mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-23 22:06:12 +03:00
Import chromium-101.0.4951.41
This commit is contained in:
commit
09fac4b528
39
src/.clang-format
Normal file
39
src/.clang-format
Normal file
@ -0,0 +1,39 @@
|
||||
# Defines the Chromium style for automatic reformatting.
|
||||
# http://clang.llvm.org/docs/ClangFormatStyleOptions.html
|
||||
BasedOnStyle: Chromium
|
||||
# This defaults to 'Auto'. Explicitly set it for a while, so that
|
||||
# 'vector<vector<int> >' in existing files gets formatted to
|
||||
# 'vector<vector<int>>'. ('Auto' means that clang-format will only use
|
||||
# 'int>>' if the file already contains at least one such instance.)
|
||||
Standard: Cpp11
|
||||
|
||||
# Make sure code like:
|
||||
# IPC_BEGIN_MESSAGE_MAP()
|
||||
# IPC_MESSAGE_HANDLER(WidgetHostViewHost_Update, OnUpdate)
|
||||
# IPC_END_MESSAGE_MAP()
|
||||
# gets correctly indented.
|
||||
MacroBlockBegin: "^\
|
||||
BEGIN_MSG_MAP|\
|
||||
BEGIN_MSG_MAP_EX|\
|
||||
BEGIN_SAFE_MSG_MAP_EX|\
|
||||
CR_BEGIN_MSG_MAP_EX|\
|
||||
IPC_BEGIN_MESSAGE_MAP|\
|
||||
IPC_BEGIN_MESSAGE_MAP_WITH_PARAM|\
|
||||
IPC_PROTOBUF_MESSAGE_TRAITS_BEGIN|\
|
||||
IPC_STRUCT_BEGIN|\
|
||||
IPC_STRUCT_BEGIN_WITH_PARENT|\
|
||||
IPC_STRUCT_TRAITS_BEGIN|\
|
||||
POLPARAMS_BEGIN|\
|
||||
PPAPI_BEGIN_MESSAGE_MAP$"
|
||||
MacroBlockEnd: "^\
|
||||
CR_END_MSG_MAP|\
|
||||
END_MSG_MAP|\
|
||||
IPC_END_MESSAGE_MAP|\
|
||||
IPC_PROTOBUF_MESSAGE_TRAITS_END|\
|
||||
IPC_STRUCT_END|\
|
||||
IPC_STRUCT_TRAITS_END|\
|
||||
POLPARAMS_END|\
|
||||
PPAPI_END_MESSAGE_MAP$"
|
||||
|
||||
# TODO: Remove this once clang-format r357700 is rolled in.
|
||||
JavaImportGroups: ['android', 'androidx', 'com', 'dalvik', 'junit', 'org', 'com.google.android.apps.chrome', 'org.chromium', 'java', 'javax']
|
58
src/.gitattributes
vendored
Normal file
58
src/.gitattributes
vendored
Normal file
@ -0,0 +1,58 @@
|
||||
# Stop Windows python license check presubmit errors by forcing LF checkout.
|
||||
*.py text eol=lf
|
||||
|
||||
# Force LF checkout of the pins files to avoid transport_security_state_generator errors.
|
||||
/net/http/*.pins text eol=lf
|
||||
|
||||
# Force LF checkout for all source files
|
||||
*.bin binary
|
||||
*.c text eol=lf
|
||||
*.cc text eol=lf
|
||||
*.cpp text eol=lf
|
||||
*.csv text eol=lf
|
||||
*.grd text eol=lf
|
||||
*.grdp text eol=lf
|
||||
*.gn text eol=lf
|
||||
*.gni text eol=lf
|
||||
*.h text eol=lf
|
||||
*.html text eol=lf
|
||||
*.idl text eol=lf
|
||||
*.in text eol=lf
|
||||
*.inc text eol=lf
|
||||
*.java text eol=lf
|
||||
*.js text eol=lf
|
||||
*.json text eol=lf
|
||||
*.json5 text eol=lf
|
||||
*.md text eol=lf
|
||||
*.mm text eol=lf
|
||||
*.mojom text eol=lf
|
||||
*.pdf -diff
|
||||
*.proto text eol=lf
|
||||
*.rs text eol=lf
|
||||
*.sh text eol=lf
|
||||
*.sql text eol=lf
|
||||
*.toml text eol=lf
|
||||
*.txt text eol=lf
|
||||
*.xml text eol=lf
|
||||
*.xslt text eol=lf
|
||||
.clang-format text eol=lf
|
||||
.eslintrc.js text eol=lf
|
||||
.git-blame-ignore-revs text eol=lf
|
||||
.gitattributes text eol=lf
|
||||
.gitignore text eol=lf
|
||||
.vpython text eol=lf
|
||||
codereview.settings text eol=lf
|
||||
DEPS text eol=lf
|
||||
ENG_REVIEW_OWNERS text eol=lf
|
||||
LICENSE text eol=lf
|
||||
LICENSE.* text eol=lf
|
||||
MAJOR_BRANCH_DATE text eol=lf
|
||||
OWNERS text eol=lf
|
||||
README text eol=lf
|
||||
README.* text eol=lf
|
||||
WATCHLISTS text eol=lf
|
||||
VERSION text eol=lf
|
||||
DIR_METADATA text eol=lf
|
||||
|
||||
# Skip Tricium by default on files in third_party.
|
||||
third_party/** -tricium
|
168
src/.gn
Normal file
168
src/.gn
Normal file
@ -0,0 +1,168 @@
|
||||
# This file is used by the GN meta build system to find the root of the source
|
||||
# tree and to set startup options. For documentation on the values set in this
|
||||
# file, run "gn help dotfile" at the command line.
|
||||
|
||||
import("//build/dotfile_settings.gni")
|
||||
import("//third_party/angle/dotfile_settings.gni")
|
||||
|
||||
# The location of the build configuration file.
|
||||
buildconfig = "//build/config/BUILDCONFIG.gn"
|
||||
|
||||
# The python interpreter to use by default. On Windows, this will look
|
||||
# for python3.exe and python3.bat.
|
||||
script_executable = "python3"
|
||||
|
||||
# These arguments override the default values for items in a declare_args
|
||||
# block. "gn args" in turn can override these.
|
||||
#
|
||||
# In general the value for a build arg in the declare_args block should be the
|
||||
# default. In some cases, a DEPS-ed in project will want different defaults for
|
||||
# being built as part of Chrome vs. being built standalone. In this case, the
|
||||
# Chrome defaults should go here. There should be no overrides here for
|
||||
# values declared in the main Chrome repository.
|
||||
#
|
||||
# Important note for defining defaults: This file is executed before the
|
||||
# BUILDCONFIG.gn file. That file sets up the global variables like "is_ios".
|
||||
# This means that the default_args can not depend on the platform,
|
||||
# architecture, or other build parameters. If you really need that, the other
|
||||
# repo should define a flag that toggles on a behavior that implements the
|
||||
# additional logic required by Chrome to set the variables.
|
||||
default_args = {
|
||||
# TODO(brettw) bug 684096: Chrome on iOS does not build v8, so "gn gen" prints
|
||||
# a warning that "Build argument has no effect". When adding a v8 variable, it
|
||||
# also needs to be defined to src/ios/BUILD.gn (respectively removed from both
|
||||
# location when it is removed).
|
||||
|
||||
v8_extra_library_files = []
|
||||
v8_experimental_extra_library_files = []
|
||||
v8_enable_gdbjit = false
|
||||
v8_imminent_deprecation_warnings = false
|
||||
|
||||
# Don't include webrtc's builtin task queue implementation.
|
||||
rtc_link_task_queue_impl = false
|
||||
|
||||
# Don't include the iLBC audio codec.
|
||||
# TODO(bugs.webrtc.org/8396): Once WebRTC gets rid of its internal
|
||||
# deps on codecs, we can remove this.
|
||||
rtc_include_ilbc = false
|
||||
|
||||
# Changes some setup for the Crashpad build to set them to build against
|
||||
# Chromium's zlib, base, etc.
|
||||
crashpad_dependencies = "chromium"
|
||||
|
||||
# Override ANGLE's Vulkan dependencies.
|
||||
angle_vulkan_headers_dir = "//third_party/vulkan-deps/vulkan-headers/src"
|
||||
angle_vulkan_loader_dir = "//third_party/vulkan-deps/vulkan-loader/src"
|
||||
angle_vulkan_tools_dir = "//third_party/vulkan-deps/vulkan-tools/src"
|
||||
angle_vulkan_validation_layers_dir =
|
||||
"//third_party/vulkan-deps/vulkan-validation-layers/src"
|
||||
|
||||
# Overwrite default args declared in the Fuchsia sdk
|
||||
fuchsia_sdk_readelf_exec =
|
||||
"//third_party/llvm-build/Release+Asserts/bin/llvm-readelf"
|
||||
fuchsia_target_api_level = 7
|
||||
|
||||
devtools_visibility = [ "*" ]
|
||||
}
|
||||
|
||||
# These are the targets to skip header checking by default. The files in targets
|
||||
# matching these patterns (see "gn help label_pattern" for format) will not have
|
||||
# their includes checked for proper dependencies when you run either
|
||||
# "gn check" or "gn gen --check".
|
||||
no_check_targets = [
|
||||
"//headless:headless_non_renderer", # 9 errors
|
||||
"//headless:headless_renderer", # 13 errors
|
||||
"//headless:headless_shared_sources", # 4 errors
|
||||
"//headless:headless_shell_browser_lib", # 10 errors
|
||||
"//headless:headless_shell_lib", # 10 errors
|
||||
|
||||
# //v8, https://crbug.com/v8/7330
|
||||
"//v8/src/inspector:inspector", # 20 errors
|
||||
"//v8/test/cctest:cctest_sources", # 2 errors
|
||||
"//v8:cppgc_base", # 1 error
|
||||
"//v8:v8_internal_headers", # 11 errors
|
||||
"//v8:v8_libplatform", # 2 errors
|
||||
]
|
||||
|
||||
# These are the list of GN files that run exec_script. This whitelist exists
|
||||
# to force additional review for new uses of exec_script, which is strongly
|
||||
# discouraged.
|
||||
#
|
||||
# PLEASE READ
|
||||
#
|
||||
# You should almost never need to add new exec_script calls. exec_script is
|
||||
# slow, especially on Windows, and can cause confusing effects. Although
|
||||
# individually each call isn't slow or necessarily very confusing, at the scale
|
||||
# of our repo things get out of hand quickly. By strongly pushing back on all
|
||||
# additions, we keep the build fast and clean. If you think you need to add a
|
||||
# new call, please consider:
|
||||
#
|
||||
# - Do not use a script to check for the existence of a file or directory to
|
||||
# enable a different mode. Instead, use GN build args to enable or disable
|
||||
# functionality and set options. An example is checking for a file in the
|
||||
# src-internal repo to see if the corresponding src-internal feature should
|
||||
# be enabled. There are several things that can go wrong with this:
|
||||
#
|
||||
# - It's mysterious what causes some things to happen. Although in many cases
|
||||
# such behavior can be conveniently automatic, GN optimizes for explicit
|
||||
# and obvious behavior so people can more easily diagnose problems.
|
||||
#
|
||||
# - The user can't enable a mode for one build and not another. With GN build
|
||||
# args, the user can choose the exact configuration of multiple builds
|
||||
# using one checkout. But implicitly basing flags on the state of the
|
||||
# checkout, this functionality is broken.
|
||||
#
|
||||
# - It's easy to get stale files. If for example the user edits the gclient
|
||||
# to stop checking out src-internal (or any other optional thing), it's
|
||||
# easy to end up with stale files still mysteriously triggering build
|
||||
# conditions that are no longer appropriate (yes, this happens in real
|
||||
# life).
|
||||
#
|
||||
# - Do not use a script to iterate files in a directory (glob):
|
||||
#
|
||||
# - This has the same "stale file" problem as the above discussion. Various
|
||||
# operations can leave untracked files in the source tree which can cause
|
||||
# surprising effects.
|
||||
#
|
||||
# - It becomes impossible to use "git grep" to find where a certain file is
|
||||
# referenced. This operation is very common and people really do get
|
||||
# confused when things aren't listed.
|
||||
#
|
||||
# - It's easy to screw up. One common case is a build-time script that packs
|
||||
# up a directory. The author notices that the script isn't re-run when the
|
||||
# directory is updated, so adds a glob so all the files are listed as
|
||||
# inputs. This seems to work great... until a file is deleted. When a
|
||||
# file is deleted, all the inputs the glob lists will still be up to date
|
||||
# and no command-lines will have been changed. The action will not be
|
||||
# re-run and the build will be broken. It is possible to get this correct
|
||||
# using glob, and it's possible to mess it up without glob, but globs make
|
||||
# this situation much easier to create. if the build always lists the
|
||||
# files and passes them to a script, it will always be correct.
|
||||
|
||||
exec_script_whitelist =
|
||||
build_dotfile_settings.exec_script_whitelist +
|
||||
angle_dotfile_settings.exec_script_whitelist +
|
||||
[
|
||||
# Whitelist entries for //build should go into
|
||||
# //build/dotfile_settings.gni instead, so that they can be shared
|
||||
# with other repos. The entries in this list should be only for files
|
||||
# in the Chromium repo outside of //build.
|
||||
"//build_overrides/build.gni",
|
||||
|
||||
"//chrome/android/webapk/shell_apk/prepare_upload_dir/BUILD.gn",
|
||||
|
||||
# TODO(dgn): Layer violation but breaks the build otherwise, see
|
||||
# https://crbug.com/474506.
|
||||
"//clank/java/BUILD.gn",
|
||||
"//clank/native/BUILD.gn",
|
||||
|
||||
"//google_apis/BUILD.gn",
|
||||
"//printing/BUILD.gn",
|
||||
|
||||
"//remoting/host/installer/linux/BUILD.gn",
|
||||
"//remoting/remoting_version.gni",
|
||||
"//remoting/host/installer/win/generate_clsids.gni",
|
||||
|
||||
"//tools/grit/grit_rule.gni",
|
||||
"//tools/gritsettings/BUILD.gn",
|
||||
]
|
1393
src/AUTHORS
Normal file
1393
src/AUTHORS
Normal file
File diff suppressed because it is too large
Load Diff
1648
src/BUILD.gn
Normal file
1648
src/BUILD.gn
Normal file
File diff suppressed because it is too large
Load Diff
27
src/LICENSE
Normal file
27
src/LICENSE
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright 2015 The Chromium Authors. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
4659
src/base/BUILD.gn
Normal file
4659
src/base/BUILD.gn
Normal file
File diff suppressed because it is too large
Load Diff
27
src/base/DEPS
Normal file
27
src/base/DEPS
Normal file
@ -0,0 +1,27 @@
|
||||
include_rules = [
|
||||
"+third_party/ashmem",
|
||||
"+third_party/apple_apsl",
|
||||
"+third_party/boringssl/src/include",
|
||||
"+third_party/ced",
|
||||
"+third_party/libunwindstack/src/libunwindstack/include",
|
||||
"+third_party/lss",
|
||||
"+third_party/modp_b64",
|
||||
"+third_party/perfetto/include",
|
||||
"+third_party/perfetto/protos/perfetto",
|
||||
# Conversions between base and Rust types (e.g. base::span <-> rust::Slice)
|
||||
# require the cxx.h header from cxx. This is only used if Rust is enabled
|
||||
# in the gn build; see //base/BUILD.gn's conditional dependency on
|
||||
# //build/rust:cxx_cppdeps.
|
||||
"+third_party/rust/cxx",
|
||||
"+third_party/test_fonts",
|
||||
|
||||
# These are implicitly brought in from the root, and we don't want them.
|
||||
"-ipc",
|
||||
"-url",
|
||||
|
||||
# ICU dependendencies must be separate from the rest of base.
|
||||
"-i18n",
|
||||
|
||||
# //base/util can use //base but not vice versa.
|
||||
"-util",
|
||||
]
|
3
src/base/DIR_METADATA
Normal file
3
src/base/DIR_METADATA
Normal file
@ -0,0 +1,3 @@
|
||||
monorail {
|
||||
component: "Internals>Core"
|
||||
}
|
41
src/base/OWNERS
Normal file
41
src/base/OWNERS
Normal file
@ -0,0 +1,41 @@
|
||||
# See //base/README.md to find qualification for being an owner.
|
||||
|
||||
set noparent
|
||||
# NOTE: keep this in sync with lsc-owners-override@chromium.org owners
|
||||
# by emailing lsc-policy@chromium.org when this list changes.
|
||||
danakj@chromium.org
|
||||
dcheng@chromium.org
|
||||
fdoray@chromium.org
|
||||
gab@chromium.org
|
||||
jdoerrie@chromium.org
|
||||
kylechar@chromium.org
|
||||
mark@chromium.org
|
||||
thakis@chromium.org
|
||||
thestig@chromium.org
|
||||
wez@chromium.org
|
||||
# NOTE: keep this in sync with lsc-owners-override@chromium.org owners
|
||||
# by emailing lsc-policy@chromium.org when this list changes.
|
||||
|
||||
# per-file rules:
|
||||
# These are for the common case of adding or renaming files. If you're doing
|
||||
# structural changes, please get a review from a reviewer in this file.
|
||||
per-file BUILD.gn=*
|
||||
|
||||
# For Android-specific changes:
|
||||
per-file ..._android*=file://base/android/OWNERS
|
||||
|
||||
# For Fuchsia-specific changes:
|
||||
per-file ..._fuchsia*=file://build/fuchsia/OWNERS
|
||||
|
||||
# For Windows-specific changes:
|
||||
per-file ..._win*=file://base/win/OWNERS
|
||||
|
||||
per-file callback_list*=pkasting@chromium.org
|
||||
per-file feature_list*=asvitkine@chromium.org
|
||||
per-file feature_list*=isherman@chromium.org
|
||||
|
||||
# Restricted since rand_util.h also backs the cryptographically secure RNG.
|
||||
per-file rand_util*=set noparent
|
||||
per-file rand_util*=file://ipc/SECURITY_OWNERS
|
||||
|
||||
per-file safe_numerics_unittest.cc=file://base/numerics/OWNERS
|
144
src/base/PRESUBMIT.py
Normal file
144
src/base/PRESUBMIT.py
Normal file
@ -0,0 +1,144 @@
|
||||
# Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
"""Chromium presubmit script for src/base.
|
||||
|
||||
See http://dev.chromium.org/developers/how-tos/depottools/presubmit-scripts
|
||||
for more details on the presubmit API built into depot_tools.
|
||||
"""
|
||||
|
||||
|
||||
USE_PYTHON3 = True
|
||||
|
||||
|
||||
def _CheckNoInterfacesInBase(input_api, output_api):
|
||||
"""Checks to make sure no files in libbase.a have |@interface|."""
|
||||
pattern = input_api.re.compile(r'^\s*@interface', input_api.re.MULTILINE)
|
||||
files = []
|
||||
for f in input_api.AffectedSourceFiles(input_api.FilterSourceFile):
|
||||
if (f.LocalPath().startswith('base/') and
|
||||
not "/ios/" in f.LocalPath() and
|
||||
not "/test/" in f.LocalPath() and
|
||||
not f.LocalPath().endswith('.java') and
|
||||
not f.LocalPath().endswith('_unittest.mm') and
|
||||
not f.LocalPath().endswith('mac/sdk_forward_declarations.h')):
|
||||
contents = input_api.ReadFile(f)
|
||||
if pattern.search(contents):
|
||||
files.append(f)
|
||||
|
||||
if len(files):
|
||||
return [ output_api.PresubmitError(
|
||||
'Objective-C interfaces or categories are forbidden in libbase. ' +
|
||||
'See http://groups.google.com/a/chromium.org/group/chromium-dev/' +
|
||||
'browse_thread/thread/efb28c10435987fd',
|
||||
files) ]
|
||||
return []
|
||||
|
||||
|
||||
def _FindLocations(input_api, search_regexes, files_to_check, files_to_skip):
|
||||
"""Returns locations matching one of the search_regexes."""
|
||||
def FilterFile(affected_file):
|
||||
return input_api.FilterSourceFile(
|
||||
affected_file,
|
||||
files_to_check=files_to_check,
|
||||
files_to_skip=files_to_skip)
|
||||
|
||||
no_presubmit = r"// no-presubmit-check"
|
||||
locations = []
|
||||
for f in input_api.AffectedSourceFiles(FilterFile):
|
||||
for line_num, line in f.ChangedContents():
|
||||
for search_regex in search_regexes:
|
||||
if (input_api.re.search(search_regex, line) and
|
||||
not input_api.re.search(no_presubmit, line)):
|
||||
locations.append(" %s:%d" % (f.LocalPath(), line_num))
|
||||
break
|
||||
return locations
|
||||
|
||||
|
||||
def _CheckNoTraceEventInclude(input_api, output_api):
|
||||
"""Verify that //base includes base_tracing.h instead of trace event headers.
|
||||
|
||||
Checks that files outside trace event implementation include the
|
||||
base_tracing.h header instead of specific trace event implementation headers
|
||||
to maintain compatibility with the gn flag "enable_base_tracing = false".
|
||||
"""
|
||||
discouraged_includes = [
|
||||
r'^#include "base/trace_event/(?!base_tracing\.h|base_tracing_forward\.h)',
|
||||
r'^#include "third_party/perfetto/include/',
|
||||
]
|
||||
|
||||
files_to_check = [
|
||||
r".*\.(h|cc|mm)$",
|
||||
]
|
||||
files_to_skip = [
|
||||
r".*[\\/]test[\\/].*",
|
||||
r".*[\\/]trace_event[\\/].*",
|
||||
r".*[\\/]tracing[\\/].*",
|
||||
]
|
||||
|
||||
locations = _FindLocations(input_api, discouraged_includes, files_to_check,
|
||||
files_to_skip)
|
||||
if locations:
|
||||
return [ output_api.PresubmitError(
|
||||
'Base code should include "base/trace_event/base_tracing.h" instead\n' +
|
||||
'of trace_event implementation headers. If you need to include an\n' +
|
||||
'implementation header, verify that "gn check" and base_unittests\n' +
|
||||
'still pass with gn arg "enable_base_tracing = false" and add\n' +
|
||||
'"// no-presubmit-check" after the include. \n' +
|
||||
'\n'.join(locations)) ]
|
||||
return []
|
||||
|
||||
|
||||
def _WarnPbzeroIncludes(input_api, output_api):
|
||||
"""Warn to check enable_base_tracing=false when including a pbzero header.
