
|
||||
configs = default_configs
|
||||
}
|
||||
|
||||
set_defaults("component") {
|
||||
configs = default_configs
|
||||
}
|
2
src/base/allocator/partition_allocator/gn/OWNERS
Normal file
2
src/base/allocator/partition_allocator/gn/OWNERS
Normal file
@ -0,0 +1,2 @@
|
||||
arthursonzogni@chromium.org
|
||||
tasak@google.com
|
33
src/base/allocator/partition_allocator/gn/README.md
Normal file
33
src/base/allocator/partition_allocator/gn/README.md
Normal file
@ -0,0 +1,33 @@
|
||||
# PartitionAlloc standalone GN config
|
||||
|
||||
This directory contains a GN configuration to build partition_alloc as a
|
||||
standalone library.
|
||||
|
||||
This is not an official product that is supported by the Chromium project. There
|
||||
are no guarantees that this will work in the future, or that it will work in
|
||||
all configurations. There are no commit queue or trybots using it.
|
||||
|
||||
This is useful for verifying that partition_alloc can be built as a library, and
|
||||
discover the formal dependencies that partition_alloc has on the rest of the
|
||||
Chromium project. This is not intended to be used in production code, and is not
|
||||
|
||||
This is also provided as a convenience for chromium developers working on
|
||||
partition_alloc who want to iterate on partition_alloc without having to build
|
||||
the entire Chromium project.
|
||||
|
||||
/!\ This is under construction. /!\
|
||||
|
||||
## Building
|
||||
|
||||
```sh
|
||||
gn gen out/Default
|
||||
autoninja -C out/Default
|
||||
```
|
||||
|
||||
## Supported configurations:
|
||||
|
||||
### Platforms
|
||||
- Linux
|
||||
|
||||
### Toolchains
|
||||
- Clang
|
25
src/base/allocator/partition_allocator/gn/cp.py
Executable file
25
src/base/allocator/partition_allocator/gn/cp.py
Executable file
@ -0,0 +1,25 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2024 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# Copied from Skia's //gn/cp.py
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
|
||||
src, dst = sys.argv[1:]
|
||||
|
||||
if os.path.exists(dst):
|
||||
if os.path.isdir(dst):
|
||||
shutil.rmtree(dst)
|
||||
else:
|
||||
os.remove(dst)
|
||||
|
||||
if os.path.isdir(src):
|
||||
shutil.copytree(src, dst)
|
||||
else:
|
||||
shutil.copy2(src, dst)
|
||||
#work around https://github.com/ninja-build/ninja/issues/1554
|
||||
os.utime(dst, None)
|
@ -0,0 +1,45 @@
|
||||
# Copyright 2024 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
config("default") {
|
||||
asmflags = []
|
||||
cflags = []
|
||||
cflags = [
|
||||
"-Wno-return-type", # TODO(crbug.com/41481467): Fix this warning.
|
||||
"-Wno-invalid-offsetof", # TODO(crbug.com/41481467): Fix this warning.
|
||||
"-fstrict-aliasing",
|
||||
"-fPIC",
|
||||
"-fvisibility=hidden",
|
||||
]
|
||||
cflags_cc = [
|
||||
"-std=c++17",
|
||||
"-fvisibility-inlines-hidden",
|
||||
]
|
||||
cflags_objcc = cflags_cc
|
||||
defines = []
|
||||
ldflags = []
|
||||
libs = [ "pthread" ]
|
||||
|
||||
# TODO(crbug.com/41481467): Consider creating a bot running partition_alloc
|
||||
# with extra flags enforced only in the standalone configuration. Then we can
|
||||
# remove the extra warnings when embedded.
|
||||
}
|
||||
|
||||
config("no_exceptions") {
|
||||
cflags_cc = [ "-fno-exceptions" ]
|
||||
cflags_objcc = cflags_cc
|
||||
}
|
||||
|
||||
config("no_rtti") {
|
||||
cflags_cc = [ "-fno-rtti" ]
|
||||
cflags_objcc = cflags_cc
|
||||
}
|
||||
|
||||
config("optimize") {
|
||||
cflags = [ "-O3" ]
|
||||
}
|
||||
|
||||
config("NDEBUG") {
|
||||
defines = [ "NDEBUG" ]
|
||||
}
|
18
src/base/allocator/partition_allocator/gn/rm.py
Executable file
18
src/base/allocator/partition_allocator/gn/rm.py
Executable file
@ -0,0 +1,18 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2024 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# Copied from Skia's //gn/rm.py
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
|
||||
dst, = sys.argv[1:]
|
||||
|
||||
if os.path.exists(dst):
|
||||
if os.path.isdir(dst):
|
||||
shutil.rmtree(dst)
|
||||
else:
|
||||
os.remove(dst)
|
61
src/base/allocator/partition_allocator/gn/toolchain/BUILD.gn
Normal file
61
src/base/allocator/partition_allocator/gn/toolchain/BUILD.gn
Normal file
@ -0,0 +1,61 @@
|
||||
# Copyright 2024 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
toolchain("clang") {
|
||||
ar = "llvm-ar"
|
||||
cc = "clang"
|
||||
cxx = "clang++"
|
||||
link = "clang++"
|
||||
|
||||
tool("cc") {
|
||||
depfile = "{{output}}.d"
|
||||
command = "$cc -MD -MF $depfile {{defines}} {{include_dirs}} {{cflags}} {{cflags_c}} -c {{source}} -o {{output}}"
|
||||
depsformat = "gcc"
|
||||
outputs =
|
||||
[ "{{source_out_dir}}/{{target_output_name}}.{{source_name_part}}.o" ]
|
||||
description = "CC {{source}}"
|
||||
}
|
||||
|
||||
tool("cxx") {
|
||||
depfile = "{{output}}.d"
|
||||
command = "$cxx -MD -MF $depfile {{defines}} {{include_dirs}} {{cflags}} {{cflags_cc}} -c {{source}} -o {{output}}"
|
||||
depsformat = "gcc"
|
||||
outputs =
|
||||
[ "{{source_out_dir}}/{{target_output_name}}.{{source_name_part}}.o" ]
|
||||
description = "CXX {{source}}"
|
||||
}
|
||||
|
||||
tool("alink") {
|
||||
rspfile = "{{output}}.rsp"
|
||||
rspfile_content = "{{inputs}}"
|
||||
rm_py = rebase_path("../rm.py")
|
||||
command =
|
||||
"python3 \"$rm_py\" \"{{output}}\" && $ar rcs {{output}} @$rspfile"
|
||||
|
||||
outputs = [ "{{root_out_dir}}/{{target_output_name}}{{output_extension}}" ]
|
||||
default_output_extension = ".a"
|
||||
output_prefix = "lib"
|
||||
description = "LINK (static) {{output}}"
|
||||
}
|
||||
|
||||
tool("solink") {
|
||||
soname = "{{target_output_name}}{{output_extension}}"
|
||||
|
||||
rpath = "-Wl,-soname,$soname"
|
||||
|
||||
rspfile = "{{output}}.rsp"
|
||||
rspfile_content = "{{inputs}}"
|
||||
|
||||
command = "$link -shared {{ldflags}} @$rspfile {{frameworks}} {{solibs}} {{libs}} $rpath -o {{output}}"
|
||||
outputs = [ "{{root_out_dir}}/$soname" ]
|
||||
output_prefix = "lib"
|
||||
default_output_extension = ".so"
|
||||
description = "LINK (shared) {{output}}"
|
||||
}
|
||||
|
||||
tool("stamp") {
|
||||
command = "touch {{output}}"
|
||||
description = "STAMP {{output}}"
|
||||
}
|
||||
}
|
436
src/base/allocator/partition_allocator/partition_alloc.gni
Normal file
436
src/base/allocator/partition_allocator/partition_alloc.gni
Normal file
@ -0,0 +1,436 @@
|
||||
# Copyright 2022 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//build_overrides/partition_alloc.gni")
|
||||
|
||||
# PartitionAlloc have limited support for MSVC's cl.exe compiler. It can only
|
||||
# access the generate "buildflags" and the "raw_ptr" definitions implemented
|
||||
# with RawPtrNoOpImpl. Everything else is considered not supported.
|
||||
#
|
||||
# Since there are no other good ways to detect MSVC's cl.exe, we are reusing the
|
||||
# same definition used by Chrome in //base/BUILD.gn. See
|
||||
# https://crbug.com/988071.
|
||||
is_clang_or_gcc = is_clang || !is_win
|
||||
|
||||
# Whether 64-bit pointers are used.
|
||||
# A static_assert in partition_alloc_config.h verifies that.
|
||||
if (is_nacl) {
|
||||
# NaCl targets don't use 64-bit pointers.
|
||||
has_64_bit_pointers = false
|
||||
} else if (current_cpu == "x64" || current_cpu == "arm64" ||
|
||||
current_cpu == "loong64" || current_cpu == "riscv64") {
|
||||
has_64_bit_pointers = true
|
||||
} else if (current_cpu == "x86" || current_cpu == "arm") {
|
||||
has_64_bit_pointers = false
|
||||
} else {
|
||||
assert(false, "Unknown CPU: $current_cpu")
|
||||
}
|
||||
|
||||
# Increases the size of the empty slot span ring.
|
||||
use_large_empty_slot_span_ring = is_mac
|
||||
|
||||
has_memory_tagging =
|
||||
current_cpu == "arm64" && is_clang && !is_asan && (is_linux || is_android)
|
||||
|
||||
declare_args() {
|
||||
# Causes all the allocations to be routed via allocator_shim.cc. Usually,
|
||||
# the allocator shim will, in turn, route them to PartitionAlloc, but
|
||||
# other allocators are also supported by the allocator shim.
|
||||
use_allocator_shim = use_allocator_shim_default && is_clang_or_gcc
|
||||
|
||||
# Whether PartitionAlloc should be available for use or not.
|
||||
# true makes PartitionAlloc linked to the executable or shared library and
|
||||
# makes it available for use. It doesn't mean that the default allocator
|
||||
# is PartitionAlloc, which is governed by |use_partition_alloc_as_malloc|.
|
||||
#
|
||||
# N.B. generally, embedders should look at this GN arg and at the
|
||||
# corresponding buildflag to determine whether to interact with PA
|
||||
# source at all (pulling the component in via GN, including headers,
|
||||
# etc.). There is nothing stopping a lazy embedder from ignoring this
|
||||
# and unconditionally using PA, but such a setup is inadvisable.
|
||||
#
|
||||
# In Chromium, this is set true, except:
|
||||
#
|
||||
# 1. On Cronet bots, because Cronet doesn't use PartitionAlloc at all,
|
||||
# and doesn't wish to incur the library size increase (crbug.com/674570).
|
||||
# 2. On NaCl (through this declaration), where PartitionAlloc doesn't
|
||||
# build at all.
|
||||
use_partition_alloc = !is_nacl && is_clang_or_gcc
|
||||
}
|
||||
|
||||
if (!is_clang_or_gcc) {
|
||||
assert(!use_partition_alloc,
|
||||
"PartitionAlloc's allocator does not support this compiler")
|
||||
assert(!use_allocator_shim,
|
||||
"PartitionAlloc's allocator shim does not support this compiler")
|
||||
}
|
||||
|
||||
if (is_nacl) {
|
||||
assert(!use_partition_alloc, "PartitionAlloc doesn't build on NaCl")
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# PartitionAlloc-Everywhere (PA-E). Causes allocator_shim.cc to route
|
||||
# calls to PartitionAlloc, rather than some other platform allocator.
|
||||
use_partition_alloc_as_malloc = use_partition_alloc && use_allocator_shim &&
|
||||
use_partition_alloc_as_malloc_default
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Whether PartitionAlloc dispatch can be replaced with another dispatch with
|
||||
# some more safety checks at runtime or not. When true, the allocator shim
|
||||
# provides an extended API to swap PartitionAlloc.
|
||||
# TODO(https://crbug.com/351974425): Enable this when `use_partition_alloc_as_malloc` is true.
|
||||
enable_allocator_shim_partition_alloc_dispatch_with_advanced_checks_support =
|
||||
false
|
||||
}
|
||||
|
||||
assert(
|
||||
!enable_allocator_shim_partition_alloc_dispatch_with_advanced_checks_support || use_partition_alloc_as_malloc,
|
||||
"PartitionAlloc with advanced checks requires PartitionAlloc itself.")
|
||||
|
||||
assert(!use_allocator_shim || !is_nacl,
|
||||
"The allocator shim supports every platform, except nacl")
|
||||
|
||||
if (use_allocator_shim && is_win) {
|
||||
# It's hard to override CRT's malloc family in every case in the component
|
||||
# build, and it's very easy to override it partially and to be inconsistent
|
||||
# among allocations and deallocations. Then, we'll crash when PA deallocates
|
||||
# a memory region allocated by the CRT's malloc or vice versa.
|
||||
# Since PartitionAlloc depends on libc++, it is difficult to link libc++.dll
|
||||
# with PartitionAlloc to replace its allocator with PartitionAlloc.
|
||||
# If using libcxx_is_shared=true,
|
||||
# a. since inline methods or inline functions defined in some libc++ headers,
|
||||
# e.g. vector, use new, malloc(), and so on, the memory allocation will
|
||||
# be done inside a client code.
|
||||
# b. on the other hand, libc++.dll deallocates the memory allocated by the
|
||||
# inline methods or inline functions. It will not be run inside the client
|
||||
# code.
|
||||
# So a.'s allocation is done by PartitionAlloc, but b.'s deallocation is
|
||||
# done by system allocator. This will cause heap check failure (WinHeap
|
||||
# doesn't know PartitionAlloc) and crash.
|
||||
# If libcxx_is_shared=false, libc++ is a static library. All libc++ code
|
||||
# will be run inside the client. The above issue will disappear.
|
||||
assert(
|
||||
!is_component_build || (!libcxx_is_shared && !is_debug),
|
||||
"The allocator shim for the Windows component build needs !libcxx_is_shared && !is_debug.")
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
use_freeslot_bitmap = false
|
||||
|
||||
# Puts the regular and BRP pools right next to each other, so that we can
|
||||
# check "belongs to one of the two pools" with a single bitmask operation.
|
||||
# TODO(crbug.com/350104111): Fix ios-simulator failures to remove `!is_ios`.
|
||||
glue_core_pools = use_partition_alloc_as_malloc && !is_ios
|
||||
|
||||
# Introduces pointer compression support in PA. These are 4-byte
|
||||
# pointers that can point within the core pools (regular and BRP).
|
||||
#
|
||||
# This is effective only for memory allocated from PartitionAlloc, so it is
|
||||
# recommended to enable PA-E above, but isn't strictly necessary. Embedders
|
||||
# can create and use PA partitions explicitly.
|
||||
enable_pointer_compression_support = false
|
||||
|
||||
# Enables a bounds check when two pointers (at least one being raw_ptr) are
|
||||
# subtracted (if supported by the underlying implementation).
|
||||
enable_pointer_subtraction_check = false
|
||||
|
||||
# Enables a compile-time check that all raw_ptrs to which arithmetic
|
||||
# operations are to be applied are annotated with the AllowPtrArithmetic
|
||||
# trait,
|
||||
enable_pointer_arithmetic_trait_check = true
|
||||
|
||||
# Forwards all the allocation/freeing calls in shim (e.g. operator new)
|
||||
# through malloc. Useful for using with tools that intercept malloc, e.g.
|
||||
# heaptrack.
|
||||
forward_through_malloc = false
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Build support for Use-after-Free protection via BackupRefPtr (BRP),
|
||||
# making the raw_ptr<T> implementation to RawPtrBackupRefImpl if active.
|
||||
#
|
||||
# These are effective only for memory allocated from PartitionAlloc, so it is
|
||||
# recommended to enable PA-E above, but isn't strictly necessary. Embedders
|
||||
# can create and use PA partitions explicitly.
|
||||
#
|
||||
# Note that |enable_backup_ref_ptr_support = true| doesn't necessarily enable
|
||||
# BRP protection. It'll be enabled only for partition created with
|
||||
# partition_alloc::PartitionOptions::kEnabled.
|
||||
enable_backup_ref_ptr_support =
|
||||
use_partition_alloc && enable_backup_ref_ptr_support_default
|
||||
|
||||
# RAW_PTR_EXCLUSION macro is disabled on official builds because it increased
|
||||
# binary size. This flag can be used to enable it for official builds too.
|
||||
force_enable_raw_ptr_exclusion = false
|
||||
}
|
||||
|
||||
assert(!enable_pointer_compression_support || glue_core_pools,
|
||||
"Pointer compression relies on core pools being contiguous.")
|
||||
|
||||
declare_args() {
|
||||
# We want to use RawPtrBackupRefImpl as the raw_ptr<> implementation
|
||||
# iff BRP support is enabled. However, for purpose of performance
|
||||
# investigations we want to be able to control each separately.
|
||||
#
|
||||
# TEST ONLY! Don't touch unless you think you know what you're doing. Play
|
||||
# with enable_backup_ref_ptr_support instead.
|
||||
use_raw_ptr_backup_ref_impl = enable_backup_ref_ptr_support
|
||||
|
||||
# Make explicit calls to ASAN at runtime, e.g. to mark quarrantined memory
|
||||
# as poisoned. Allows ASAN to tell if a particular memory error is protected
|
||||
# by BRP in its reports.
|
||||
#
|
||||
# The implementation of ASan BRP is purpose-built to inspect Chromium
|
||||
# internals and is entangled with `//base` s.t. it cannot be used
|
||||
# outside of Chromium.
|
||||
use_asan_backup_ref_ptr =
|
||||
build_with_chromium && is_asan &&
|
||||
(is_win || is_android || is_linux || is_mac || is_chromeos)
|
||||
|
||||
# Use probe-on-destruct unowned ptr detection with ASAN.
|
||||
use_raw_ptr_asan_unowned_impl = false
|
||||
}
|
||||
|
||||
# Use the version of raw_ptr<T> that allows the embedder to implement custom
|
||||
# logic.
|
||||
use_raw_ptr_hookable_impl = use_asan_backup_ref_ptr
|
||||
|
||||
declare_args() {
|
||||
# - enable_backup_ref_ptr_slow_checks: enable additional safety checks that
|
||||
# are too expensive to have on by default.
|
||||
# - enable_dangling_raw_ptr_checks: enable checking raw_ptr do not become
|
||||
# dangling during their lifetime.
|
||||
# - backup_ref_ptr_poison_oob_ptr: poison out-of-bounds (OOB) pointers to
|
||||
# generate an exception in the event that an OOB pointer is dereferenced.
|
||||
# - enable_backup_ref_ptr_instance_tracer: use a global table to track all
|
||||
# live raw_ptr/raw_ref instances to help debug dangling pointers at test
|
||||
# end.
|
||||
|
||||
enable_backup_ref_ptr_slow_checks =
|
||||
enable_backup_ref_ptr_slow_checks_default && enable_backup_ref_ptr_support
|
||||
|
||||
# Enable the feature flag required to activate backup ref pointers. That is to
|
||||
# say `PartitionAllocBackupRefPtr`.
|
||||
#
|
||||
# This is meant to be modified primarily on bots. It is much easier to
|
||||
# override the feature flags using a binary flag instead of updating multiple
|
||||
# bots's scripts to pass command line arguments.
|
||||
#
|
||||
# TODO(328104161): Remove this flag.
|
||||
enable_backup_ref_ptr_feature_flag =
|
||||
enable_backup_ref_ptr_support && use_raw_ptr_backup_ref_impl &&
|
||||
# Platforms where BackupRefPtr hasn't shipped yet:
|
||||
!is_castos && !is_ios
|
||||
|
||||
# Build support for Dangling Ptr Detection (DPD) via BackupRefPtr (BRP),
|
||||
# making the raw_ptr<T> implementation to RawPtrBackupRefImpl if active.
|
||||
enable_dangling_raw_ptr_checks =
|
||||
enable_dangling_raw_ptr_checks_default && enable_backup_ref_ptr_support &&
|
||||
use_raw_ptr_backup_ref_impl
|
||||
|
||||
enable_backup_ref_ptr_instance_tracer = false
|
||||
|
||||
backup_ref_ptr_extra_oob_checks =
|
||||
enable_backup_ref_ptr_support && use_raw_ptr_backup_ref_impl
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Enable the feature flag required to check for dangling pointers. That is to
|
||||
# say `PartitionAllocDanglingPtr`.
|
||||
#
|
||||
# This is meant to be modified primarily on bots. It is much easier to
|
||||
# override the feature flags using a binary flag instead of updating multiple
|
||||
# bots's scripts to pass command line arguments.
|
||||
#
|
||||
# TODO(328104161): Remove this flag.
|
||||
enable_dangling_raw_ptr_feature_flag = enable_dangling_raw_ptr_checks
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
backup_ref_ptr_poison_oob_ptr =
|
||||
false && backup_ref_ptr_extra_oob_checks && has_64_bit_pointers
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Shadow metadata is still under development and only supports Linux
|
||||
# for now.
|
||||
enable_shadow_metadata = false
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Use full MTE protection available by changing the feature flag default
|
||||
# values. So sync mode on all processes. Also disables permissive MTE.
|
||||
#
|
||||
# This is meant to be used primarily on bots. It is much easier to override
|
||||
# the feature flags using a binary flag instead of updating multiple bots's
|
||||
# scripts to pass command line arguments.
|
||||
use_full_mte = false
|
||||
}
|
||||
|
||||
stack_scan_supported =
|
||||
current_cpu == "x64" || current_cpu == "x86" || current_cpu == "arm" ||
|
||||
current_cpu == "arm64" || current_cpu == "riscv64"
|
||||
|
||||
# We want to provide assertions that guard against inconsistent build
|
||||
# args, but there is no point in having them fire if we're not building
|
||||
# PartitionAlloc at all. If `use_partition_alloc` is false, we jam all
|
||||
# related args to `false`.
|
||||
#
|
||||
# Do not clear the following, as they can function outside of PartitionAlloc
|
||||
# - has_64_bit_pointers
|
||||
# - has_memory_tagging
|
||||
if (!use_partition_alloc ||
|
||||
(defined(toolchain_allows_use_partition_alloc_as_malloc) &&
|
||||
!toolchain_allows_use_partition_alloc_as_malloc)) {
|
||||
use_partition_alloc_as_malloc = false
|
||||
glue_core_pools = false
|
||||
enable_backup_ref_ptr_support = false
|
||||
use_raw_ptr_backup_ref_impl = false
|
||||
use_asan_backup_ref_ptr = false
|
||||
use_raw_ptr_asan_unowned_impl = false
|
||||
use_raw_ptr_hookable_impl = false
|
||||
enable_backup_ref_ptr_slow_checks = false
|
||||
enable_dangling_raw_ptr_checks = false
|
||||
enable_dangling_raw_ptr_feature_flag = false
|
||||
enable_pointer_subtraction_check = false
|
||||
backup_ref_ptr_poison_oob_ptr = false
|
||||
backup_ref_ptr_extra_oob_checks = false
|
||||
enable_backup_ref_ptr_instance_tracer = false
|
||||
use_full_mte = false
|
||||
}
|
||||
|
||||
# Disable |use_full_mte| if memory tagging is not available. This is for targets that run as part the build process.
|
||||
if (!has_memory_tagging) {
|
||||
use_full_mte = false
|
||||
}
|
||||
|
||||
# use_raw_ptr_backup_ref_impl can only be used if
|
||||
# enable_backup_ref_ptr_support is true.
|
||||
assert(enable_backup_ref_ptr_support || !use_raw_ptr_backup_ref_impl,
|
||||
"Can't use RawPtrBackupRefImpl if BRP isn't enabled at all")
|
||||
|
||||
# enable_backup_ref_ptr_slow_checks can only be used if
|
||||
# enable_backup_ref_ptr_support is true.
|
||||
assert(enable_backup_ref_ptr_support || !enable_backup_ref_ptr_slow_checks,
|
||||
"Can't enable additional BRP checks if it isn't enabled at all")
|
||||
|
||||
# enable_dangling_raw_ptr_checks can only be used if
|
||||
# enable_backup_ref_ptr_support & use_raw_ptr_backup_ref_impl are true.
|
||||
assert((enable_backup_ref_ptr_support && use_raw_ptr_backup_ref_impl) ||
|
||||
!enable_dangling_raw_ptr_checks,
|
||||
"Can't enable dangling raw_ptr checks if BRP isn't enabled and used")
|
||||
|
||||
# It's meaningless to force on DPD (e.g. on bots) if the support isn't compiled
|
||||
# in.
|
||||
assert(enable_dangling_raw_ptr_checks || !enable_dangling_raw_ptr_feature_flag,
|
||||
"Meaningless to enable DPD without it compiled.")
|
||||
|
||||
# To enable extra OOB checks for BRP, the underlying feature must be
|
||||
# enabled, too.
|
||||
assert((enable_backup_ref_ptr_support && use_raw_ptr_backup_ref_impl) ||
|
||||
!backup_ref_ptr_extra_oob_checks,
|
||||
"Can't enable extra OOB checks if BRP isn't enabled and used")
|
||||
|
||||
# To poison OOB pointers for BRP, the underlying feature must be
|
||||
# enabled, too.
|
||||
assert(backup_ref_ptr_extra_oob_checks || !backup_ref_ptr_poison_oob_ptr,
|
||||
"Can't enable poisoning for OOB pointers if OOB checks aren't enabled " +
|
||||
"at all")
|
||||
assert(has_64_bit_pointers || !backup_ref_ptr_poison_oob_ptr,
|
||||
"Can't enable poisoning for OOB pointers if pointers are only 32-bit")
|
||||
|
||||
# AsanBackupRefPtr and AsanUnownedPtr are mutually exclusive variants of
|
||||
# raw_ptr.
|
||||
assert(
|
||||
!use_raw_ptr_asan_unowned_impl || !use_asan_backup_ref_ptr,
|
||||
"Both AsanUnownedPtr and AsanBackupRefPtr can't be enabled at the same " +
|
||||
"time")
|
||||
|
||||
# BackupRefPtr and AsanBackupRefPtr are mutually exclusive variants of raw_ptr.
|
||||
assert(
|
||||
!enable_backup_ref_ptr_support || !use_asan_backup_ref_ptr,
|
||||
"Both BackupRefPtr and AsanBackupRefPtr can't be enabled at the same time")
|
||||
|
||||
# BackupRefPtr and AsanUnownedPtr are mutually exclusive variants of raw_ptr.
|
||||
assert(!enable_backup_ref_ptr_support || !use_raw_ptr_asan_unowned_impl,
|
||||
"Both BackupRefPtr and AsanUnownedPtr can't be enabled at the same time")
|
||||
|
||||
# RawPtrHookableImpl and BackupRefPtr are mutually exclusive variants of
|
||||
# raw_ptr.
|
||||
assert(
|
||||
!use_raw_ptr_hookable_impl || !enable_backup_ref_ptr_support,
|
||||
"Both RawPtrHookableImpl and BackupRefPtr can't be enabled at the same " +
|
||||
"time")
|
||||
|
||||
# RawPtrHookableImpl and AsanUnownedPtr are mutually exclusive variants of
|
||||
# raw_ptr.
|
||||
assert(
|
||||
!use_raw_ptr_hookable_impl || !use_raw_ptr_asan_unowned_impl,
|
||||
"Both RawPtrHookableImpl and AsanUnownedPtr can't be enabled at the same " +
|
||||
"time")
|
||||
|
||||
assert(!use_asan_backup_ref_ptr || is_asan,
|
||||
"AsanBackupRefPtr requires AddressSanitizer")
|
||||
|
||||
assert(!use_raw_ptr_asan_unowned_impl || is_asan,
|
||||
"AsanUnownedPtr requires AddressSanitizer")
|
||||
|
||||
# AsanBackupRefPtr is not supported outside Chromium. The implementation is
|
||||
# entangled with `//base`. The code is only physically located with the rest of
|
||||
# `raw_ptr` to keep it together.
|
||||
assert(build_with_chromium || !use_asan_backup_ref_ptr,
|
||||
"AsanBackupRefPtr is not supported outside Chromium")
|
||||
|
||||
assert(!use_asan_backup_ref_ptr || use_raw_ptr_hookable_impl,
|
||||
"AsanBackupRefPtr requires RawPtrHookableImpl")
|
||||
|
||||
# pkeys support is explicitly disabled in all Cronet builds, as some test
|
||||
# dependencies that use partition_allocator are compiled in AOSP against a
|
||||
# version of glibc that does not include pkeys syscall numbers.
|
||||
is_pkeys_available =
|
||||
(is_linux || is_chromeos) && current_cpu == "x64" && !is_cronet_build
|
||||
declare_args() {
|
||||
enable_pkeys = is_pkeys_available
|
||||
}
|
||||
assert(!enable_pkeys || is_pkeys_available,
|
||||
"Pkeys are only supported on x64 linux and ChromeOS")
|
||||
|
||||
# Some implementations of raw_ptr<>, like BackupRefPtr, require zeroing when
|
||||
# constructing, destructing or moving out of a pointer. When using these
|
||||
# implementations, raw_ptrs<> will be always be zeroed, no matter what
|
||||
# GN args or flags are present.
|
||||
#
|
||||
# Other implementations of raw_ptr<>, like NoOpImpl, don't require zeroing
|
||||
# and do not do so by default. This can lead to subtle bugs when testing
|
||||
# against one of the zeroing impls and then deploying on a platform that is
|
||||
# using a non-zeroing implementation. Setting the following GN args to
|
||||
# true triggers zeroing even for implementations that don't require it.
|
||||
# This provides consistency with the other impls. This is the recommended
|
||||
# setting.
|
||||
#
|
||||
# Setting these to false will make raw_ptr<> behave more like raw C++ pointer
|
||||
# `T*`, making NoOpImpl act like an actual no-op, so use it if you're worried
|
||||
# about performance of your project. Use at your own risk, as it's unsupported
|
||||
# and untested within Chromium.
|
||||
#
|
||||
# Even when these are set to true, the raw_ptr trait AllowUninitialized
|
||||
# provides a finer-grained mechanism for opting out of initialization on a
|
||||
# pointer by pointer basis when using a non-zeroing implementation.
|
||||
#
|
||||
# Caveat: _zero_on_move and _on_destruct will prevent the type from being
|
||||
# trivially copyable, _zero_on_construct and _on_destruct will prevent the
|
||||
# type from being trivially default constructible.
|
||||
declare_args() {
|
||||
raw_ptr_zero_on_construct = raw_ptr_zero_on_construct_default
|
||||
raw_ptr_zero_on_move = raw_ptr_zero_on_move_default
|
||||
raw_ptr_zero_on_destruct = raw_ptr_zero_on_destruct_default
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Assert that PartitionAlloc and MiraclePtr run on C++20 when set to true.
|
||||
# Embedders may opt-out of using C++ 20 build.
|
||||
assert_cpp20 = assert_cpp20_default
|
||||
}
|
1122
src/base/allocator/partition_allocator/src/partition_alloc/BUILD.gn
Normal file
1122
src/base/allocator/partition_allocator/src/partition_alloc/BUILD.gn
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,49 @@
|
||||
// Copyright 2024 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_AARCH64_SUPPORT_H_
|
||||
#define PARTITION_ALLOC_AARCH64_SUPPORT_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "partition_alloc/build_config.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
|
||||
#if PA_BUILDFLAG(IS_ANDROID) || PA_BUILDFLAG(IS_LINUX)
|
||||
#define HAS_HW_CAPS
|
||||
#endif
|
||||
|
||||
#if PA_BUILDFLAG(PA_ARCH_CPU_ARM64) && defined(HAS_HW_CAPS)
|
||||
#include <asm/hwcap.h>
|
||||
#include <sys/ifunc.h>
|
||||
#else
|
||||
struct __ifunc_arg_t;
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
constexpr bool IsBtiEnabled(uint64_t ifunc_hwcap,
|
||||
struct __ifunc_arg_t* ifunc_hw) {
|
||||
#if PA_BUILDFLAG(PA_ARCH_CPU_ARM64) && defined(HAS_HW_CAPS)
|
||||
return (ifunc_hwcap & _IFUNC_ARG_HWCAP) && (ifunc_hw->_hwcap2 & HWCAP2_BTI);
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
constexpr bool IsMteEnabled(uint64_t ifunc_hwcap,
|
||||
struct __ifunc_arg_t* ifunc_hw) {
|
||||
#if PA_BUILDFLAG(PA_ARCH_CPU_ARM64) && defined(HAS_HW_CAPS) && \
|
||||
PA_BUILDFLAG(HAS_MEMORY_TAGGING)
|
||||
return (ifunc_hwcap & _IFUNC_ARG_HWCAP) && (ifunc_hw->_hwcap2 & HWCAP2_MTE);
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#undef HAS_HW_CAPS
|
||||
|
||||
#endif // PARTITION_ALLOC_AARCH64_SUPPORT_H_
|
@ -0,0 +1,570 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "partition_alloc/address_pool_manager.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
|
||||
#include "partition_alloc/address_space_stats.h"
|
||||
#include "partition_alloc/build_config.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/page_allocator.h"
|
||||
#include "partition_alloc/page_allocator_constants.h"
|
||||
#include "partition_alloc/partition_alloc_base/notreached.h"
|
||||
#include "partition_alloc/partition_alloc_check.h"
|
||||
#include "partition_alloc/partition_alloc_constants.h"
|
||||
#include "partition_alloc/reservation_offset_table.h"
|
||||
#include "partition_alloc/thread_isolation/alignment.h"
|
||||
|
||||
#if PA_BUILDFLAG(IS_APPLE) || PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
PA_CONSTINIT AddressPoolManager AddressPoolManager::singleton_;
|
||||
|
||||
// static
|
||||
AddressPoolManager& AddressPoolManager::GetInstance() {
|
||||
return singleton_;
|
||||
}
|
||||
|
||||
namespace {
|
||||
// Allocations are all performed on behalf of PartitionAlloc.
|
||||
constexpr PageTag kPageTag = PageTag::kPartitionAlloc;
|
||||
|
||||
} // namespace
|
||||
|
||||
#if PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
namespace {
|
||||
|
||||
// This will crash if the range cannot be decommitted.
|
||||
void DecommitPages(uintptr_t address, size_t size) {
|
||||
// Callers rely on the pages being zero-initialized when recommitting them.
|
||||
// |DecommitSystemPages| doesn't guarantee this on all operating systems, in
|
||||
// particular on macOS, but |DecommitAndZeroSystemPages| does.
|
||||
DecommitAndZeroSystemPages(address, size, kPageTag);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void AddressPoolManager::Add(pool_handle handle, uintptr_t ptr, size_t length) {
|
||||
PA_DCHECK(!(ptr & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!((ptr + length) & kSuperPageOffsetMask));
|
||||
PA_CHECK(handle > 0 && handle <= std::size(pools_));
|
||||
|
||||
Pool* pool = GetPool(handle);
|
||||
PA_CHECK(!pool->IsInitialized());
|
||||
pool->Initialize(ptr, length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::GetPoolUsedSuperPages(
|
||||
pool_handle handle,
|
||||
std::bitset<kMaxSuperPagesInPool>& used) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!pool) {
|
||||
return;
|
||||
}
|
||||
|
||||
pool->GetUsedSuperPages(used);
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::GetPoolBaseAddress(pool_handle handle) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!pool) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return pool->GetBaseAddress();
|
||||
}
|
||||
|
||||
void AddressPoolManager::ResetForTesting() {
|
||||
for (size_t i = 0; i < std::size(pools_); ++i) {
|
||||
pools_[i].Reset();
|
||||
}
|
||||
}
|
||||
|
||||
void AddressPoolManager::Remove(pool_handle handle) {
|
||||
Pool* pool = GetPool(handle);
|
||||
PA_DCHECK(pool->IsInitialized());
|
||||
pool->Reset();
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Reserve(pool_handle handle,
|
||||
uintptr_t requested_address,
|
||||
size_t length) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!requested_address) {
|
||||
return pool->FindChunk(length);
|
||||
}
|
||||
const bool is_available = pool->TryReserveChunk(requested_address, length);
|
||||
if (is_available) {
|
||||
return requested_address;
|
||||
}
|
||||
return pool->FindChunk(length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::UnreserveAndDecommit(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
PA_DCHECK(kNullPoolHandle < handle && handle <= kNumPools);
|
||||
Pool* pool = GetPool(handle);
|
||||
PA_DCHECK(pool->IsInitialized());
|
||||
DecommitPages(address, length);
|
||||
pool->FreeChunk(address, length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::Initialize(uintptr_t ptr, size_t length) {
|
||||
PA_CHECK(ptr != 0);
|
||||
PA_CHECK(!(ptr & kSuperPageOffsetMask));
|
||||
PA_CHECK(!(length & kSuperPageOffsetMask));
|
||||
address_begin_ = ptr;
|
||||
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
|
||||
address_end_ = ptr + length;
|
||||
PA_DCHECK(address_begin_ < address_end_);
|
||||
#endif
|
||||
|
||||
total_bits_ = length / kSuperPageSize;
|
||||
PA_CHECK(total_bits_ <= kMaxSuperPagesInPool);
|
||||
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
alloc_bitset_.reset();
|
||||
bit_hint_ = 0;
|
||||
}
|
||||
|
||||
bool AddressPoolManager::Pool::IsInitialized() {
|
||||
return address_begin_ != 0;
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::Reset() {
|
||||
address_begin_ = 0;
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::GetUsedSuperPages(
|
||||
std::bitset<kMaxSuperPagesInPool>& used) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
|
||||
PA_DCHECK(IsInitialized());
|
||||
used = alloc_bitset_;
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Pool::GetBaseAddress() {
|
||||
PA_DCHECK(IsInitialized());
|
||||
return address_begin_;
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Pool::FindChunk(size_t requested_size) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
|
||||
PA_DCHECK(!(requested_size & kSuperPageOffsetMask));
|
||||
const size_t need_bits = requested_size >> kSuperPageShift;
|
||||
|
||||
// Use first-fit policy to find an available chunk from free chunks. Start
|
||||
// from |bit_hint_|, because we know there are no free chunks before.
|
||||
size_t beg_bit = bit_hint_;
|
||||
size_t curr_bit = bit_hint_;
|
||||
while (true) {
|
||||
// |end_bit| points 1 past the last bit that needs to be 0. If it goes past
|
||||
// |total_bits_|, return |nullptr| to signal no free chunk was found.
|
||||
size_t end_bit = beg_bit + need_bits;
|
||||
if (end_bit > total_bits_) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool found = true;
|
||||
for (; curr_bit < end_bit; ++curr_bit) {
|
||||
if (alloc_bitset_.test(curr_bit)) {
|
||||
// The bit was set, so this chunk isn't entirely free. Set |found=false|
|
||||
// to ensure the outer loop continues. However, continue the inner loop
|
||||
// to set |beg_bit| just past the last set bit in the investigated
|
||||
// chunk. |curr_bit| is advanced all the way to |end_bit| to prevent the
|
||||
// next outer loop pass from checking the same bits.
|
||||
beg_bit = curr_bit + 1;
|
||||
found = false;
|
||||
if (bit_hint_ == curr_bit) {
|
||||
++bit_hint_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// An entire [beg_bit;end_bit) region of 0s was found. Fill them with 1s (to
|
||||
// mark as allocated) and return the allocated address.
|
||||
if (found) {
|
||||
for (size_t i = beg_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(!alloc_bitset_.test(i));
|
||||
alloc_bitset_.set(i);
|
||||
}
|
||||
if (bit_hint_ == beg_bit) {
|
||||
bit_hint_ = end_bit;
|
||||
}
|
||||
uintptr_t address = address_begin_ + beg_bit * kSuperPageSize;
|
||||
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
|
||||
PA_DCHECK(address + requested_size <= address_end_);
|
||||
#endif
|
||||
return address;
|
||||
}
|
||||
}
|
||||
|
||||
PA_NOTREACHED();
|
||||
}
|
||||
|
||||
bool AddressPoolManager::Pool::TryReserveChunk(uintptr_t address,
|
||||
size_t requested_size) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
PA_DCHECK(!(address & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!(requested_size & kSuperPageOffsetMask));
|
||||
const size_t begin_bit = (address - address_begin_) / kSuperPageSize;
|
||||
const size_t need_bits = requested_size / kSuperPageSize;
|
||||
const size_t end_bit = begin_bit + need_bits;
|
||||
// Check that requested address is not too high.
|
||||
if (end_bit > total_bits_) {
|
||||
return false;
|
||||
}
|
||||
// Check if any bit of the requested region is set already.
|
||||
for (size_t i = begin_bit; i < end_bit; ++i) {
|
||||
if (alloc_bitset_.test(i)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// Otherwise, set the bits.
|
||||
for (size_t i = begin_bit; i < end_bit; ++i) {
|
||||
alloc_bitset_.set(i);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::FreeChunk(uintptr_t address, size_t free_size) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
|
||||
PA_DCHECK(!(address & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!(free_size & kSuperPageOffsetMask));
|
||||
|
||||
PA_DCHECK(address_begin_ <= address);
|
||||
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
|
||||
PA_DCHECK(address + free_size <= address_end_);
|
||||
#endif
|
||||
|
||||
const size_t beg_bit = (address - address_begin_) / kSuperPageSize;
|
||||
const size_t end_bit = beg_bit + free_size / kSuperPageSize;
|
||||
for (size_t i = beg_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(alloc_bitset_.test(i));
|
||||
alloc_bitset_.reset(i);
|
||||
}
|
||||
bit_hint_ = std::min(bit_hint_, beg_bit);
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::GetStats(PoolStats* stats) {
|
||||
std::bitset<kMaxSuperPagesInPool> pages;
|
||||
size_t i;
|
||||
{
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
pages = alloc_bitset_;
|
||||
i = bit_hint_;
|
||||
}
|
||||
|
||||
stats->usage = pages.count();
|
||||
|
||||
size_t largest_run = 0;
|
||||
size_t current_run = 0;
|
||||
for (; i < total_bits_; ++i) {
|
||||
if (!pages[i]) {
|
||||
current_run += 1;
|
||||
continue;
|
||||
} else if (current_run > largest_run) {
|
||||
largest_run = current_run;
|
||||
}
|
||||
current_run = 0;
|
||||
}
|
||||
|
||||
// Fell out of the loop with last bit being zero. Check once more.
|
||||
if (current_run > largest_run) {
|
||||
largest_run = current_run;
|
||||
}
|
||||
stats->largest_available_reservation = largest_run;
|
||||
}
|
||||
|
||||
void AddressPoolManager::GetPoolStats(const pool_handle handle,
|
||||
PoolStats* stats) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!pool->IsInitialized()) {
|
||||
return;
|
||||
}
|
||||
pool->GetStats(stats);
|
||||
}
|
||||
|
||||
bool AddressPoolManager::GetStats(AddressSpaceStats* stats) {
|
||||
// Get 64-bit pool stats.
|
||||
GetPoolStats(kRegularPoolHandle, &stats->regular_pool_stats);
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
GetPoolStats(kBRPPoolHandle, &stats->brp_pool_stats);
|
||||
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
if (IsConfigurablePoolAvailable()) {
|
||||
GetPoolStats(kConfigurablePoolHandle, &stats->configurable_pool_stats);
|
||||
}
|
||||
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
GetPoolStats(kThreadIsolatedPoolHandle, &stats->thread_isolated_pool_stats);
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
#else // PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
static_assert(
|
||||
kSuperPageSize % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap ==
|
||||
0,
|
||||
"kSuperPageSize must be a multiple of kBytesPer1BitOfBRPPoolBitmap.");
|
||||
static_assert(
|
||||
kSuperPageSize / AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap > 0,
|
||||
"kSuperPageSize must be larger than kBytesPer1BitOfBRPPoolBitmap.");
|
||||
static_assert(AddressPoolManagerBitmap::kGuardBitsOfBRPPoolBitmap >=
|
||||
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap,
|
||||
"kGuardBitsOfBRPPoolBitmap must be larger than or equal to "
|
||||
"kGuardOffsetOfBRPPoolBitmap.");
|
||||
|
||||
template <size_t bitsize>
|
||||
void SetBitmap(std::bitset<bitsize>& bitmap,
|
||||
size_t start_bit,
|
||||
size_t bit_length) {
|
||||
const size_t end_bit = start_bit + bit_length;
|
||||
PA_DCHECK(start_bit <= bitsize);
|
||||
PA_DCHECK(end_bit <= bitsize);
|
||||
|
||||
for (size_t i = start_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(!bitmap.test(i));
|
||||
bitmap.set(i);
|
||||
}
|
||||
}
|
||||
|
||||
template <size_t bitsize>
|
||||
void ResetBitmap(std::bitset<bitsize>& bitmap,
|
||||
size_t start_bit,
|
||||
size_t bit_length) {
|
||||
const size_t end_bit = start_bit + bit_length;
|
||||
PA_DCHECK(start_bit <= bitsize);
|
||||
PA_DCHECK(end_bit <= bitsize);
|
||||
|
||||
for (size_t i = start_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(bitmap.test(i));
|
||||
bitmap.reset(i);
|
||||
}
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Reserve(pool_handle handle,
|
||||
uintptr_t requested_address,
|
||||
size_t length) {
|
||||
PA_DCHECK(!(length & DirectMapAllocationGranularityOffsetMask()));
|
||||
uintptr_t address =
|
||||
AllocPages(requested_address, length, kSuperPageSize,
|
||||
PageAccessibilityConfiguration(
|
||||
PageAccessibilityConfiguration::kInaccessible),
|
||||
kPageTag);
|
||||
return address;
|
||||
}
|
||||
|
||||
void AddressPoolManager::UnreserveAndDecommit(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
PA_DCHECK(!(address & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!(length & DirectMapAllocationGranularityOffsetMask()));
|
||||
FreePages(address, length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::MarkUsed(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
ScopedGuard scoped_lock(AddressPoolManagerBitmap::GetLock());
|
||||
// When ENABLE_BACKUP_REF_PTR_SUPPORT is off, BRP pool isn't used.