|
||||
|
||||
Emits a warning when including a perfetto pbzero header, encouraging the
|
||||
user to verify that //base still builds with enable_base_tracing=false.
|
||||
"""
|
||||
warn_includes = [
|
||||
r'^#include "third_party/perfetto/protos/',
|
||||
r'^#include "base/tracing/protos/',
|
||||
]
|
||||
|
||||
files_to_check = [
|
||||
r".*\.(h|cc|mm)$",
|
||||
]
|
||||
files_to_skip = [
|
||||
r".*[\\/]test[\\/].*",
|
||||
r".*[\\/]trace_event[\\/].*",
|
||||
r".*[\\/]tracing[\\/].*",
|
||||
]
|
||||
|
||||
locations = _FindLocations(input_api, warn_includes, files_to_check,
|
||||
files_to_skip)
|
||||
if locations:
|
||||
return [ output_api.PresubmitPromptWarning(
|
||||
'Please verify that "gn check" and base_unittests still pass with\n' +
|
||||
'gn arg "enable_base_tracing = false" when adding typed trace\n' +
|
||||
'events to //base. You can use "#if BUILDFLAG(ENABLE_BASE_TRACING)"\n' +
|
||||
'to exclude pbzero headers and anything not supported by\n' +
|
||||
'//base/trace_event/trace_event_stub.h.\n' +
|
||||
'\n'.join(locations)) ]
|
||||
return []
|
||||
|
||||
|
||||
def _CommonChecks(input_api, output_api):
|
||||
"""Checks common to both upload and commit."""
|
||||
results = []
|
||||
results.extend(_CheckNoInterfacesInBase(input_api, output_api))
|
||||
results.extend(_CheckNoTraceEventInclude(input_api, output_api))
|
||||
results.extend(_WarnPbzeroIncludes(input_api, output_api))
|
||||
return results
|
||||
|
||||
|
||||
def CheckChangeOnUpload(input_api, output_api):
|
||||
results = []
|
||||
results.extend(_CommonChecks(input_api, output_api))
|
||||
return results
|
||||
|
||||
|
||||
def CheckChangeOnCommit(input_api, output_api):
|
||||
results = []
|
||||
results.extend(_CommonChecks(input_api, output_api))
|
||||
return results
|
81
src/base/README.md
Normal file
81
src/base/README.md
Normal file
@ -0,0 +1,81 @@
|
||||
# What is this
|
||||
Contains a written down set of principles and other information on //base.
|
||||
Please add to it!
|
||||
|
||||
## About //base:
|
||||
|
||||
Chromium is a very mature project. Most things that are generally useful are
|
||||
already here and things not here aren't generally useful.
|
||||
|
||||
The bar for adding stuff to base is that it must have demonstrated wide
|
||||
applicability. Prefer to add things closer to where they're used (i.e. "not
|
||||
base"), and pull into base only when needed. In a project our size,
|
||||
sometimes even duplication is OK and inevitable.
|
||||
|
||||
Adding a new logging macro `DPVELOG_NE` is not more clear than just
|
||||
writing the stuff you want to log in a regular logging statement, even
|
||||
if it makes your calling code longer. Just add it to your own code.
|
||||
|
||||
If the code in question does not need to be used inside base, but will have
|
||||
multiple consumers across the codebase, consider placing it in a new directory
|
||||
under components/ instead.
|
||||
|
||||
base is written for the Chromium project and is not intended to be used
|
||||
outside it. Using base outside of src.git is explicitly not supported,
|
||||
and base makes no guarantees about API (or even ABI) stability (like all
|
||||
other code in Chromium). New code that depends on base/ must be in
|
||||
src.git. Code that's not in src.git but pulled in through DEPS (for
|
||||
example, v8) cannot use base.
|
||||
|
||||
## Qualifications for being in //base OWNERS
|
||||
* interest and ability to learn low level/high detail/complex c++ stuff
|
||||
* inclination to always ask why and understand everything (including external
|
||||
interactions like win32) rather than just hoping the author did it right
|
||||
* mentorship/experience
|
||||
* demonstrated good judgement (esp with regards to public APIs) over a length
|
||||
of time
|
||||
|
||||
Owners are added when a contributor has shown the above qualifications and
|
||||
when they express interest. There isn't an upper bound on the number of OWNERS.
|
||||
|
||||
## Design and naming
|
||||
* Be sure to use the base namespace.
|
||||
* STL-like constructs should adhere as closely to STL as possible. Functions
|
||||
and behaviors not present in STL should only be added when they are related
|
||||
to the specific data structure implemented by the container.
|
||||
* For STL-like constructs our policy is that they should use STL-like naming
|
||||
even when it may conflict with the style guide. So functions and class names
|
||||
should be lower case with underscores. Non-STL-like classes and functions
|
||||
should use Google naming.
|
||||
|
||||
## Performance testing
|
||||
|
||||
Since the primitives provided by //base are used very widely, it is important to
|
||||
ensure they scale to the necessary workloads and perform well under all
|
||||
supported platforms. The `base_perftests` target is a suite of
|
||||
synthetic microbenchmarks that measure performance in various scenarios:
|
||||
|
||||
* BasicPostTaskPerfTest: Exercises MessageLoopTaskRunner's multi-threaded
|
||||
queue in isolation.
|
||||
* ConditionVariablePerfTest: Measures thread switching cost of condition
|
||||
variables.
|
||||
* IntegratedPostTaskPerfTest: Exercises the full MessageLoop/RunLoop
|
||||
machinery.
|
||||
* JSONPerfTest: Tests JSONWriter and JSONReader performance.
|
||||
* MessageLoopPerfTest: Measures the speed of task posting in various
|
||||
configurations.
|
||||
* ObserverListPerfTest: Exercises adding, removing and signalling observers.
|
||||
* PthreadEventPerfTest: Establishes the baseline thread switching cost using
|
||||
pthreads.
|
||||
* ScheduleWorkTest: Measures the overhead of MessagePump::ScheduleWork.
|
||||
* SequenceManagerPerfTest: Benchmarks SequenceManager scheduling with various
|
||||
underlying task runners.
|
||||
* TaskObserverPerfTest: Measures the incremental cost of adding task
|
||||
observers.
|
||||
* TaskPerfTest: Checks the cost of posting tasks between threads.
|
||||
* WaitableEvent{Thread,}PerfTest: Measures waitable events in single and
|
||||
multithreaded scenarios.
|
||||
|
||||
Regressions in these benchmarks can generally by caused by 1) operating system
|
||||
changes, 2) compiler version or flag changes or 3) changes in //base code
|
||||
itself.
|
13
src/base/SECURITY_OWNERS
Normal file
13
src/base/SECURITY_OWNERS
Normal file
@ -0,0 +1,13 @@
|
||||
# Changes to code that runs at high privilege and which has a high risk of
|
||||
# memory corruption, such as parsers for complex inputs, require a security
|
||||
# review to avoid introducing sandbox escapes.
|
||||
#
|
||||
# Although this file is in base/, it may apply to more than just base, OWNERS
|
||||
# files outside of base may also include this file.
|
||||
#
|
||||
# Security team: If you are uncomfortable reviewing a particular bit of code
|
||||
# yourself, don't hesitate to seek help from another security team member!
|
||||
# Nobody knows everything, and the only way to learn is from experience.
|
||||
dcheng@chromium.org
|
||||
rsesek@chromium.org
|
||||
tsepez@chromium.org
|
90
src/base/allocator/BUILD.gn
Normal file
90
src/base/allocator/BUILD.gn
Normal file
@ -0,0 +1,90 @@
|
||||
# Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//base/allocator/allocator.gni")
|
||||
import("//build/buildflag_header.gni")
|
||||
import("//build/config/compiler/compiler.gni")
|
||||
import("//build/config/dcheck_always_on.gni")
|
||||
|
||||
buildflag_header("buildflags") {
|
||||
header = "buildflags.h"
|
||||
_use_partition_alloc_as_malloc = use_allocator == "partition"
|
||||
assert(use_allocator_shim || !_use_partition_alloc_as_malloc,
|
||||
"Partition alloc requires the allocator shim")
|
||||
|
||||
# BackupRefPtr(BRP) build flags.
|
||||
_use_backup_ref_ptr = use_backup_ref_ptr && use_partition_alloc && !is_nacl
|
||||
_put_ref_count_in_previous_slot =
|
||||
put_ref_count_in_previous_slot && _use_backup_ref_ptr
|
||||
_enable_backup_ref_ptr_slow_checks =
|
||||
enable_backup_ref_ptr_slow_checks && _use_backup_ref_ptr
|
||||
_enable_dangling_raw_ptr_checks =
|
||||
enable_dangling_raw_ptr_checks && _use_backup_ref_ptr
|
||||
|
||||
_record_alloc_info = false
|
||||
|
||||
flags = [
|
||||
"USE_ALLOCATOR_SHIM=$use_allocator_shim",
|
||||
"USE_PARTITION_ALLOC=$use_partition_alloc",
|
||||
"USE_PARTITION_ALLOC_AS_MALLOC=$_use_partition_alloc_as_malloc",
|
||||
|
||||
"USE_BACKUP_REF_PTR=$_use_backup_ref_ptr",
|
||||
"USE_ASAN_BACKUP_REF_PTR=$use_asan_backup_ref_ptr",
|
||||
"ENABLE_BACKUP_REF_PTR_SLOW_CHECKS=$_enable_backup_ref_ptr_slow_checks",
|
||||
"ENABLE_DANGLING_RAW_PTR_CHECKS=$_enable_dangling_raw_ptr_checks",
|
||||
"PUT_REF_COUNT_IN_PREVIOUS_SLOT=$_put_ref_count_in_previous_slot",
|
||||
|
||||
"USE_FAKE_BINARY_EXPERIMENT=$use_fake_binary_experiment",
|
||||
|
||||
"RECORD_ALLOC_INFO=$_record_alloc_info",
|
||||
]
|
||||
}
|
||||
|
||||
if (is_apple) {
|
||||
source_set("early_zone_registration_mac") {
|
||||
sources = [
|
||||
"early_zone_registration_mac.cc",
|
||||
"early_zone_registration_mac.h",
|
||||
]
|
||||
|
||||
deps = [ ":buildflags" ]
|
||||
}
|
||||
}
|
||||
|
||||
# Used to shim malloc symbols on Android. see //base/allocator/README.md.
|
||||
config("wrap_malloc_symbols") {
|
||||
ldflags = [
|
||||
"-Wl,-wrap,calloc",
|
||||
"-Wl,-wrap,free",
|
||||
"-Wl,-wrap,malloc",
|
||||
"-Wl,-wrap,memalign",
|
||||
"-Wl,-wrap,posix_memalign",
|
||||
"-Wl,-wrap,pvalloc",
|
||||
"-Wl,-wrap,realloc",
|
||||
"-Wl,-wrap,valloc",
|
||||
|
||||
# <stdlib.h> functions
|
||||
"-Wl,-wrap,realpath",
|
||||
|
||||
# <string.h> functions
|
||||
"-Wl,-wrap,strdup",
|
||||
"-Wl,-wrap,strndup",
|
||||
|
||||
# <unistd.h> functions
|
||||
"-Wl,-wrap,getcwd",
|
||||
|
||||
# <stdio.h> functions
|
||||
"-Wl,-wrap,asprintf",
|
||||
"-Wl,-wrap,vasprintf",
|
||||
]
|
||||
}
|
||||
|
||||
config("mac_no_default_new_delete_symbols") {
|
||||
if (!is_component_build) {
|
||||
# This is already set when we compile libc++, see
|
||||
# buildtools/third_party/libc++/BUILD.gn. But it needs to be set here as well,
|
||||
# since the shim defines the symbols, to prevent them being exported.
|
||||
cflags = [ "-fvisibility-global-new-delete-hidden" ]
|
||||
}
|
||||
}
|
3
src/base/allocator/DIR_METADATA
Normal file
3
src/base/allocator/DIR_METADATA
Normal file
@ -0,0 +1,3 @@
|
||||
monorail {
|
||||
component: "Internals"
|
||||
}
|
8
src/base/allocator/OWNERS
Normal file
8
src/base/allocator/OWNERS
Normal file
@ -0,0 +1,8 @@
|
||||
lizeb@chromium.org
|
||||
primiano@chromium.org
|
||||
wfh@chromium.org
|
||||
|
||||
per-file allocator.gni=bartekn@chromium.org
|
||||
per-file allocator_shim_default_dispatch_to_partition_alloc*=bartekn@chromium.org
|
||||
per-file partition_alloc*=bartekn@chromium.org
|
||||
per-file BUILD.gn=bartekn@chromium.org
|
172
src/base/allocator/README.md
Normal file
172
src/base/allocator/README.md
Normal file
@ -0,0 +1,172 @@
|
||||
This document describes how malloc / new calls are routed in the various Chrome
|
||||
platforms.
|
||||
|
||||
Bare in mind that the chromium codebase does not always just use `malloc()`.
|
||||
Some examples:
|
||||
- Large parts of the renderer (Blink) use two home-brewed allocators,
|
||||
PartitionAlloc and BlinkGC (Oilpan).
|
||||
- Some subsystems, such as the V8 JavaScript engine, handle memory management
|
||||
autonomously.
|
||||
- Various parts of the codebase use abstractions such as `SharedMemory` or
|
||||
`DiscardableMemory` which, similarly to the above, have their own page-level
|
||||
memory management.
|
||||
|
||||
Background
|
||||
----------
|
||||
The `allocator` target defines at compile-time the platform-specific choice of
|
||||
the allocator and extra-hooks which services calls to malloc/new. The relevant
|
||||
build-time flags involved are `use_allocator` and `use_allocator_shim`.
|
||||
|
||||
The default choices are as follows:
|
||||
|
||||
**Windows**
|
||||
`use_allocator: winheap`, the default Windows heap.
|
||||
Additionally, `static_library` (i.e. non-component) builds have a shim
|
||||
layer wrapping malloc/new, which is controlled by `use_allocator_shim`.
|
||||
The shim layer provides extra security features, such as preventing large
|
||||
allocations that can hit signed vs. unsigned bugs in third_party code.
|
||||
|
||||
**Android**
|
||||
`use_allocator: none`, always use the allocator symbols coming from Android's
|
||||
libc (Bionic). As it is developed as part of the OS, it is considered to be
|
||||
optimized for small devices and more memory-efficient than other choices.
|
||||
The actual implementation backing malloc symbols in Bionic is up to the board
|
||||
config and can vary (typically *dlmalloc* or *jemalloc* on most Nexus devices).
|
||||
|
||||
**Mac/iOS**
|
||||
`use_allocator: none`, we always use the system's allocator implementation.
|
||||
|
||||
In addition, when building for `asan` / `msan` both the allocator and the shim
|
||||
layer are disabled.
|
||||
|
||||
|
||||
Layering and build deps
|
||||
-----------------------
|
||||
The `allocator` target provides the linker flags required for the Windows shim
|
||||
layer. The `base` target is (almost) the only one depending on `allocator`. No
|
||||
other targets should depend on it, with the exception of the very few
|
||||
executables / dynamic libraries that don't depend, either directly or
|
||||
indirectly, on `base` within the scope of a linker unit.
|
||||
|
||||
More importantly, **no other place outside of `/base` should depend on the
|
||||
specific allocator**.
|
||||
If such a functional dependency is required that should be achieved using
|
||||
abstractions in `base` (see `/base/allocator/allocator_extension.h` and
|
||||
`/base/memory/`)
|
||||
|
||||
**Why `base` depends on `allocator`?**
|
||||
Because it needs to provide services that depend on the actual allocator
|
||||
implementation. In the past `base` used to pretend to be allocator-agnostic
|
||||
and get the dependencies injected by other layers. This ended up being an
|
||||
inconsistent mess.
|
||||
See the [allocator cleanup doc][url-allocator-cleanup] for more context.
|
||||
|
||||
Linker unit targets (executables and shared libraries) that depend in some way
|
||||
on `base` (most of the targets in the codebase) automatically get the correct
|
||||
set of linker flags to pull in the Windows shim-layer (if needed).
|
||||
|
||||
|
||||
Source code
|
||||
-----------
|
||||
This directory contains just the allocator (i.e. shim) layer that switches
|
||||
between the different underlying memory allocation implementations.
|
||||
|
||||
|
||||
Unified allocator shim
|
||||
----------------------
|
||||
On most platforms, Chrome overrides the malloc / operator new symbols (and
|
||||
corresponding free / delete and other variants). This is to enforce security
|
||||
checks and lately to enable the
|
||||
[memory-infra heap profiler][url-memory-infra-heap-profiler].
|
||||
Historically each platform had its special logic for defining the allocator
|
||||
symbols in different places of the codebase. The unified allocator shim is
|
||||
a project aimed to unify the symbol definition and allocator routing logic in
|
||||
a central place.
|
||||
|
||||
- Full documentation: [Allocator shim design doc][url-allocator-shim].
|
||||
- Current state: Available and enabled by default on Android, CrOS, Linux,
|
||||
Mac OS and Windows.
|
||||
- Tracking bug: [https://crbug.com/550886][crbug.com/550886].
|
||||
- Build-time flag: `use_allocator_shim`.
|
||||
|
||||
**Overview of the unified allocator shim**
|
||||
The allocator shim consists of three stages:
|
||||
```
|
||||
+-------------------------+ +-----------------------+ +----------------+
|
||||
| malloc & friends | -> | shim layer | -> | Routing to |
|
||||
| symbols definition | | implementation | | allocator |
|
||||
+-------------------------+ +-----------------------+ +----------------+
|
||||
| - libc symbols (malloc, | | - Security checks | | - glibc |
|
||||
| calloc, free, ...) | | - Chain of dispatchers| | - Android |
|
||||
| - C++ symbols (operator | | that can intercept | | bionic |
|
||||
| new, delete, ...) | | and override | | - WinHeap |
|
||||
| - glibc weak symbols | | allocations | | - Partition |
|
||||
| (__libc_malloc, ...) | +-----------------------+ | Alloc |
|
||||
+-------------------------+ +----------------+
|
||||
```
|
||||
|
||||
**1. malloc symbols definition**
|
||||
This stage takes care of overriding the symbols `malloc`, `free`,
|
||||
`operator new`, `operator delete` and friends and routing those calls inside the
|
||||
allocator shim (next point).
|
||||
This is taken care of by the headers in `allocator_shim_override_*`.
|
||||
|
||||
*On Windows*: Windows' UCRT (Universal C Runtime) exports weak symbols, that we
|
||||
can override in `allocator_shim_override_ucr_symbols_win.h`.
|
||||
|
||||
*On Linux/CrOS*: the allocator symbols are defined as exported global symbols
|
||||
in `allocator_shim_override_libc_symbols.h` (for `malloc`, `free` and friends)
|
||||
and in `allocator_shim_override_cpp_symbols.h` (for `operator new`,
|
||||
`operator delete` and friends).
|
||||
This enables proper interposition of malloc symbols referenced by the main
|
||||
executable and any third party libraries. Symbol resolution on Linux is a breadth first search that starts from the root link unit, that is the executable
|
||||
(see EXECUTABLE AND LINKABLE FORMAT (ELF) - Portable Formats Specification).
|
||||
The Linux/CrOS shim was introduced by
|
||||
[crrev.com/1675143004](https://crrev.com/1675143004).
|
||||
|
||||
*On Android*: load-time symbol interposition (unlike the Linux/CrOS case) is not
|
||||
possible. This is because Android processes are `fork()`-ed from the Android
|
||||
zygote, which pre-loads libc.so and only later native code gets loaded via
|
||||
`dlopen()` (symbols from `dlopen()`-ed libraries get a different resolution
|
||||
scope).
|
||||
In this case, the approach instead of wrapping symbol resolution at link time
|
||||
(i.e. during the build), via the `--Wl,-wrap,malloc` linker flag.
|
||||
The use of this wrapping flag causes:
|
||||
- All references to allocator symbols in the Chrome codebase to be rewritten as
|
||||
references to `__wrap_malloc` and friends. The `__wrap_malloc` symbols are
|
||||
defined in the `allocator_shim_override_linker_wrapped_symbols.h` and
|
||||
route allocator calls inside the shim layer.
|
||||
- The reference to the original `malloc` symbols (which typically is defined by
|
||||
the system's libc.so) are accessible via the special `__real_malloc` and
|
||||
friends symbols (which will be relocated, at load time, against `malloc`).
|
||||
|
||||
In summary, this approach is transparent to the dynamic loader, which still sees
|
||||
undefined symbol references to malloc symbols.
|
||||
These symbols will be resolved against libc.so as usual.
|
||||
More details in [crrev.com/1719433002](https://crrev.com/1719433002).
|
||||
|
||||
**2. Shim layer implementation**
|
||||
This stage contains the actual shim implementation. This consists of:
|
||||
- A singly linked list of dispatchers (structs with function pointers to `malloc`-like functions). Dispatchers can be dynamically inserted at runtime
|
||||
(using the `InsertAllocatorDispatch` API). They can intercept and override
|
||||
allocator calls.
|
||||
- The security checks (suicide on malloc-failure via `std::new_handler`, etc).
|
||||
This happens inside `allocator_shim.cc`
|
||||
|
||||
**3. Final allocator routing**
|
||||
The final element of the aforementioned dispatcher chain is statically defined
|
||||
at build time and ultimately routes the allocator calls to the actual allocator
|
||||
(as described in the *Background* section above). This is taken care of by the
|
||||
headers in `allocator_shim_default_dispatch_to_*` files.
|
||||
|
||||
|
||||
Related links
|
||||
-------------
|
||||
- [Unified allocator shim doc - Feb 2016][url-allocator-shim]
|
||||
- [Allocator cleanup doc - Jan 2016][url-allocator-cleanup]
|
||||
- [Proposal to use PartitionAlloc as default allocator](https://crbug.com/339604)
|
||||
- [Memory-Infra: Tools to profile memory usage in Chrome](/docs/memory-infra/README.md)
|
||||
|
||||
[url-allocator-cleanup]: https://docs.google.com/document/d/1V77Kgp_4tfaaWPEZVxNevoD02wXiatnAv7Ssgr0hmjg/edit?usp=sharing
|
||||
[url-memory-infra-heap-profiler]: /docs/memory-infra/heap_profiler.md
|
||||
[url-allocator-shim]: https://docs.google.com/document/d/1yKlO1AO4XjpDad9rjcBOI15EKdAGsuGO_IeZy0g0kxo/edit?usp=sharing
|
145
src/base/allocator/allocator.gni
Normal file
145
src/base/allocator/allocator.gni
Normal file
@ -0,0 +1,145 @@
|
||||
# Copyright 2019 The Chromium Authors. All rights reserved.
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
import("//build/config/chromecast_build.gni")
|
||||
import("//build/config/sanitizers/sanitizers.gni")
|
||||
|
||||
if (is_ios) {
|
||||
import("//build/config/ios/ios_sdk.gni")
|
||||
}
|
||||
|
||||
# Sanitizers replace the allocator, don't use our own.
|
||||
_is_using_sanitizers = is_asan || is_hwasan || is_lsan || is_tsan || is_msan
|
||||
|
||||
# - Component build support is disabled on all platforms. It is known to cause
|
||||
# issues on some (e.g. Windows with shims, Android with non-universal symbol
|
||||
# wrapping), and has not been validated on others.
|
||||
# - Windows: debug CRT is not compatible, see below.
|
||||
_disable_partition_alloc = is_component_build || (is_win && is_debug)
|
||||
|
||||
# - NaCl: No plans to support it.
|
||||
# - iOS: not done yet.
|
||||
_is_partition_alloc_platform = !is_nacl && !is_ios
|
||||
|
||||
# Under Windows Debug the allocator shim is not compatible with CRT.
|
||||
# NaCl in particular does seem to link some binaries statically
|
||||
# against the debug CRT with "is_nacl=false".
|
||||
# Under Fuchsia the allocator shim is only required for PA-E.
|
||||
# For all other platforms & configurations, the shim is required, to replace
|
||||
# the default system allocators, e.g. with Partition Alloc.
|
||||
if ((is_linux || is_chromeos || is_android || is_apple ||
|
||||
(is_fuchsia && !_disable_partition_alloc) ||
|
||||
(is_win && !is_component_build && !is_debug)) && !_is_using_sanitizers) {
|
||||
_default_use_allocator_shim = true
|
||||
} else {
|
||||
_default_use_allocator_shim = false
|
||||
}
|
||||
|
||||
if (_default_use_allocator_shim && _is_partition_alloc_platform &&
|
||||
!_disable_partition_alloc) {
|
||||
_default_allocator = "partition"
|
||||
} else {
|
||||
_default_allocator = "none"
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# Memory allocator to use. Set to "none" to use default allocator.
|
||||
use_allocator = _default_allocator
|
||||
|
||||
# Causes all the allocations to be routed via allocator_shim.cc.
|
||||
use_allocator_shim = _default_use_allocator_shim
|
||||
|
||||
# Whether PartitionAlloc should be available for use or not.
|
||||
# true makes PartitionAlloc linked to the executable or shared library and
|
||||
# makes it available for use. It doesn't mean that the default allocator
|
||||
# is PartitionAlloc, which is governed by |use_allocator|.
|
||||
#
|
||||
# This flag is currently set to false only on Cronet bots, because Cronet
|
||||
# doesn't use PartitionAlloc at all, and doesn't wish to incur the library
|
||||
# size increase (crbug.com/674570).
|
||||
use_partition_alloc = true
|
||||
}
|
||||
|
||||
if (!use_partition_alloc && use_allocator == "partition") {
|
||||
# If there is a conflict, prioritize |use_partition_alloc| over
|
||||
# |use_allocator|.
|
||||
use_allocator = "none"
|
||||
}
|
||||
|
||||
assert(use_allocator == "none" || use_allocator == "partition")
|
||||
|
||||
assert(
|
||||
!use_allocator_shim || is_linux || is_chromeos || is_android || is_win ||
|
||||
is_fuchsia || is_apple,
|
||||
"use_allocator_shim works only on Android, iOS, Linux, macOS, Fuchsia, " +
|
||||
"and Windows.")
|
||||
|
||||
if (is_win && use_allocator_shim) {
|
||||
# TODO(crbug.com/1245317): Add a comment indicating why the shim doesn't work.
|
||||
assert(!is_component_build,
|
||||
"The allocator shim doesn't work for the component build on Windows.")
|
||||
}
|
||||
|
||||
_is_brp_supported = (is_win || is_android) && use_allocator == "partition"
|
||||
|
||||
declare_args() {
|
||||
# Set use_backup_ref_ptr true to use BackupRefPtr (BRP) as the implementation
|
||||
# of raw_ptr<T>, and enable PartitionAlloc support for it.
|
||||
use_backup_ref_ptr = _is_brp_supported
|
||||
}
|
||||
|
||||
declare_args() {
|
||||
# If BRP is enabled, additional options are available:
|
||||
# - put_ref_count_in_previous_slot: place the ref-count at the end of the
|
||||
# previous slot (or in metadata if a slot starts on the page boundary), as
|
||||
# opposed to the beginning of the slot.
|
||||
# - enable_backup_ref_ptr_slow_checks: enable additional safety checks that
|
||||
# are too expensive to have on by default.
|
||||
# - enable_dangling_raw_ptr_checks: enable checking raw_ptr do not become
|
||||
# dangling during their lifetime.
|
||||
put_ref_count_in_previous_slot = false
|
||||
enable_backup_ref_ptr_slow_checks = false
|
||||
enable_dangling_raw_ptr_checks = false
|
||||
|
||||
# Registers the binary for a fake binary A/B experiment. The binaries built
|
||||
# with this flag have no behavior difference, except for setting a synthetic
|
||||
# Finch.
|
||||
use_fake_binary_experiment = false
|
||||
|
||||
use_asan_backup_ref_ptr = false
|
||||
}
|
||||
|
||||
# Prevent using BackupRefPtr when PartitionAlloc-Everywhere isn't used.
|
||||
# In theory, such a configuration is possible, but its scope would be limited to
|
||||
# only Blink partitions, which is currently not tested. Better to trigger an
|
||||
# error, than have BackupRefPtr silently disabled while believing it is enabled.
|
||||
if (!is_nacl) {
|
||||
assert(!use_backup_ref_ptr || use_allocator == "partition",
|
||||
"Can't use BackupRefPtr without PartitionAlloc-Everywhere")
|
||||
}
|
||||
|
||||
# put_ref_count_in_previous_slot can only be used if use_backup_ref_ptr
|
||||
# is true.
|
||||
assert(
|
||||
use_backup_ref_ptr || !put_ref_count_in_previous_slot,
|
||||
"Can't put ref count in the previous slot if BackupRefPtr isn't enabled at all")
|
||||
|
||||
# enable_backup_ref_ptr_slow_checks can only be used if use_backup_ref_ptr
|
||||
# is true.
|
||||
assert(use_backup_ref_ptr || !enable_backup_ref_ptr_slow_checks,
|
||||
"Can't enable additional BackupRefPtr checks if it isn't enabled at all")
|
||||
|
||||
# enable_dangling_raw_ptr_checks can only be used if use_backup_ref_ptr
|
||||
# is true.
|
||||
assert(
|
||||
use_backup_ref_ptr || !enable_dangling_raw_ptr_checks,
|
||||
"Can't enable dangling raw_ptr checks if BackupRefPtr isn't enabled at all")
|
||||
|
||||
# BackupRefPtr and AsanBackupRefPtr are mutually exclusive variants of raw_ptr.
|
||||
assert(
|
||||
!use_backup_ref_ptr || !use_asan_backup_ref_ptr,
|
||||
"Both BackupRefPtr and AsanBackupRefPtr can't be enabled at the same time")
|
||||
|
||||
assert(!use_asan_backup_ref_ptr || is_asan,
|
||||
"AsanBackupRefPtr requires AddressSanitizer")
|
40
src/base/allocator/allocator_check.cc
Normal file
40
src/base/allocator/allocator_check.cc
Normal file
@ -0,0 +1,40 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/allocator_check.h"
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include "base/allocator/winheap_stubs_win.h"
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#include "base/allocator/allocator_interception_mac.h"
|
||||
#endif
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
bool IsAllocatorInitialized() {
|
||||
#if BUILDFLAG(IS_WIN) && BUILDFLAG(USE_ALLOCATOR_SHIM)
|
||||
// Set by allocator_shim_override_ucrt_symbols_win.h when the
|
||||
// shimmed _set_new_mode() is called.
|
||||
return g_is_win_shim_layer_initialized;
|
||||
#elif BUILDFLAG(IS_APPLE) && !defined(MEMORY_TOOL_REPLACES_ALLOCATOR) && \
|
||||
!BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// From allocator_interception_mac.mm.
|
||||
return base::allocator::g_replaced_default_zone;
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
18
src/base/allocator/allocator_check.h
Normal file
18
src/base/allocator/allocator_check.h
Normal file
@ -0,0 +1,18 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_CHECK_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_CHECK_H_
|
||||
|
||||
#include "base/base_export.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
BASE_EXPORT bool IsAllocatorInitialized();
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_CHECK_H_
|
15
src/base/allocator/allocator_extension.cc
Normal file
15
src/base/allocator/allocator_extension.cc
Normal file
@ -0,0 +1,15 @@
|
||||
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/allocator_extension.h"
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/check.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
void ReleaseFreeMemory() {}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
23
src/base/allocator/allocator_extension.h
Normal file
23
src/base/allocator/allocator_extension.h
Normal file
@ -0,0 +1,23 @@
|
||||
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_EXTENSION_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_EXTENSION_H_
|
||||
|
||||
#include <stddef.h> // for size_t
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
// Request that the allocator release any free memory it knows about to the
|
||||
// system.
|
||||
BASE_EXPORT void ReleaseFreeMemory();
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_EXTENSION_H_
|
65
src/base/allocator/allocator_interception_mac.h
Normal file
65
src/base/allocator/allocator_interception_mac.h
Normal file
@ -0,0 +1,65 @@
|
||||
// Copyright 2017 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_INTERCEPTION_MAC_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_INTERCEPTION_MAC_H_
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "third_party/apple_apsl/malloc.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
struct MallocZoneFunctions;
|
||||
|
||||
// This initializes AllocatorDispatch::default_dispatch by saving pointers to
|
||||
// the functions in the current default malloc zone. This must be called before
|
||||
// the default malloc zone is changed to have its intended effect.
|
||||
void InitializeDefaultDispatchToMacAllocator();
|
||||
|
||||
// Saves the function pointers currently used by the default zone.
|
||||
void StoreFunctionsForDefaultZone();
|
||||
|
||||
// Same as StoreFunctionsForDefaultZone, but for all malloc zones.
|
||||
void StoreFunctionsForAllZones();
|
||||
|
||||
// For all malloc zones that have been stored, replace their functions with
|
||||
// |functions|.
|
||||
void ReplaceFunctionsForStoredZones(const MallocZoneFunctions* functions);
|
||||
|
||||
extern bool g_replaced_default_zone;
|
||||
|
||||
// Calls the original implementation of malloc/calloc prior to interception.
|
||||
bool UncheckedMallocMac(size_t size, void** result);
|
||||
bool UncheckedCallocMac(size_t num_items, size_t size, void** result);
|
||||
|
||||
// Intercepts calls to default and purgeable malloc zones. Intercepts Core
|
||||
// Foundation and Objective-C allocations.
|
||||
// Has no effect on the default malloc zone if the allocator shim already
|
||||
// performs that interception.
|
||||
BASE_EXPORT void InterceptAllocationsMac();
|
||||
|
||||
// Updates all malloc zones to use their original functions.
|
||||
// Also calls ClearAllMallocZonesForTesting.
|
||||
BASE_EXPORT void UninterceptMallocZonesForTesting();
|
||||
|
||||
// Returns true if allocations are successfully being intercepted for all malloc
|
||||
// zones.
|
||||
bool AreMallocZonesIntercepted();
|
||||
|
||||
// Periodically checks for, and shims new malloc zones. Stops checking after 1
|
||||
// minute.
|
||||
BASE_EXPORT void PeriodicallyShimNewMallocZones();
|
||||
|
||||
// Exposed for testing.
|
||||
BASE_EXPORT void ShimNewMallocZones();
|
||||
BASE_EXPORT void ReplaceZoneFunctions(ChromeMallocZone* zone,
|
||||
const MallocZoneFunctions* functions);
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_INTERCEPTION_MAC_H_
|
613
src/base/allocator/allocator_interception_mac.mm
Normal file
613
src/base/allocator/allocator_interception_mac.mm
Normal file
@ -0,0 +1,613 @@
|
||||
// Copyright 2017 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
// This file contains all the logic necessary to intercept allocations on
|
||||
// macOS. "malloc zones" are an abstraction that allows the process to intercept
|
||||
// all malloc-related functions. There is no good mechanism [short of
|
||||
// interposition] to determine new malloc zones are added, so there's no clean
|
||||
// mechanism to intercept all malloc zones. This file contains logic to
|
||||
// intercept the default and purgeable zones, which always exist. A cursory
|
||||
// review of Chrome seems to imply that non-default zones are almost never used.
|
||||
//
|
||||
// This file also contains logic to intercept Core Foundation and Objective-C
|
||||
// allocations. The implementations forward to the default malloc zone, so the
|
||||
// only reason to intercept these calls is to re-label OOM crashes with slightly
|
||||
// more details.
|
||||
|
||||
#include "base/allocator/allocator_interception_mac.h"
|
||||
|
||||
#include <CoreFoundation/CoreFoundation.h>
|
||||
#import <Foundation/Foundation.h>
|
||||
#include <errno.h>
|
||||
#include <mach/mach.h>
|
||||
#import <objc/runtime.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#include <new>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/malloc_zone_functions_mac.h"
|
||||
#include "base/bind.h"
|
||||
#include "base/bits.h"
|
||||
#include "base/logging.h"
|
||||
#include "base/mac/mach_logging.h"
|
||||
#include "base/process/memory.h"
|
||||
#include "base/threading/sequenced_task_runner_handle.h"
|
||||
#include "base/time/time.h"
|
||||
#include "build/build_config.h"
|
||||
#include "third_party/apple_apsl/CFBase.h"
|
||||
|
||||
#if BUILDFLAG(IS_IOS)
|
||||
#include "base/ios/ios_util.h"
|
||||
#else
|
||||
#include "base/mac/mac_util.h"
|
||||
#endif
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
bool g_replaced_default_zone = false;
|
||||
|
||||
namespace {
|
||||
|
||||
bool g_oom_killer_enabled;
|
||||
bool g_allocator_shims_failed_to_install;
|
||||
|
||||
// Starting with Mac OS X 10.7, the zone allocators set up by the system are
|
||||
// read-only, to prevent them from being overwritten in an attack. However,
|
||||
// blindly unprotecting and reprotecting the zone allocators fails with
|
||||
// GuardMalloc because GuardMalloc sets up its zone allocator using a block of
|
||||
// memory in its bss. Explicit saving/restoring of the protection is required.
|
||||
//
|
||||
// This function takes a pointer to a malloc zone, de-protects it if necessary,
|
||||
// and returns (in the out parameters) a region of memory (if any) to be
|
||||
// re-protected when modifications are complete. This approach assumes that
|
||||
// there is no contention for the protection of this memory.
|
||||
//
|
||||
// Returns true if the malloc zone was properly de-protected, or false
|
||||
// otherwise. If this function returns false, the out parameters are invalid and
|
||||
// the region does not need to be re-protected.
|
||||
bool DeprotectMallocZone(ChromeMallocZone* default_zone,
|
||||
vm_address_t* reprotection_start,
|
||||
vm_size_t* reprotection_length,
|
||||
vm_prot_t* reprotection_value) {
|
||||
mach_port_t unused;
|
||||
*reprotection_start = reinterpret_cast<vm_address_t>(default_zone);
|
||||
struct vm_region_basic_info_64 info;
|
||||
mach_msg_type_number_t count = VM_REGION_BASIC_INFO_COUNT_64;
|
||||
kern_return_t result =
|
||||
vm_region_64(mach_task_self(), reprotection_start, reprotection_length,
|
||||
VM_REGION_BASIC_INFO_64,
|
||||
reinterpret_cast<vm_region_info_t>(&info), &count, &unused);
|
||||
if (result != KERN_SUCCESS) {
|
||||
MACH_LOG(ERROR, result) << "vm_region_64";
|
||||
return false;
|
||||
}
|
||||
|
||||
// The kernel always returns a null object for VM_REGION_BASIC_INFO_64, but
|
||||
// balance it with a deallocate in case this ever changes. See
|
||||
// the VM_REGION_BASIC_INFO_64 case in vm_map_region() in 10.15's
|
||||
// https://opensource.apple.com/source/xnu/xnu-6153.11.26/osfmk/vm/vm_map.c .
|
||||
mach_port_deallocate(mach_task_self(), unused);
|
||||
|
||||
if (!(info.max_protection & VM_PROT_WRITE)) {
|
||||
LOG(ERROR) << "Invalid max_protection " << info.max_protection;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Does the region fully enclose the zone pointers? Possibly unwarranted
|
||||
// simplification used: using the size of a full version 10 malloc zone rather
|
||||
// than the actual smaller size if the passed-in zone is not version 10.
|
||||
DCHECK(*reprotection_start <= reinterpret_cast<vm_address_t>(default_zone));
|
||||
vm_size_t zone_offset = reinterpret_cast<vm_address_t>(default_zone) -
|
||||
reinterpret_cast<vm_address_t>(*reprotection_start);
|
||||
DCHECK(zone_offset + sizeof(ChromeMallocZone) <= *reprotection_length);
|
||||
|
||||
if (info.protection & VM_PROT_WRITE) {
|
||||
// No change needed; the zone is already writable.
|
||||
*reprotection_start = 0;
|
||||
*reprotection_length = 0;
|
||||
*reprotection_value = VM_PROT_NONE;
|
||||
} else {
|
||||
*reprotection_value = info.protection;
|
||||
result =
|
||||
vm_protect(mach_task_self(), *reprotection_start, *reprotection_length,
|
||||
false, info.protection | VM_PROT_WRITE);
|
||||
if (result != KERN_SUCCESS) {
|
||||
MACH_LOG(ERROR, result) << "vm_protect";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#if !defined(ADDRESS_SANITIZER)
|
||||
|
||||
MallocZoneFunctions g_old_zone;
|
||||
MallocZoneFunctions g_old_purgeable_zone;
|
||||
|
||||
#if !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
void* oom_killer_malloc(struct _malloc_zone_t* zone, size_t size) {
|
||||
void* result = g_old_zone.malloc(zone, size);
|
||||
if (!result && size)
|
||||
TerminateBecauseOutOfMemory(size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void* oom_killer_calloc(struct _malloc_zone_t* zone,
|
||||
size_t num_items,
|
||||
size_t size) {
|
||||
void* result = g_old_zone.calloc(zone, num_items, size);
|
||||
if (!result && num_items && size)
|
||||
TerminateBecauseOutOfMemory(num_items * size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void* oom_killer_valloc(struct _malloc_zone_t* zone, size_t size) {
|
||||
void* result = g_old_zone.valloc(zone, size);
|
||||
if (!result && size)
|
||||
TerminateBecauseOutOfMemory(size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void oom_killer_free(struct _malloc_zone_t* zone, void* ptr) {
|
||||
g_old_zone.free(zone, ptr);
|
||||
}
|
||||
|
||||
void* oom_killer_realloc(struct _malloc_zone_t* zone, void* ptr, size_t size) {
|
||||
void* result = g_old_zone.realloc(zone, ptr, size);
|
||||
if (!result && size)
|
||||
TerminateBecauseOutOfMemory(size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void* oom_killer_memalign(struct _malloc_zone_t* zone,
|
||||
size_t alignment,
|
||||
size_t size) {
|
||||
void* result = g_old_zone.memalign(zone, alignment, size);
|
||||
// Only die if posix_memalign would have returned ENOMEM, since there are
|
||||
// other reasons why null might be returned. See posix_memalign() in 10.15's
|
||||
// https://opensource.apple.com/source/libmalloc/libmalloc-283/src/malloc.c .
|
||||
if (!result && size && alignment >= sizeof(void*) &&
|
||||
base::bits::IsPowerOfTwo(alignment)) {
|
||||
TerminateBecauseOutOfMemory(size);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif // !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
void* oom_killer_malloc_purgeable(struct _malloc_zone_t* zone, size_t size) {
|
||||
void* result = g_old_purgeable_zone.malloc(zone, size);
|
||||
if (!result && size)
|
||||
TerminateBecauseOutOfMemory(size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void* oom_killer_calloc_purgeable(struct _malloc_zone_t* zone,
|
||||
size_t num_items,
|
||||
size_t size) {
|
||||
void* result = g_old_purgeable_zone.calloc(zone, num_items, size);
|
||||
if (!result && num_items && size)
|
||||
TerminateBecauseOutOfMemory(num_items * size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void* oom_killer_valloc_purgeable(struct _malloc_zone_t* zone, size_t size) {
|
||||
void* result = g_old_purgeable_zone.valloc(zone, size);
|
||||
if (!result && size)
|
||||
TerminateBecauseOutOfMemory(size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void oom_killer_free_purgeable(struct _malloc_zone_t* zone, void* ptr) {
|
||||
g_old_purgeable_zone.free(zone, ptr);
|
||||
}
|
||||
|
||||
void* oom_killer_realloc_purgeable(struct _malloc_zone_t* zone,
|
||||
void* ptr,
|
||||
size_t size) {
|
||||
void* result = g_old_purgeable_zone.realloc(zone, ptr, size);
|
||||
if (!result && size)
|
||||
TerminateBecauseOutOfMemory(size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void* oom_killer_memalign_purgeable(struct _malloc_zone_t* zone,
|
||||
size_t alignment,
|
||||
size_t size) {
|
||||
void* result = g_old_purgeable_zone.memalign(zone, alignment, size);
|
||||
// Only die if posix_memalign would have returned ENOMEM, since there are
|
||||
// other reasons why null might be returned. See posix_memalign() in 10.15's
|
||||
// https://opensource.apple.com/source/libmalloc/libmalloc-283/src/malloc.c .