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
if (handle == kBRPPoolHandle) {
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap) == 0);
|
||||
|
||||
// Make IsManagedByBRPPoolPool() return false when an address inside the
|
||||
// first or the last PartitionPageSize()-bytes block is given:
|
||||
//
|
||||
// ------+---+---------------+---+----
|
||||
// memory ..... | B | managed by PA | B | ...
|
||||
// regions ------+---+---------------+---+----
|
||||
//
|
||||
// B: PartitionPageSize()-bytes block. This is used internally by the
|
||||
// allocator and is not available for callers.
|
||||
//
|
||||
// This is required to avoid crash caused by the following code:
|
||||
// {
|
||||
// // Assume this allocation happens outside of PartitionAlloc.
|
||||
// raw_ptr<T> ptr = new T[20];
|
||||
// for (size_t i = 0; i < 20; i ++) { ptr++; }
|
||||
// // |ptr| may point to an address inside 'B'.
|
||||
// }
|
||||
//
|
||||
// Suppose that |ptr| points to an address inside B after the loop. If
|
||||
// IsManagedByBRPPoolPool(ptr) were to return true, ~raw_ptr<T>() would
|
||||
// crash, since the memory is not allocated by PartitionAlloc.
|
||||
SetBitmap(AddressPoolManagerBitmap::brp_pool_bits_,
|
||||
(address >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) +
|
||||
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap,
|
||||
(length >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) -
|
||||
AddressPoolManagerBitmap::kGuardBitsOfBRPPoolBitmap);
|
||||
} else
|
||||
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
{
|
||||
PA_DCHECK(handle == kRegularPoolHandle);
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap) ==
|
||||
0);
|
||||
SetBitmap(AddressPoolManagerBitmap::regular_pool_bits_,
|
||||
address >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap,
|
||||
length >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap);
|
||||
}
|
||||
}
|
||||
|
||||
void AddressPoolManager::MarkUnused(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
// Address regions allocated for normal buckets are never released, so this
|
||||
// function can only be called for direct map. However, do not DCHECK on
|
||||
// IsManagedByDirectMap(address), because many tests test this function using
|
||||
// small allocations.
|
||||
|
||||
ScopedGuard scoped_lock(AddressPoolManagerBitmap::GetLock());
|
||||
// When ENABLE_BACKUP_REF_PTR_SUPPORT is off, BRP pool isn't used.
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
if (handle == kBRPPoolHandle) {
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap) == 0);
|
||||
|
||||
// Make IsManagedByBRPPoolPool() return false when an address inside the
|
||||
// first or the last PartitionPageSize()-bytes block is given.
|
||||
// (See MarkUsed comment)
|
||||
ResetBitmap(
|
||||
AddressPoolManagerBitmap::brp_pool_bits_,
|
||||
(address >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) +
|
||||
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap,
|
||||
(length >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) -
|
||||
AddressPoolManagerBitmap::kGuardBitsOfBRPPoolBitmap);
|
||||
} else
|
||||
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
{
|
||||
PA_DCHECK(handle == kRegularPoolHandle);
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap) ==
|
||||
0);
|
||||
ResetBitmap(
|
||||
AddressPoolManagerBitmap::regular_pool_bits_,
|
||||
address >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap,
|
||||
length >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap);
|
||||
}
|
||||
}
|
||||
|
||||
void AddressPoolManager::ResetForTesting() {
|
||||
ScopedGuard guard(AddressPoolManagerBitmap::GetLock());
|
||||
AddressPoolManagerBitmap::regular_pool_bits_.reset();
|
||||
AddressPoolManagerBitmap::brp_pool_bits_.reset();
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
// Counts super pages in use represented by `bitmap`.
|
||||
template <size_t bitsize>
|
||||
size_t CountUsedSuperPages(const std::bitset<bitsize>& bitmap,
|
||||
const size_t bits_per_super_page) {
|
||||
size_t count = 0;
|
||||
size_t bit_index = 0;
|
||||
|
||||
// Stride over super pages.
|
||||
for (size_t super_page_index = 0; bit_index < bitsize; ++super_page_index) {
|
||||
// Stride over the bits comprising the super page.
|
||||
for (bit_index = super_page_index * bits_per_super_page;
|
||||
bit_index < (super_page_index + 1) * bits_per_super_page &&
|
||||
bit_index < bitsize;
|
||||
++bit_index) {
|
||||
if (bitmap[bit_index]) {
|
||||
count += 1;
|
||||
// Move on to the next super page.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
bool AddressPoolManager::GetStats(AddressSpaceStats* stats) {
|
||||
std::bitset<AddressPoolManagerBitmap::kRegularPoolBits> regular_pool_bits;
|
||||
std::bitset<AddressPoolManagerBitmap::kBRPPoolBits> brp_pool_bits;
|
||||
{
|
||||
ScopedGuard scoped_lock(AddressPoolManagerBitmap::GetLock());
|
||||
regular_pool_bits = AddressPoolManagerBitmap::regular_pool_bits_;
|
||||
brp_pool_bits = AddressPoolManagerBitmap::brp_pool_bits_;
|
||||
} // scoped_lock
|
||||
|
||||
// Pool usage is read out from the address pool bitmaps.
|
||||
// The output stats are sized in super pages, so we interpret
|
||||
// the bitmaps into super page usage.
|
||||
static_assert(
|
||||
kSuperPageSize %
|
||||
AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap ==
|
||||
0,
|
||||
"information loss when calculating metrics");
|
||||
constexpr size_t kRegularPoolBitsPerSuperPage =
|
||||
kSuperPageSize /
|
||||
AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap;
|
||||
|
||||
// Get 32-bit pool usage.
|
||||
stats->regular_pool_stats.usage =
|
||||
CountUsedSuperPages(regular_pool_bits, kRegularPoolBitsPerSuperPage);
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
static_assert(
|
||||
kSuperPageSize % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap ==
|
||||
0,
|
||||
"information loss when calculating metrics");
|
||||
constexpr size_t kBRPPoolBitsPerSuperPage =
|
||||
kSuperPageSize / AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap;
|
||||
stats->brp_pool_stats.usage =
|
||||
CountUsedSuperPages(brp_pool_bits, kBRPPoolBitsPerSuperPage);
|
||||
|
||||
// Get blocklist size.
|
||||
for (const auto& blocked :
|
||||
AddressPoolManagerBitmap::brp_forbidden_super_page_map_) {
|
||||
if (blocked.load(std::memory_order_relaxed)) {
|
||||
stats->blocklist_size += 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Count failures in finding non-blocklisted addresses.
|
||||
stats->blocklist_hit_count =
|
||||
AddressPoolManagerBitmap::blocklist_hit_count_.load(
|
||||
std::memory_order_relaxed);
|
||||
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
void AddressPoolManager::DumpStats(AddressSpaceStatsDumper* dumper) {
|
||||
AddressSpaceStats stats{};
|
||||
if (GetStats(&stats)) {
|
||||
dumper->DumpStats(&stats);
|
||||
}
|
||||
}
|
||||
|
||||
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
// This function just exists to static_assert the layout of the private fields
|
||||
// in Pool. It is never called.
|
||||
void AddressPoolManager::AssertThreadIsolatedLayout() {
|
||||
constexpr size_t last_pool_offset =
|
||||
offsetof(AddressPoolManager, pools_) + sizeof(Pool) * (kNumPools - 1);
|
||||
constexpr size_t alloc_bitset_offset =
|
||||
last_pool_offset + offsetof(Pool, alloc_bitset_);
|
||||
static_assert(alloc_bitset_offset % PA_THREAD_ISOLATED_ALIGN_SZ == 0);
|
||||
static_assert(sizeof(AddressPoolManager) % PA_THREAD_ISOLATED_ALIGN_SZ == 0);
|
||||
}
|
||||
#endif // PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
|
||||
} // namespace partition_alloc::internal
|
@ -0,0 +1,210 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_ADDRESS_POOL_MANAGER_H_
|
||||
#define PARTITION_ALLOC_ADDRESS_POOL_MANAGER_H_
|
||||
|
||||
#include <bitset>
|
||||
#include <limits>
|
||||
|
||||
#include "partition_alloc/address_pool_manager_types.h"
|
||||
#include "partition_alloc/build_config.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/partition_address_space.h"
|
||||
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
|
||||
#include "partition_alloc/partition_alloc_base/component_export.h"
|
||||
#include "partition_alloc/partition_alloc_base/thread_annotations.h"
|
||||
#include "partition_alloc/partition_alloc_check.h"
|
||||
#include "partition_alloc/partition_alloc_constants.h"
|
||||
#include "partition_alloc/partition_lock.h"
|
||||
#include "partition_alloc/thread_isolation/alignment.h"
|
||||
#include "partition_alloc/thread_isolation/thread_isolation.h"
|
||||
|
||||
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
#include "partition_alloc/address_pool_manager_bitmap.h"
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
class AddressSpaceStatsDumper;
|
||||
struct AddressSpaceStats;
|
||||
struct PoolStats;
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// (64bit version)
|
||||
// AddressPoolManager takes a reserved virtual address space and manages address
|
||||
// space allocation.
|
||||
//
|
||||
// AddressPoolManager (currently) supports up to 4 pools. Each pool manages a
|
||||
// contiguous reserved address space. Alloc() takes a pool_handle and returns
|
||||
// address regions from the specified pool. Free() also takes a pool_handle and
|
||||
// returns the address region back to the manager.
|
||||
//
|
||||
// (32bit version)
|
||||
// AddressPoolManager wraps AllocPages and FreePages and remembers allocated
|
||||
// address regions using bitmaps. IsManagedByPartitionAlloc*Pool use the bitmaps
|
||||
// to judge whether a given address is in a pool that supports BackupRefPtr or
|
||||
// in a pool that doesn't. All PartitionAlloc allocations must be in either of
|
||||
// the pools.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
PA_THREAD_ISOLATED_ALIGN AddressPoolManager {
|
||||
public:
|
||||
static AddressPoolManager& GetInstance();
|
||||
|
||||
AddressPoolManager(const AddressPoolManager&) = delete;
|
||||
AddressPoolManager& operator=(const AddressPoolManager&) = delete;
|
||||
|
||||
#if PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
void Add(pool_handle handle, uintptr_t address, size_t length);
|
||||
void Remove(pool_handle handle);
|
||||
|
||||
// Populate a |used| bitset of superpages currently in use.
|
||||
void GetPoolUsedSuperPages(pool_handle handle,
|
||||
std::bitset<kMaxSuperPagesInPool>& used);
|
||||
|
||||
// Return the base address of a pool.
|
||||
uintptr_t GetPoolBaseAddress(pool_handle handle);
|
||||
#endif // PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
// Reserves address space from the pool.
|
||||
uintptr_t Reserve(pool_handle handle,
|
||||
uintptr_t requested_address,
|
||||
size_t length);
|
||||
|
||||
// Frees address space back to the pool and decommits underlying system pages.
|
||||
void UnreserveAndDecommit(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length);
|
||||
void ResetForTesting();
|
||||
|
||||
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
void MarkUsed(pool_handle handle, uintptr_t address, size_t size);
|
||||
void MarkUnused(pool_handle handle, uintptr_t address, size_t size);
|
||||
|
||||
static bool IsManagedByRegularPool(uintptr_t address) {
|
||||
return AddressPoolManagerBitmap::IsManagedByRegularPool(address);
|
||||
}
|
||||
|
||||
static bool IsManagedByBRPPool(uintptr_t address) {
|
||||
return AddressPoolManagerBitmap::IsManagedByBRPPool(address);
|
||||
}
|
||||
#endif // !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
void DumpStats(AddressSpaceStatsDumper* dumper);
|
||||
|
||||
private:
|
||||
friend class AddressPoolManagerForTesting;
|
||||
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
// If we use a thread isolated pool, we need to write-protect its metadata.
|
||||
// Allow the function to get access to the pool pointer.
|
||||
friend void WriteProtectThreadIsolatedGlobals(ThreadIsolationOption);
|
||||
#endif
|
||||
|
||||
constexpr AddressPoolManager() = default;
|
||||
~AddressPoolManager() = default;
|
||||
|
||||
// Populates `stats` if applicable.
|
||||
// Returns whether `stats` was populated. (They might not be, e.g.
|
||||
// if PartitionAlloc is wholly unused in this process.)
|
||||
bool GetStats(AddressSpaceStats* stats);
|
||||
|
||||
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
// This function just exists to static_assert the layout of the private fields
|
||||
// in Pool. It is never called.
|
||||
static void AssertThreadIsolatedLayout();
|
||||
#endif // PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
|
||||
#if PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
class Pool {
|
||||
public:
|
||||
constexpr Pool() = default;
|
||||
~Pool() = default;
|
||||
|
||||
Pool(const Pool&) = delete;
|
||||
Pool& operator=(const Pool&) = delete;
|
||||
|
||||
void Initialize(uintptr_t ptr, size_t length);
|
||||
bool IsInitialized();
|
||||
void Reset();
|
||||
|
||||
uintptr_t FindChunk(size_t size);
|
||||
void FreeChunk(uintptr_t address, size_t size);
|
||||
|
||||
bool TryReserveChunk(uintptr_t address, size_t size);
|
||||
|
||||
void GetUsedSuperPages(std::bitset<kMaxSuperPagesInPool>& used);
|
||||
uintptr_t GetBaseAddress();
|
||||
|
||||
void GetStats(PoolStats* stats);
|
||||
|
||||
private:
|
||||
// The lock needs to be the first field in this class.
|
||||
// We write-protect the pool in the ThreadIsolated case, except that the
|
||||
// lock can be used without acquiring write-permission first (via
|
||||
// DumpStats()). So instead of protecting the whole variable, we only
|
||||
// protect the memory after the lock.
|
||||
// See the alignment of ` below.
|
||||
Lock lock_;
|
||||
|
||||
// The bitset stores the allocation state of the address pool. 1 bit per
|
||||
// super-page: 1 = allocated, 0 = free.
|
||||
std::bitset<kMaxSuperPagesInPool> alloc_bitset_ PA_GUARDED_BY(lock_);
|
||||
|
||||
// An index of a bit in the bitset before which we know for sure there all
|
||||
// 1s. This is a best-effort hint in the sense that there still may be lots
|
||||
// of 1s after this index, but at least we know there is no point in
|
||||
// starting the search before it.
|
||||
size_t bit_hint_ PA_GUARDED_BY(lock_) = 0;
|
||||
|
||||
size_t total_bits_ = 0;
|
||||
uintptr_t address_begin_ = 0;
|
||||
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
|
||||
uintptr_t address_end_ = 0;
|
||||
#endif
|
||||
|
||||
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
friend class AddressPoolManager;
|
||||
friend void WriteProtectThreadIsolatedGlobals(ThreadIsolationOption);
|
||||
#endif // PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
};
|
||||
|
||||
PA_ALWAYS_INLINE Pool* GetPool(pool_handle handle) {
|
||||
PA_DCHECK(kNullPoolHandle < handle && handle <= kNumPools);
|
||||
return &pools_[handle - 1];
|
||||
}
|
||||
|
||||
// Gets the stats for the pool identified by `handle`, if
|
||||
// initialized.
|
||||
void GetPoolStats(pool_handle handle, PoolStats* stats);
|
||||
|
||||
// If thread isolation support is enabled, we need to write-protect the
|
||||
// isolated pool (which needs to be last). For this, we need to add padding in
|
||||
// front of the pools so that the isolated one starts on a page boundary.
|
||||
// We also skip the Lock at the beginning of the pool since it needs to be
|
||||
// used in contexts where we didn't enable write access to the pool memory.
|
||||
#if defined(__clang__)
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wzero-length-array"
|
||||
#endif
|
||||
char pad_[PA_THREAD_ISOLATED_ARRAY_PAD_SZ_WITH_OFFSET(
|
||||
Pool,
|
||||
kNumPools,
|
||||
offsetof(Pool, alloc_bitset_))] = {};
|
||||
#if defined(__clang__)
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
||||
Pool pools_[kNumPools];
|
||||
|
||||
#endif // PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
PA_CONSTINIT static AddressPoolManager singleton_;
|
||||
};
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // PARTITION_ALLOC_ADDRESS_POOL_MANAGER_H_
|
@ -0,0 +1,37 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "partition_alloc/address_pool_manager_bitmap.h"
|
||||
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/partition_alloc_constants.h"
|
||||
|
||||
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
Lock g_lock;
|
||||
|
||||
} // namespace
|
||||
|
||||
Lock& AddressPoolManagerBitmap::GetLock() {
|
||||
return g_lock;
|
||||
}
|
||||
|
||||
std::bitset<AddressPoolManagerBitmap::kRegularPoolBits>
|
||||
AddressPoolManagerBitmap::regular_pool_bits_; // GUARDED_BY(GetLock())
|
||||
std::bitset<AddressPoolManagerBitmap::kBRPPoolBits>
|
||||
AddressPoolManagerBitmap::brp_pool_bits_; // GUARDED_BY(GetLock())
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
std::array<std::atomic_bool,
|
||||
AddressPoolManagerBitmap::kAddressSpaceSize / kSuperPageSize>
|
||||
AddressPoolManagerBitmap::brp_forbidden_super_page_map_;
|
||||
std::atomic_size_t AddressPoolManagerBitmap::blocklist_hit_count_;
|
||||
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
@ -0,0 +1,189 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_ADDRESS_POOL_MANAGER_BITMAP_H_
|
||||
#define PARTITION_ALLOC_ADDRESS_POOL_MANAGER_BITMAP_H_
|
||||
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <bitset>
|
||||
#include <limits>
|
||||
|
||||
#include "partition_alloc/build_config.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
|
||||
#include "partition_alloc/partition_alloc_base/component_export.h"
|
||||
#include "partition_alloc/partition_alloc_check.h"
|
||||
#include "partition_alloc/partition_alloc_constants.h"
|
||||
#include "partition_alloc/partition_lock.h"
|
||||
|
||||
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// AddressPoolManagerBitmap is a set of bitmaps that track whether a given
|
||||
// address is in a pool that supports BackupRefPtr, or in a pool that doesn't
|
||||
// support it. All PartitionAlloc allocations must be in either of the pools.
|
||||
//
|
||||
// This code is specific to 32-bit systems.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) AddressPoolManagerBitmap {
|
||||
public:
|
||||
static constexpr uint64_t kGiB = 1024 * 1024 * 1024ull;
|
||||
static constexpr uint64_t kAddressSpaceSize = 4ull * kGiB;
|
||||
|
||||
// For BRP pool, we use partition page granularity to eliminate the guard
|
||||
// pages from the bitmap at the ends:
|
||||
// - Eliminating the guard page at the beginning is needed so that pointers
|
||||
// to the end of an allocation that immediately precede a super page in BRP
|
||||
// pool don't accidentally fall into that pool.