|
||||
if (!result && size && alignment >= sizeof(void*) &&
|
||||
base::bits::IsPowerOfTwo(alignment)) {
|
||||
TerminateBecauseOutOfMemory(size);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif // !defined(ADDRESS_SANITIZER)
|
||||
|
||||
#if !defined(ADDRESS_SANITIZER)
|
||||
|
||||
// === Core Foundation CFAllocators ===
|
||||
|
||||
bool CanGetContextForCFAllocator() {
|
||||
#if BUILDFLAG(IS_IOS)
|
||||
return !base::ios::IsRunningOnOrLater(16, 0, 0);
|
||||
#else
|
||||
return !base::mac::IsOSLaterThan12_DontCallThis();
|
||||
#endif
|
||||
}
|
||||
|
||||
CFAllocatorContext* ContextForCFAllocator(CFAllocatorRef allocator) {
|
||||
ChromeCFAllocatorLions* our_allocator = const_cast<ChromeCFAllocatorLions*>(
|
||||
reinterpret_cast<const ChromeCFAllocatorLions*>(allocator));
|
||||
return &our_allocator->_context;
|
||||
}
|
||||
|
||||
CFAllocatorAllocateCallBack g_old_cfallocator_system_default;
|
||||
CFAllocatorAllocateCallBack g_old_cfallocator_malloc;
|
||||
CFAllocatorAllocateCallBack g_old_cfallocator_malloc_zone;
|
||||
|
||||
void* oom_killer_cfallocator_system_default(CFIndex alloc_size,
|
||||
CFOptionFlags hint,
|
||||
void* info) {
|
||||
void* result = g_old_cfallocator_system_default(alloc_size, hint, info);
|
||||
if (!result)
|
||||
TerminateBecauseOutOfMemory(alloc_size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void* oom_killer_cfallocator_malloc(CFIndex alloc_size,
|
||||
CFOptionFlags hint,
|
||||
void* info) {
|
||||
void* result = g_old_cfallocator_malloc(alloc_size, hint, info);
|
||||
if (!result)
|
||||
TerminateBecauseOutOfMemory(alloc_size);
|
||||
return result;
|
||||
}
|
||||
|
||||
void* oom_killer_cfallocator_malloc_zone(CFIndex alloc_size,
|
||||
CFOptionFlags hint,
|
||||
void* info) {
|
||||
void* result = g_old_cfallocator_malloc_zone(alloc_size, hint, info);
|
||||
if (!result)
|
||||
TerminateBecauseOutOfMemory(alloc_size);
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif // !defined(ADDRESS_SANITIZER)
|
||||
|
||||
// === Cocoa NSObject allocation ===
|
||||
|
||||
typedef id (*allocWithZone_t)(id, SEL, NSZone*);
|
||||
allocWithZone_t g_old_allocWithZone;
|
||||
|
||||
id oom_killer_allocWithZone(id self, SEL _cmd, NSZone* zone) {
|
||||
id result = g_old_allocWithZone(self, _cmd, zone);
|
||||
if (!result)
|
||||
TerminateBecauseOutOfMemory(0);
|
||||
return result;
|
||||
}
|
||||
|
||||
void UninterceptMallocZoneForTesting(struct _malloc_zone_t* zone) {
|
||||
ChromeMallocZone* chrome_zone = reinterpret_cast<ChromeMallocZone*>(zone);
|
||||
if (!IsMallocZoneAlreadyStored(chrome_zone))
|
||||
return;
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(zone);
|
||||
ReplaceZoneFunctions(chrome_zone, &functions);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
bool UncheckedMallocMac(size_t size, void** result) {
|
||||
#if defined(ADDRESS_SANITIZER)
|
||||
*result = malloc(size);
|
||||
#else
|
||||
if (g_old_zone.malloc) {
|
||||
*result = g_old_zone.malloc(malloc_default_zone(), size);
|
||||
} else {
|
||||
*result = malloc(size);
|
||||
}
|
||||
#endif // defined(ADDRESS_SANITIZER)
|
||||
|
||||
return *result != NULL;
|
||||
}
|
||||
|
||||
bool UncheckedCallocMac(size_t num_items, size_t size, void** result) {
|
||||
#if defined(ADDRESS_SANITIZER)
|
||||
*result = calloc(num_items, size);
|
||||
#else
|
||||
if (g_old_zone.calloc) {
|
||||
*result = g_old_zone.calloc(malloc_default_zone(), num_items, size);
|
||||
} else {
|
||||
*result = calloc(num_items, size);
|
||||
}
|
||||
#endif // defined(ADDRESS_SANITIZER)
|
||||
|
||||
return *result != NULL;
|
||||
}
|
||||
|
||||
void InitializeDefaultDispatchToMacAllocator() {
|
||||
StoreFunctionsForAllZones();
|
||||
}
|
||||
|
||||
void StoreFunctionsForDefaultZone() {
|
||||
ChromeMallocZone* default_zone = reinterpret_cast<ChromeMallocZone*>(
|
||||
malloc_default_zone());
|
||||
StoreMallocZone(default_zone);
|
||||
}
|
||||
|
||||
void StoreFunctionsForAllZones() {
|
||||
// This ensures that the default zone is always at the front of the array,
|
||||
// which is important for performance.
|
||||
StoreFunctionsForDefaultZone();
|
||||
|
||||
vm_address_t* zones;
|
||||
unsigned int count;
|
||||
kern_return_t kr = malloc_get_all_zones(mach_task_self(), 0, &zones, &count);
|
||||
if (kr != KERN_SUCCESS)
|
||||
return;
|
||||
for (unsigned int i = 0; i < count; ++i) {
|
||||
ChromeMallocZone* zone = reinterpret_cast<ChromeMallocZone*>(zones[i]);
|
||||
StoreMallocZone(zone);
|
||||
}
|
||||
}
|
||||
|
||||
void ReplaceFunctionsForStoredZones(const MallocZoneFunctions* functions) {
|
||||
// The default zone does not get returned in malloc_get_all_zones().
|
||||
ChromeMallocZone* default_zone =
|
||||
reinterpret_cast<ChromeMallocZone*>(malloc_default_zone());
|
||||
if (DoesMallocZoneNeedReplacing(default_zone, functions)) {
|
||||
ReplaceZoneFunctions(default_zone, functions);
|
||||
}
|
||||
|
||||
vm_address_t* zones;
|
||||
unsigned int count;
|
||||
kern_return_t kr =
|
||||
malloc_get_all_zones(mach_task_self(), nullptr, &zones, &count);
|
||||
if (kr != KERN_SUCCESS)
|
||||
return;
|
||||
for (unsigned int i = 0; i < count; ++i) {
|
||||
ChromeMallocZone* zone = reinterpret_cast<ChromeMallocZone*>(zones[i]);
|
||||
if (DoesMallocZoneNeedReplacing(zone, functions)) {
|
||||
ReplaceZoneFunctions(zone, functions);
|
||||
}
|
||||
}
|
||||
g_replaced_default_zone = true;
|
||||
}
|
||||
|
||||
void InterceptAllocationsMac() {
|
||||
if (g_oom_killer_enabled)
|
||||
return;
|
||||
|
||||
g_oom_killer_enabled = true;
|
||||
|
||||
// === C malloc/calloc/valloc/realloc/posix_memalign ===
|
||||
|
||||
// This approach is not perfect, as requests for amounts of memory larger than
|
||||
// MALLOC_ABSOLUTE_MAX_SIZE (currently SIZE_T_MAX - (2 * PAGE_SIZE)) will still
|
||||
// fail with a NULL rather than dying (see malloc_zone_malloc() in
|
||||
// https://opensource.apple.com/source/libmalloc/libmalloc-283/src/malloc.c for
|
||||
// details). Unfortunately, it's the best we can do. Also note that this does
|
||||
// not affect allocations from non-default zones.
|
||||
|
||||
#if !defined(ADDRESS_SANITIZER)
|
||||
// Don't do anything special on OOM for the malloc zones replaced by
|
||||
// AddressSanitizer, as modifying or protecting them may not work correctly.
|
||||
#if !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// The malloc zone backed by PartitionAlloc crashes by default, so there is
|
||||
// no need to install the OOM killer.
|
||||
ChromeMallocZone* default_zone =
|
||||
reinterpret_cast<ChromeMallocZone*>(malloc_default_zone());
|
||||
if (!IsMallocZoneAlreadyStored(default_zone)) {
|
||||
StoreZoneFunctions(default_zone, &g_old_zone);
|
||||
MallocZoneFunctions new_functions = {};
|
||||
new_functions.malloc = oom_killer_malloc;
|
||||
new_functions.calloc = oom_killer_calloc;
|
||||
new_functions.valloc = oom_killer_valloc;
|
||||
new_functions.free = oom_killer_free;
|
||||
new_functions.realloc = oom_killer_realloc;
|
||||
new_functions.memalign = oom_killer_memalign;
|
||||
|
||||
ReplaceZoneFunctions(default_zone, &new_functions);
|
||||
g_replaced_default_zone = true;
|
||||
}
|
||||
#endif // !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
ChromeMallocZone* purgeable_zone =
|
||||
reinterpret_cast<ChromeMallocZone*>(malloc_default_purgeable_zone());
|
||||
if (purgeable_zone && !IsMallocZoneAlreadyStored(purgeable_zone)) {
|
||||
StoreZoneFunctions(purgeable_zone, &g_old_purgeable_zone);
|
||||
MallocZoneFunctions new_functions = {};
|
||||
new_functions.malloc = oom_killer_malloc_purgeable;
|
||||
new_functions.calloc = oom_killer_calloc_purgeable;
|
||||
new_functions.valloc = oom_killer_valloc_purgeable;
|
||||
new_functions.free = oom_killer_free_purgeable;
|
||||
new_functions.realloc = oom_killer_realloc_purgeable;
|
||||
new_functions.memalign = oom_killer_memalign_purgeable;
|
||||
ReplaceZoneFunctions(purgeable_zone, &new_functions);
|
||||
}
|
||||
#endif
|
||||
|
||||
// === C malloc_zone_batch_malloc ===
|
||||
|
||||
// batch_malloc is omitted because the default malloc zone's implementation
|
||||
// only supports batch_malloc for "tiny" allocations from the free list. It
|
||||
// will fail for allocations larger than "tiny", and will only allocate as
|
||||
// many blocks as it's able to from the free list. These factors mean that it
|
||||
// can return less than the requested memory even in a non-out-of-memory
|
||||
// situation. There's no good way to detect whether a batch_malloc failure is
|
||||
// due to these other factors, or due to genuine memory or address space
|
||||
// exhaustion. The fact that it only allocates space from the "tiny" free list
|
||||
// means that it's likely that a failure will not be due to memory exhaustion.
|
||||
// Similarly, these constraints on batch_malloc mean that callers must always
|
||||
// be expecting to receive less memory than was requested, even in situations
|
||||
// where memory pressure is not a concern. Finally, the only public interface
|
||||
// to batch_malloc is malloc_zone_batch_malloc, which is specific to the
|
||||
// system's malloc implementation. It's unlikely that anyone's even heard of
|
||||
// it.
|
||||
|
||||
#ifndef ADDRESS_SANITIZER
|
||||
// === Core Foundation CFAllocators ===
|
||||
|
||||
// This will not catch allocation done by custom allocators, but will catch
|
||||
// all allocation done by system-provided ones.
|
||||
|
||||
CHECK(!g_old_cfallocator_system_default && !g_old_cfallocator_malloc &&
|
||||
!g_old_cfallocator_malloc_zone)
|
||||
<< "Old allocators unexpectedly non-null";
|
||||
|
||||
bool cf_allocator_internals_known = CanGetContextForCFAllocator();
|
||||
|
||||
if (cf_allocator_internals_known) {
|
||||
CFAllocatorContext* context =
|
||||
ContextForCFAllocator(kCFAllocatorSystemDefault);
|
||||
CHECK(context) << "Failed to get context for kCFAllocatorSystemDefault.";
|
||||
g_old_cfallocator_system_default = context->allocate;
|
||||
CHECK(g_old_cfallocator_system_default)
|
||||
<< "Failed to get kCFAllocatorSystemDefault allocation function.";
|
||||
context->allocate = oom_killer_cfallocator_system_default;
|
||||
|
||||
context = ContextForCFAllocator(kCFAllocatorMalloc);
|
||||
CHECK(context) << "Failed to get context for kCFAllocatorMalloc.";
|
||||
g_old_cfallocator_malloc = context->allocate;
|
||||
CHECK(g_old_cfallocator_malloc)
|
||||
<< "Failed to get kCFAllocatorMalloc allocation function.";
|
||||
context->allocate = oom_killer_cfallocator_malloc;
|
||||
|
||||
context = ContextForCFAllocator(kCFAllocatorMallocZone);
|
||||
CHECK(context) << "Failed to get context for kCFAllocatorMallocZone.";
|
||||
g_old_cfallocator_malloc_zone = context->allocate;
|
||||
CHECK(g_old_cfallocator_malloc_zone)
|
||||
<< "Failed to get kCFAllocatorMallocZone allocation function.";
|
||||
context->allocate = oom_killer_cfallocator_malloc_zone;
|
||||
} else {
|
||||
DLOG(WARNING) << "Internals of CFAllocator not known; out-of-memory "
|
||||
"failures via CFAllocator will not result in termination. "
|
||||
"http://crbug.com/45650";
|
||||
}
|
||||
#endif
|
||||
|
||||
// === Cocoa NSObject allocation ===
|
||||
|
||||
// Note that both +[NSObject new] and +[NSObject alloc] call through to
|
||||
// +[NSObject allocWithZone:].
|
||||
|
||||
CHECK(!g_old_allocWithZone) << "Old allocator unexpectedly non-null";
|
||||
|
||||
Class nsobject_class = [NSObject class];
|
||||
Method orig_method =
|
||||
class_getClassMethod(nsobject_class, @selector(allocWithZone:));
|
||||
g_old_allocWithZone =
|
||||
reinterpret_cast<allocWithZone_t>(method_getImplementation(orig_method));
|
||||
CHECK(g_old_allocWithZone)
|
||||
<< "Failed to get allocWithZone allocation function.";
|
||||
method_setImplementation(orig_method,
|
||||
reinterpret_cast<IMP>(oom_killer_allocWithZone));
|
||||
}
|
||||
|
||||
void UninterceptMallocZonesForTesting() {
|
||||
UninterceptMallocZoneForTesting(malloc_default_zone());
|
||||
vm_address_t* zones;
|
||||
unsigned int count;
|
||||
kern_return_t kr = malloc_get_all_zones(mach_task_self(), 0, &zones, &count);
|
||||
CHECK(kr == KERN_SUCCESS);
|
||||
for (unsigned int i = 0; i < count; ++i) {
|
||||
UninterceptMallocZoneForTesting(
|
||||
reinterpret_cast<struct _malloc_zone_t*>(zones[i]));
|
||||
}
|
||||
|
||||
ClearAllMallocZonesForTesting();
|
||||
}
|
||||
|
||||
bool AreMallocZonesIntercepted() {
|
||||
return !g_allocator_shims_failed_to_install;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
void ShimNewMallocZonesAndReschedule(base::Time end_time,
|
||||
base::TimeDelta delay) {
|
||||
ShimNewMallocZones();
|
||||
|
||||
if (base::Time::Now() > end_time)
|
||||
return;
|
||||
|
||||
base::TimeDelta next_delay = delay * 2;
|
||||
SequencedTaskRunnerHandle::Get()->PostDelayedTask(
|
||||
FROM_HERE,
|
||||
base::BindOnce(&ShimNewMallocZonesAndReschedule, end_time, next_delay),
|
||||
delay);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void PeriodicallyShimNewMallocZones() {
|
||||
base::Time end_time = base::Time::Now() + base::Minutes(1);
|
||||
base::TimeDelta initial_delay = base::Seconds(1);
|
||||
ShimNewMallocZonesAndReschedule(end_time, initial_delay);
|
||||
}
|
||||
|
||||
void ShimNewMallocZones() {
|
||||
StoreFunctionsForAllZones();
|
||||
|
||||
// Use the functions for the default zone as a template to replace those
|
||||
// new zones.
|
||||
ChromeMallocZone* default_zone =
|
||||
reinterpret_cast<ChromeMallocZone*>(malloc_default_zone());
|
||||
DCHECK(IsMallocZoneAlreadyStored(default_zone));
|
||||
|
||||
MallocZoneFunctions new_functions;
|
||||
StoreZoneFunctions(default_zone, &new_functions);
|
||||
ReplaceFunctionsForStoredZones(&new_functions);
|
||||
}
|
||||
|
||||
void ReplaceZoneFunctions(ChromeMallocZone* zone,
|
||||
const MallocZoneFunctions* functions) {
|
||||
// Remove protection.
|
||||
vm_address_t reprotection_start = 0;
|
||||
vm_size_t reprotection_length = 0;
|
||||
vm_prot_t reprotection_value = VM_PROT_NONE;
|
||||
bool success = DeprotectMallocZone(zone, &reprotection_start,
|
||||
&reprotection_length, &reprotection_value);
|
||||
if (!success) {
|
||||
g_allocator_shims_failed_to_install = true;
|
||||
return;
|
||||
}
|
||||
|
||||
CHECK(functions->malloc && functions->calloc && functions->valloc &&
|
||||
functions->free && functions->realloc);
|
||||
zone->malloc = functions->malloc;
|
||||
zone->calloc = functions->calloc;
|
||||
zone->valloc = functions->valloc;
|
||||
zone->free = functions->free;
|
||||
zone->realloc = functions->realloc;
|
||||
if (functions->batch_malloc)
|
||||
zone->batch_malloc = functions->batch_malloc;
|
||||
if (functions->batch_free)
|
||||
zone->batch_free = functions->batch_free;
|
||||
if (functions->size)
|
||||
zone->size = functions->size;
|
||||
if (zone->version >= 5 && functions->memalign) {
|
||||
zone->memalign = functions->memalign;
|
||||
}
|
||||
if (zone->version >= 6 && functions->free_definite_size) {
|
||||
zone->free_definite_size = functions->free_definite_size;
|
||||
}
|
||||
|
||||
// Restore protection if it was active.
|
||||
if (reprotection_start) {
|
||||
kern_return_t result =
|
||||
vm_protect(mach_task_self(), reprotection_start, reprotection_length,
|
||||
false, reprotection_value);
|
||||
MACH_DCHECK(result == KERN_SUCCESS, result) << "vm_protect";
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
418
src/base/allocator/allocator_shim.cc
Normal file
418
src/base/allocator/allocator_shim.cc
Normal file
@ -0,0 +1,418 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/allocator_shim.h"
|
||||
|
||||
#include <errno.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <new>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/bits.h"
|
||||
#include "base/check_op.h"
|
||||
#include "base/memory/page_size.h"
|
||||
#include "base/threading/platform_thread.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if !BUILDFLAG(IS_WIN)
|
||||
#include <unistd.h>
|
||||
#else
|
||||
#include "base/allocator/winheap_stubs_win.h"
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#include <malloc/malloc.h>
|
||||
|
||||
#include "base/allocator/allocator_interception_mac.h"
|
||||
#include "base/mac/mach_logging.h"
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
#include "base/allocator/allocator_shim_default_dispatch_to_partition_alloc.h"
|
||||
#endif
|
||||
|
||||
// No calls to malloc / new in this file. They would would cause re-entrancy of
|
||||
// the shim, which is hard to deal with. Keep this code as simple as possible
|
||||
// and don't use any external C++ object here, not even //base ones. Even if
|
||||
// they are safe to use today, in future they might be refactored.
|
||||
|
||||
namespace {
|
||||
|
||||
std::atomic<const base::allocator::AllocatorDispatch*> g_chain_head{
|
||||
&base::allocator::AllocatorDispatch::default_dispatch};
|
||||
|
||||
bool g_call_new_handler_on_malloc_failure = false;
|
||||
|
||||
ALWAYS_INLINE size_t GetCachedPageSize() {
|
||||
static size_t pagesize = 0;
|
||||
if (!pagesize)
|
||||
pagesize = base::GetPageSize();
|
||||
return pagesize;
|
||||
}
|
||||
|
||||
// Calls the std::new handler thread-safely. Returns true if a new_handler was
|
||||
// set and called, false if no new_handler was set.
|
||||
bool CallNewHandler(size_t size) {
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
return base::allocator::WinCallNewHandler(size);
|
||||
#else
|
||||
std::new_handler nh = std::get_new_handler();
|
||||
if (!nh)
|
||||
return false;
|
||||
(*nh)();
|
||||
// Assume the new_handler will abort if it fails. Exception are disabled and
|
||||
// we don't support the case of a new_handler throwing std::bad_balloc.
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
ALWAYS_INLINE const base::allocator::AllocatorDispatch* GetChainHead() {
|
||||
return g_chain_head.load(std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
void SetCallNewHandlerOnMallocFailure(bool value) {
|
||||
g_call_new_handler_on_malloc_failure = value;
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
base::internal::PartitionAllocSetCallNewHandlerOnMallocFailure(value);
|
||||
#endif
|
||||
}
|
||||
|
||||
void* UncheckedAlloc(size_t size) {
|
||||
const allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->alloc_unchecked_function(chain_head, size, nullptr);
|
||||
}
|
||||
|
||||
void UncheckedFree(void* ptr) {
|
||||
const allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->free_function(chain_head, ptr, nullptr);
|
||||
}
|
||||
|
||||
void InsertAllocatorDispatch(AllocatorDispatch* dispatch) {
|
||||
// Loop in case of (an unlikely) race on setting the list head.
|
||||
size_t kMaxRetries = 7;
|
||||
for (size_t i = 0; i < kMaxRetries; ++i) {
|
||||
const AllocatorDispatch* chain_head = GetChainHead();
|
||||
dispatch->next = chain_head;
|
||||
|
||||
// This function guarantees to be thread-safe w.r.t. concurrent
|
||||
// insertions. It also has to guarantee that all the threads always
|
||||
// see a consistent chain, hence the atomic_thread_fence() below.
|
||||
// InsertAllocatorDispatch() is NOT a fastpath, as opposite to malloc(), so
|
||||
// we don't really want this to be a release-store with a corresponding
|
||||
// acquire-load during malloc().
|
||||
std::atomic_thread_fence(std::memory_order_seq_cst);
|
||||
// Set the chain head to the new dispatch atomically. If we lose the race,
|
||||
// retry.
|
||||
if (g_chain_head.compare_exchange_strong(chain_head, dispatch,
|
||||
std::memory_order_relaxed,
|
||||
std::memory_order_relaxed)) {
|
||||
// Success.
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
CHECK(false); // Too many retries, this shouldn't happen.
|
||||
}
|
||||
|
||||
void RemoveAllocatorDispatchForTesting(AllocatorDispatch* dispatch) {
|
||||
DCHECK_EQ(GetChainHead(), dispatch);
|
||||
g_chain_head.store(dispatch->next, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
// The Shim* functions below are the entry-points into the shim-layer and
|
||||
// are supposed to be invoked by the allocator_shim_override_*
|
||||
// headers to route the malloc / new symbols through the shim layer.
|
||||
// They are defined as ALWAYS_INLINE in order to remove a level of indirection
|
||||
// between the system-defined entry points and the shim implementations.
|
||||
extern "C" {
|
||||
|
||||
// The general pattern for allocations is:
|
||||
// - Try to allocate, if succeded return the pointer.
|
||||
// - If the allocation failed:
|
||||
// - Call the std::new_handler if it was a C++ allocation.
|
||||
// - Call the std::new_handler if it was a malloc() (or calloc() or similar)
|
||||
// AND SetCallNewHandlerOnMallocFailure(true).
|
||||
// - If the std::new_handler is NOT set just return nullptr.
|
||||
// - If the std::new_handler is set:
|
||||
// - Assume it will abort() if it fails (very likely the new_handler will
|
||||
// just suicide printing a message).
|
||||
// - Assume it did succeed if it returns, in which case reattempt the alloc.
|
||||
|
||||
ALWAYS_INLINE void* ShimCppNew(size_t size) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
void* ptr;
|
||||
do {
|
||||
void* context = nullptr;
|
||||
#if BUILDFLAG(IS_APPLE) && !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
context = malloc_default_zone();
|
||||
#endif
|
||||
ptr = chain_head->alloc_function(chain_head, size, context);
|
||||
} while (!ptr && CallNewHandler(size));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimCppNewNoThrow(size_t size) {
|
||||
void* context = nullptr;
|
||||
#if BUILDFLAG(IS_APPLE) && !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
context = malloc_default_zone();
|
||||
#endif
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->alloc_unchecked_function(chain_head, size, context);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimCppAlignedNew(size_t size, size_t alignment) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
void* ptr;
|
||||
do {
|
||||
void* context = nullptr;
|
||||
#if BUILDFLAG(IS_APPLE) && !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
context = malloc_default_zone();
|
||||
#endif
|
||||
ptr = chain_head->alloc_aligned_function(chain_head, alignment, size,
|
||||
context);
|
||||
} while (!ptr && CallNewHandler(size));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void ShimCppDelete(void* address) {
|
||||
void* context = nullptr;
|
||||
#if BUILDFLAG(IS_APPLE) && !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
context = malloc_default_zone();
|
||||
#endif
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->free_function(chain_head, address, context);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimMalloc(size_t size, void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
void* ptr;
|
||||
do {
|
||||
ptr = chain_head->alloc_function(chain_head, size, context);
|
||||
} while (!ptr && g_call_new_handler_on_malloc_failure &&
|
||||
CallNewHandler(size));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimCalloc(size_t n, size_t size, void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
void* ptr;
|
||||
do {
|
||||
ptr = chain_head->alloc_zero_initialized_function(chain_head, n, size,
|
||||
context);
|
||||
} while (!ptr && g_call_new_handler_on_malloc_failure &&
|
||||
CallNewHandler(size));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimRealloc(void* address, size_t size, void* context) {
|
||||
// realloc(size == 0) means free() and might return a nullptr. We should
|
||||
// not call the std::new_handler in that case, though.
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
void* ptr;
|
||||
do {
|
||||
ptr = chain_head->realloc_function(chain_head, address, size, context);
|
||||
} while (!ptr && size && g_call_new_handler_on_malloc_failure &&
|
||||
CallNewHandler(size));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimMemalign(size_t alignment, size_t size, void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
void* ptr;
|
||||
do {
|
||||
ptr = chain_head->alloc_aligned_function(chain_head, alignment, size,
|
||||
context);
|
||||
} while (!ptr && g_call_new_handler_on_malloc_failure &&
|
||||
CallNewHandler(size));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE int ShimPosixMemalign(void** res, size_t alignment, size_t size) {
|
||||
// posix_memalign is supposed to check the arguments. See tc_posix_memalign()
|
||||
// in tc_malloc.cc.
|
||||
if (((alignment % sizeof(void*)) != 0) ||
|
||||
!base::bits::IsPowerOfTwo(alignment)) {
|
||||
return EINVAL;
|
||||
}
|
||||
void* ptr = ShimMemalign(alignment, size, nullptr);
|
||||
*res = ptr;
|
||||
return ptr ? 0 : ENOMEM;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimValloc(size_t size, void* context) {
|
||||
return ShimMemalign(GetCachedPageSize(), size, context);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimPvalloc(size_t size) {
|
||||
// pvalloc(0) should allocate one page, according to its man page.
|
||||
if (size == 0) {
|
||||
size = GetCachedPageSize();
|
||||
} else {
|
||||
size = base::bits::AlignUp(size, GetCachedPageSize());
|
||||
}
|
||||
// The third argument is nullptr because pvalloc is glibc only and does not
|
||||
// exist on OSX/BSD systems.
|
||||
return ShimMemalign(GetCachedPageSize(), size, nullptr);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void ShimFree(void* address, void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->free_function(chain_head, address, context);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE size_t ShimGetSizeEstimate(const void* address, void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->get_size_estimate_function(
|
||||
chain_head, const_cast<void*>(address), context);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE unsigned ShimBatchMalloc(size_t size,
|
||||
void** results,
|
||||
unsigned num_requested,
|
||||
void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->batch_malloc_function(chain_head, size, results,
|
||||
num_requested, context);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void ShimBatchFree(void** to_be_freed,
|
||||
unsigned num_to_be_freed,
|
||||
void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->batch_free_function(chain_head, to_be_freed,
|
||||
num_to_be_freed, context);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void ShimFreeDefiniteSize(void* ptr, size_t size, void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->free_definite_size_function(chain_head, ptr, size,
|
||||
context);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimAlignedMalloc(size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
void* ptr = nullptr;
|
||||
do {
|
||||
ptr = chain_head->aligned_malloc_function(chain_head, size, alignment,
|
||||
context);
|
||||
} while (!ptr && g_call_new_handler_on_malloc_failure &&
|
||||
CallNewHandler(size));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void* ShimAlignedRealloc(void* address,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
// _aligned_realloc(size == 0) means _aligned_free() and might return a
|
||||
// nullptr. We should not call the std::new_handler in that case, though.
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
void* ptr = nullptr;
|
||||
do {
|
||||
ptr = chain_head->aligned_realloc_function(chain_head, address, size,
|
||||
alignment, context);
|
||||
} while (!ptr && size && g_call_new_handler_on_malloc_failure &&
|
||||
CallNewHandler(size));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE void ShimAlignedFree(void* address, void* context) {
|
||||
const base::allocator::AllocatorDispatch* const chain_head = GetChainHead();
|
||||
return chain_head->aligned_free_function(chain_head, address, context);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
|
||||
#if !BUILDFLAG(IS_WIN) && \
|
||||
!(BUILDFLAG(IS_APPLE) && !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC))
|
||||
// Cpp symbols (new / delete) should always be routed through the shim layer
|
||||
// except on Windows and macOS (except for PartitionAlloc-Everywhere) where the
|
||||
// malloc intercept is deep enough that it also catches the cpp calls.
|
||||
//
|
||||
// In case of PartitionAlloc-Everywhere on macOS, malloc backed by
|
||||
// base::internal::PartitionMalloc crashes on OOM, and we need to avoid crashes
|
||||
// in case of operator new() noexcept. Thus, operator new() noexcept needs to
|
||||
// be routed to base::internal::PartitionMallocUnchecked through the shim layer.
|
||||
#include "base/allocator/allocator_shim_override_cpp_symbols.h"
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID)
|
||||
// Android does not support symbol interposition. The way malloc symbols are
|
||||
// intercepted on Android is by using link-time -wrap flags.
|
||||
#include "base/allocator/allocator_shim_override_linker_wrapped_symbols.h"
|
||||
#elif BUILDFLAG(IS_WIN)
|
||||
// On Windows we use plain link-time overriding of the CRT symbols.
|
||||
#include "base/allocator/allocator_shim_override_ucrt_symbols_win.h"
|
||||
#elif BUILDFLAG(IS_APPLE)
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
#include "base/allocator/allocator_shim_override_mac_default_zone.h"
|
||||
#else // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
#include "base/allocator/allocator_shim_override_mac_symbols.h"
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
#else
|
||||
#include "base/allocator/allocator_shim_override_libc_symbols.h"
|
||||
#endif
|
||||
|
||||
// Some glibc versions (until commit 6c444ad6e953dbdf9c7be065308a0a777)
|
||||
// incorrectly call __libc_memalign() to allocate memory (see elf/dl-tls.c in
|
||||
// glibc 2.23 for instance), and free() to free it. This causes issues for us,
|
||||
// as we are then asked to free memory we didn't allocate.
|
||||
//
|
||||
// This only happened in glibc to allocate TLS storage metadata, and there are
|
||||
// no other callers of __libc_memalign() there as of September 2020. To work
|
||||
// around this issue, intercept this internal libc symbol to make sure that both
|
||||
// the allocation and the free() are caught by the shim.
|
||||
//
|
||||
// This seems fragile, and is, but there is ample precedent for it, making it
|
||||
// quite likely to keep working in the future. For instance, LLVM for LSAN uses
|
||||
// this mechanism.
|
||||
|
||||
#if defined(LIBC_GLIBC) && BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
#include "base/allocator/allocator_shim_override_glibc_weak_symbols.h"
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
void InitializeAllocatorShim() {
|
||||
#if !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// Prepares the default dispatch. After the intercepted malloc calls have
|
||||
// traversed the shim this will route them to the default malloc zone.
|
||||
InitializeDefaultDispatchToMacAllocator();
|
||||
|
||||
MallocZoneFunctions functions = MallocZoneFunctionsToReplaceDefault();
|
||||
|
||||
// This replaces the default malloc zone, causing calls to malloc & friends
|
||||
// from the codebase to be routed to ShimMalloc() above.
|
||||
base::allocator::ReplaceFunctionsForStoredZones(&functions);
|
||||
#endif // !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
#endif
|
||||
|
||||
// Cross-checks.
|
||||
|
||||
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
||||
#error The allocator shim should not be compiled when building for memory tools.
|
||||
#endif
|
||||
|
||||
#if (defined(__GNUC__) && defined(__EXCEPTIONS)) || \
|
||||
(defined(_MSC_VER) && defined(_CPPUNWIND))
|
||||
#error This code cannot be used when exceptions are turned on.
|
||||
#endif
|
200
src/base/allocator/allocator_shim.h
Normal file
200
src/base/allocator/allocator_shim.h
Normal file
@ -0,0 +1,200 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_SHIM_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_H_
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/types/strong_alias.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && defined(PA_ALLOW_PCSCAN)
|
||||
#include "base/allocator/partition_allocator/starscan/pcscan.h"
|
||||
#endif
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
// Allocator Shim API. Allows to:
|
||||
// - Configure the behavior of the allocator (what to do on OOM failures).
|
||||
// - Install new hooks (AllocatorDispatch) in the allocator chain.
|
||||
|
||||
// When this shim layer is enabled, the route of an allocation is as-follows:
|
||||
//
|
||||
// [allocator_shim_override_*.h] Intercept malloc() / operator new calls:
|
||||
// The override_* headers define the symbols required to intercept calls to
|
||||
// malloc() and operator new (if not overridden by specific C++ classes).
|
||||
//
|
||||
// [allocator_shim.cc] Routing allocation calls to the shim:
|
||||
// The headers above route the calls to the internal ShimMalloc(), ShimFree(),
|
||||
// ShimCppNew() etc. methods defined in allocator_shim.cc.
|
||||
// These methods will: (1) forward the allocation call to the front of the
|
||||
// AllocatorDispatch chain. (2) perform security hardenings (e.g., might
|
||||
// call std::new_handler on OOM failure).
|
||||
//
|
||||
// [allocator_shim_default_dispatch_to_*.cc] The AllocatorDispatch chain:
|
||||
// It is a singly linked list where each element is a struct with function
|
||||
// pointers (|malloc_function|, |free_function|, etc). Normally the chain
|
||||
// consists of a single AllocatorDispatch element, herein called
|
||||
// the "default dispatch", which is statically defined at build time and
|
||||
// ultimately routes the calls to the actual allocator defined by the build
|
||||
// config (glibc, ...).
|
||||
//
|
||||
// It is possible to dynamically insert further AllocatorDispatch stages
|
||||
// to the front of the chain, for debugging / profiling purposes.
|
||||
//
|
||||
// All the functions must be thread safe. The shim does not enforce any
|
||||
// serialization. This is to route to thread-aware allocators without
|
||||
// introducing unnecessary perf hits.
|
||||
|
||||
struct AllocatorDispatch {
|
||||
using AllocFn = void*(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
void* context);
|
||||
using AllocUncheckedFn = void*(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
void* context);
|
||||
using AllocZeroInitializedFn = void*(const AllocatorDispatch* self,
|
||||
size_t n,
|
||||
size_t size,
|
||||
void* context);
|
||||
using AllocAlignedFn = void*(const AllocatorDispatch* self,
|
||||
size_t alignment,
|
||||
size_t size,
|
||||
void* context);
|
||||
using ReallocFn = void*(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context);
|
||||
using FreeFn = void(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
void* context);
|
||||
// Returns the allocated size of user data (not including heap overhead).
|
||||
// Can be larger than the requested size.
|
||||
using GetSizeEstimateFn = size_t(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
void* context);
|
||||
using BatchMallocFn = unsigned(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
void** results,
|
||||
unsigned num_requested,
|
||||
void* context);
|
||||
using BatchFreeFn = void(const AllocatorDispatch* self,
|
||||
void** to_be_freed,
|
||||
unsigned num_to_be_freed,
|
||||
void* context);
|
||||
using FreeDefiniteSizeFn = void(const AllocatorDispatch* self,
|
||||
void* ptr,
|
||||
size_t size,
|
||||
void* context);
|
||||
using AlignedMallocFn = void*(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context);
|
||||
using AlignedReallocFn = void*(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context);
|
||||
using AlignedFreeFn = void(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
void* context);
|
||||
|
||||
AllocFn* const alloc_function;
|
||||
AllocUncheckedFn* const alloc_unchecked_function;
|
||||
AllocZeroInitializedFn* const alloc_zero_initialized_function;
|
||||
AllocAlignedFn* const alloc_aligned_function;
|
||||
ReallocFn* const realloc_function;
|
||||
FreeFn* const free_function;
|
||||
GetSizeEstimateFn* const get_size_estimate_function;
|
||||
// batch_malloc, batch_free, and free_definite_size are specific to the OSX
|
||||
// and iOS allocators.
|
||||
BatchMallocFn* const batch_malloc_function;
|
||||
BatchFreeFn* const batch_free_function;
|
||||
FreeDefiniteSizeFn* const free_definite_size_function;
|
||||
// _aligned_malloc, _aligned_realloc, and _aligned_free are specific to the
|
||||
// Windows allocator.
|
||||
AlignedMallocFn* const aligned_malloc_function;
|
||||
AlignedReallocFn* const aligned_realloc_function;
|
||||
AlignedFreeFn* const aligned_free_function;
|
||||
|
||||
const AllocatorDispatch* next;
|
||||
|
||||
// |default_dispatch| is statically defined by one (and only one) of the
|
||||
// allocator_shim_default_dispatch_to_*.cc files, depending on the build
|
||||
// configuration.
|
||||
static const AllocatorDispatch default_dispatch;
|
||||
};
|
||||
|
||||
// When true makes malloc behave like new, w.r.t calling the new_handler if
|
||||
// the allocation fails (see set_new_mode() in Windows).
|
||||
BASE_EXPORT void SetCallNewHandlerOnMallocFailure(bool value);
|
||||
|
||||
// Allocates |size| bytes or returns nullptr. It does NOT call the new_handler,
|
||||
// regardless of SetCallNewHandlerOnMallocFailure().
|
||||
BASE_EXPORT void* UncheckedAlloc(size_t size);
|
||||
|
||||
// Frees memory allocated with UncheckedAlloc().
|
||||
BASE_EXPORT void UncheckedFree(void* ptr);
|
||||
|
||||
// Inserts |dispatch| in front of the allocator chain. This method is
|
||||
// thread-safe w.r.t concurrent invocations of InsertAllocatorDispatch().
|
||||
// The callers have responsibility for inserting a single dispatch no more
|
||||
// than once.
|
||||
BASE_EXPORT void InsertAllocatorDispatch(AllocatorDispatch* dispatch);
|
||||
|
||||
// Test-only. Rationale: (1) lack of use cases; (2) dealing safely with a
|
||||
// removal of arbitrary elements from a singly linked list would require a lock
|
||||
// in malloc(), which we really don't want.
|
||||
BASE_EXPORT void RemoveAllocatorDispatchForTesting(AllocatorDispatch* dispatch);
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && BUILDFLAG(IS_WIN)
|
||||
// Configures the allocator for the caller's allocation domain. Allocations that
|
||||
// take place prior to this configuration step will succeed, but will not
|
||||
// benefit from its one-time mitigations. As such, this function must be called
|
||||
// as early as possible during startup.
|
||||
BASE_EXPORT void ConfigurePartitionAlloc();
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
void InitializeDefaultAllocatorPartitionRoot();
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// On macOS, the allocator shim needs to be turned on during runtime.
|
||||
BASE_EXPORT void InitializeAllocatorShim();
|
||||
#endif // BUILDFLAG(IS_APPLE)
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
BASE_EXPORT void EnablePartitionAllocMemoryReclaimer();
|
||||
|
||||
using EnableBrp = base::StrongAlias<class EnableBrpTag, bool>;
|
||||
using SplitMainPartition = base::StrongAlias<class SplitMainPartitionTag, bool>;
|
||||
using UseDedicatedAlignedPartition =
|
||||
base::StrongAlias<class UseDedicatedAlignedPartitionTag, bool>;
|
||||
using AlternateBucketDistribution =
|
||||
base::StrongAlias<class AlternateBucketDistributionTag, bool>;
|
||||
|
||||
// If |thread_cache_on_non_quarantinable_partition| is specified, the
|
||||
// thread-cache will be enabled on the non-quarantinable partition. The
|
||||
// thread-cache on the main (malloc) partition will be disabled.
|
||||
BASE_EXPORT void ConfigurePartitions(
|
||||
EnableBrp enable_brp,
|
||||
SplitMainPartition split_main_partition,
|
||||
UseDedicatedAlignedPartition use_dedicated_aligned_partition,
|
||||
AlternateBucketDistribution use_alternate_bucket_distribution);
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
BASE_EXPORT void EnablePCScan(base::internal::PCScan::InitConfig);
|
||||
#endif
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_SHIM_H_
|
122
src/base/allocator/allocator_shim_default_dispatch_to_glibc.cc
Normal file
122
src/base/allocator/allocator_shim_default_dispatch_to_glibc.cc
Normal file
@ -0,0 +1,122 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/allocator_shim.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/numerics/checked_math.h"
|
||||
#include "base/process/memory.h"
|
||||
|
||||
#include <dlfcn.h>
|
||||
#include <malloc.h>
|
||||
|
||||
// This translation unit defines a default dispatch for the allocator shim which
|
||||
// routes allocations to libc functions.
|
||||
// The code here is strongly inspired from tcmalloc's libc_override_glibc.h.
|
||||
|
||||
extern "C" {
|
||||
void* __libc_malloc(size_t size);
|
||||
void* __libc_calloc(size_t n, size_t size);
|
||||
void* __libc_realloc(void* address, size_t size);
|
||||
void* __libc_memalign(size_t alignment, size_t size);
|
||||
void __libc_free(void* ptr);
|
||||
} // extern "C"
|
||||
|
||||
namespace {
|
||||
|
||||
using base::allocator::AllocatorDispatch;
|
||||
|
||||
// Strictly speaking, it would make more sense to not subtract amything, but
|
||||
// other shims limit to something lower than INT_MAX (which is 0x7FFFFFFF on
|
||||
// most platforms), and tests expect that.
|
||||
constexpr size_t kMaxAllowedSize = std::numeric_limits<int>::max() - (1 << 12);
|
||||
|
||||
void* GlibcMalloc(const AllocatorDispatch*, size_t size, void* context) {
|
||||
// Cannot force glibc's malloc() to crash when a large size is requested, do
|
||||
// it in the shim instead.