|
||||
// - Eliminating the guard page at the end is to ensure that the last page
|
||||
// of the address space isn't in the BRP pool. This allows using sentinels
|
||||
// like reinterpret_cast<void*>(-1) without a risk of triggering BRP logic
|
||||
// on an invalid address. (Note, 64-bit systems don't have this problem as
|
||||
// the upper half of the address space always belongs to the OS.)
|
||||
//
|
||||
// Note, direct map allocations also belong to this pool. The same logic as
|
||||
// above applies. It is important to note, however, that the granularity used
|
||||
// here has to be a minimum of partition page size and direct map allocation
|
||||
// granularity. Since DirectMapAllocationGranularity() is no smaller than
|
||||
// PageAllocationGranularity(), we don't need to decrease the bitmap
|
||||
// granularity any further.
|
||||
static constexpr size_t kBitShiftOfBRPPoolBitmap = PartitionPageShift();
|
||||
static constexpr size_t kBytesPer1BitOfBRPPoolBitmap = PartitionPageSize();
|
||||
static_assert(kBytesPer1BitOfBRPPoolBitmap == 1 << kBitShiftOfBRPPoolBitmap,
|
||||
"");
|
||||
static constexpr size_t kGuardOffsetOfBRPPoolBitmap = 1;
|
||||
static constexpr size_t kGuardBitsOfBRPPoolBitmap = 2;
|
||||
static constexpr size_t kBRPPoolBits =
|
||||
kAddressSpaceSize / kBytesPer1BitOfBRPPoolBitmap;
|
||||
|
||||
// Regular pool may include both normal bucket and direct map allocations, so
|
||||
// the bitmap granularity has to be at least as small as
|
||||
// DirectMapAllocationGranularity(). No need to eliminate guard pages at the
|
||||
// ends, as this is a BackupRefPtr-specific concern, hence no need to lower
|
||||
// the granularity to partition page size.
|
||||
static constexpr size_t kBitShiftOfRegularPoolBitmap =
|
||||
DirectMapAllocationGranularityShift();
|
||||
static constexpr size_t kBytesPer1BitOfRegularPoolBitmap =
|
||||
DirectMapAllocationGranularity();
|
||||
static_assert(kBytesPer1BitOfRegularPoolBitmap ==
|
||||
1 << kBitShiftOfRegularPoolBitmap,
|
||||
"");
|
||||
static constexpr size_t kRegularPoolBits =
|
||||
kAddressSpaceSize / kBytesPer1BitOfRegularPoolBitmap;
|
||||
|
||||
// Returns false for nullptr.
|
||||
static bool IsManagedByRegularPool(uintptr_t address) {
|
||||
static_assert(
|
||||
std::numeric_limits<uintptr_t>::max() >> kBitShiftOfRegularPoolBitmap <
|
||||
regular_pool_bits_.size(),
|
||||
"The bitmap is too small, will result in unchecked out of bounds "
|
||||
"accesses.");
|
||||
// It is safe to read |regular_pool_bits_| without a lock since the caller
|
||||
// is responsible for guaranteeing that the address is inside a valid
|
||||
// allocation and the deallocation call won't race with this call.
|
||||
return PA_TS_UNCHECKED_READ(
|
||||
regular_pool_bits_)[address >> kBitShiftOfRegularPoolBitmap];
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
static bool IsManagedByBRPPool(uintptr_t address) {
|
||||
static_assert(std::numeric_limits<uintptr_t>::max() >>
|
||||
kBitShiftOfBRPPoolBitmap < brp_pool_bits_.size(),
|
||||
"The bitmap is too small, will result in unchecked out of "
|
||||
"bounds accesses.");
|
||||
// It is safe to read |brp_pool_bits_| without a lock since the caller
|
||||
// is responsible for guaranteeing that the address is inside a valid
|
||||
// allocation and the deallocation call won't race with this call.
|
||||
return PA_TS_UNCHECKED_READ(
|
||||
brp_pool_bits_)[address >> kBitShiftOfBRPPoolBitmap];
|
||||
}
|
||||
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
static void BanSuperPageFromBRPPool(uintptr_t address) {
|
||||
brp_forbidden_super_page_map_[address >> kSuperPageShift].store(
|
||||
true, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
static bool IsAllowedSuperPageForBRPPool(uintptr_t address) {
|
||||
// The only potentially dangerous scenario, in which this check is used, is
|
||||
// when the assignment of the first raw_ptr<T> object for an address
|
||||
// allocated outside the BRP pool is racing with the allocation of a new
|
||||
// super page at the same address. We assume that if raw_ptr<T> is being
|
||||
// initialized with a raw pointer, the associated allocation is "alive";
|
||||
// otherwise, the issue should be fixed by rewriting the raw pointer
|
||||
// variable as raw_ptr<T>. In the worst case, when such a fix is
|
||||
// impossible, we should just undo the raw pointer -> raw_ptr<T> rewrite of
|
||||
// the problematic field. If the above assumption holds, the existing
|
||||
// allocation will prevent us from reserving the super-page region and,
|
||||
// thus, having the race condition. Since we rely on that external
|
||||
// synchronization, the relaxed memory ordering should be sufficient.
|
||||
return !brp_forbidden_super_page_map_[address >> kSuperPageShift].load(
|
||||
std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
static void IncrementBlocklistHitCount() { ++blocklist_hit_count_; }
|
||||
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
|
||||
private:
|
||||
friend class AddressPoolManager;
|
||||
|
||||
static Lock& GetLock();
|
||||
|
||||
static std::bitset<kRegularPoolBits> regular_pool_bits_
|
||||
PA_GUARDED_BY(GetLock());
|
||||
static std::bitset<kBRPPoolBits> brp_pool_bits_ PA_GUARDED_BY(GetLock());
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
static std::array<std::atomic_bool, kAddressSpaceSize / kSuperPageSize>
|
||||
brp_forbidden_super_page_map_;
|
||||
static std::atomic_size_t blocklist_hit_count_;
|
||||
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAlloc(uintptr_t address) {
|
||||
// When ENABLE_BACKUP_REF_PTR_SUPPORT is off, BRP pool isn't used.
|
||||
// No need to add IsManagedByConfigurablePool, because Configurable Pool
|
||||
// doesn't exist on 32-bit.
|
||||
#if !PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
PA_DCHECK(!internal::AddressPoolManagerBitmap::IsManagedByBRPPool(address));
|
||||
#endif
|
||||
return internal::AddressPoolManagerBitmap::IsManagedByRegularPool(address)
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
|| internal::AddressPoolManagerBitmap::IsManagedByBRPPool(address)
|
||||
#endif
|
||||
;
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocRegularPool(uintptr_t address) {
|
||||
return internal::AddressPoolManagerBitmap::IsManagedByRegularPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocBRPPool(uintptr_t address) {
|
||||
return internal::AddressPoolManagerBitmap::IsManagedByBRPPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocConfigurablePool(
|
||||
uintptr_t address) {
|
||||
// The Configurable Pool is only available on 64-bit builds.
|
||||
return false;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE bool IsConfigurablePoolAvailable() {
|
||||
// The Configurable Pool is only available on 64-bit builds.
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
#endif // PARTITION_ALLOC_ADDRESS_POOL_MANAGER_BITMAP_H_
|
@ -0,0 +1,14 @@
|
||||
// Copyright 2020 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_ADDRESS_POOL_MANAGER_TYPES_H_
|
||||
#define PARTITION_ALLOC_ADDRESS_POOL_MANAGER_TYPES_H_
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
enum pool_handle : unsigned;
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // PARTITION_ALLOC_ADDRESS_POOL_MANAGER_TYPES_H_
|
@ -0,0 +1,51 @@
|
||||
// Copyright 2014 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "partition_alloc/address_space_randomization.h"
|
||||
|
||||
#include "partition_alloc/build_config.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/partition_alloc_check.h"
|
||||
#include "partition_alloc/random.h"
|
||||
|
||||
#if PA_BUILDFLAG(IS_WIN)
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
uintptr_t GetRandomPageBase() {
|
||||
uintptr_t random = static_cast<uintptr_t>(internal::RandomValue());
|
||||
|
||||
#if PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
random <<= 32ULL;
|
||||
random |= static_cast<uintptr_t>(internal::RandomValue());
|
||||
|
||||
// The ASLRMask() and ASLROffset() constants will be suitable for the
|
||||
// OS and build configuration.
|
||||
random &= internal::ASLRMask();
|
||||
random += internal::ASLROffset();
|
||||
#else // PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
#if PA_BUILDFLAG(IS_WIN)
|
||||
// On win32 host systems the randomization plus huge alignment causes
|
||||
// excessive fragmentation. Plus most of these systems lack ASLR, so the
|
||||
// randomization isn't buying anything. In that case we just skip it.
|
||||
// TODO(palmer): Just dump the randomization when HE-ASLR is present.
|
||||
static BOOL is_wow64 = -1;
|
||||
if (is_wow64 == -1 && !IsWow64Process(GetCurrentProcess(), &is_wow64)) {
|
||||
is_wow64 = FALSE;
|
||||
}
|
||||
if (!is_wow64) {
|
||||
return 0;
|
||||
}
|
||||
#endif // PA_BUILDFLAG(IS_WIN)
|
||||
random &= internal::ASLRMask();
|
||||
random += internal::ASLROffset();
|
||||
#endif // PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
|
||||
PA_DCHECK(!(random & internal::PageAllocationGranularityOffsetMask()));
|
||||
return random;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
@ -0,0 +1,301 @@
|
||||
// Copyright 2014 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_ADDRESS_SPACE_RANDOMIZATION_H_
|
||||
#define PARTITION_ALLOC_ADDRESS_SPACE_RANDOMIZATION_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "partition_alloc/build_config.h"
|
||||
#include "partition_alloc/page_allocator_constants.h"
|
||||
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
|
||||
#include "partition_alloc/partition_alloc_base/component_export.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// Calculates a random preferred mapping address. In calculating an address, we
|
||||
// balance good ASLR against not fragmenting the address space too badly.
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) uintptr_t GetRandomPageBase();
|
||||
|
||||
namespace internal {
|
||||
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
AslrAddress(uintptr_t mask) {
|
||||
return mask & PageAllocationGranularityBaseMask();
|
||||
}
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
AslrMask(uintptr_t bits) {
|
||||
return AslrAddress((1ULL << bits) - 1ULL);
|
||||
}
|
||||
|
||||
// Turn off formatting, because the thicket of nested ifdefs below is
|
||||
// incomprehensible without indentation. It is also incomprehensible with
|
||||
// indentation, but the only other option is a combinatorial explosion of
|
||||
// *_{win,linux,mac,foo}_{32,64}.h files.
|
||||
//
|
||||
// clang-format off
|
||||
|
||||
#if PA_BUILDFLAG(PA_ARCH_CPU_64_BITS)
|
||||
|
||||
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
||||
|
||||
// We shouldn't allocate system pages at all for sanitizer builds. However,
|
||||
// we do, and if random hint addresses interfere with address ranges
|
||||
// hard-coded in those tools, bad things happen. This address range is
|
||||
// copied from TSAN source but works with all tools. See
|
||||
// https://crbug.com/539863.
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrAddress(0x007fffffffffULL);
|
||||
}
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLROffset() {
|
||||
return AslrAddress(0x7e8000000000ULL);
|
||||
}
|
||||
|
||||
#elif PA_BUILDFLAG(IS_WIN)
|
||||
|
||||
// Windows 8.10 and newer support the full 48 bit address range. Since
|
||||
// ASLROffset() is non-zero and may cause a carry, use 47 bit masks. See
|
||||
// http://www.alex-ionescu.com/?p=246
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLRMask() {
|
||||
return AslrMask(47);
|
||||
}
|
||||
// Try not to map pages into the range where Windows loads DLLs by default.
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return 0x80000000ULL;
|
||||
}
|
||||
|
||||
#elif PA_BUILDFLAG(IS_APPLE)
|
||||
|
||||
// macOS as of 10.12.5 does not clean up entries in page map levels 3/4
|
||||
// [PDP/PML4] created from mmap or mach_vm_allocate, even after the region
|
||||
// is destroyed. Using a virtual address space that is too large causes a
|
||||
// leak of about 1 wired [can never be paged out] page per call to mmap. The
|
||||
// page is only reclaimed when the process is killed. Confine the hint to a
|
||||
// 39-bit section of the virtual address space.
|
||||
//
|
||||
// This implementation adapted from
|
||||
// https://chromium-review.googlesource.com/c/v8/v8/+/557958. The difference
|
||||
// is that here we clamp to 39 bits, not 32.
|
||||
//
|
||||
// TODO(crbug.com/40528509): Remove this limitation if/when the macOS
|
||||
// behavior changes.
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrMask(38);
|
||||
}
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLROffset() {
|
||||
// Be careful, there is a zone where macOS will not map memory, at least
|
||||
// on ARM64. From an ARM64 machine running 12.3, the range seems to be
|
||||
// [0x1000000000, 0x7000000000). Make sure that the range we use is
|
||||
// outside these bounds. In 12.3, there is a reserved area between
|
||||
// MACH_VM_MIN_GPU_CARVEOUT_ADDRESS and MACH_VM_MAX_GPU_CARVEOUT_ADDRESS,
|
||||
// which is reserved on ARM64. See these constants in XNU's source code
|
||||
// for details (xnu-8019.80.24/osfmk/mach/arm/vm_param.h).
|
||||
return AslrAddress(0x10000000000ULL);
|
||||
}
|
||||
|
||||
#elif PA_BUILDFLAG(IS_POSIX) || PA_BUILDFLAG(IS_FUCHSIA)
|
||||
|
||||
#if PA_BUILDFLAG(PA_ARCH_CPU_X86_64)
|
||||
|
||||
// Linux (and macOS) support the full 47-bit user space of x64 processors.
|
||||
// Use only 46 to allow the kernel a chance to fulfill the request.
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrMask(46);
|
||||
}
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#elif PA_BUILDFLAG(IS_ANDROID) && (PA_BUILDFLAG(PA_ARCH_CPU_ARM64) || PA_BUILDFLAG(PA_ARCH_CPU_RISCV64))
|
||||
// Restrict the address range on Android to avoid a large performance
|
||||
// regression in single-process WebViews. See https://crbug.com/837640.
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLROffset() {
|
||||
return AslrAddress(0x20000000ULL);
|
||||
}
|
||||
#elif PA_BUILDFLAG(PA_ARCH_CPU_ARM64)
|
||||
#if PA_BUILDFLAG(IS_LINUX)
|
||||
|
||||
// Linux on arm64 can use 39, 42, 48, or 52-bit user space, depending on
|
||||
// page size and number of levels of translation pages used. We use
|
||||
// 39-bit as base as all setups should support this, lowered to 38-bit
|
||||
// as ASLROffset() could cause a carry.
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrMask(38);
|
||||
}
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLROffset() {
|
||||
return AslrAddress(0x1000000000ULL);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// ARM64 on Linux has 39-bit user space. Use 38 bits since ASLROffset()
|
||||
// could cause a carry.
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLRMask() {
|
||||
return AslrMask(38);
|
||||
}
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x1000000000ULL);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#elif PA_BUILDFLAG(PA_ARCH_CPU_PPC64)
|
||||
|
||||
#if PA_BUILDFLAG(IS_AIX)
|
||||
|
||||
// AIX has 64 bits of virtual addressing, but we limit the address range
|
||||
// to (a) minimize segment lookaside buffer (SLB) misses; and (b) use
|
||||
// extra address space to isolate the mmap regions.
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x400000000000ULL);
|
||||
}
|
||||
|
||||
#elif PA_BUILDFLAG(PA_ARCH_CPU_BIG_ENDIAN)
|
||||
|
||||
// Big-endian Linux PPC has 44 bits of virtual addressing. Use 42.
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLRMask() {
|
||||
return AslrMask(42);
|
||||
}
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#else // !PA_BUILDFLAG(IS_AIX) && !PA_BUILDFLAG(PA_ARCH_CPU_BIG_ENDIAN)
|
||||
#if PA_BUILDFLAG(IS_LINUX)
|
||||
|
||||
// Little-endian Linux PPC has 48 bits of virtual addressing. Use 46.
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t ASLRMask() {
|
||||
return AslrMask(46);
|
||||
}
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLRMask() {
|
||||
return AslrMask(46);
|
||||
}
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif // !PA_BUILDFLAG(IS_AIX) && !PA_BUILDFLAG(PA_ARCH_CPU_BIG_ENDIAN)
|
||||
|
||||
#elif PA_BUILDFLAG(PA_ARCH_CPU_S390X)
|
||||
|
||||
// Linux on Z uses bits 22 - 32 for Region Indexing, which translates to
|
||||
// 42 bits of virtual addressing. Truncate to 40 bits to allow kernel a
|
||||
// chance to fulfill the request.
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLRMask() {
|
||||
return AslrMask(40);
|
||||
}
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#elif PA_BUILDFLAG(PA_ARCH_CPU_S390)
|
||||
|
||||
// 31 bits of virtual addressing. Truncate to 29 bits to allow the kernel
|
||||
// a chance to fulfill the request.
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLRMask() {
|
||||
return AslrMask(29);
|
||||
}
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#else // !PA_BUILDFLAG(PA_ARCH_CPU_X86_64) && !PA_BUILDFLAG(PA_ARCH_CPU_PPC64) &&
|
||||
// !PA_BUILDFLAG(PA_ARCH_CPU_S390X) && !PA_BUILDFLAG(PA_ARCH_CPU_S390)
|
||||
|
||||
// For all other POSIX variants, use 30 bits.
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
|
||||
#if PA_BUILDFLAG(IS_SOLARIS)
|
||||
|
||||
// For our Solaris/illumos mmap hint, we pick a random address in the
|
||||
// bottom half of the top half of the address space (that is, the third
|
||||
// quarter). Because we do not MAP_FIXED, this will be treated only as a
|
||||
// hint -- the system will not fail to mmap because something else
|
||||
// happens to already be mapped at our random address. We deliberately
|
||||
// set the hint high enough to get well above the system's break (that
|
||||
// is, the heap); Solaris and illumos will try the hint and if that
|
||||
// fails allocate as if there were no hint at all. The high hint
|
||||
// prevents the break from getting hemmed in at low values, ceding half
|
||||
// of the address space to the system heap.
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x80000000ULL);
|
||||
}
|
||||
|
||||
#elif PA_BUILDFLAG(IS_AIX)
|
||||
|
||||
// The range 0x30000000 - 0xD0000000 is available on AIX; choose the
|
||||
// upper range.
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x90000000ULL);
|
||||
}
|
||||
|
||||
#else // !PA_BUILDFLAG(IS_SOLARIS) && !PA_BUILDFLAG(IS_AIX)
|
||||
|
||||
// The range 0x20000000 - 0x60000000 is relatively unpopulated across a
|
||||
// variety of ASLR modes (PAE kernel, NX compat mode, etc) and on macOS
|
||||
// 10.6 and 10.7.
|
||||
PA_ALWAYS_INLINE PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR uintptr_t
|
||||
ASLROffset() {
|
||||
return AslrAddress(0x20000000ULL);
|
||||
}
|
||||
|
||||
#endif // !PA_BUILDFLAG(IS_SOLARIS) && !PA_BUILDFLAG(IS_AIX)
|
||||
|
||||
#endif // !PA_BUILDFLAG(PA_ARCH_CPU_X86_64) && !PA_BUILDFLAG(PA_ARCH_CPU_PPC64) &&
|
||||
// !PA_BUILDFLAG(PA_ARCH_CPU_S390X) && !PA_BUILDFLAG(PA_ARCH_CPU_S390)
|
||||
|
||||
#endif // PA_BUILDFLAG(IS_POSIX)
|
||||
|
||||
#elif PA_BUILDFLAG(PA_ARCH_CPU_32_BITS)
|
||||
|
||||
// This is a good range on 32-bit Windows and Android (the only platforms on
|
||||
// which we support 32-bitness). Allocates in the 0.5 - 1.5 GiB region. There
|
||||
// is no issue with carries here.