|
||||
if (UNLIKELY(size >= kMaxAllowedSize))
|
||||
base::TerminateBecauseOutOfMemory(size);
|
||||
|
||||
return __libc_malloc(size);
|
||||
}
|
||||
|
||||
void* GlibcUncheckedMalloc(const AllocatorDispatch*,
|
||||
size_t size,
|
||||
void* context) {
|
||||
if (UNLIKELY(size >= kMaxAllowedSize))
|
||||
return nullptr;
|
||||
|
||||
return __libc_malloc(size);
|
||||
}
|
||||
|
||||
void* GlibcCalloc(const AllocatorDispatch*,
|
||||
size_t n,
|
||||
size_t size,
|
||||
void* context) {
|
||||
const auto total = base::CheckMul(n, size);
|
||||
if (UNLIKELY(!total.IsValid() || total.ValueOrDie() >= kMaxAllowedSize))
|
||||
base::TerminateBecauseOutOfMemory(size * n);
|
||||
|
||||
return __libc_calloc(n, size);
|
||||
}
|
||||
|
||||
void* GlibcRealloc(const AllocatorDispatch*,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context) {
|
||||
if (UNLIKELY(size >= kMaxAllowedSize))
|
||||
base::TerminateBecauseOutOfMemory(size);
|
||||
|
||||
return __libc_realloc(address, size);
|
||||
}
|
||||
|
||||
void* GlibcMemalign(const AllocatorDispatch*,
|
||||
size_t alignment,
|
||||
size_t size,
|
||||
void* context) {
|
||||
if (UNLIKELY(size >= kMaxAllowedSize))
|
||||
base::TerminateBecauseOutOfMemory(size);
|
||||
|
||||
return __libc_memalign(alignment, size);
|
||||
}
|
||||
|
||||
void GlibcFree(const AllocatorDispatch*, void* address, void* context) {
|
||||
__libc_free(address);
|
||||
}
|
||||
|
||||
NO_SANITIZE("cfi-icall")
|
||||
size_t GlibcGetSizeEstimate(const AllocatorDispatch*,
|
||||
void* address,
|
||||
void* context) {
|
||||
// glibc does not expose an alias to resolve malloc_usable_size. Dynamically
|
||||
// resolve it instead. This should be safe because glibc (and hence dlfcn)
|
||||
// does not use malloc_size internally and so there should not be a risk of
|
||||
// recursion.
|
||||
using MallocUsableSizeFunction = decltype(malloc_usable_size)*;
|
||||
static MallocUsableSizeFunction fn_ptr =
|
||||
reinterpret_cast<MallocUsableSizeFunction>(
|
||||
dlsym(RTLD_NEXT, "malloc_usable_size"));
|
||||
|
||||
return fn_ptr(address);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
const AllocatorDispatch AllocatorDispatch::default_dispatch = {
|
||||
&GlibcMalloc, /* alloc_function */
|
||||
&GlibcUncheckedMalloc, /* alloc_unchecked_function */
|
||||
&GlibcCalloc, /* alloc_zero_initialized_function */
|
||||
&GlibcMemalign, /* alloc_aligned_function */
|
||||
&GlibcRealloc, /* realloc_function */
|
||||
&GlibcFree, /* free_function */
|
||||
&GlibcGetSizeEstimate, /* get_size_estimate_function */
|
||||
nullptr, /* batch_malloc_function */
|
||||
nullptr, /* batch_free_function */
|
||||
nullptr, /* free_definite_size_function */
|
||||
nullptr, /* aligned_malloc_function */
|
||||
nullptr, /* aligned_realloc_function */
|
||||
nullptr, /* aligned_free_function */
|
||||
nullptr, /* next */
|
||||
};
|
@ -0,0 +1,77 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include <malloc.h>
|
||||
|
||||
#include "base/allocator/allocator_shim.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
// This translation unit defines a default dispatch for the allocator shim which
|
||||
// routes allocations to the original libc functions when using the link-time
|
||||
// -Wl,-wrap,malloc approach (see README.md).
|
||||
// The __real_X functions here are special symbols that the linker will relocate
|
||||
// against the real "X" undefined symbol, so that __real_malloc becomes the
|
||||
// equivalent of what an undefined malloc symbol reference would have been.
|
||||
// This is the counterpart of allocator_shim_override_linker_wrapped_symbols.h,
|
||||
// which routes the __wrap_X functions into the shim.
|
||||
|
||||
extern "C" {
|
||||
void* __real_malloc(size_t);
|
||||
void* __real_calloc(size_t, size_t);
|
||||
void* __real_realloc(void*, size_t);
|
||||
void* __real_memalign(size_t, size_t);
|
||||
void __real_free(void*);
|
||||
} // extern "C"
|
||||
|
||||
namespace {
|
||||
|
||||
using base::allocator::AllocatorDispatch;
|
||||
|
||||
void* RealMalloc(const AllocatorDispatch*, size_t size, void* context) {
|
||||
return __real_malloc(size);
|
||||
}
|
||||
|
||||
void* RealCalloc(const AllocatorDispatch*,
|
||||
size_t n,
|
||||
size_t size,
|
||||
void* context) {
|
||||
return __real_calloc(n, size);
|
||||
}
|
||||
|
||||
void* RealRealloc(const AllocatorDispatch*,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context) {
|
||||
return __real_realloc(address, size);
|
||||
}
|
||||
|
||||
void* RealMemalign(const AllocatorDispatch*,
|
||||
size_t alignment,
|
||||
size_t size,
|
||||
void* context) {
|
||||
return __real_memalign(alignment, size);
|
||||
}
|
||||
|
||||
void RealFree(const AllocatorDispatch*, void* address, void* context) {
|
||||
__real_free(address);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
const AllocatorDispatch AllocatorDispatch::default_dispatch = {
|
||||
&RealMalloc, /* alloc_function */
|
||||
&RealMalloc, /* alloc_unchecked_function */
|
||||
&RealCalloc, /* alloc_zero_initialized_function */
|
||||
&RealMemalign, /* alloc_aligned_function */
|
||||
&RealRealloc, /* realloc_function */
|
||||
&RealFree, /* free_function */
|
||||
nullptr, /* get_size_estimate_function */
|
||||
nullptr, /* batch_malloc_function */
|
||||
nullptr, /* batch_free_function */
|
||||
nullptr, /* free_definite_size_function */
|
||||
nullptr, /* aligned_malloc_function */
|
||||
nullptr, /* aligned_realloc_function */
|
||||
nullptr, /* aligned_free_function */
|
||||
nullptr, /* next */
|
||||
};
|
@ -0,0 +1,107 @@
|
||||
// Copyright 2017 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include <utility>
|
||||
|
||||
#include "base/allocator/allocator_interception_mac.h"
|
||||
#include "base/allocator/allocator_shim.h"
|
||||
#include "base/allocator/malloc_zone_functions_mac.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
namespace {
|
||||
|
||||
void* MallocImpl(const AllocatorDispatch*, size_t size, void* context) {
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(context);
|
||||
return functions.malloc(reinterpret_cast<struct _malloc_zone_t*>(context),
|
||||
size);
|
||||
}
|
||||
|
||||
void* CallocImpl(const AllocatorDispatch*,
|
||||
size_t n,
|
||||
size_t size,
|
||||
void* context) {
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(context);
|
||||
return functions.calloc(reinterpret_cast<struct _malloc_zone_t*>(context), n,
|
||||
size);
|
||||
}
|
||||
|
||||
void* MemalignImpl(const AllocatorDispatch*,
|
||||
size_t alignment,
|
||||
size_t size,
|
||||
void* context) {
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(context);
|
||||
return functions.memalign(reinterpret_cast<struct _malloc_zone_t*>(context),
|
||||
alignment, size);
|
||||
}
|
||||
|
||||
void* ReallocImpl(const AllocatorDispatch*,
|
||||
void* ptr,
|
||||
size_t size,
|
||||
void* context) {
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(context);
|
||||
return functions.realloc(reinterpret_cast<struct _malloc_zone_t*>(context),
|
||||
ptr, size);
|
||||
}
|
||||
|
||||
void FreeImpl(const AllocatorDispatch*, void* ptr, void* context) {
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(context);
|
||||
functions.free(reinterpret_cast<struct _malloc_zone_t*>(context), ptr);
|
||||
}
|
||||
|
||||
size_t GetSizeEstimateImpl(const AllocatorDispatch*, void* ptr, void* context) {
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(context);
|
||||
return functions.size(reinterpret_cast<struct _malloc_zone_t*>(context), ptr);
|
||||
}
|
||||
|
||||
unsigned BatchMallocImpl(const AllocatorDispatch* self,
|
||||
size_t size,
|
||||
void** results,
|
||||
unsigned num_requested,
|
||||
void* context) {
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(context);
|
||||
return functions.batch_malloc(
|
||||
reinterpret_cast<struct _malloc_zone_t*>(context), size, results,
|
||||
num_requested);
|
||||
}
|
||||
|
||||
void BatchFreeImpl(const AllocatorDispatch* self,
|
||||
void** to_be_freed,
|
||||
unsigned num_to_be_freed,
|
||||
void* context) {
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(context);
|
||||
functions.batch_free(reinterpret_cast<struct _malloc_zone_t*>(context),
|
||||
to_be_freed, num_to_be_freed);
|
||||
}
|
||||
|
||||
void FreeDefiniteSizeImpl(const AllocatorDispatch* self,
|
||||
void* ptr,
|
||||
size_t size,
|
||||
void* context) {
|
||||
MallocZoneFunctions& functions = GetFunctionsForZone(context);
|
||||
functions.free_definite_size(
|
||||
reinterpret_cast<struct _malloc_zone_t*>(context), ptr, size);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
const AllocatorDispatch AllocatorDispatch::default_dispatch = {
|
||||
&MallocImpl, /* alloc_function */
|
||||
&MallocImpl, /* alloc_unchecked_function */
|
||||
&CallocImpl, /* alloc_zero_initialized_function */
|
||||
&MemalignImpl, /* alloc_aligned_function */
|
||||
&ReallocImpl, /* realloc_function */
|
||||
&FreeImpl, /* free_function */
|
||||
&GetSizeEstimateImpl, /* get_size_estimate_function */
|
||||
&BatchMallocImpl, /* batch_malloc_function */
|
||||
&BatchFreeImpl, /* batch_free_function */
|
||||
&FreeDefiniteSizeImpl, /* free_definite_size_function */
|
||||
nullptr, /* aligned_malloc_function */
|
||||
nullptr, /* aligned_realloc_function */
|
||||
nullptr, /* aligned_free_function */
|
||||
nullptr, /* next */
|
||||
};
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
@ -0,0 +1,774 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/allocator_shim_default_dispatch_to_partition_alloc.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <cstddef>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
|
||||
#include "base/allocator/allocator_shim_internals.h"
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_alloc_features.h"
|
||||
#include "base/allocator/partition_allocator/allocation_guard.h"
|
||||
#include "base/allocator/partition_allocator/memory_reclaimer.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_root.h"
|
||||
#include "base/allocator/partition_allocator/partition_stats.h"
|
||||
#include "base/bits.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/feature_list.h"
|
||||
#include "base/memory/nonscannable_memory.h"
|
||||
#include "base/numerics/checked_math.h"
|
||||
#include "build/build_config.h"
|
||||
#include "build/chromecast_buildflags.h"
|
||||
|
||||
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_WIN) && defined(ARCH_CPU_X86)
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
using base::allocator::AllocatorDispatch;
|
||||
|
||||
namespace {
|
||||
|
||||
class SimpleScopedSpinLocker {
|
||||
public:
|
||||
explicit SimpleScopedSpinLocker(std::atomic<bool>& lock) : lock_(lock) {
|
||||
// Lock. Semantically equivalent to base::Lock::Acquire().
|
||||
bool expected = false;
|
||||
// Weak CAS since we are in a retry loop, relaxed ordering for failure since
|
||||
// in this case we don't imply any ordering.
|
||||
//
|
||||
// This matches partition_allocator/spinning_mutex.h fast path on Linux.
|
||||
while (!lock_.compare_exchange_weak(
|
||||
expected, true, std::memory_order_acquire, std::memory_order_relaxed)) {
|
||||
expected = false;
|
||||
}
|
||||
}
|
||||
|
||||
~SimpleScopedSpinLocker() { lock_.store(false, std::memory_order_release); }
|
||||
|
||||
private:
|
||||
std::atomic<bool>& lock_;
|
||||
};
|
||||
|
||||
// We can't use a "static local" or a base::LazyInstance, as:
|
||||
// - static local variables call into the runtime on Windows, which is not
|
||||
// prepared to handle it, as the first allocation happens during CRT init.
|
||||
// - We don't want to depend on base::LazyInstance, which may be converted to
|
||||
// static locals one day.
|
||||
//
|
||||
// Nevertheless, this provides essentially the same thing.
|
||||
template <typename T, typename Constructor>
|
||||
class LeakySingleton {
|
||||
public:
|
||||
constexpr LeakySingleton() = default;
|
||||
|
||||
ALWAYS_INLINE T* Get() {
|
||||
auto* instance = instance_.load(std::memory_order_acquire);
|
||||
if (LIKELY(instance))
|
||||
return instance;
|
||||
|
||||
return GetSlowPath();
|
||||
}
|
||||
|
||||
// Replaces the instance pointer with a new one.
|
||||
void Replace(T* new_instance) {
|
||||
SimpleScopedSpinLocker scoped_lock{initialization_lock_};
|
||||
|
||||
// Modify under the lock to avoid race between |if (instance)| and
|
||||
// |instance_.store()| in GetSlowPath().
|
||||
instance_.store(new_instance, std::memory_order_release);
|
||||
}
|
||||
|
||||
private:
|
||||
T* GetSlowPath();
|
||||
|
||||
std::atomic<T*> instance_;
|
||||
alignas(T) uint8_t instance_buffer_[sizeof(T)];
|
||||
std::atomic<bool> initialization_lock_;
|
||||
};
|
||||
|
||||
template <typename T, typename Constructor>
|
||||
T* LeakySingleton<T, Constructor>::GetSlowPath() {
|
||||
// The instance has not been set, the proper way to proceed (correct
|
||||
// double-checked locking) is:
|
||||
//
|
||||
// auto* instance = instance_.load(std::memory_order_acquire);
|
||||
// if (!instance) {
|
||||
// ScopedLock initialization_lock;
|
||||
// root = instance_.load(std::memory_order_relaxed);
|
||||
// if (root)
|
||||
// return root;
|
||||
// instance = Create new root;
|
||||
// instance_.store(instance, std::memory_order_release);
|
||||
// return instance;
|
||||
// }
|
||||
//
|
||||
// However, we don't want to use a base::Lock here, so instead we use
|
||||
// compare-and-exchange on a lock variable, which provides the same
|
||||
// guarantees.
|
||||
SimpleScopedSpinLocker scoped_lock{initialization_lock_};
|
||||
|
||||
T* instance = instance_.load(std::memory_order_relaxed);
|
||||
// Someone beat us.
|
||||
if (instance)
|
||||
return instance;
|
||||
|
||||
instance = Constructor::New(reinterpret_cast<void*>(instance_buffer_));
|
||||
instance_.store(instance, std::memory_order_release);
|
||||
|
||||
return instance;
|
||||
}
|
||||
|
||||
class MainPartitionConstructor {
|
||||
public:
|
||||
static base::ThreadSafePartitionRoot* New(void* buffer) {
|
||||
constexpr base::PartitionOptions::ThreadCache thread_cache =
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// Additional partitions may be created in ConfigurePartitions(). Since
|
||||
// only one partition can have thread cache enabled, postpone the
|
||||
// decision to turn the thread cache on until after that call.
|
||||
// TODO(bartekn): Enable it here by default, once the "split-only" mode
|
||||
// is no longer needed.
|
||||
base::PartitionOptions::ThreadCache::kDisabled;
|
||||
#else // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// Other tests, such as the ThreadCache tests create a thread cache,
|
||||
// and only one is supported at a time.
|
||||
base::PartitionOptions::ThreadCache::kDisabled;
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
auto* new_root = new (buffer) base::ThreadSafePartitionRoot({
|
||||
base::PartitionOptions::AlignedAlloc::kAllowed,
|
||||
thread_cache,
|
||||
base::PartitionOptions::Quarantine::kAllowed,
|
||||
base::PartitionOptions::Cookie::kAllowed,
|
||||
base::PartitionOptions::BackupRefPtr::kDisabled,
|
||||
base::PartitionOptions::UseConfigurablePool::kNo,
|
||||
});
|
||||
|
||||
return new_root;
|
||||
}
|
||||
};
|
||||
|
||||
LeakySingleton<base::ThreadSafePartitionRoot, MainPartitionConstructor> g_root
|
||||
CONSTINIT = {};
|
||||
base::ThreadSafePartitionRoot* Allocator() {
|
||||
return g_root.Get();
|
||||
}
|
||||
|
||||
// Original g_root_ if it was replaced by ConfigurePartitions().
|
||||
std::atomic<base::ThreadSafePartitionRoot*> g_original_root(nullptr);
|
||||
|
||||
class AlignedPartitionConstructor {
|
||||
public:
|
||||
static base::ThreadSafePartitionRoot* New(void* buffer) {
|
||||
return g_root.Get();
|
||||
}
|
||||
};
|
||||
|
||||
LeakySingleton<base::ThreadSafePartitionRoot, AlignedPartitionConstructor>
|
||||
g_aligned_root CONSTINIT = {};
|
||||
|
||||
base::ThreadSafePartitionRoot* OriginalAllocator() {
|
||||
return g_original_root.load(std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
base::ThreadSafePartitionRoot* AlignedAllocator() {
|
||||
return g_aligned_root.Get();
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_WIN) && defined(ARCH_CPU_X86)
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
bool IsRunning32bitEmulatedOnArm64() {
|
||||
using IsWow64Process2Function = decltype(&IsWow64Process2);
|
||||
|
||||
IsWow64Process2Function is_wow64_process2 =
|
||||
reinterpret_cast<IsWow64Process2Function>(::GetProcAddress(
|
||||
::GetModuleHandleA("kernel32.dll"), "IsWow64Process2"));
|
||||
if (!is_wow64_process2)
|
||||
return false;
|
||||
USHORT process_machine;
|
||||
USHORT native_machine;
|
||||
bool retval = is_wow64_process2(::GetCurrentProcess(), &process_machine,
|
||||
&native_machine);
|
||||
if (!retval)
|
||||
return false;
|
||||
if (native_machine == IMAGE_FILE_MACHINE_ARM64)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
// The number of bytes to add to every allocation. Ordinarily zero, but set to 8
|
||||
// when emulating an x86 on ARM64 to avoid a bug in the Windows x86 emulator.
|
||||
size_t g_extra_bytes;
|
||||
#endif // BUILDFLAG(IS_WIN) && defined(ARCH_CPU_X86)
|
||||
|
||||
// TODO(brucedawson): Remove this when https://crbug.com/1151455 is fixed.
|
||||
ALWAYS_INLINE size_t MaybeAdjustSize(size_t size) {
|
||||
#if BUILDFLAG(IS_WIN) && defined(ARCH_CPU_X86)
|
||||
return base::CheckAdd(size, g_extra_bytes).ValueOrDie();
|
||||
#else // BUILDFLAG(IS_WIN) && defined(ARCH_CPU_X86)
|
||||
return size;
|
||||
#endif // BUILDFLAG(IS_WIN) && defined(ARCH_CPU_X86)
|
||||
}
|
||||
|
||||
void* AllocateAlignedMemory(size_t alignment, size_t size) {
|
||||
// Memory returned by the regular allocator *always* respects |kAlignment|,
|
||||
// which is a power of two, and any valid alignment is also a power of two. So
|
||||
// we can directly fulfill these requests with the main allocator.
|
||||
//
|
||||
// This has several advantages:
|
||||
// - The thread cache is supported on the main partition
|
||||
// - Reduced fragmentation
|
||||
// - Better coverage for MiraclePtr variants requiring extras
|
||||
//
|
||||
// There are several call sites in Chromium where base::AlignedAlloc is called
|
||||
// with a small alignment. Some may be due to overly-careful code, some are
|
||||
// because the client code doesn't know the required alignment at compile
|
||||
// time.
|
||||
//
|
||||
// Note that all "AlignedFree()" variants (_aligned_free() on Windows for
|
||||
// instance) directly call PartitionFree(), so there is no risk of
|
||||
// mismatch. (see below the default_dispatch definition).
|
||||
if (alignment <= base::kAlignment) {
|
||||
// This is mandated by |posix_memalign()| and friends, so should never fire.
|
||||
PA_CHECK(base::bits::IsPowerOfTwo(alignment));
|
||||
// TODO(bartekn): See if the compiler optimizes branches down the stack on
|
||||
// Mac, where PartitionPageSize() isn't constexpr.
|
||||
return Allocator()->AllocWithFlagsNoHooks(0, size,
|
||||
base::PartitionPageSize());
|
||||
}
|
||||
|
||||
return AlignedAllocator()->AlignedAllocWithFlags(
|
||||
partition_alloc::AllocFlags::kNoHooks, alignment, size);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace base {
|
||||
namespace internal {
|
||||
|
||||
namespace {
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
int g_alloc_flags = 0;
|
||||
#else
|
||||
constexpr int g_alloc_flags = 0;
|
||||
#endif
|
||||
} // namespace
|
||||
|
||||
void PartitionAllocSetCallNewHandlerOnMallocFailure(bool value) {
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// We generally prefer to always crash rather than returning nullptr for
|
||||
// OOM. However, on some macOS releases, we have to locally allow it due to
|
||||
// weirdness in OS code. See https://crbug.com/654695 for details.
|
||||
//
|
||||
// Apple only since it's not needed elsewhere, and there is a performance
|
||||
// penalty.