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x20000000ULL);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#error Please tell us about your exotic hardware! Sounds interesting.
|
||||
|
||||
#endif // PA_BUILDFLAG(PA_ARCH_CPU_32_BITS)
|
||||
|
||||
// clang-format on
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // PARTITION_ALLOC_ADDRESS_SPACE_RANDOMIZATION_H_
|
@ -0,0 +1,55 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_ADDRESS_SPACE_STATS_H_
|
||||
#define PARTITION_ALLOC_ADDRESS_SPACE_STATS_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/partition_alloc_base/component_export.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// All members are measured in super pages.
|
||||
struct PoolStats {
|
||||
size_t usage = 0;
|
||||
|
||||
// On 32-bit, pools are mainly logical entities, intermingled with
|
||||
// allocations not managed by PartitionAlloc. The "largest available
|
||||
// reservation" is not possible to measure in that case.
|
||||
#if PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
size_t largest_available_reservation = 0;
|
||||
#endif
|
||||
};
|
||||
|
||||
struct AddressSpaceStats {
|
||||
PoolStats regular_pool_stats;
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
PoolStats brp_pool_stats;
|
||||
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
#if PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
PoolStats configurable_pool_stats;
|
||||
#else
|
||||
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
size_t blocklist_size; // measured in super pages
|
||||
size_t blocklist_hit_count;
|
||||
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
|
||||
#endif // PA_BUILDFLAG(HAS_64_BIT_POINTERS)
|
||||
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|
||||
PoolStats thread_isolated_pool_stats;
|
||||
#endif
|
||||
};
|
||||
|
||||
// Interface passed to `AddressPoolManager::DumpStats()` to mediate
|
||||
// for `AddressSpaceDumpProvider`.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) AddressSpaceStatsDumper {
|
||||
public:
|
||||
virtual void DumpStats(const AddressSpaceStats* address_space_stats) = 0;
|
||||
virtual ~AddressSpaceStatsDumper() = default;
|
||||
};
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // PARTITION_ALLOC_ADDRESS_SPACE_STATS_H_
|
@ -0,0 +1,42 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "partition_alloc/allocation_guard.h"
|
||||
#include "partition_alloc/partition_alloc_base/immediate_crash.h"
|
||||
#include "partition_alloc/partition_alloc_config.h"
|
||||
|
||||
#if PA_CONFIG(HAS_ALLOCATION_GUARD)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
thread_local bool g_disallow_allocations;
|
||||
} // namespace
|
||||
|
||||
ScopedDisallowAllocations::ScopedDisallowAllocations() {
|
||||
if (g_disallow_allocations) {
|
||||
PA_IMMEDIATE_CRASH();
|
||||
}
|
||||
|
||||
g_disallow_allocations = true;
|
||||
}
|
||||
|
||||
ScopedDisallowAllocations::~ScopedDisallowAllocations() {
|
||||
g_disallow_allocations = false;
|
||||
}
|
||||
|
||||
ScopedAllowAllocations::ScopedAllowAllocations() {
|
||||
// Save the previous value, as ScopedAllowAllocations is used in all
|
||||
// partitions, not just the malloc() ones(s).
|
||||
saved_value_ = g_disallow_allocations;
|
||||
g_disallow_allocations = false;
|
||||
}
|
||||
|
||||
ScopedAllowAllocations::~ScopedAllowAllocations() {
|
||||
g_disallow_allocations = saved_value_;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // PA_CONFIG(HAS_ALLOCATION_GUARD)
|
@ -0,0 +1,49 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_ALLOCATION_GUARD_H_
|
||||
#define PARTITION_ALLOC_ALLOCATION_GUARD_H_
|
||||
|
||||
#include "partition_alloc/build_config.h"
|
||||
#include "partition_alloc/partition_alloc_base/component_export.h"
|
||||
#include "partition_alloc/partition_alloc_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
#if PA_CONFIG(HAS_ALLOCATION_GUARD)
|
||||
|
||||
// Disallow allocations in the scope. Does not nest.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) ScopedDisallowAllocations {
|
||||
public:
|
||||
ScopedDisallowAllocations();
|
||||
~ScopedDisallowAllocations();
|
||||
};
|
||||
|
||||
// Disallow allocations in the scope. Does not nest.
|
||||
class PA_COMPONENT_EXPORT(PARTITION_ALLOC) ScopedAllowAllocations {
|
||||
public:
|
||||
ScopedAllowAllocations();
|
||||
~ScopedAllowAllocations();
|
||||
|
||||
private:
|
||||
bool saved_value_;
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
struct [[maybe_unused]] ScopedDisallowAllocations {};
|
||||
struct [[maybe_unused]] ScopedAllowAllocations {};
|
||||
|
||||
#endif // PA_CONFIG(HAS_ALLOCATION_GUARD)
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base::internal {
|
||||
|
||||
using ::partition_alloc::ScopedAllowAllocations;
|
||||
using ::partition_alloc::ScopedDisallowAllocations;
|
||||
|
||||
} // namespace base::internal
|
||||
|
||||
#endif // PARTITION_ALLOC_ALLOCATION_GUARD_H_
|
@ -0,0 +1,50 @@
|
||||
# Copyright 2021 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# This file contains a test function for checking Arm's branch target
|
||||
# identification (BTI) feature, which helps mitigate jump-oriented
|
||||
# programming. To get it working, BTI instructions must be executed
|
||||
# on a compatible core, and the executable pages must be mapped with
|
||||
# PROT_BTI. To validate that pages mapped with PROT_BTI are working
|
||||
# correctly:
|
||||
# 1) Allocate a read-write page.
|
||||
# 2) Copy between the start and end symbols into that page.
|
||||
# 3) Set the page to read-execute with PROT_BTI.
|
||||
# 4) Call the first offset of the page, verify the result.
|
||||
# 5) Call the second offset of the page (skipping the landing pad).
|
||||
# Verify that it crashes as expected.
|
||||
# This test works irrespective of whether BTI is enabled for C/C++
|
||||
# objects via -mbranch-protection=standard.
|
||||
|
||||
.text
|
||||
.global arm_bti_test_function
|
||||
.global arm_bti_test_function_invalid_offset
|
||||
.global arm_bti_test_function_end
|
||||
arm_bti_test_function:
|
||||
# Mark the start of this function as a valid call target.
|
||||
bti jc
|
||||
add x0, x0, #1
|
||||
arm_bti_test_function_invalid_offset:
|
||||
# This label simulates calling an incomplete function.
|
||||
# Jumping here should crash systems which support BTI.
|
||||
add x0, x0, #2
|
||||
ret
|
||||
arm_bti_test_function_end:
|
||||
nop
|
||||
|
||||
// For details see section "6.2 Program Property" in
|
||||
// "ELF for the Arm 64-bit Architecture (AArch64)"
|
||||
// https://github.com/ARM-software/abi-aa/blob/main/aaelf64/aaelf64.rst#62program-property
|
||||
.pushsection .note.gnu.property, "a";
|
||||
.balign 8;
|
||||
.long 4;
|
||||
.long 0x10;
|
||||
.long 0x5;
|
||||
.asciz "GNU";
|
||||
.long 0xc0000000; /* GNU_PROPERTY_AARCH64_FEATURE_1_AND */
|
||||
.long 4;
|
||||
.long 1; /* GNU_PROPERTY_AARCH64_BTI */;
|
||||
.long 0;
|
||||
.popsection
|
||||
|
@ -0,0 +1,31 @@
|
||||
// Copyright 2021 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_ARM_BTI_TEST_FUNCTIONS_H_
|
||||
#define PARTITION_ALLOC_ARM_BTI_TEST_FUNCTIONS_H_
|
||||
|
||||
#include "partition_alloc/build_config.h"
|
||||
|
||||
#if PA_BUILDFLAG(PA_ARCH_CPU_ARM64)
|
||||
extern "C" {
|
||||
/**
|
||||
* A valid BTI function. Jumping to this funtion should not cause any problem in
|
||||
* a BTI enabled environment.
|
||||
**/
|
||||
int64_t arm_bti_test_function(int64_t);
|
||||
|
||||
/**
|
||||
* A function without proper BTI landing pad. Jumping here should crash the
|
||||
* program on systems which support BTI.
|
||||
**/
|
||||
int64_t arm_bti_test_function_invalid_offset(int64_t);
|
||||
|
||||
/**
|
||||
* A simple function which immediately returns to sender.
|
||||
**/
|
||||
void arm_bti_test_function_end(void);
|
||||
}
|
||||
#endif // PA_BUILDFLAG(PA_ARCH_CPU_ARM64)
|
||||
|
||||
#endif // PARTITION_ALLOC_ARM_BTI_TEST_FUNCTIONS_H_
|
@ -0,0 +1,508 @@
|
||||
// Copyright 2024 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
#ifndef PARTITION_ALLOC_BUILD_CONFIG_H_
|
||||
#define PARTITION_ALLOC_BUILD_CONFIG_H_
|
||||
|
||||
// This file is derived from chromium's //build/build_config.h.
|
||||
//
|
||||
// Differences:
|
||||
// - Only the definition used by partition_alloc are included.
|
||||
// - The definition can only be consumed PA_BUILDFLAG(...) macro. This avoids
|
||||
// silent failure when developers forget to include this file. This avoids the
|
||||
// need of a PRESUBMIT.py to enforce the inclusion of this file.
|
||||
//
|
||||
//
|
||||
// This files contains the following definition:
|
||||
//
|
||||
// Operating system:
|
||||
// IS_IOS / IS_AIX / IS_ASMJS / IS_FREEBSD / IS_FUCHSIA / IS_LINUX / IS_MAC /
|
||||
// IS_NACL / IS_NETBSD / IS_OPENBSD / IS_QNX / IS_SOLARIS / IS_WIN
|
||||
//
|
||||
// Operating system family:
|
||||
// IS_APPLE / IS_BSD / IS_POSIX
|
||||
//
|
||||
// Compiler:
|
||||
// PA_COMPILER_GCC / PA_COMPILER_MSVC
|
||||
//
|
||||
// Processor:
|
||||
// PA_ARCH_CPU_ARM64 / PA_ARCH_CPU_ARMEL / PA_ARCH_CPU_BIG_ENDIAN /
|
||||
// PA_ARCH_CPU_LITTLE_ENDIAN / PA_ARCH_CPU_MIPS / PA_ARCH_CPU_MIPS64 /
|
||||
// PA_ARCH_CPU_MIPS64EL / PA_ARCH_CPU_MIPSEL / PA_ARCH_CPU_PPC64 /
|
||||
// PA_ARCH_CPU_RISCV64 / PA_ARCH_CPU_S390 / PA_ARCH_CPU_S390X /
|
||||
// PA_ARCH_CPU_X86 / PA_ARCH_CPU_X86_64
|
||||
//
|
||||
// Processor Family:
|
||||
// PA_ARCH_CPU_32_BITS / PA_ARCH_CPU_64_BITS / PA_ARCH_CPU_ARM_FAMILY /
|
||||
// PA_ARCH_CPU_LOONGPA_ARCH64 / PA_ARCH_CPU_PPC64_FAMILY /
|
||||
// PA_ARCH_CPU_S390_FAMILY / PA_ARCH_CPU_X86_FAMILY
|
||||
//
|
||||
// Compiler:
|
||||
// PA_COMPILER_GCC / PA_COMPILER_MSVC
|
||||
//
|
||||
// Standard library:
|
||||
// PA_LIBC_GLIBC
|
||||
|
||||
// Definition of PA_BUILDFLAG(...) macro.
|
||||
#include "partition_alloc/buildflag.h" // IWYU pragma: export
|
||||
|
||||
// Definition of PA_BUILDFLAG(IS_CHROMEOS).
|
||||
#include "partition_alloc/buildflags.h" // IWYU pragma: export
|
||||
|
||||
// Clangd does not detect PA_BUILDFLAG_INTERNAL_* indirect usage, so mark the
|
||||
// header as "always_keep" to avoid "unused include" warning.
|
||||
//
|
||||
// IWYU pragma: always_keep
|
||||
|
||||
// A set of macros to use for platform detection.
|
||||
#if defined(__native_client__)
|
||||
// __native_client__ must be first, so that other IS_ defines are not set.
|
||||
#define PA_IS_NACL
|
||||
#elif PA_BUILDFLAG(IS_ANDROID)
|
||||
// The IS_ANDROID PA_BUILDFLAG macro is defined in buildflags.h.
|
||||
//
|
||||
// PartitionAlloc's embedders (Chromium, Dawn, Pdfium, Skia) define different
|
||||
// macros for Android builds: "ANDROID" or "SK_BUILD_FOR_ANDROID".
|
||||
//
|
||||
// To avoid relying on these external definitions, PartitionAlloc uses its own
|
||||
// dedicated build flag.
|
||||
#elif defined(__APPLE__)
|
||||
// Only include TargetConditionals after testing ANDROID as some Android builds
|
||||
// on the Mac have this header available and it's not needed unless the target
|
||||
// is really an Apple platform.
|
||||
#include <TargetConditionals.h>
|
||||
#if defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE
|
||||
#define PA_IS_IOS
|
||||
#else
|
||||
#define PA_IS_MAC
|
||||
#endif // defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE
|
||||
#elif defined(__linux__)
|
||||
#if !PA_BUILDFLAG(IS_CHROMEOS)
|
||||
// Do not define PA_IS_LINUX on Chrome OS build.
|
||||
// The IS_CHROMEOS PA_BUILDFLAG macro is defined in buildflags.h.
|
||||
#define PA_IS_LINUX
|
||||
#endif // !PA_BUILDFLAG(IS_CHROMEOS)
|
||||
// Include a system header to pull in features.h for glibc/uclibc macros.
|
||||
#include <assert.h>
|
||||
#if defined(__GLIBC__) && !defined(__UCLIBC__)
|
||||
// We really are using glibc, not uClibc pretending to be glibc.
|
||||
#define PA_LIBC_GLIBC
|
||||
#endif
|
||||
#elif defined(_WIN32)
|
||||
#define PA_IS_WIN
|
||||
#elif defined(__Fuchsia__)
|
||||
#define PA_IS_FUCHSIA
|
||||
#elif defined(__FreeBSD__)
|
||||
#define PA_IS_FREEBSD
|
||||
#elif defined(__NetBSD__)
|
||||
#define PA_IS_NETBSD
|
||||
#elif defined(__OpenBSD__)
|
||||
#define PA_IS_OPENBSD
|
||||
#elif defined(__sun)
|
||||
#define PA_IS_SOLARIS
|
||||
#elif defined(__QNXNTO__)
|
||||
#define PA_IS_QNX
|
||||
#elif defined(_AIX)
|
||||
#define PA_IS_AIX
|
||||
#elif defined(__asmjs__) || defined(__wasm__)
|
||||
#define PA_IS_ASMJS
|
||||
#endif
|
||||
|
||||
// NOTE: Adding a new port? Please follow
|
||||
// https://chromium.googlesource.com/chromium/src/+/main/docs/new_port_policy.md
|
||||
|
||||
#if defined(PA_IS_MAC) || defined(PA_IS_IOS)
|
||||
#define PA_IS_APPLE
|
||||
#endif
|
||||
|
||||
#if defined(PA_IS_FREEBSD) || defined(PA_IS_NETBSD) || defined(PA_IS_OPENBSD)
|
||||
#define PA_IS_BSD
|
||||
#endif
|
||||
|
||||
#if defined(PA_IS_AIX) || defined(PA_IS_ASMJS) || defined(PA_IS_FREEBSD) || \
|
||||
defined(PA_IS_IOS) || defined(PA_IS_LINUX) || defined(PA_IS_CHROMEOS) || \
|
||||
defined(PA_IS_MAC) || defined(PA_IS_NACL) || defined(PA_IS_NETBSD) || \
|
||||
defined(PA_IS_OPENBSD) || defined(PA_IS_QNX) || defined(PA_IS_SOLARIS) || \
|
||||
PA_BUILDFLAG(IS_ANDROID) || PA_BUILDFLAG(IS_CHROMEOS)
|
||||
#define PA_IS_POSIX
|
||||
#endif
|
||||
|
||||
// Compiler detection. Note: clang masquerades as GCC on POSIX and as MSVC on
|
||||
// Windows.
|
||||
#if defined(__GNUC__)
|
||||
#define PA_COMPILER_GCC
|
||||
#elif defined(_MSC_VER)
|
||||
#define PA_COMPILER_MSVC
|
||||
#endif
|
||||
// ------
|
||||
|
||||
// Processor architecture detection. For more info on what's defined, see:
|
||||
// http://msdn.microsoft.com/en-us/library/b0084kay.aspx
|
||||
// http://www.agner.org/optimize/calling_conventions.pdf
|
||||
// or with gcc, run: "echo | gcc -E -dM -"
|
||||
#if defined(_M_X64) || defined(__x86_64__)
|
||||
#define PA_ARCH_CPU_X86_FAMILY
|
||||
#define PA_ARCH_CPU_X86_64
|
||||
#define PA_ARCH_CPU_64_BITS
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#elif defined(_M_IX86) || defined(__i386__)
|
||||
#define PA_ARCH_CPU_X86_FAMILY
|
||||
#define PA_ARCH_CPU_X86
|
||||
#define PA_ARCH_CPU_32_BITS
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#elif defined(__s390x__)
|
||||
#define PA_ARCH_CPU_S390_FAMILY
|
||||
#define PA_ARCH_CPU_S390X
|
||||
#define PA_ARCH_CPU_64_BITS
|
||||
#define PA_ARCH_CPU_BIG_ENDIAN
|
||||
#elif defined(__s390__)
|
||||
#define PA_ARCH_CPU_S390_FAMILY
|
||||
#define PA_ARCH_CPU_S390
|
||||
#define PA_ARCH_CPU_BIG_ENDIAN
|
||||
#elif (defined(__PPC64__) || defined(__PPC__)) && defined(__BIG_ENDIAN__)
|
||||
#define PA_ARCH_CPU_PPC64_FAMILY
|
||||
#define PA_ARCH_CPU_PPC64
|
||||
#define PA_ARCH_CPU_64_BITS
|
||||
#define PA_ARCH_CPU_BIG_ENDIAN
|
||||
#elif defined(__PPC64__)
|
||||
#define PA_ARCH_CPU_PPC64_FAMILY
|
||||
#define PA_ARCH_CPU_PPC64
|
||||
#define PA_ARCH_CPU_64_BITS
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#elif defined(__ARMEL__)
|
||||
#define PA_ARCH_CPU_ARM_FAMILY
|
||||
#define PA_ARCH_CPU_ARMEL
|
||||
#define PA_ARCH_CPU_32_BITS
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#elif defined(__aarch64__) || defined(_M_ARM64)
|
||||
#define PA_ARCH_CPU_ARM_FAMILY
|
||||
#define PA_ARCH_CPU_ARM64
|
||||
#define PA_ARCH_CPU_64_BITS
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#elif defined(__pnacl__) || defined(__asmjs__) || defined(__wasm__)
|
||||
#define PA_ARCH_CPU_32_BITS
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#elif defined(__MIPSEL__)
|
||||
#if defined(__LP64__)
|
||||
#define PA_ARCH_CPU_MIPS64EL
|
||||
#define PA_ARCH_CPU_64_BITS
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#else
|
||||
#define PA_ARCH_CPU_MIPSEL
|
||||
#define PA_ARCH_CPU_32_BITS
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#endif
|
||||
#elif defined(__MIPSEB__)
|
||||
#if defined(__LP64__)
|
||||
#define PA_ARCH_CPU_MIPS64
|
||||
#define PA_ARCH_CPU_64_BITS
|
||||
#define PA_ARCH_CPU_BIG_ENDIAN
|
||||
#else
|
||||
#define PA_ARCH_CPU_MIPS
|
||||
#define PA_ARCH_CPU_32_BITS
|
||||
#define PA_ARCH_CPU_BIG_ENDIAN
|
||||
#endif
|
||||
#elif defined(__loongarch__)
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#if __loongarch_grlen == 64
|
||||
#define PA_ARCH_CPU_LOONGARCH64
|
||||
#define PA_ARCH_CPU_64_BITS
|
||||
#else
|
||||
#define PA_ARCH_CPU_32_BITS
|
||||
#endif
|
||||
#elif defined(__riscv) && (__riscv_xlen == 64)
|
||||
#define PA_ARCH_CPU_RISCV64
|
||||
#define PA_ARCH_CPU_64_BITS
|
||||
#define PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
// The part below can be generated with the following script:
|
||||
// https://paste.googleplex.com/6324671838683136
|
||||
//
|
||||
// It transform the defines above into PA_BUILDFLAG_INTERNAL_* defines, then
|
||||
// undef the original define.
|
||||
//
|
||||
// Usage of PA_BUILDFLAG(...) macro is better than raw define, because it avoids
|
||||
// silent failure when developers forget to include this file.
|
||||
|
||||
#if defined(PA_ARCH_CPU_32_BITS)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_32_BITS() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_32_BITS() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_32_BITS
|
||||
|
||||
#if defined(PA_ARCH_CPU_64_BITS)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_64_BITS() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_64_BITS() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_64_BITS
|
||||
|
||||
#if defined(PA_ARCH_CPU_ARM64)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_ARM64() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_ARM64() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_ARM64
|
||||
|
||||
#if defined(PA_ARCH_CPU_ARMEL)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_ARMEL() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_ARMEL() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_ARMEL
|
||||
|
||||
#if defined(PA_ARCH_CPU_ARM_FAMILY)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_ARM_FAMILY() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_ARM_FAMILY() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_ARM_FAMILY
|
||||
|
||||
#if defined(PA_ARCH_CPU_BIG_ENDIAN)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_BIG_ENDIAN() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_BIG_ENDIAN() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_BIG_ENDIAN
|
||||
|
||||
#if defined(PA_ARCH_CPU_LITTLE_ENDIAN)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_LITTLE_ENDIAN() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_LITTLE_ENDIAN() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_LITTLE_ENDIAN
|
||||
|
||||
#if defined(PA_ARCH_CPU_LOONGARCH64)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_LOONGARCH64() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_LOONGARCH64() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_LOONGARCH64
|
||||
|
||||
#if defined(PA_ARCH_CPU_MIPS)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_MIPS() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_MIPS() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_MIPS
|
||||
|
||||
#if defined(PA_ARCH_CPU_MIPS64)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_MIPS64() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_MIPS64() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_MIPS64
|
||||
|
||||
#if defined(PA_ARCH_CPU_MIPS64EL)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_MIPS64EL() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_MIPS64EL() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_MIPS64EL
|
||||
|
||||
#if defined(PA_ARCH_CPU_MIPSEL)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_MIPSEL() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_MIPSEL() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_MIPSEL
|
||||
|
||||
#if defined(PA_ARCH_CPU_PPC64)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_PPC64() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_PPC64() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_PPC64
|
||||
|
||||
#if defined(PA_ARCH_CPU_PPC64_FAMILY)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_PPC64_FAMILY() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_PPC64_FAMILY() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_PPC64_FAMILY
|
||||
|
||||
#if defined(PA_ARCH_CPU_RISCV64)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_RISCV64() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_RISCV64() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_RISCV64
|
||||
|
||||
#if defined(PA_ARCH_CPU_S390)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_S390() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_S390() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_S390
|
||||
|
||||
#if defined(PA_ARCH_CPU_S390_FAMILY)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_S390_FAMILY() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_S390_FAMILY() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_S390_FAMILY
|
||||
|
||||
#if defined(PA_ARCH_CPU_S390X)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_S390X() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_S390X() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_S390X
|
||||
|
||||
#if defined(PA_ARCH_CPU_X86)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_X86() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_X86() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_X86
|
||||
|
||||
#if defined(PA_ARCH_CPU_X86_64)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_X86_64() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_X86_64() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_X86_64
|
||||
|
||||
#if defined(PA_ARCH_CPU_X86_FAMILY)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_X86_FAMILY() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_ARCH_CPU_X86_FAMILY() (0)
|
||||
#endif
|
||||
#undef PA_ARCH_CPU_X86_FAMILY
|
||||
|
||||
#if defined(PA_COMPILER_GCC)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_COMPILER_GCC() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_COMPILER_GCC() (0)
|
||||
#endif
|
||||
#undef PA_COMPILER_GCC
|
||||
|
||||
#if defined(PA_COMPILER_MSVC)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_COMPILER_MSVC() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_COMPILER_MSVC() (0)
|
||||
#endif
|
||||
#undef PA_COMPILER_MSVC
|
||||
|
||||
#if defined(PA_IS_AIX)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_AIX() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_AIX() (0)
|
||||
#endif
|
||||
#undef PA_IS_AIX
|
||||
|
||||
#if defined(PA_IS_APPLE)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_APPLE() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_APPLE() (0)
|
||||
#endif
|
||||
#undef PA_IS_APPLE
|
||||
|
||||
#if defined(PA_IS_ASMJS)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_ASMJS() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_ASMJS() (0)
|
||||
#endif
|
||||
#undef PA_IS_ASMJS
|
||||
|
||||
#if defined(PA_IS_BSD)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_BSD() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_BSD() (0)
|
||||
#endif
|
||||
#undef PA_IS_BSD
|
||||
|
||||
#if defined(PA_IS_FREEBSD)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_FREEBSD() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_FREEBSD() (0)
|
||||
#endif
|
||||
#undef PA_IS_FREEBSD
|
||||
|
||||
#if defined(PA_IS_FUCHSIA)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_FUCHSIA() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_FUCHSIA() (0)
|
||||
#endif
|
||||
#undef PA_IS_FUCHSIA
|
||||
|
||||
#if defined(PA_IS_IOS)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_IOS() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_IOS() (0)
|
||||
#endif
|
||||
#undef PA_IS_IOS
|
||||
|
||||
#if defined(PA_IS_LINUX)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_LINUX() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_LINUX() (0)
|
||||
#endif
|
||||
#undef PA_IS_LINUX
|
||||
|
||||
#if defined(PA_IS_MAC)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_MAC() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_MAC() (0)
|
||||
#endif
|
||||
#undef PA_IS_MAC
|
||||
|
||||
#if defined(PA_IS_NACL)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_NACL() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_NACL() (0)
|
||||
#endif
|
||||
#undef PA_IS_NACL
|
||||
|
||||
#if defined(PA_IS_NETBSD)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_NETBSD() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_NETBSD() (0)
|
||||
#endif
|
||||
#undef PA_IS_NETBSD
|
||||
|
||||
#if defined(PA_IS_OPENBSD)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_OPENBSD() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_OPENBSD() (0)
|
||||
#endif
|
||||
#undef PA_IS_OPENBSD
|
||||
|
||||
#if defined(PA_IS_POSIX)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_POSIX() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_POSIX() (0)
|
||||
#endif
|
||||
#undef PA_IS_POSIX
|
||||
|
||||
#if defined(PA_IS_QNX)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_QNX() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_QNX() (0)
|
||||
#endif
|
||||
#undef PA_IS_QNX
|
||||
|
||||
#if defined(PA_IS_SOLARIS)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_SOLARIS() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_SOLARIS() (0)
|
||||
#endif
|
||||
#undef PA_IS_SOLARIS
|
||||
|
||||
#if defined(PA_IS_WIN)
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_WIN() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_IS_WIN() (0)
|
||||
#endif
|
||||
#undef PA_IS_WIN
|
||||
|
||||
#if defined(PA_LIBC_GLIBC)
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_LIBC_GLIBC() (1)
|
||||
#else
|
||||
#define PA_BUILDFLAG_INTERNAL_PA_LIBC_GLIBC() (0)
|
||||
#endif
|
||||
#undef PA_LIBC_GLIBC
|
||||
|
||||
#endif // PARTITION_ALLOC_BUILD_CONFIG_H_
|
@ -0,0 +1,17 @@
|
||||
// Copyright 2024 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_BUILDFLAG_H_
|
||||
#define PARTITION_ALLOC_BUILDFLAG_H_
|
||||
|
||||
// This was copied from chromium's and adapted to partition_alloc.
|
||||
// Please refer to chromium's //build/buildflag.h original comments.
|
||||
//
|
||||
// Using a different macro and internal define allows partition_alloc and
|
||||
// chromium to cohabit without affecting each other.
|
||||
#define PA_BUILDFLAG_CAT_INDIRECT(a, b) a##b
|
||||
#define PA_BUILDFLAG_CAT(a, b) PA_BUILDFLAG_CAT_INDIRECT(a, b)
|
||||
#define PA_BUILDFLAG(flag) (PA_BUILDFLAG_CAT(PA_BUILDFLAG_INTERNAL_, flag)())
|
||||
|
||||
#endif // PARTITION_ALLOC_BUILDFLAG_H_
|
@ -0,0 +1,121 @@
|
||||
# Copyright 2024 The Chromium Authors
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# This was copied from chromium's and adapted to partition_alloc.
|
||||
# Please refer to chromium's //build/buildflag_header.gni
|
||||
|
||||
# Generates a header with preprocessor defines specified by the build file.
|
||||
#
|
||||
# The flags are converted to function-style defines with mangled names and
|
||||
# code uses an accessor macro to access the values. This is to try to
|
||||
# minimize bugs where code checks whether something is defined or not, and
|
||||
# the proper header isn't included, meaning the answer will always be silently
|
||||
# false or might vary across the code base.
|
||||
#
|
||||
# In the GN template, specify build flags in the template as a list
|
||||
# of strings that encode key/value pairs like this:
|
||||
#
|
||||
# flags = [ "ENABLE_FOO=1", "ENABLE_BAR=$enable_bar" ]
|
||||
#
|
||||
# The GN values "true" and "false" will be mapped to 0 and 1 for boolean
|
||||
# #if flags to be expressed naturally. This means you can't directly make a
|
||||
# define that generates C++ value of true or false for use in code. If you
|
||||
# REALLY need this, you can also use the string "(true)" and "(false)" to
|
||||
# prevent the rewriting.
|
||||
|
||||
# The `template` creates a closure. It is important to capture the dependency
|
||||
# from outside, because the template is executed from the context of the
|
||||
# invoker, who uses a different current directory.
|
||||
_current_dir = get_path_info(".", "abspath")
|
||||
|
||||
# To check the value of the flag in C code:
|
||||
#
|
||||
# #include "path/to/here/header_file.h"
|
||||
#
|
||||
# #if PA_BUILDFLAG(ENABLE_FOO)
|
||||
# ...
|
||||
# #endif
|
||||
#
|
||||
# const char kSpamServerUrl[] = BUILDFLAG(SPAM_SERVER_URL);
|
||||
#
|
||||
# There will be no #define called ENABLE_FOO so if you accidentally test for
|
||||
# that in an ifdef it will always be negative.
|
||||
#
|
||||
#
|
||||
# Template parameters
|
||||
#
|
||||
# flags [required, list of strings]
|
||||
# Flag values as described above.
|
||||
#
|
||||
# header [required, string]
|
||||
# File name for generated header. By default, this will go in the
|
||||
# generated file directory for this target, and you would include it
|
||||
# with:
|
||||
# #include "<path_to_this_BUILD_file>/<header>"
|
||||
#
|
||||
# header_dir [optional, string]
|
||||
# Override the default location of the generated header. The string will
|
||||
# be treated as a subdirectory of the root_gen_dir. For example:
|
||||
# header_dir = "foo/bar"
|
||||
# Then you can include the header as:
|
||||
# #include "foo/bar/baz.h"
|
||||
#
|
||||
# Example
|
||||
#
|
||||
# pa_buildflag_header("foo_buildflags") {
|
||||
# header = "foo_buildflags.h"
|
||||
#
|
||||
# flags = [
|
||||
# # This uses the GN build flag enable_doom_melon as the definition.
|
||||
# "ENABLE_DOOM_MELON=$enable_doom_melon",
|
||||
#
|
||||
# # This force-enables the flag.
|
||||
# "ENABLE_SPACE_LASER=true",
|
||||
#
|
||||
# # This will expand to the quoted C string when used in source code.
|
||||
# "SPAM_SERVER_URL=\"http://www.example.com/\"",
|
||||
# ]
|
||||
# }
|
||||
template("pa_buildflag_header") {
|
||||
action(target_name) {
|
||||
script = "./write_buildflag_header.py"
|
||||
|
||||
if (defined(invoker.header_dir)) {
|
||||
header_file = "${invoker.header_dir}/${invoker.header}"
|
||||
} else {
|
||||
# Compute the path from the root to this file.
|
||||
header_file = rebase_path(".", "//") + "/${invoker.header}"
|
||||
}
|
||||
|
||||
outputs = [ "$root_gen_dir/$header_file" ]
|
||||
|
||||
# Always write --flags to the file so it's not empty. Empty will confuse GN
|
||||
# into thinking the response file isn't used.
|
||||
response_file_contents = [ "--flags" ]
|
||||
if (defined(invoker.flags)) {
|
||||
response_file_contents += invoker.flags
|
||||
}
|
||||
|
||||
args = [
|
||||
"--output",
|
||||
header_file, # Not rebased.
|
||||
"--rulename",
|
||||
get_label_info(":$target_name", "label_no_toolchain"),
|
||||
"--gen-dir",
|
||||
rebase_path(root_gen_dir, root_build_dir),
|
||||
"--definitions",
|
||||
"{{response_file_name}}",
|
||||
]
|
||||
|
||||
forward_variables_from(invoker,
|
||||
[
|
||||
"deps",
|
||||
"public_deps",
|
||||
"testonly",
|
||||
"visibility",
|
||||
])
|
||||
|
||||
public_deps = [ "${_current_dir}:buildflag_macro" ]
|
||||
}
|
||||
}
|
@ -0,0 +1,30 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "partition_alloc/compressed_pointer.h"
|
||||
|
||||
#include "partition_alloc/buildflags.h"
|
||||
|
||||
#if PA_BUILDFLAG(ENABLE_POINTER_COMPRESSION)
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// We keep the useful part in |g_base_| as 1s to speed up decompression.
|
||||
alignas(kPartitionCachelineSize)
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) CompressedPointerBaseGlobal::Base
|
||||
CompressedPointerBaseGlobal::g_base_ = {.base = kUsefulBitsMask};
|
||||
|
||||
void CompressedPointerBaseGlobal::SetBase(uintptr_t base) {
|
||||
PA_DCHECK(!IsSet());
|
||||
PA_DCHECK((base & kUsefulBitsMask) == 0);
|
||||
g_base_.base = base | kUsefulBitsMask;
|
||||
}
|
||||
|
||||
void CompressedPointerBaseGlobal::ResetBaseForTesting() {
|
||||
g_base_.base = kUsefulBitsMask;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // PA_BUILDFLAG(ENABLE_POINTER_COMPRESSION)
|
@ -0,0 +1,668 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_COMPRESSED_POINTER_H_
|
||||
#define PARTITION_ALLOC_COMPRESSED_POINTER_H_
|
||||
|
||||
#include <climits>
|
||||
#include <type_traits>
|
||||
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/partition_address_space.h"
|
||||
#include "partition_alloc/partition_alloc_base/bits.h"
|
||||
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
|
||||
#include "partition_alloc/partition_alloc_base/component_export.h"
|
||||
|
||||
#if PA_BUILDFLAG(ENABLE_POINTER_COMPRESSION)
|
||||
|
||||
#if !PA_BUILDFLAG(GLUE_CORE_POOLS)
|
||||
#error "Pointer compression only works with glued pools"
|
||||
#endif
|
||||
#if PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
|
||||
#error "Pointer compression currently supports constant pool size"
|
||||
#endif
|
||||
|
||||
#endif // PA_BUILDFLAG(ENABLE_POINTER_COMPRESSION)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename T1, typename T2>
|
||||
constexpr bool IsDecayedSame =
|
||||
std::is_same_v<std::decay_t<T1>, std::decay_t<T2>>;
|
||||
|
||||
#if PA_BUILDFLAG(ENABLE_POINTER_COMPRESSION)
|
||||
|
||||
// Pointer compression works by storing only the 'useful' 32-bit part of the
|
||||
// pointer. The other half (the base) is stored in a global variable
|
||||
// (CompressedPointerBaseGlobal::g_base_), which is used on decompression. To
|
||||
// support fast branchless decompression of nullptr, we use the most significant
|
||||
// bit in the compressed pointer to leverage sign-extension (for non-nullptr
|
||||
// pointers, the most significant bit is set, whereas for nullptr it's not).
|
||||
// Using this bit and supporting heaps larger than 4GB relies on having
|
||||
// alignment bits in pointers. Assuming that all pointers point to at least
|
||||
// 8-byte alignment objects, pointer compression can support heaps of size <=
|
||||
// 16GB.
|
||||
// ((3 alignment bits) = (1 bit for sign-extension) + (2 bits for 16GB heap)).
|
||||
//
|
||||
// Example: heap base: 0x4b0'ffffffff
|
||||
// - g_base: 0x4b3'ffffffff (lower 34 bits set)
|
||||
// - normal pointer: 0x4b2'a08b6480
|
||||
// - compression:
|
||||
// - shift right by 3: 0x96'54116c90
|
||||
// - truncate: 0x54116c90
|
||||
// - mark MSB: 0xd4116c90
|
||||
// - decompression:
|
||||
// - sign-extend: 0xffffffff'd4116c90
|
||||
// - shift left by 3: 0xfffffffe'a08b6480
|
||||
// - 'and' with g_base: 0x000004b2'a08b6480
|
||||
//
|
||||
// - nullptr: 0x00000000'00000000
|
||||
// - compression:
|
||||
// - shift right by 3: 0x00000000'00000000
|
||||
// - truncate: 0x00000000
|
||||
// - (don't mark MSB for nullptr)
|
||||
// - decompression:
|
||||
// - sign-extend: 0x00000000'00000000
|
||||
// - shift left by 3: 0x00000000'00000000
|
||||
// - 'and' with g_base: 0x00000000'00000000
|
||||
//
|
||||
// Pointer compression relies on having both the regular and the BRP pool (core
|
||||
// pools) 'glued', so that the same base could be used for both. For simplicity,
|
||||
// the configurations with dynamically selected pool size are not supported.
|
||||
// However, they can be at the cost of performing an extra load for
|
||||
// core-pools-shift-size on both compression and decompression.
|
||||
|
||||
class CompressedPointerBaseGlobal final {
|
||||
public:
|
||||
static constexpr size_t kUsefulBits =
|
||||
base::bits::CountrZero(PartitionAddressSpace::CorePoolsSize());
|
||||
static_assert(kUsefulBits >= sizeof(uint32_t) * CHAR_BIT);
|
||||
static constexpr size_t kBitsToShift =
|
||||
kUsefulBits - sizeof(uint32_t) * CHAR_BIT;
|
||||
|
||||
CompressedPointerBaseGlobal() = delete;
|
||||
|
||||
// Attribute const allows the compiler to assume that
|
||||
// CompressedPointerBaseGlobal::g_base_ doesn't change (e.g. across calls) and
|
||||
// thereby avoid redundant loads.
|
||||
PA_ALWAYS_INLINE __attribute__((const)) static uintptr_t Get() {
|
||||
PA_DCHECK(IsBaseConsistent());
|
||||
return g_base_.base;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE static bool IsSet() {
|
||||
PA_DCHECK(IsBaseConsistent());
|
||||
return (g_base_.base & ~kUsefulBitsMask) != 0;
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr uintptr_t kUsefulBitsMask =
|
||||
PartitionAddressSpace::CorePoolsSize() - 1;
|
||||
|
||||
PA_CONSTINIT static union alignas(kPartitionCachelineSize)
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) Base {
|
||||
uintptr_t base;
|
||||
char cache_line[kPartitionCachelineSize];
|
||||
} g_base_;
|
||||
|
||||
PA_ALWAYS_INLINE static bool IsBaseConsistent() {
|
||||
return kUsefulBitsMask == (g_base_.base & kUsefulBitsMask);
|
||||
}
|
||||
|
||||
static void SetBase(uintptr_t base);
|
||||
static void ResetBaseForTesting();
|
||||
|
||||
friend class PartitionAddressSpace;
|
||||
};
|
||||
|
||||
#endif // PA_BUILDFLAG(ENABLE_POINTER_COMPRESSION)
|
||||
|
||||
} // namespace internal
|
||||
|
||||
#if PA_BUILDFLAG(ENABLE_POINTER_COMPRESSION)
|
||||
|
||||
template <typename T>
|
||||
class PA_TRIVIAL_ABI CompressedPointer final {
|
||||
public:
|
||||
using UnderlyingType = uint32_t;
|
||||
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer() = default;
|
||||
PA_ALWAYS_INLINE explicit CompressedPointer(T* ptr) : value_(Compress(ptr)) {}
|
||||
PA_ALWAYS_INLINE constexpr explicit CompressedPointer(std::nullptr_t)
|
||||
: value_(0u) {}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer(const CompressedPointer&) =
|
||||
default;
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer(
|
||||
CompressedPointer&& other) noexcept = default;
|
||||
|
||||
template <typename U,
|
||||
std::enable_if_t<std::is_convertible_v<U*, T*>>* = nullptr>
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer(
|
||||
const CompressedPointer<U>& other) {
|
||||
if constexpr (internal::IsDecayedSame<T, U>) {
|
||||
// When pointers have the same type modulo constness, avoid the
|
||||
// compress-decompress round.
|
||||
value_ = other.value_;
|
||||
} else {
|
||||
// When the types are different, perform the round, because the pointer
|
||||
// may need to be adjusted.
|
||||
// TODO(crbug.com/40243421): Avoid the cycle here.
|
||||
value_ = Compress(other.get());
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U,
|
||||
std::enable_if_t<std::is_convertible_v<U*, T*>>* = nullptr>
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer(
|
||||
CompressedPointer<U>&& other) noexcept
|
||||
: CompressedPointer(other) {}
|
||||
|
||||
~CompressedPointer() = default;
|
||||
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer& operator=(
|
||||
const CompressedPointer&) = default;
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer& operator=(
|
||||
CompressedPointer&& other) noexcept = default;
|
||||
|
||||
template <typename U,
|
||||
std::enable_if_t<std::is_convertible_v<U*, T*>>* = nullptr>
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer& operator=(
|
||||
const CompressedPointer<U>& other) {
|
||||
CompressedPointer copy(other);
|
||||
value_ = copy.value_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename U,
|
||||
std::enable_if_t<std::is_convertible_v<U*, T*>>* = nullptr>
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer& operator=(
|
||||
CompressedPointer<U>&& other) noexcept {
|
||||
*this = other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Don't perform compression when assigning to nullptr.
|
||||
PA_ALWAYS_INLINE constexpr CompressedPointer& operator=(std::nullptr_t) {
|
||||
value_ = 0u;
|
||||
return *this;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE T* get() const { return Decompress(value_); }
|
||||
|
||||
PA_ALWAYS_INLINE constexpr bool is_nonnull() const { return value_; }
|
||||
|
||||
PA_ALWAYS_INLINE constexpr UnderlyingType GetAsIntegral() const {
|
||||
return value_;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr explicit operator bool() const {
|
||||
return is_nonnull();
|
||||
}
|
||||
|
||||
template <typename U = T,
|
||||
std::enable_if_t<!std::is_void_v<std::remove_cv_t<U>>>* = nullptr>
|
||||
PA_ALWAYS_INLINE U& operator*() const {
|
||||
PA_DCHECK(is_nonnull());
|
||||
return *get();
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE T* operator->() const {
|
||||
PA_DCHECK(is_nonnull());
|
||||
return get();
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr void swap(CompressedPointer& other) {
|
||||
std::swap(value_, other.value_);
|
||||
}
|
||||
|
||||
private:
|
||||
template <typename>
|
||||
friend class CompressedPointer;
|
||||
|
||||
static constexpr size_t kBitsForSignExtension = 1;
|
||||
static constexpr size_t kOverallBitsToShift =
|
||||
internal::CompressedPointerBaseGlobal::kBitsToShift +
|
||||
kBitsForSignExtension;
|
||||
|
||||
PA_ALWAYS_INLINE static UnderlyingType Compress(T* ptr) {
|
||||
static constexpr size_t kMinimalRequiredAlignment = 8;
|
||||
static_assert((1 << kOverallBitsToShift) == kMinimalRequiredAlignment);
|
||||
|
||||
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
|
||||
PA_DCHECK(reinterpret_cast<uintptr_t>(ptr) % kMinimalRequiredAlignment ==
|
||||
0);
|
||||
PA_DCHECK(internal::CompressedPointerBaseGlobal::IsSet());
|
||||
|
||||
const uintptr_t base = internal::CompressedPointerBaseGlobal::Get();
|
||||
static constexpr size_t kCorePoolsBaseMask =
|
||||
~(internal::PartitionAddressSpace::CorePoolsSize() - 1);
|
||||
PA_DCHECK(!ptr ||
|
||||
(base & kCorePoolsBaseMask) ==
|
||||
(reinterpret_cast<uintptr_t>(ptr) & kCorePoolsBaseMask));
|
||||
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
|
||||
|
||||
const auto uptr = reinterpret_cast<uintptr_t>(ptr);
|
||||
// Shift the pointer and truncate.