|
||||
|
||||
if (value)
|
||||
g_alloc_flags = 0;
|
||||
else
|
||||
g_alloc_flags = partition_alloc::AllocFlags::kReturnNull;
|
||||
#endif
|
||||
}
|
||||
|
||||
void* PartitionMalloc(const AllocatorDispatch*, size_t size, void* context) {
|
||||
ScopedDisallowAllocations guard{};
|
||||
return Allocator()->AllocWithFlagsNoHooks(
|
||||
0 | g_alloc_flags, MaybeAdjustSize(size), PartitionPageSize());
|
||||
}
|
||||
|
||||
void* PartitionMallocUnchecked(const AllocatorDispatch*,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ScopedDisallowAllocations guard{};
|
||||
return Allocator()->AllocWithFlagsNoHooks(
|
||||
partition_alloc::AllocFlags::kReturnNull | g_alloc_flags,
|
||||
MaybeAdjustSize(size), PartitionPageSize());
|
||||
}
|
||||
|
||||
void* PartitionCalloc(const AllocatorDispatch*,
|
||||
size_t n,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ScopedDisallowAllocations guard{};
|
||||
const size_t total = base::CheckMul(n, MaybeAdjustSize(size)).ValueOrDie();
|
||||
return Allocator()->AllocWithFlagsNoHooks(
|
||||
partition_alloc::AllocFlags::kZeroFill | g_alloc_flags, total,
|
||||
PartitionPageSize());
|
||||
}
|
||||
|
||||
void* PartitionMemalign(const AllocatorDispatch*,
|
||||
size_t alignment,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ScopedDisallowAllocations guard{};
|
||||
return AllocateAlignedMemory(alignment, size);
|
||||
}
|
||||
|
||||
void* PartitionAlignedAlloc(const AllocatorDispatch* dispatch,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
ScopedDisallowAllocations guard{};
|
||||
return AllocateAlignedMemory(alignment, size);
|
||||
}
|
||||
|
||||
// aligned_realloc documentation is
|
||||
// https://docs.microsoft.com/ja-jp/cpp/c-runtime-library/reference/aligned-realloc
|
||||
// TODO(tasak): Expand the given memory block to the given size if possible.
|
||||
// This realloc always free the original memory block and allocates a new memory
|
||||
// block.
|
||||
// TODO(tasak): Implement PartitionRoot<thread_safe>::AlignedReallocWithFlags
|
||||
// and use it.
|
||||
void* PartitionAlignedRealloc(const AllocatorDispatch* dispatch,
|
||||
void* address,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
ScopedDisallowAllocations guard{};
|
||||
void* new_ptr = nullptr;
|
||||
if (size > 0) {
|
||||
size = MaybeAdjustSize(size);
|
||||
new_ptr = AllocateAlignedMemory(alignment, size);
|
||||
} else {
|
||||
// size == 0 and address != null means just "free(address)".
|
||||
if (address)
|
||||
base::ThreadSafePartitionRoot::FreeNoHooks(address);
|
||||
}
|
||||
// The original memory block (specified by address) is unchanged if ENOMEM.
|
||||
if (!new_ptr)
|
||||
return nullptr;
|
||||
// TODO(tasak): Need to compare the new alignment with the address' alignment.
|
||||
// If the two alignments are not the same, need to return nullptr with EINVAL.
|
||||
if (address) {
|
||||
size_t usage = base::ThreadSafePartitionRoot::GetUsableSize(address);
|
||||
size_t copy_size = usage > size ? size : usage;
|
||||
memcpy(new_ptr, address, copy_size);
|
||||
|
||||
base::ThreadSafePartitionRoot::FreeNoHooks(address);
|
||||
}
|
||||
return new_ptr;
|
||||
}
|
||||
|
||||
void* PartitionRealloc(const AllocatorDispatch*,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ScopedDisallowAllocations guard{};
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
if (UNLIKELY(!base::IsManagedByPartitionAlloc(
|
||||
reinterpret_cast<uintptr_t>(address)) &&
|
||||
address)) {
|
||||
// A memory region allocated by the system allocator is passed in this
|
||||
// function. Forward the request to `realloc` which supports zone-
|
||||
// dispatching so that it appropriately selects the right zone.
|
||||
return realloc(address, size);
|
||||
}
|
||||
#endif // BUILDFLAG(IS_APPLE)
|
||||
|
||||
return Allocator()->ReallocWithFlags(
|
||||
partition_alloc::AllocFlags::kNoHooks | g_alloc_flags, address,
|
||||
MaybeAdjustSize(size), "");
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID) && BUILDFLAG(IS_CHROMECAST)
|
||||
extern "C" {
|
||||
void __real_free(void*);
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
void PartitionFree(const AllocatorDispatch*, void* object, void* context) {
|
||||
ScopedDisallowAllocations guard{};
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// TODO(bartekn): Add MTE unmasking here (and below).
|
||||
if (UNLIKELY(!base::IsManagedByPartitionAlloc(
|
||||
reinterpret_cast<uintptr_t>(object)) &&
|
||||
object)) {
|
||||
// A memory region allocated by the system allocator is passed in this
|
||||
// function. Forward the request to `free` which supports zone-
|
||||
// dispatching so that it appropriately selects the right zone.
|
||||
return free(object);
|
||||
}
|
||||
#endif // BUILDFLAG(IS_APPLE)
|
||||
|
||||
// On Chromecast, there is at least one case where a system malloc() pointer
|
||||
// can be passed to PartitionAlloc's free(). If we don't own the pointer, pass
|
||||
// it along. This should not have a runtime cost vs regular Android, since on
|
||||
// Android we have a PA_CHECK() rather than the branch here.
|
||||
#if BUILDFLAG(IS_ANDROID) && BUILDFLAG(IS_CHROMECAST)
|
||||
if (UNLIKELY(!base::IsManagedByPartitionAlloc(
|
||||
reinterpret_cast<uintptr_t>(object)) &&
|
||||
object)) {
|
||||
// A memory region allocated by the system allocator is passed in this
|
||||
// function. Forward the request to `free()`, which is `__real_free()`
|
||||
// here.
|
||||
return __real_free(object);
|
||||
}
|
||||
#endif
|
||||
|
||||
base::ThreadSafePartitionRoot::FreeNoHooks(object);
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// Normal free() path on Apple OSes:
|
||||
// 1. size = GetSizeEstimate(ptr);
|
||||
// 2. if (size) FreeDefiniteSize(ptr, size)
|
||||
//
|
||||
// So we don't need to re-check that the pointer is owned in Free(), and we
|
||||
// can use the size.
|
||||
void PartitionFreeDefiniteSize(const AllocatorDispatch*,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context) {
|
||||
ScopedDisallowAllocations guard{};
|
||||
// TODO(lizeb): Optimize PartitionAlloc to use the size information. This is
|
||||
// still useful though, as we avoid double-checking that the address is owned.
|
||||
base::ThreadSafePartitionRoot::FreeNoHooks(address);
|
||||
}
|
||||
#endif // BUILDFLAG(IS_APPLE)
|
||||
|
||||
size_t PartitionGetSizeEstimate(const AllocatorDispatch*,
|
||||
void* address,
|
||||
void* context) {
|
||||
// This is used to implement malloc_usable_size(3). Per its man page, "if ptr
|
||||
// is NULL, 0 is returned".
|
||||
if (!address)
|
||||
return 0;
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
if (!base::IsManagedByPartitionAlloc(reinterpret_cast<uintptr_t>(address))) {
|
||||
// The object pointed to by `address` is not allocated by the
|
||||
// PartitionAlloc. The return value `0` means that the pointer does not
|
||||
// belong to this malloc zone.
|
||||
return 0;
|
||||
}
|
||||
#endif // BUILDFLAG(IS_APPLE)
|
||||
|
||||
// TODO(lizeb): Returns incorrect values for aligned allocations.
|
||||
const size_t size = base::ThreadSafePartitionRoot::GetUsableSize(address);
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// The object pointed to by `address` is allocated by the PartitionAlloc.
|
||||
// So, this function must not return zero so that the malloc zone dispatcher
|
||||
// finds the appropriate malloc zone.
|
||||
PA_DCHECK(size);
|
||||
#endif // BUILDFLAG(IS_APPLE)
|
||||
return size;
|
||||
}
|
||||
|
||||
unsigned PartitionBatchMalloc(const AllocatorDispatch*,
|
||||
size_t size,
|
||||
void** results,
|
||||
unsigned num_requested,
|
||||
void* context) {
|
||||
// No real batching: we could only acquire the lock once for instance, keep it
|
||||
// simple for now.
|
||||
for (unsigned i = 0; i < num_requested; i++) {
|
||||
// No need to check the results, we crash if it fails.
|
||||
results[i] = PartitionMalloc(nullptr, size, nullptr);
|
||||
}
|
||||
|
||||
// Either all succeeded, or we crashed.
|
||||
return num_requested;
|
||||
}
|
||||
|
||||
void PartitionBatchFree(const AllocatorDispatch*,
|
||||
void** to_be_freed,
|
||||
unsigned num_to_be_freed,
|
||||
void* context) {
|
||||
// No real batching: we could only acquire the lock once for instance, keep it
|
||||
// simple for now.
|
||||
for (unsigned i = 0; i < num_to_be_freed; i++) {
|
||||
PartitionFree(nullptr, to_be_freed[i], nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
// static
|
||||
ThreadSafePartitionRoot* PartitionAllocMalloc::Allocator() {
|
||||
return ::Allocator();
|
||||
}
|
||||
|
||||
// static
|
||||
ThreadSafePartitionRoot* PartitionAllocMalloc::OriginalAllocator() {
|
||||
return ::OriginalAllocator();
|
||||
}
|
||||
|
||||
// static
|
||||
ThreadSafePartitionRoot* PartitionAllocMalloc::AlignedAllocator() {
|
||||
return ::AlignedAllocator();
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
} // namespace base
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
void EnablePartitionAllocMemoryReclaimer() {
|
||||
// Unlike other partitions, Allocator() and AlignedAllocator() do not register
|
||||
// their PartitionRoots to the memory reclaimer, because doing so may allocate
|
||||
// memory. Thus, the registration to the memory reclaimer has to be done
|
||||
// some time later, when the main root is fully configured.
|
||||
// TODO(bartekn): Aligned allocator can use the regular initialization path.
|
||||
::partition_alloc::MemoryReclaimer::Instance()->RegisterPartition(
|
||||
Allocator());
|
||||
auto* original_root = OriginalAllocator();
|
||||
if (original_root)
|
||||
::partition_alloc::MemoryReclaimer::Instance()->RegisterPartition(
|
||||
original_root);
|
||||
if (AlignedAllocator() != Allocator()) {
|
||||
::partition_alloc::MemoryReclaimer::Instance()->RegisterPartition(
|
||||
AlignedAllocator());
|
||||
}
|
||||
}
|
||||
|
||||
alignas(base::ThreadSafePartitionRoot) uint8_t
|
||||
g_allocator_buffer_for_new_main_partition[sizeof(
|
||||
base::ThreadSafePartitionRoot)];
|
||||
|
||||
alignas(base::ThreadSafePartitionRoot) uint8_t
|
||||
g_allocator_buffer_for_aligned_alloc_partition[sizeof(
|
||||
base::ThreadSafePartitionRoot)];
|
||||
|
||||
void ConfigurePartitions(
|
||||
EnableBrp enable_brp,
|
||||
SplitMainPartition split_main_partition,
|
||||
UseDedicatedAlignedPartition use_dedicated_aligned_partition,
|
||||
AlternateBucketDistribution use_alternate_bucket_distribution) {
|
||||
// BRP cannot be enabled without splitting the main partition. Furthermore, in
|
||||
// the "before allocation" mode, it can't be enabled without further splitting
|
||||
// out the aligned partition.
|
||||
PA_CHECK(!enable_brp || split_main_partition);
|
||||
#if !BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)
|
||||
PA_CHECK(!enable_brp || use_dedicated_aligned_partition);
|
||||
#endif
|
||||
// Can't split out the aligned partition, without splitting the main one.
|
||||
PA_CHECK(!use_dedicated_aligned_partition || split_main_partition);
|
||||
|
||||
static bool configured = false;
|
||||
PA_CHECK(!configured);
|
||||
configured = true;
|
||||
|
||||
// Calling Get() is actually important, even if the return values weren't
|
||||
// used, because it has a side effect of initializing the variables, if they
|
||||
// weren't already.
|
||||
auto* current_root = g_root.Get();
|
||||
auto* current_aligned_root = g_aligned_root.Get();
|
||||
|
||||
if (!split_main_partition) {
|
||||
if (!use_alternate_bucket_distribution) {
|
||||
current_root->SwitchToDenserBucketDistribution();
|
||||
current_aligned_root->SwitchToDenserBucketDistribution();
|
||||
}
|
||||
PA_DCHECK(!enable_brp);
|
||||
PA_DCHECK(!use_dedicated_aligned_partition);
|
||||
PA_DCHECK(!current_root->with_thread_cache);
|
||||
return;
|
||||
}
|
||||
|
||||
auto* new_root =
|
||||
new (g_allocator_buffer_for_new_main_partition) ThreadSafePartitionRoot({
|
||||
!use_dedicated_aligned_partition
|
||||
? base::PartitionOptions::AlignedAlloc::kAllowed
|
||||
: base::PartitionOptions::AlignedAlloc::kDisallowed,
|
||||
base::PartitionOptions::ThreadCache::kDisabled,
|
||||
base::PartitionOptions::Quarantine::kAllowed,
|
||||
base::PartitionOptions::Cookie::kAllowed,
|
||||
enable_brp ? base::PartitionOptions::BackupRefPtr::kEnabled
|
||||
: base::PartitionOptions::BackupRefPtr::kDisabled,
|
||||
base::PartitionOptions::UseConfigurablePool::kNo,
|
||||
});
|
||||
|
||||
base::ThreadSafePartitionRoot* new_aligned_root;
|
||||
if (use_dedicated_aligned_partition) {
|
||||
// TODO(bartekn): Use the original root instead of creating a new one. It'd
|
||||
// result in one less partition, but come at a cost of commingling types.
|
||||
new_aligned_root = new (g_allocator_buffer_for_aligned_alloc_partition)
|
||||
ThreadSafePartitionRoot({
|
||||
base::PartitionOptions::AlignedAlloc::kAllowed,
|
||||
base::PartitionOptions::ThreadCache::kDisabled,
|
||||
base::PartitionOptions::Quarantine::kAllowed,
|
||||
base::PartitionOptions::Cookie::kAllowed,
|
||||
base::PartitionOptions::BackupRefPtr::kDisabled,
|
||||
base::PartitionOptions::UseConfigurablePool::kNo,
|
||||
});
|
||||
} else {
|
||||
// The new main root can also support AlignedAlloc.
|
||||
new_aligned_root = new_root;
|
||||
}
|
||||
|
||||
// Now switch traffic to the new partitions.
|
||||
g_aligned_root.Replace(new_aligned_root);
|
||||
g_root.Replace(new_root);
|
||||
|
||||
// g_original_root has to be set after g_root, because other code doesn't
|
||||
// handle well both pointing to the same root.
|
||||
// TODO(bartekn): Reorder, once handled well. It isn't ideal for one
|
||||
// partition to be invisible temporarily.
|
||||
g_original_root = current_root;
|
||||
|
||||
// No need for g_original_aligned_root, because in cases where g_aligned_root
|
||||
// is replaced, it must've been g_original_root.
|
||||
PA_CHECK(current_aligned_root == g_original_root);
|
||||
|
||||
// Purge memory, now that the traffic to the original partition is cut off.
|
||||
current_root->PurgeMemory(PurgeFlags::kDecommitEmptySlotSpans |
|
||||
PurgeFlags::kDiscardUnusedSystemPages);
|
||||
|
||||
if (!use_alternate_bucket_distribution) {
|
||||
g_root.Get()->SwitchToDenserBucketDistribution();
|
||||
g_aligned_root.Get()->SwitchToDenserBucketDistribution();
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
void EnablePCScan(base::internal::PCScan::InitConfig config) {
|
||||
internal::PCScan::Initialize(config);
|
||||
|
||||
internal::PCScan::RegisterScannableRoot(Allocator());
|
||||
if (OriginalAllocator() != nullptr)
|
||||
internal::PCScan::RegisterScannableRoot(OriginalAllocator());
|
||||
if (Allocator() != AlignedAllocator())
|
||||
internal::PCScan::RegisterScannableRoot(AlignedAllocator());
|
||||
|
||||
internal::NonScannableAllocator::Instance().NotifyPCScanEnabled();
|
||||
internal::NonQuarantinableAllocator::Instance().NotifyPCScanEnabled();
|
||||
}
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
// Call this as soon as possible during startup.
|
||||
void ConfigurePartitionAlloc() {
|
||||
#if defined(ARCH_CPU_X86)
|
||||
if (IsRunning32bitEmulatedOnArm64())
|
||||
g_extra_bytes = 8;
|
||||
#endif // defined(ARCH_CPU_X86)
|
||||
}
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
const AllocatorDispatch AllocatorDispatch::default_dispatch = {
|
||||
&base::internal::PartitionMalloc, // alloc_function
|
||||
&base::internal::PartitionMallocUnchecked, // alloc_unchecked_function
|
||||
&base::internal::PartitionCalloc, // alloc_zero_initialized_function
|
||||
&base::internal::PartitionMemalign, // alloc_aligned_function
|
||||
&base::internal::PartitionRealloc, // realloc_function
|
||||
&base::internal::PartitionFree, // free_function
|
||||
&base::internal::PartitionGetSizeEstimate, // get_size_estimate_function
|
||||
&base::internal::PartitionBatchMalloc, // batch_malloc_function
|
||||
&base::internal::PartitionBatchFree, // batch_free_function
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// On Apple OSes, free_definite_size() is always called from free(), since
|
||||
// get_size_estimate() is used to determine whether an allocation belongs to
|
||||
// the current zone. It makes sense to optimize for it.
|
||||
&base::internal::PartitionFreeDefiniteSize,
|
||||
#else
|
||||
nullptr, // free_definite_size_function
|
||||
#endif
|
||||
&base::internal::PartitionAlignedAlloc, // aligned_malloc_function
|
||||
&base::internal::PartitionAlignedRealloc, // aligned_realloc_function
|
||||
&base::internal::PartitionFree, // aligned_free_function
|
||||
nullptr, // next
|
||||
};
|
||||
|
||||
// Intercept diagnostics symbols as well, even though they are not part of the
|
||||
// unified shim layer.
|
||||
//
|
||||
// TODO(lizeb): Implement the ones that doable.
|
||||
|
||||
extern "C" {
|
||||
|
||||
#if !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID)
|
||||
|
||||
SHIM_ALWAYS_EXPORT void malloc_stats(void) __THROW {}
|
||||
|
||||
SHIM_ALWAYS_EXPORT int mallopt(int cmd, int value) __THROW {
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif // !BUILDFLAG(IS_APPLE) && !BUILDFLAG(IS_ANDROID)
|
||||
|
||||
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
||||
SHIM_ALWAYS_EXPORT struct mallinfo mallinfo(void) __THROW {
|
||||
base::SimplePartitionStatsDumper allocator_dumper;
|
||||
Allocator()->DumpStats("malloc", true, &allocator_dumper);
|
||||
// TODO(bartekn): Dump OriginalAllocator() into "malloc" as well.
|
||||
|
||||
base::SimplePartitionStatsDumper aligned_allocator_dumper;
|
||||
if (AlignedAllocator() != Allocator()) {
|
||||
AlignedAllocator()->DumpStats("posix_memalign", true,
|
||||
&aligned_allocator_dumper);
|
||||
}
|
||||
|
||||
// Dump stats for nonscannable and nonquarantinable allocators.
|
||||
auto& nonscannable_allocator =
|
||||
base::internal::NonScannableAllocator::Instance();
|
||||
base::SimplePartitionStatsDumper nonscannable_allocator_dumper;
|
||||
if (auto* nonscannable_root = nonscannable_allocator.root())
|
||||
nonscannable_root->DumpStats("malloc", true,
|
||||
&nonscannable_allocator_dumper);
|
||||
auto& nonquarantinable_allocator =
|
||||
base::internal::NonQuarantinableAllocator::Instance();
|
||||
base::SimplePartitionStatsDumper nonquarantinable_allocator_dumper;
|
||||
if (auto* nonquarantinable_root = nonquarantinable_allocator.root())
|
||||
nonquarantinable_root->DumpStats("malloc", true,
|
||||
&nonquarantinable_allocator_dumper);
|
||||
|
||||
struct mallinfo info = {0};
|
||||
info.arena = 0; // Memory *not* allocated with mmap().
|
||||
|
||||
// Memory allocated with mmap(), aka virtual size.
|
||||
info.hblks = allocator_dumper.stats().total_mmapped_bytes +
|
||||
aligned_allocator_dumper.stats().total_mmapped_bytes +
|
||||
nonscannable_allocator_dumper.stats().total_mmapped_bytes +
|
||||
nonquarantinable_allocator_dumper.stats().total_mmapped_bytes;
|
||||
// Resident bytes.
|
||||
info.hblkhd = allocator_dumper.stats().total_resident_bytes +
|
||||
aligned_allocator_dumper.stats().total_resident_bytes +
|
||||
nonscannable_allocator_dumper.stats().total_resident_bytes +
|
||||
nonquarantinable_allocator_dumper.stats().total_resident_bytes;
|
||||
// Allocated bytes.
|
||||
info.uordblks = allocator_dumper.stats().total_active_bytes +
|
||||
aligned_allocator_dumper.stats().total_active_bytes +
|
||||
nonscannable_allocator_dumper.stats().total_active_bytes +
|
||||
nonquarantinable_allocator_dumper.stats().total_active_bytes;
|
||||
|
||||
return info;
|
||||
}
|
||||
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
||||
|
||||
} // extern "C"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
void InitializeDefaultAllocatorPartitionRoot() {
|
||||
// On OS_APPLE, the initialization of PartitionRoot uses memory allocations
|
||||
// internally, e.g. __builtin_available, and it's not easy to avoid it.
|
||||
// Thus, we initialize the PartitionRoot with using the system default
|
||||
// allocator before we intercept the system default allocator.
|
||||
std::ignore = Allocator();
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BUILDFLAG(IS_APPLE)
|
||||
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
@ -0,0 +1,75 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_SHIM_DEFAULT_DISPATCH_TO_PARTITION_ALLOC_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_DEFAULT_DISPATCH_TO_PARTITION_ALLOC_H_
|
||||
|
||||
#include "base/allocator/allocator_shim.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc.h"
|
||||
#include "base/base_export.h"
|
||||
|
||||
namespace base {
|
||||
namespace internal {
|
||||
|
||||
void PartitionAllocSetCallNewHandlerOnMallocFailure(bool value);
|
||||
|
||||
class BASE_EXPORT PartitionAllocMalloc {
|
||||
public:
|
||||
static ThreadSafePartitionRoot* Allocator();
|
||||
// May return |nullptr|, will never return the same pointer as |Allocator()|.