|
||||
auto compressed = static_cast<UnderlyingType>(uptr >> kOverallBitsToShift);
|
||||
// If the pointer is non-null, mark the most-significant-bit to sign-extend
|
||||
// it on decompression. Assuming compression is a significantly less
|
||||
// frequent operation, we let more work here in favor of faster
|
||||
// decompression.
|
||||
// TODO(crbug.com/40243421): Avoid this by overreserving the heap.
|
||||
if (compressed) {
|
||||
compressed |= (1u << (sizeof(uint32_t) * CHAR_BIT - 1));
|
||||
}
|
||||
|
||||
return compressed;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE static T* Decompress(UnderlyingType ptr) {
|
||||
PA_DCHECK(internal::CompressedPointerBaseGlobal::IsSet());
|
||||
const uintptr_t base = internal::CompressedPointerBaseGlobal::Get();
|
||||
// Treat compressed pointer as signed and cast it to uint64_t, which will
|
||||
// sign-extend it. Then, shift the result by one. It's important to shift
|
||||
// the already unsigned value, as otherwise it would result in undefined
|
||||
// behavior.
|
||||
const uint64_t mask = static_cast<uint64_t>(static_cast<int32_t>(ptr))
|
||||
<< (kOverallBitsToShift);
|
||||
return reinterpret_cast<T*>(mask & base);
|
||||
}
|
||||
|
||||
UnderlyingType value_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
PA_ALWAYS_INLINE constexpr void swap(CompressedPointer<T>& a,
|
||||
CompressedPointer<T>& b) {
|
||||
a.swap(b);
|
||||
}
|
||||
|
||||
// operators==.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE bool operator==(CompressedPointer<T> a,
|
||||
CompressedPointer<U> b) {
|
||||
if constexpr (internal::IsDecayedSame<T, U>) {
|
||||
// When pointers have the same type modulo constness, simply compare
|
||||
// compressed values.
|
||||
return a.GetAsIntegral() == b.GetAsIntegral();
|
||||
} else {
|
||||
// When the types are different, compare decompressed pointers, because the
|
||||
// pointers may need to be adjusted.
|
||||
// TODO(crbug.com/40243421): Avoid decompression here.
|
||||
return a.get() == b.get();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator==(CompressedPointer<T> a, U* b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return a == static_cast<CompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator==(T* a, CompressedPointer<U> b) {
|
||||
return b == a;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PA_ALWAYS_INLINE constexpr bool operator==(CompressedPointer<T> a,
|
||||
std::nullptr_t) {
|
||||
return !a.is_nonnull();
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator==(std::nullptr_t,
|
||||
CompressedPointer<U> b) {
|
||||
return b == nullptr;
|
||||
}
|
||||
|
||||
// operators!=.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(CompressedPointer<T> a,
|
||||
CompressedPointer<U> b) {
|
||||
return !(a == b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(CompressedPointer<T> a, U* b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return a != static_cast<CompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(T* a, CompressedPointer<U> b) {
|
||||
return b != a;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(CompressedPointer<T> a,
|
||||
std::nullptr_t) {
|
||||
return a.is_nonnull();
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(std::nullptr_t,
|
||||
CompressedPointer<U> b) {
|
||||
return b != nullptr;
|
||||
}
|
||||
|
||||
// operators<.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<(CompressedPointer<T> a,
|
||||
CompressedPointer<U> b) {
|
||||
if constexpr (internal::IsDecayedSame<T, U>) {
|
||||
// When pointers have the same type modulo constness, simply compare
|
||||
// compressed values.
|
||||
return a.GetAsIntegral() < b.GetAsIntegral();
|
||||
} else {
|
||||
// When the types are different, compare decompressed pointers, because the
|
||||
// pointers may need to be adjusted.
|
||||
// TODO(crbug.com/40243421): Avoid decompression here.
|
||||
return a.get() < b.get();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<(CompressedPointer<T> a, U* b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return a < static_cast<CompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<(T* a, CompressedPointer<U> b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return static_cast<CompressedPointer<T>>(a) < b;
|
||||
}
|
||||
|
||||
// operators<=.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<=(CompressedPointer<T> a,
|
||||
CompressedPointer<U> b) {
|
||||
if constexpr (internal::IsDecayedSame<T, U>) {
|
||||
// When pointers have the same type modulo constness, simply compare
|
||||
// compressed values.
|
||||
return a.GetAsIntegral() <= b.GetAsIntegral();
|
||||
} else {
|
||||
// When the types are different, compare decompressed pointers, because the
|
||||
// pointers may need to be adjusted.
|
||||
// TODO(crbug.com/40243421): Avoid decompression here.
|
||||
return a.get() <= b.get();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<=(CompressedPointer<T> a, U* b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return a <= static_cast<CompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<=(T* a, CompressedPointer<U> b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return static_cast<CompressedPointer<T>>(a) <= b;
|
||||
}
|
||||
|
||||
// operators>.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>(CompressedPointer<T> a,
|
||||
CompressedPointer<U> b) {
|
||||
return !(a <= b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>(CompressedPointer<T> a, U* b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return a > static_cast<CompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>(T* a, CompressedPointer<U> b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return static_cast<CompressedPointer<T>>(a) > b;
|
||||
}
|
||||
|
||||
// operators>=.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>=(CompressedPointer<T> a,
|
||||
CompressedPointer<U> b) {
|
||||
return !(a < b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>=(CompressedPointer<T> a, U* b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return a >= static_cast<CompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>=(T* a, CompressedPointer<U> b) {
|
||||
// Do compression, since it is less expensive.
|
||||
return static_cast<CompressedPointer<T>>(a) >= b;
|
||||
}
|
||||
|
||||
#endif // PA_BUILDFLAG(ENABLE_POINTER_COMPRESSION)
|
||||
|
||||
// Simple wrapper over the raw pointer.
|
||||
template <typename T>
|
||||
class PA_TRIVIAL_ABI UncompressedPointer final {
|
||||
public:
|
||||
PA_ALWAYS_INLINE constexpr UncompressedPointer() = default;
|
||||
PA_ALWAYS_INLINE constexpr explicit UncompressedPointer(T* ptr) : ptr_(ptr) {}
|
||||
PA_ALWAYS_INLINE constexpr explicit UncompressedPointer(std::nullptr_t)
|
||||
: ptr_(nullptr) {}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr UncompressedPointer(const UncompressedPointer&) =
|
||||
default;
|
||||
PA_ALWAYS_INLINE constexpr UncompressedPointer(
|
||||
UncompressedPointer&& other) noexcept = default;
|
||||
|
||||
template <typename U,
|
||||
std::enable_if_t<std::is_convertible_v<U*, T*>>* = nullptr>
|
||||
PA_ALWAYS_INLINE constexpr explicit UncompressedPointer(
|
||||
const UncompressedPointer<U>& other)
|
||||
: ptr_(other.ptr_) {}
|
||||
|
||||
template <typename U,
|
||||
std::enable_if_t<std::is_convertible_v<U*, T*>>* = nullptr>
|
||||
PA_ALWAYS_INLINE constexpr explicit UncompressedPointer(
|
||||
UncompressedPointer<U>&& other) noexcept
|
||||
: ptr_(std::move(other.ptr_)) {}
|
||||
|
||||
~UncompressedPointer() = default;
|
||||
|
||||
PA_ALWAYS_INLINE constexpr UncompressedPointer& operator=(
|
||||
const UncompressedPointer&) = default;
|
||||
PA_ALWAYS_INLINE constexpr UncompressedPointer& operator=(
|
||||
UncompressedPointer&& other) noexcept = default;
|
||||
|
||||
template <typename U,
|
||||
std::enable_if_t<std::is_convertible_v<U*, T*>>* = nullptr>
|
||||
PA_ALWAYS_INLINE constexpr UncompressedPointer& operator=(
|
||||
const UncompressedPointer<U>& other) {
|
||||
ptr_ = other.ptr_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename U,
|
||||
std::enable_if_t<std::is_convertible_v<U*, T*>>* = nullptr>
|
||||
PA_ALWAYS_INLINE constexpr UncompressedPointer& operator=(
|
||||
UncompressedPointer<U>&& other) noexcept {
|
||||
ptr_ = std::move(other.ptr_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr UncompressedPointer& operator=(std::nullptr_t) {
|
||||
ptr_ = nullptr;
|
||||
return *this;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr T* get() const { return ptr_; }
|
||||
|
||||
PA_ALWAYS_INLINE constexpr bool is_nonnull() const { return ptr_; }
|
||||
|
||||
PA_ALWAYS_INLINE constexpr explicit operator bool() const {
|
||||
return is_nonnull();
|
||||
}
|
||||
|
||||
template <typename U = T,
|
||||
std::enable_if_t<!std::is_void_v<std::remove_cv_t<U>>>* = nullptr>
|
||||
PA_ALWAYS_INLINE constexpr U& operator*() const {
|
||||
PA_DCHECK(is_nonnull());
|
||||
return *get();
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr T* operator->() const {
|
||||
PA_DCHECK(is_nonnull());
|
||||
return get();
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr void swap(UncompressedPointer& other) {
|
||||
std::swap(ptr_, other.ptr_);
|
||||
}
|
||||
|
||||
private:
|
||||
template <typename>
|
||||
friend class UncompressedPointer;
|
||||
|
||||
T* ptr_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
PA_ALWAYS_INLINE constexpr void swap(UncompressedPointer<T>& a,
|
||||
UncompressedPointer<T>& b) {
|
||||
a.swap(b);
|
||||
}
|
||||
|
||||
// operators==.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator==(UncompressedPointer<T> a,
|
||||
UncompressedPointer<U> b) {
|
||||
return a.get() == b.get();
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator==(UncompressedPointer<T> a, U* b) {
|
||||
return a == static_cast<UncompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator==(T* a, UncompressedPointer<U> b) {
|
||||
return b == a;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PA_ALWAYS_INLINE constexpr bool operator==(UncompressedPointer<T> a,
|
||||
std::nullptr_t) {
|
||||
return !a.is_nonnull();
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator==(std::nullptr_t,
|
||||
UncompressedPointer<U> b) {
|
||||
return b == nullptr;
|
||||
}
|
||||
|
||||
// operators!=.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(UncompressedPointer<T> a,
|
||||
UncompressedPointer<U> b) {
|
||||
return !(a == b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(UncompressedPointer<T> a, U* b) {
|
||||
return a != static_cast<UncompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(T* a, UncompressedPointer<U> b) {
|
||||
return b != a;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(UncompressedPointer<T> a,
|
||||
std::nullptr_t) {
|
||||
return a.is_nonnull();
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator!=(std::nullptr_t,
|
||||
UncompressedPointer<U> b) {
|
||||
return b != nullptr;
|
||||
}
|
||||
|
||||
// operators<.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<(UncompressedPointer<T> a,
|
||||
UncompressedPointer<U> b) {
|
||||
return a.get() < b.get();
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<(UncompressedPointer<T> a, U* b) {
|
||||
return a < static_cast<UncompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<(T* a, UncompressedPointer<U> b) {
|
||||
return static_cast<UncompressedPointer<T>>(a) < b;
|
||||
}
|
||||
|
||||
// operators<=.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<=(UncompressedPointer<T> a,
|
||||
UncompressedPointer<U> b) {
|
||||
return a.get() <= b.get();
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<=(UncompressedPointer<T> a, U* b) {
|
||||
return a <= static_cast<UncompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator<=(T* a, UncompressedPointer<U> b) {
|
||||
return static_cast<UncompressedPointer<T>>(a) <= b;
|
||||
}
|
||||
|
||||
// operators>.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>(UncompressedPointer<T> a,
|
||||
UncompressedPointer<U> b) {
|
||||
return !(a <= b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>(UncompressedPointer<T> a, U* b) {
|
||||
return a > static_cast<UncompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>(T* a, UncompressedPointer<U> b) {
|
||||
return static_cast<UncompressedPointer<T>>(a) > b;
|
||||
}
|
||||
|
||||
// operators>=.
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>=(UncompressedPointer<T> a,
|
||||
UncompressedPointer<U> b) {
|
||||
return !(a < b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>=(UncompressedPointer<T> a, U* b) {
|
||||
return a >= static_cast<UncompressedPointer<U>>(b);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
PA_ALWAYS_INLINE constexpr bool operator>=(T* a, UncompressedPointer<U> b) {
|
||||
return static_cast<UncompressedPointer<T>>(a) >= b;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // PARTITION_ALLOC_COMPRESSED_POINTER_H_
|
@ -0,0 +1,75 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "partition_alloc/dangling_raw_ptr_checks.h"
|
||||
|
||||
#include "partition_alloc/partition_alloc_base/component_export.h"
|
||||
#include "partition_alloc/partition_alloc_check.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
DanglingRawPtrDetectedFn* g_dangling_raw_ptr_detected_fn = [](uintptr_t) {};
|
||||
DanglingRawPtrReleasedFn* g_dangling_raw_ptr_released_fn = [](uintptr_t) {};
|
||||
DanglingRawPtrDetectedFn* g_unretained_dangling_raw_ptr_detected_fn =
|
||||
[](uintptr_t) {};
|
||||
bool g_unretained_dangling_raw_ptr_check_enabled = false;
|
||||
} // namespace
|
||||
|
||||
DanglingRawPtrDetectedFn* GetDanglingRawPtrDetectedFn() {
|
||||
PA_DCHECK(g_dangling_raw_ptr_detected_fn);
|
||||
return g_dangling_raw_ptr_detected_fn;
|
||||
}
|
||||
|
||||
DanglingRawPtrDetectedFn* GetDanglingRawPtrReleasedFn() {
|
||||
PA_DCHECK(g_dangling_raw_ptr_released_fn);
|
||||
return g_dangling_raw_ptr_released_fn;
|
||||
}
|
||||
|
||||
void SetDanglingRawPtrDetectedFn(DanglingRawPtrDetectedFn fn) {
|
||||
PA_DCHECK(fn);
|
||||
g_dangling_raw_ptr_detected_fn = fn;
|
||||
}
|
||||
|
||||
void SetDanglingRawPtrReleasedFn(DanglingRawPtrReleasedFn fn) {
|
||||
PA_DCHECK(fn);
|
||||
g_dangling_raw_ptr_released_fn = fn;
|
||||
}
|
||||
|
||||
DanglingRawPtrDetectedFn* GetUnretainedDanglingRawPtrDetectedFn() {
|
||||
return g_unretained_dangling_raw_ptr_detected_fn;
|
||||
}
|
||||
|
||||
void SetUnretainedDanglingRawPtrDetectedFn(DanglingRawPtrDetectedFn* fn) {
|
||||
PA_DCHECK(fn);
|
||||
g_unretained_dangling_raw_ptr_detected_fn = fn;
|
||||
}
|
||||
|
||||
bool SetUnretainedDanglingRawPtrCheckEnabled(bool enabled) {
|
||||
bool old = g_unretained_dangling_raw_ptr_check_enabled;
|
||||
g_unretained_dangling_raw_ptr_check_enabled = enabled;
|
||||
return old;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) void DanglingRawPtrDetected(uintptr_t id) {
|
||||
g_dangling_raw_ptr_detected_fn(id);
|
||||
}
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) void DanglingRawPtrReleased(uintptr_t id) {
|
||||
g_dangling_raw_ptr_released_fn(id);
|
||||
}
|
||||
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void UnretainedDanglingRawPtrDetected(uintptr_t id) {
|
||||
g_unretained_dangling_raw_ptr_detected_fn(id);
|
||||
}
|
||||
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
bool IsUnretainedDanglingRawPtrCheckEnabled() {
|
||||
return g_unretained_dangling_raw_ptr_check_enabled;
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
} // namespace partition_alloc
|
@ -0,0 +1,67 @@
|
||||
// Copyright 2022 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_DANGLING_RAW_PTR_CHECKS_H_
|
||||
#define PARTITION_ALLOC_DANGLING_RAW_PTR_CHECKS_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "partition_alloc/partition_alloc_base/component_export.h"
|
||||
|
||||
// When compiled with build flags `enable_dangling_raw_ptr_checks`, dangling
|
||||
// raw_ptr are reported. Its behavior can be configured here.
|
||||
//
|
||||
// Purpose of this level of indirection:
|
||||
// - Ease testing.
|
||||
// - Keep partition_alloc/ independent from base/. In most cases, when a
|
||||
// dangling raw_ptr is detected/released, this involves recording a
|
||||
// base::debug::StackTrace, which isn't desirable inside partition_alloc/.
|
||||
// - Be able (potentially) to turn this feature on/off at runtime based on
|
||||
// dependant's flags.
|
||||
namespace partition_alloc {
|
||||
|
||||
// DanglingRawPtrDetected is called when there exists a `raw_ptr` referencing a
|
||||
// memory region and the allocator is asked to release it.
|
||||
//
|
||||
// It won't be called again with the same `id`, up until (potentially) a call to
|
||||
// DanglingRawPtrReleased(`id`) is made.
|
||||
//
|
||||
// This function is called from within the allocator, and is not allowed to
|
||||
// allocate memory.
|
||||
using DanglingRawPtrDetectedFn = void(uintptr_t /*id*/);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
DanglingRawPtrDetectedFn* GetDanglingRawPtrDetectedFn();
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void SetDanglingRawPtrDetectedFn(DanglingRawPtrDetectedFn);
|
||||
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
DanglingRawPtrDetectedFn* GetUnretainedDanglingRawPtrDetectedFn();
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void SetUnretainedDanglingRawPtrDetectedFn(DanglingRawPtrDetectedFn*);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
bool SetUnretainedDanglingRawPtrCheckEnabled(bool enabled);
|
||||
|
||||
// DanglingRawPtrReleased: Called after DanglingRawPtrDetected(id), once the
|
||||
// last dangling raw_ptr stops referencing the memory region.
|
||||
//
|
||||
// This function is allowed to allocate memory.
|
||||
using DanglingRawPtrReleasedFn = void(uintptr_t /*id*/);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
DanglingRawPtrReleasedFn* GetDanglingRawPtrReleasedFn();
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void SetDanglingRawPtrReleasedFn(DanglingRawPtrReleasedFn);
|
||||
|
||||
namespace internal {
|
||||
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) void DanglingRawPtrDetected(uintptr_t id);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC) void DanglingRawPtrReleased(uintptr_t id);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
void UnretainedDanglingRawPtrDetected(uintptr_t id);
|
||||
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
|
||||
bool IsUnretainedDanglingRawPtrCheckEnabled();
|
||||
|
||||
} // namespace internal
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // PARTITION_ALLOC_DANGLING_RAW_PTR_CHECKS_H_
|
@ -0,0 +1,33 @@
|
||||
digraph {
|
||||
node[shape=box]
|
||||
edge[dir=both]
|
||||
compound = true
|
||||
dpi = 192
|
||||
nodesep = 0.91
|
||||
// Allows aligning nodes in different subgraphs.
|
||||
newrank = true
|
||||
|
||||
subgraph cluster_0 {
|
||||
label = "Address Space"
|
||||
reg[label="Regular Pool"]
|
||||
brp[label="BRP Pool"]
|
||||
add[label="Additional Pools"]
|
||||
reg->brp->add[style=invis]
|
||||
}
|
||||
|
||||
manager[label="AddressPoolManager"]
|
||||
manager->reg[constraint=false]
|
||||
manager->brp
|
||||
manager->add[constraint=false]
|
||||
|
||||
subgraph cluster_1 {
|
||||
label = "PartitionRoots"
|
||||
pae[label="PA-E Root"]
|
||||
blink[label="Blink Roots"]
|
||||
etc[style=dotted, label="Other Roots"]
|
||||
pae->blink->etc[style=invis]
|
||||
}
|
||||
|
||||
manager->blink[lhead=cluster_1]
|
||||
{rank=same manager brp blink}
|
||||
}
|
Binary file not shown.
After Width: | Height: | Size: 41 KiB |
@ -0,0 +1,59 @@
|
||||
digraph {
|
||||
node[shape=plaintext]
|
||||
edge[style=dashed, color=crimson]
|
||||
|
||||
page1[label=<
|
||||
<table border="0" cellborder="1" cellspacing="0"><tr>
|
||||
<!-- head partition page -->
|
||||
<td port="head" bgcolor="darkgrey" width="40" height="52"></td>
|
||||
<!-- bucket-external memory - not depicted -->
|
||||
<td width="160"></td>
|
||||
<!-- a slot span in this bucket -->
|
||||
<td port="slotspan" bgcolor="crimson" width="80"></td>
|
||||
<!-- bucket-external memory - not depicted -->
|
||||
<td width="320"></td>
|
||||
<!-- tail partition page -->
|
||||
<td bgcolor="darkgrey" width="40"></td>
|
||||
</tr></table>
|
||||
>]
|
||||
page2[label=<
|
||||
<table border="0" cellborder="1" cellspacing="0"><tr>
|
||||
<!-- head partition page -->
|
||||
<td port="head" bgcolor="darkgrey" width="40" height="52"></td>
|
||||
<!-- bucket-external memory - not depicted -->
|
||||
<td width="280"></td>
|
||||
<!-- a slot span in this bucket -->
|
||||
<td port="slotspan" bgcolor="crimson" width="80"></td>
|
||||
<!-- bucket-external memory - not depicted -->
|
||||
<td width="200"></td>
|
||||
<!-- tail partition page -->
|
||||
<td bgcolor="darkgrey" width="40"></td>
|
||||
</tr></table>
|
||||
>]
|
||||
page3[label=<
|
||||
<table border="0" cellborder="1" cellspacing="0"><tr>
|
||||
<!-- head partition page -->
|
||||
<td port="head" bgcolor="darkgrey" width="40" height="52"></td>
|
||||
<!-- bucket-external memory - not depicted -->
|
||||
<td width="40"></td>
|
||||
<!-- a slot span in this bucket -->
|
||||
<td port="slotspan1" bgcolor="crimson" width="80"></td>
|
||||
<!-- bucket-external memory - not depicted -->
|
||||
<td width="120"></td>
|
||||
<!-- a slot span in this bucket -->
|
||||
<td port="slotspan2" bgcolor="crimson" width="80"></td>
|
||||
<!-- bucket-external memory - not depicted -->
|
||||
<td width="240"></td>
|
||||
<!-- tail partition page -->
|
||||
<td bgcolor="darkgrey" width="40"></td>
|
||||
</tr></table>
|
||||
>]
|
||||
|
||||
// Invisibly link the head partition pages to force alignment.
|
||||
page1:head->page2:head->page3:head[style=invis]
|
||||
|
||||
// Inter-super-page links disable constraints so to let the above
|
||||
// fully control alignment.
|
||||
page1:slotspan->page2:slotspan->page3:slotspan1[constraint=false]
|
||||
page3:slotspan1:s->page3:slotspan2:sw
|
||||
}
|
Binary file not shown.
After Width: | Height: | Size: 10 KiB |
@ -0,0 +1,22 @@
|
||||
digraph G {
|
||||
node[shape=box,style="filled,rounded",color=deepskyblue]
|
||||
|
||||
subgraph cluster_tc {
|
||||
label = "Thread Cache"
|
||||
rankdir = LR
|
||||
{rank=same;TLS1,TLS2,TLSn}
|
||||
TLS1->TLS2[style=invisible,dir=none]
|
||||
TLS2->TLSn[style=dotted,dir=none]
|
||||
}
|
||||
|
||||
subgraph cluster_central {
|
||||
label = "Central Allocator (per-partition lock)"
|
||||
fast[label="slot span freelists (fast path)"]
|
||||
slow[label="slot span management (slow path)"]
|
||||
# Forces slow path node beneath fast path node.
|
||||
fast->slow[style=invisible,dir=none]
|
||||
}
|
||||
|
||||
# Forces thread-external subgraph beneath thread cache subgraph.
|
||||
TLS2->fast[style=invisible,dir=none]
|
||||
}
|
Binary file not shown.
After Width: | Height: | Size: 15 KiB |
@ -0,0 +1,94 @@
|
||||
digraph G {
|
||||
node[shape=plaintext]
|
||||
edge[style=dashed]
|
||||
|
||||
invisible_a[label=<
|
||||
<TABLE BORDER="0" CELLBORDER="0" CELLSPACING="0">
|
||||
<TR>
|
||||
<TD PORT="red" WIDTH="100"></TD>
|
||||
<TD PORT="green" WIDTH="20"></TD>
|
||||
<TD PORT="blue" WIDTH="40"></TD>
|
||||
<TD PORT="gold" WIDTH="300"></TD>
|
||||
<TD PORT="pink" WIDTH="60"></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
superpage[xlabel="Super Page",label=<
|
||||
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0" WIDTH="10">
|
||||
<TR>
|
||||
<!-- Head Partition Page -->
|
||||
<TD BGCOLOR="darkgrey" HEIGHT="52"></TD>
|
||||
<TD PORT="metadata"></TD>
|
||||
<TD BGCOLOR="darkgrey" WIDTH="18"></TD>
|
||||
<!-- Bitmaps -->
|
||||
<TD WIDTH="100">Bitmaps(?)</TD>
|
||||
<!-- Several Slot Spans -->
|
||||
<TD PORT="red" BGCOLOR="crimson" WIDTH="119">3</TD>
|
||||
<TD PORT="green" BGCOLOR="palegreen" WIDTH="39">1</TD>
|
||||
<TD PORT="blue" BGCOLOR="cornflowerblue" WIDTH="79">2</TD>
|
||||
<TD PORT="gold" BGCOLOR="gold" WIDTH="239">6</TD>
|
||||
<TD PORT="red2" BGCOLOR="crimson" WIDTH="119">3</TD>
|
||||
<TD PORT="pink" BGCOLOR="deeppink" WIDTH="39">1</TD>
|
||||
<TD WIDTH="79">...</TD>
|
||||
<!-- Tail Partition Page -->
|
||||
<TD BGCOLOR="darkgrey" WIDTH="39"></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
invisible_b[label=<
|
||||
<TABLE BORDER="0" CELLBORDER="0" CELLSPACING="0">
|
||||
<TR>
|
||||
<TD PORT="green" WIDTH="30"></TD>
|
||||
<TD PORT="blue" WIDTH="60"></TD>
|
||||
<TD PORT="gold" WIDTH="180"></TD>
|
||||
<TD PORT="red" WIDTH="90"></TD>
|
||||
<TD PORT="pink" WIDTH="90"></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
metadata_page[xlabel="Metadata",label=<
|
||||
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0">
|
||||
<TR>
|
||||
<!-- Guard Page Metadata -->
|
||||
<TD BGCOLOR="darkgrey"> </TD>
|
||||
<!-- Bitmaps Offset -->
|
||||
<TD> B? </TD>
|
||||
<!-- Red Slot Span Metadata -->
|
||||
<TD BGCOLOR="crimson">v</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<!-- Green Slot Span Metadata -->
|
||||
<TD BGCOLOR="palegreen">v</TD>
|
||||
<!-- Blue Slot Span Metadata -->
|
||||
<TD BGCOLOR="cornflowerblue">v</TD>
|
||||
<TD BGCOLOR="cornflowerblue">+</TD>
|
||||
<!-- Gold Slot Span Metadata -->
|
||||
<TD BGCOLOR="gold">v</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<!-- Red Slot Span Metadata -->
|
||||
<TD BGCOLOR="crimson">v</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<!-- Pink Slot Span Metadata -->
|
||||
<TD BGCOLOR="deeppink">v</TD>
|
||||
<!-- etc. -->
|
||||
<TD WIDTH="64">...</TD>
|
||||
<!-- Guard Page Metadata -->
|
||||
<TD BGCOLOR="darkgrey"> </TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
|
||||
invisible_a:red->superpage:red->superpage:red2[color=crimson]
|
||||
superpage:red2->invisible_b:red[color=crimson]
|
||||
invisible_a:green->superpage:green->invisible_b:green[color=palegreen]
|
||||
invisible_a:blue->superpage:blue->invisible_b:blue[color=cornflowerblue]
|
||||
invisible_a:gold->superpage:gold->invisible_b:gold[color=gold]
|
||||
invisible_a:pink->superpage:pink->invisible_b:pink[color=deeppink]
|
||||
|
||||
superpage:metadata->metadata_page[style="",arrowhead=odot]
|
||||
}
|
Binary file not shown.
After Width: | Height: | Size: 26 KiB |
@ -0,0 +1,17 @@
|
||||
digraph {
|
||||
layout = "circo"
|
||||
dpi = 156
|
||||
node[shape=box]
|
||||
|
||||
crt[shape=circle, label="(not yet fully\ninitialized)\nWindows\nCRT"]
|
||||
malloc[label="malloc()"]
|
||||
crt->malloc[label="calls"]
|
||||
malloc->PartitionAlloc[label="intercepted\nby"]
|
||||
|
||||
static_local[label="nontrivial\nfunction-local\nstatic"]
|
||||
PartitionAlloc->static_local[label="initializes"]
|
||||
lock[label="critical section\n(implicit lock)"]
|
||||
static_local->lock[label="enters"]
|
||||
|
||||
lock->crt[label="attempts\nre-entry\ninto", style=dotted]
|
||||
}
|
Binary file not shown.
After Width: | Height: | Size: 34 KiB |
@ -0,0 +1,304 @@
|
||||
// Copyright 2018 The Chromium Authors
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef PARTITION_ALLOC_ENCODED_NEXT_FREELIST_H_
|
||||
#define PARTITION_ALLOC_ENCODED_NEXT_FREELIST_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "partition_alloc/build_config.h"
|
||||
#include "partition_alloc/buildflags.h"
|
||||
#include "partition_alloc/freeslot_bitmap.h"
|
||||
#include "partition_alloc/partition_alloc-inl.h"
|
||||
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
|
||||
#include "partition_alloc/partition_alloc_config.h"
|
||||
#include "partition_alloc/partition_alloc_constants.h"
|
||||
|
||||
#if !PA_BUILDFLAG(PA_ARCH_CPU_BIG_ENDIAN)
|
||||
#include "partition_alloc/reverse_bytes.h"
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
class EncodedNextFreelistEntry;
|
||||
|
||||
class EncodedFreelistPtr {
|
||||
private:
|
||||
PA_ALWAYS_INLINE constexpr explicit EncodedFreelistPtr(std::nullptr_t)
|
||||
: encoded_(Transform(0)) {}
|
||||
PA_ALWAYS_INLINE explicit EncodedFreelistPtr(void* ptr)
|
||||
// The encoded pointer stays MTE-tagged.
|
||||
: encoded_(Transform(reinterpret_cast<uintptr_t>(ptr))) {}
|
||||
|
||||
PA_ALWAYS_INLINE EncodedNextFreelistEntry* Decode() const {
|
||||
return reinterpret_cast<EncodedNextFreelistEntry*>(Transform(encoded_));
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr uintptr_t Inverted() const { return ~encoded_; }
|
||||
|
||||
PA_ALWAYS_INLINE constexpr void Override(uintptr_t encoded) {
|
||||
encoded_ = encoded;
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr explicit operator bool() const { return encoded_; }
|
||||
|
||||
// Transform() works the same in both directions, so can be used for
|
||||
// encoding and decoding.
|
||||
PA_ALWAYS_INLINE static constexpr uintptr_t Transform(uintptr_t address) {
|
||||
// We use bswap on little endian as a fast transformation for two reasons:
|
||||
// 1) On 64 bit architectures, the swapped pointer is very unlikely to be a
|
||||
// canonical address. Therefore, if an object is freed and its vtable is
|
||||
// used where the attacker doesn't get the chance to run allocations
|
||||
// between the free and use, the vtable dereference is likely to fault.
|
||||
// 2) If the attacker has a linear buffer overflow and elects to try and
|
||||
// corrupt a freelist pointer, partial pointer overwrite attacks are
|
||||
// thwarted.
|
||||
// For big endian, similar guarantees are arrived at with a negation.
|
||||
#if PA_BUILDFLAG(PA_ARCH_CPU_BIG_ENDIAN)
|
||||
uintptr_t transformed = ~address;
|
||||
#else
|
||||
uintptr_t transformed = ReverseBytes(address);
|
||||
#endif
|
||||
return transformed;
|
||||
}
|
||||
|
||||
uintptr_t encoded_;
|
||||
|
||||
friend EncodedNextFreelistEntry;
|
||||
};
|
||||
|
||||
// Freelist entries are encoded for security reasons. See
|
||||
// //base/allocator/partition_allocator/PartitionAlloc.md
|
||||
// and |Transform()| for the rationale and mechanism, respectively.
|
||||
class EncodedNextFreelistEntry {
|
||||
private:
|
||||
constexpr explicit EncodedNextFreelistEntry(std::nullptr_t)
|
||||
: encoded_next_(EncodedFreelistPtr(nullptr))
|
||||
#if PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)
|
||||
,
|
||||
shadow_(encoded_next_.Inverted())
|
||||
#endif
|
||||
{
|
||||
}
|
||||
explicit EncodedNextFreelistEntry(EncodedNextFreelistEntry* next)
|
||||
: encoded_next_(EncodedFreelistPtr(next))
|
||||
#if PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)
|
||||
,
|
||||
shadow_(encoded_next_.Inverted())
|
||||
#endif
|
||||
{
|
||||
}
|
||||
// For testing only.
|
||||
EncodedNextFreelistEntry(void* next, bool make_shadow_match)
|
||||
: encoded_next_(EncodedFreelistPtr(next))
|
||||
#if PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)
|
||||
,
|
||||
shadow_(make_shadow_match ? encoded_next_.Inverted() : 12345)
|
||||
#endif
|
||||
{
|
||||
}
|
||||
|
||||
public:
|
||||
~EncodedNextFreelistEntry() = delete;
|
||||
|
||||
// Emplaces the freelist entry at the beginning of the given slot span, and
|
||||
// initializes it as null-terminated.
|
||||
PA_ALWAYS_INLINE static EncodedNextFreelistEntry* EmplaceAndInitNull(
|
||||
void* slot_start_tagged) {
|
||||
// |slot_start_tagged| is MTE-tagged.
|
||||
auto* entry = new (slot_start_tagged) EncodedNextFreelistEntry(nullptr);
|
||||
return entry;
|
||||
}
|
||||
PA_ALWAYS_INLINE static EncodedNextFreelistEntry* EmplaceAndInitNull(
|
||||
uintptr_t slot_start) {
|
||||
return EmplaceAndInitNull(SlotStartAddr2Ptr(slot_start));
|
||||
}
|
||||
|
||||
// Emplaces the freelist entry at the beginning of the given slot span, and
|
||||
// initializes it with the given |next| pointer, but encoded.
|
||||
//
|
||||
// This freelist is built for the purpose of thread-cache. This means that we
|
||||
// can't perform a check that this and the next pointer belong to the same
|
||||
// super page, as thread-cache spans may chain slots across super pages.
|
||||
PA_ALWAYS_INLINE static EncodedNextFreelistEntry*
|
||||
EmplaceAndInitForThreadCache(uintptr_t slot_start,
|
||||
EncodedNextFreelistEntry* next) {
|
||||
auto* entry =
|
||||
new (SlotStartAddr2Ptr(slot_start)) EncodedNextFreelistEntry(next);
|
||||
return entry;
|
||||
}
|
||||
|
||||
// Emplaces the freelist entry at the beginning of the given slot span, and
|
||||
// initializes it with the given |next| pointer.
|
||||
//
|
||||
// This is for testing purposes only! |make_shadow_match| allows you to choose
|
||||
// if the shadow matches the next pointer properly or is trash.
|
||||
PA_ALWAYS_INLINE static void EmplaceAndInitForTest(uintptr_t slot_start,
|
||||
void* next,
|
||||
bool make_shadow_match) {
|
||||
new (SlotStartAddr2Ptr(slot_start))
|
||||
EncodedNextFreelistEntry(next, make_shadow_match);
|
||||
}
|
||||
|
||||
void CorruptNextForTesting(uintptr_t v) {
|
||||
// We just need a value that can never be a valid pointer here.
|
||||
encoded_next_.Override(EncodedFreelistPtr::Transform(v));
|
||||
}
|
||||
|
||||
// Puts `slot_size` on the stack before crashing in case of memory
|
||||
// corruption. Meant to be used to report the failed allocation size.
|
||||
template <bool crash_on_corruption>
|
||||
PA_ALWAYS_INLINE EncodedNextFreelistEntry* GetNextForThreadCache(
|
||||
size_t slot_size) const {
|
||||
return GetNextInternal<crash_on_corruption, /*for_thread_cache=*/true>(
|
||||
slot_size);
|
||||
}
|
||||
PA_ALWAYS_INLINE EncodedNextFreelistEntry* GetNext(size_t slot_size) const {
|
||||
return GetNextInternal<true, /*for_thread_cache=*/false>(slot_size);
|
||||
}
|
||||
|
||||
PA_NOINLINE void CheckFreeList(size_t slot_size) const {
|
||||
for (auto* entry = this; entry; entry = entry->GetNext(slot_size)) {
|
||||
// `GetNext()` calls `IsWellFormed()`.
|
||||
}
|
||||
}
|
||||
|
||||
PA_NOINLINE void CheckFreeListForThreadCache(size_t slot_size) const {
|
||||
for (auto* entry = this; entry;
|
||||
entry = entry->GetNextForThreadCache<true>(slot_size)) {
|
||||
// `GetNextForThreadCache()` calls `IsWellFormed()`.
|
||||
}
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE void SetNext(EncodedNextFreelistEntry* entry) {
|
||||
// SetNext() is either called on the freelist head, when provisioning new
|
||||
// slots, or when GetNext() has been called before, no need to pass the
|
||||
// size.
|
||||
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
|
||||
// Regular freelists always point to an entry within the same super page.
|
||||
//
|
||||
// This is most likely a PartitionAlloc bug if this triggers.
|
||||
if (entry && (SlotStartPtr2Addr(this) & kSuperPageBaseMask) !=
|
||||
(SlotStartPtr2Addr(entry) & kSuperPageBaseMask))
|
||||
[[unlikely]] {
|
||||
FreelistCorruptionDetected(0);
|
||||
}
|
||||
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
|
||||
|
||||
encoded_next_ = EncodedFreelistPtr(entry);
|
||||
#if PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)
|
||||
shadow_ = encoded_next_.Inverted();
|
||||
#endif
|
||||
}
|
||||
|
||||
// Zeroes out |this| before returning the slot. The pointer to this memory
|
||||
// will be returned to the user (caller of Alloc()), thus can't have internal
|
||||
// data.
|
||||
PA_ALWAYS_INLINE uintptr_t ClearForAllocation() {
|
||||
encoded_next_.Override(0);
|
||||
#if PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)
|
||||
shadow_ = 0;
|
||||
#endif
|
||||
return SlotStartPtr2Addr(this);
|
||||
}
|
||||
|
||||
PA_ALWAYS_INLINE constexpr bool IsEncodedNextPtrZero() const {
|
||||
return !encoded_next_;
|
||||
}
|
||||
|
||||
private:
|
||||
template <bool crash_on_corruption, bool for_thread_cache>
|
||||
PA_ALWAYS_INLINE EncodedNextFreelistEntry* GetNextInternal(
|
||||
size_t slot_size) const {
|
||||
// GetNext() can be called on discarded memory, in which case
|
||||
// |encoded_next_| is 0, and none of the checks apply. Don't prefetch
|
||||
// nullptr either.
|
||||
if (IsEncodedNextPtrZero()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto* ret = encoded_next_.Decode();
|
||||
if (!IsWellFormed<for_thread_cache>(this, ret)) [[unlikely]] {
|
||||
if constexpr (crash_on_corruption) {
|
||||
// Put the corrupted data on the stack, it may give us more information
|
||||
// about what kind of corruption that was.
|
||||
PA_DEBUG_DATA_ON_STACK("first",
|
||||
static_cast<size_t>(encoded_next_.encoded_));
|
||||
#if PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)
|
||||
PA_DEBUG_DATA_ON_STACK("second", static_cast<size_t>(shadow_));
|
||||
#endif
|
||||
FreelistCorruptionDetected(slot_size);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// In real-world profiles, the load of |encoded_next_| above is responsible
|
||||
// for a large fraction of the allocation cost. However, we cannot
|
||||
// anticipate it enough since it is accessed right after we know its
|
||||
// address.
|
||||
//
|
||||
// In the case of repeated allocations, we can prefetch the access that will
|
||||
// be done at the *next* allocation, which will touch *ret, prefetch it.
|
||||
PA_PREFETCH(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <bool for_thread_cache>
|
||||
PA_ALWAYS_INLINE static bool IsWellFormed(
|
||||
const EncodedNextFreelistEntry* here,
|
||||
const EncodedNextFreelistEntry* next) {
|
||||
// Don't allow the freelist to be blindly followed to any location.
|
||||
// Checks following constraints:
|
||||
// - `here->shadow_` must match an inversion of `here->next_` (if present).
|
||||
// - `next` mustn't point inside the super page metadata area.
|
||||
// - Unless this is a thread-cache freelist, `here` and `next` must belong
|
||||
// to the same super page (as a matter of fact, they must belong to the
|
||||
// same slot span, but that'd be too expensive to check here).
|
||||
// - `next` is marked as free in the free slot bitmap (if present).
|
||||
|
||||
const uintptr_t here_address = SlotStartPtr2Addr(here);
|
||||
const uintptr_t next_address = SlotStartPtr2Addr(next);
|
||||
|
||||
#if PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)
|
||||
bool shadow_ptr_ok = here->encoded_next_.Inverted() == here->shadow_;
|
||||
#else
|
||||
constexpr bool shadow_ptr_ok = true;
|
||||
#endif
|
||||
|
||||
// This is necessary but not sufficient when quarantine is enabled, see
|
||||
// SuperPagePayloadBegin() in partition_page.h. However we don't want to
|
||||
// fetch anything from the root in this function.
|
||||
const bool not_in_metadata =
|
||||
(next_address & kSuperPageOffsetMask) >= PartitionPageSize();
|
||||
|
||||
if constexpr (for_thread_cache) {
|
||||
return shadow_ptr_ok & not_in_metadata;
|
||||
}
|
||||
|
||||
const bool same_super_page = (here_address & kSuperPageBaseMask) ==
|
||||
(next_address & kSuperPageBaseMask);
|
||||
|
||||
#if PA_BUILDFLAG(USE_FREESLOT_BITMAP)
|
||||
bool marked_as_free_in_bitmap = !FreeSlotBitmapSlotIsUsed(next_address);
|
||||
#else
|
||||
constexpr bool marked_as_free_in_bitmap = true;
|
||||
#endif
|
||||
|
||||
return shadow_ptr_ok & same_super_page & marked_as_free_in_bitmap &
|
||||
not_in_metadata;
|
||||
}
|
||||
|
||||
EncodedFreelistPtr encoded_next_;
|
||||
// This is intended to detect unintentional corruptions of the freelist.
|
||||
// These can happen due to a Use-after-Free, or overflow of the previous
|
||||
// allocation in the slot span.
|
||||
#if PA_CONFIG(HAS_FREELIST_SHADOW_ENTRY)
|
||||
uintptr_t shadow_;
|
||||
#endif
|
||||
};
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // PARTITION_ALLOC_ENCODED_NEXT_FREELIST_H_
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user