|
||||
static ThreadSafePartitionRoot* OriginalAllocator();
|
||||
// May return the same pointer as |Allocator()|.
|
||||
static ThreadSafePartitionRoot* AlignedAllocator();
|
||||
};
|
||||
|
||||
BASE_EXPORT void* PartitionMalloc(const base::allocator::AllocatorDispatch*,
|
||||
size_t size,
|
||||
void* context);
|
||||
|
||||
BASE_EXPORT void* PartitionMallocUnchecked(
|
||||
const base::allocator::AllocatorDispatch*,
|
||||
size_t size,
|
||||
void* context);
|
||||
|
||||
BASE_EXPORT void* PartitionCalloc(const base::allocator::AllocatorDispatch*,
|
||||
size_t n,
|
||||
size_t size,
|
||||
void* context);
|
||||
|
||||
BASE_EXPORT void* PartitionMemalign(const base::allocator::AllocatorDispatch*,
|
||||
size_t alignment,
|
||||
size_t size,
|
||||
void* context);
|
||||
|
||||
BASE_EXPORT void* PartitionAlignedAlloc(
|
||||
const base::allocator::AllocatorDispatch* dispatch,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context);
|
||||
|
||||
BASE_EXPORT void* PartitionAlignedRealloc(
|
||||
const base::allocator::AllocatorDispatch* dispatch,
|
||||
void* address,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context);
|
||||
|
||||
BASE_EXPORT void* PartitionRealloc(const base::allocator::AllocatorDispatch*,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context);
|
||||
|
||||
BASE_EXPORT void PartitionFree(const base::allocator::AllocatorDispatch*,
|
||||
void* object,
|
||||
void* context);
|
||||
|
||||
BASE_EXPORT size_t
|
||||
PartitionGetSizeEstimate(const base::allocator::AllocatorDispatch*,
|
||||
void* address,
|
||||
void* context);
|
||||
|
||||
} // namespace internal
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_SHIM_DEFAULT_DISPATCH_TO_PARTITION_ALLOC_H_
|
106
src/base/allocator/allocator_shim_default_dispatch_to_winheap.cc
Normal file
106
src/base/allocator/allocator_shim_default_dispatch_to_winheap.cc
Normal file
@ -0,0 +1,106 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/allocator_shim.h"
|
||||
|
||||
#include <ostream>
|
||||
|
||||
#include "base/allocator/winheap_stubs_win.h"
|
||||
#include "base/check.h"
|
||||
|
||||
namespace {
|
||||
|
||||
using base::allocator::AllocatorDispatch;
|
||||
|
||||
void* DefaultWinHeapMallocImpl(const AllocatorDispatch*,
|
||||
size_t size,
|
||||
void* context) {
|
||||
return base::allocator::WinHeapMalloc(size);
|
||||
}
|
||||
|
||||
void* DefaultWinHeapCallocImpl(const AllocatorDispatch* self,
|
||||
size_t n,
|
||||
size_t elem_size,
|
||||
void* context) {
|
||||
// Overflow check.
|
||||
const size_t size = n * elem_size;
|
||||
if (elem_size != 0 && size / elem_size != n)
|
||||
return nullptr;
|
||||
|
||||
void* result = DefaultWinHeapMallocImpl(self, size, context);
|
||||
if (result) {
|
||||
memset(result, 0, size);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void* DefaultWinHeapMemalignImpl(const AllocatorDispatch* self,
|
||||
size_t alignment,
|
||||
size_t size,
|
||||
void* context) {
|
||||
CHECK(false) << "The windows heap does not support memalign.";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void* DefaultWinHeapReallocImpl(const AllocatorDispatch* self,
|
||||
void* address,
|
||||
size_t size,
|
||||
void* context) {
|
||||
return base::allocator::WinHeapRealloc(address, size);
|
||||
}
|
||||
|
||||
void DefaultWinHeapFreeImpl(const AllocatorDispatch*,
|
||||
void* address,
|
||||
void* context) {
|
||||
base::allocator::WinHeapFree(address);
|
||||
}
|
||||
|
||||
size_t DefaultWinHeapGetSizeEstimateImpl(const AllocatorDispatch*,
|
||||
void* address,
|
||||
void* context) {
|
||||
return base::allocator::WinHeapGetSizeEstimate(address);
|
||||
}
|
||||
|
||||
void* DefaultWinHeapAlignedMallocImpl(const AllocatorDispatch*,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
return base::allocator::WinHeapAlignedMalloc(size, alignment);
|
||||
}
|
||||
|
||||
void* DefaultWinHeapAlignedReallocImpl(const AllocatorDispatch*,
|
||||
void* ptr,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
void* context) {
|
||||
return base::allocator::WinHeapAlignedRealloc(ptr, size, alignment);
|
||||
}
|
||||
|
||||
void DefaultWinHeapAlignedFreeImpl(const AllocatorDispatch*,
|
||||
void* ptr,
|
||||
void* context) {
|
||||
base::allocator::WinHeapAlignedFree(ptr);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// Guarantee that default_dispatch is compile-time initialized to avoid using
|
||||
// it before initialization (allocations before main in release builds with
|
||||
// optimizations disabled).
|
||||
constexpr AllocatorDispatch AllocatorDispatch::default_dispatch = {
|
||||
&DefaultWinHeapMallocImpl,
|
||||
&DefaultWinHeapMallocImpl, /* alloc_unchecked_function */
|
||||
&DefaultWinHeapCallocImpl,
|
||||
&DefaultWinHeapMemalignImpl,
|
||||
&DefaultWinHeapReallocImpl,
|
||||
&DefaultWinHeapFreeImpl,
|
||||
&DefaultWinHeapGetSizeEstimateImpl,
|
||||
nullptr, /* batch_malloc_function */
|
||||
nullptr, /* batch_free_function */
|
||||
nullptr, /* free_definite_size_function */
|
||||
&DefaultWinHeapAlignedMallocImpl,
|
||||
&DefaultWinHeapAlignedReallocImpl,
|
||||
&DefaultWinHeapAlignedFreeImpl,
|
||||
nullptr, /* next */
|
||||
};
|
53
src/base/allocator/allocator_shim_internals.h
Normal file
53
src/base/allocator/allocator_shim_internals.h
Normal file
@ -0,0 +1,53 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_SHIM_INTERNALS_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_INTERNALS_H_
|
||||
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
|
||||
#if BUILDFLAG(IS_POSIX)
|
||||
#include <sys/cdefs.h> // for __THROW
|
||||
#endif
|
||||
|
||||
#ifndef __THROW // Not a glibc system
|
||||
#ifdef _NOEXCEPT // LLVM libc++ uses noexcept instead
|
||||
#define __THROW _NOEXCEPT
|
||||
#else
|
||||
#define __THROW
|
||||
#endif // !_NOEXCEPT
|
||||
#endif
|
||||
|
||||
// Shim layer symbols need to be ALWAYS exported, regardless of component build.
|
||||
//
|
||||
// If an exported symbol is linked into a DSO, it may be preempted by a
|
||||
// definition in the main executable. If this happens to an allocator symbol, it
|
||||
// will mean that the DSO will use the main executable's allocator. This is
|
||||
// normally relatively harmless -- regular allocations should all use the same
|
||||
// allocator, but if the DSO tries to hook the allocator it will not see any
|
||||
// allocations.
|
||||
//
|
||||
// However, if LLVM LTO is enabled, the compiler may inline the shim layer
|
||||
// symbols into callers. The end result is that allocator calls in DSOs may use
|
||||
// either the main executable's allocator or the DSO's allocator, depending on
|
||||
// whether the call was inlined. This is arguably a bug in LLVM caused by its
|
||||
// somewhat irregular handling of symbol interposition (see llvm.org/PR23501).
|
||||
// To work around the bug we use noinline to prevent the symbols from being
|
||||
// inlined.
|
||||
//
|
||||
// In the long run we probably want to avoid linking the allocator bits into
|
||||
// DSOs altogether. This will save a little space and stop giving DSOs the false
|
||||
// impression that they can hook the allocator.
|
||||
#define SHIM_ALWAYS_EXPORT __attribute__((visibility("default"), noinline))
|
||||
|
||||
#elif BUILDFLAG(IS_WIN) // __GNUC__
|
||||
|
||||
#define __THROW
|
||||
#define SHIM_ALWAYS_EXPORT __declspec(noinline)
|
||||
|
||||
#endif // __GNUC__
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_SHIM_INTERNALS_H_
|
166
src/base/allocator/allocator_shim_override_cpp_symbols.h
Normal file
166
src/base/allocator/allocator_shim_override_cpp_symbols.h
Normal file
@ -0,0 +1,166 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifdef BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_CPP_SYMBOLS_H_
|
||||
#error This header is meant to be included only once by allocator_shim.cc
|
||||
#endif
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_CPP_SYMBOLS_H_
|
||||
|
||||
// Preempt the default new/delete C++ symbols so they call the shim entry
|
||||
// points. This file is strongly inspired by tcmalloc's
|
||||
// libc_override_redefine.h.
|
||||
|
||||
#include <new>
|
||||
|
||||
#include "base/allocator/allocator_shim_internals.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
// std::align_val_t isn't available until C++17, but we want to override aligned
|
||||
// new/delete anyway to prevent a possible situation where a library gets loaded
|
||||
// in that uses the aligned operators. We want to avoid a situation where
|
||||
// separate heaps are used.
|
||||
// TODO(thomasanderson): Remove this once building with C++17 or later.
|
||||
#if defined(__cpp_aligned_new) && __cpp_aligned_new >= 201606
|
||||
#define ALIGN_VAL_T std::align_val_t
|
||||
#define ALIGN_LINKAGE
|
||||
#define ALIGN_NEW operator new
|
||||
#define ALIGN_NEW_NOTHROW operator new
|
||||
#define ALIGN_DEL operator delete
|
||||
#define ALIGN_DEL_SIZED operator delete
|
||||
#define ALIGN_DEL_NOTHROW operator delete
|
||||
#define ALIGN_NEW_ARR operator new[]
|
||||
#define ALIGN_NEW_ARR_NOTHROW operator new[]
|
||||
#define ALIGN_DEL_ARR operator delete[]
|
||||
#define ALIGN_DEL_ARR_SIZED operator delete[]
|
||||
#define ALIGN_DEL_ARR_NOTHROW operator delete[]
|
||||
#else
|
||||
#define ALIGN_VAL_T size_t
|
||||
#define ALIGN_LINKAGE extern "C"
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#error "Mangling is different on these platforms."
|
||||
#else
|
||||
#define ALIGN_NEW _ZnwmSt11align_val_t
|
||||
#define ALIGN_NEW_NOTHROW _ZnwmSt11align_val_tRKSt9nothrow_t
|
||||
#define ALIGN_DEL _ZdlPvSt11align_val_t
|
||||
#define ALIGN_DEL_SIZED _ZdlPvmSt11align_val_t
|
||||
#define ALIGN_DEL_NOTHROW _ZdlPvSt11align_val_tRKSt9nothrow_t
|
||||
#define ALIGN_NEW_ARR _ZnamSt11align_val_t
|
||||
#define ALIGN_NEW_ARR_NOTHROW _ZnamSt11align_val_tRKSt9nothrow_t
|
||||
#define ALIGN_DEL_ARR _ZdaPvSt11align_val_t
|
||||
#define ALIGN_DEL_ARR_SIZED _ZdaPvmSt11align_val_t
|
||||
#define ALIGN_DEL_ARR_NOTHROW _ZdaPvSt11align_val_tRKSt9nothrow_t
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if !BUILDFLAG(IS_APPLE)
|
||||
#define SHIM_CPP_SYMBOLS_EXPORT SHIM_ALWAYS_EXPORT
|
||||
#else
|
||||
// On Apple OSes, prefer not exporting these symbols (as this reverts to the
|
||||
// default behavior, they are still exported in e.g. component builds). This is
|
||||
// partly due to intentional limits on exported symbols in the main library, but
|
||||
// it is also needless, since no library used on macOS imports these.
|
||||
//
|
||||
// TODO(lizeb): It may not be necessary anywhere to export these.
|
||||
#define SHIM_CPP_SYMBOLS_EXPORT NOINLINE
|
||||
#endif
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void* operator new(size_t size) {
|
||||
return ShimCppNew(size);
|
||||
}
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void operator delete(void* p) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void* operator new[](size_t size) {
|
||||
return ShimCppNew(size);
|
||||
}
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void operator delete[](void* p) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void* operator new(size_t size,
|
||||
const std::nothrow_t&) __THROW {
|
||||
return ShimCppNewNoThrow(size);
|
||||
}
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void* operator new[](size_t size,
|
||||
const std::nothrow_t&) __THROW {
|
||||
return ShimCppNewNoThrow(size);
|
||||
}
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void operator delete(void* p,
|
||||
const std::nothrow_t&) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void operator delete[](void* p,
|
||||
const std::nothrow_t&) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void operator delete(void* p, size_t) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
SHIM_CPP_SYMBOLS_EXPORT void operator delete[](void* p, size_t) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void* ALIGN_NEW(std::size_t size,
|
||||
ALIGN_VAL_T alignment) {
|
||||
return ShimCppAlignedNew(size, static_cast<size_t>(alignment));
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void* ALIGN_NEW_NOTHROW(
|
||||
std::size_t size,
|
||||
ALIGN_VAL_T alignment,
|
||||
const std::nothrow_t&) __THROW {
|
||||
return ShimCppAlignedNew(size, static_cast<size_t>(alignment));
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void ALIGN_DEL(void* p,
|
||||
ALIGN_VAL_T) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void
|
||||
ALIGN_DEL_SIZED(void* p, std::size_t size, ALIGN_VAL_T) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void
|
||||
ALIGN_DEL_NOTHROW(void* p, ALIGN_VAL_T, const std::nothrow_t&) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void* ALIGN_NEW_ARR(
|
||||
std::size_t size,
|
||||
ALIGN_VAL_T alignment) {
|
||||
return ShimCppAlignedNew(size, static_cast<size_t>(alignment));
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void* ALIGN_NEW_ARR_NOTHROW(
|
||||
std::size_t size,
|
||||
ALIGN_VAL_T alignment,
|
||||
const std::nothrow_t&) __THROW {
|
||||
return ShimCppAlignedNew(size, static_cast<size_t>(alignment));
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void ALIGN_DEL_ARR(void* p,
|
||||
ALIGN_VAL_T) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void
|
||||
ALIGN_DEL_ARR_SIZED(void* p, std::size_t size, ALIGN_VAL_T) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
||||
|
||||
ALIGN_LINKAGE SHIM_CPP_SYMBOLS_EXPORT void
|
||||
ALIGN_DEL_ARR_NOTHROW(void* p, ALIGN_VAL_T, const std::nothrow_t&) __THROW {
|
||||
ShimCppDelete(p);
|
||||
}
|
119
src/base/allocator/allocator_shim_override_glibc_weak_symbols.h
Normal file
119
src/base/allocator/allocator_shim_override_glibc_weak_symbols.h
Normal file
@ -0,0 +1,119 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifdef BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_GLIBC_WEAK_SYMBOLS_H_
|
||||
#error This header is meant to be included only once by allocator_shim.cc
|
||||
#endif
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_GLIBC_WEAK_SYMBOLS_H_
|
||||
|
||||
// Alias the internal Glibc symbols to the shim entry points.
|
||||
// This file is strongly inspired by tcmalloc's libc_override_glibc.h.
|
||||
// Effectively this file does two things:
|
||||
// 1) Re-define the __malloc_hook & co symbols. Those symbols are defined as
|
||||
// weak in glibc and are meant to be defined strongly by client processes
|
||||
// to hook calls initiated from within glibc.
|
||||
// 2) Re-define Glibc-specific symbols (__libc_malloc). The historical reason
|
||||
// is that in the past (in RedHat 9) we had instances of libraries that were
|
||||
// allocating via malloc() and freeing using __libc_free().
|
||||
// See tcmalloc's libc_override_glibc.h for more context.
|
||||
|
||||
#include <features.h> // for __GLIBC__
|
||||
#include <malloc.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include <new>
|
||||
|
||||
#include "base/allocator/allocator_shim_internals.h"
|
||||
|
||||
// __MALLOC_HOOK_VOLATILE not defined in all Glibc headers.
|
||||
#if !defined(__MALLOC_HOOK_VOLATILE)
|
||||
#define MALLOC_HOOK_MAYBE_VOLATILE /**/
|
||||
#else
|
||||
#define MALLOC_HOOK_MAYBE_VOLATILE __MALLOC_HOOK_VOLATILE
|
||||
#endif
|
||||
|
||||
extern "C" {
|
||||
|
||||
// 1) Re-define malloc_hook weak symbols.
|
||||
namespace {
|
||||
|
||||
void* GlibcMallocHook(size_t size, const void* caller) {
|
||||
return ShimMalloc(size, nullptr);
|
||||
}
|
||||
|
||||
void* GlibcReallocHook(void* ptr, size_t size, const void* caller) {
|
||||
return ShimRealloc(ptr, size, nullptr);
|
||||
}
|
||||
|
||||
void GlibcFreeHook(void* ptr, const void* caller) {
|
||||
return ShimFree(ptr, nullptr);
|
||||
}
|
||||
|
||||
void* GlibcMemalignHook(size_t align, size_t size, const void* caller) {
|
||||
return ShimMemalign(align, size, nullptr);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
__attribute__((visibility("default"))) void* (
|
||||
*MALLOC_HOOK_MAYBE_VOLATILE __malloc_hook)(size_t,
|
||||
const void*) = &GlibcMallocHook;
|
||||
|
||||
__attribute__((visibility("default"))) void* (
|
||||
*MALLOC_HOOK_MAYBE_VOLATILE __realloc_hook)(void*, size_t, const void*) =
|
||||
&GlibcReallocHook;
|
||||
|
||||
__attribute__((visibility("default"))) void (
|
||||
*MALLOC_HOOK_MAYBE_VOLATILE __free_hook)(void*,
|
||||
const void*) = &GlibcFreeHook;
|
||||
|
||||
__attribute__((visibility("default"))) void* (
|
||||
*MALLOC_HOOK_MAYBE_VOLATILE __memalign_hook)(size_t, size_t, const void*) =
|
||||
&GlibcMemalignHook;
|
||||
|
||||
// 2) Redefine libc symbols themselves.
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __libc_malloc(size_t size) {
|
||||
return ShimMalloc(size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void __libc_free(void* ptr) {
|
||||
ShimFree(ptr, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __libc_realloc(void* ptr, size_t size) {
|
||||
return ShimRealloc(ptr, size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __libc_calloc(size_t n, size_t size) {
|
||||
return ShimCalloc(n, size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void __libc_cfree(void* ptr) {
|
||||
return ShimFree(ptr, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __libc_memalign(size_t align, size_t s) {
|
||||
return ShimMemalign(align, s, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __libc_valloc(size_t size) {
|
||||
return ShimValloc(size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __libc_pvalloc(size_t size) {
|
||||
return ShimPvalloc(size);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT int __posix_memalign(void** r, size_t a, size_t s) {
|
||||
return ShimPosixMemalign(r, a, s);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
|
||||
// Safety check.
|
||||
#if !defined(__GLIBC__)
|
||||
#error The target platform does not seem to use Glibc. Disable the allocator \
|
||||
shim by setting use_allocator_shim=false in GN args.
|
||||
#endif
|
88
src/base/allocator/allocator_shim_override_libc_symbols.h
Normal file
88
src/base/allocator/allocator_shim_override_libc_symbols.h
Normal file
@ -0,0 +1,88 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
// Its purpose is to preempt the Libc symbols for malloc/new so they call the
|
||||
// shim layer entry points.
|
||||
|
||||
#ifdef BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_LIBC_SYMBOLS_H_
|
||||
#error This header is meant to be included only once by allocator_shim.cc
|
||||
#endif
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_LIBC_SYMBOLS_H_
|
||||
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#include <malloc/malloc.h>
|
||||
#else
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
|
||||
#include "base/allocator/allocator_shim_internals.h"
|
||||
|
||||
extern "C" {
|
||||
|
||||
// WARNING: Whenever a new function is added there (which, surprisingly enough,
|
||||
// happens. For instance glibc 2.33 introduced mallinfo2(), which we don't
|
||||
// support... yet?), it MUST be added to build/linux/chrome.map.
|
||||
//
|
||||
// Otherwise the new symbol is not exported from Chromium's main binary, which
|
||||
// is necessary to override libc's weak symbol, which in turn is necessary to
|
||||
// intercept calls made by dynamic libraries. See crbug.com/1292206 for such
|
||||
// an example.
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* malloc(size_t size) __THROW {
|
||||
return ShimMalloc(size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void free(void* ptr) __THROW {
|
||||
ShimFree(ptr, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* realloc(void* ptr, size_t size) __THROW {
|
||||
return ShimRealloc(ptr, size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* calloc(size_t n, size_t size) __THROW {
|
||||
return ShimCalloc(n, size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void cfree(void* ptr) __THROW {
|
||||
ShimFree(ptr, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* memalign(size_t align, size_t s) __THROW {
|
||||
return ShimMemalign(align, s, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* aligned_alloc(size_t align, size_t s) __THROW {
|
||||
return ShimMemalign(align, s, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* valloc(size_t size) __THROW {
|
||||
return ShimValloc(size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* pvalloc(size_t size) __THROW {
|
||||
return ShimPvalloc(size);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT int posix_memalign(void** r, size_t a, size_t s) __THROW {
|
||||
return ShimPosixMemalign(r, a, s);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT size_t malloc_size(const void* address) __THROW {
|
||||
return ShimGetSizeEstimate(address, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT size_t malloc_usable_size(void* address) __THROW {
|
||||
return ShimGetSizeEstimate(address, nullptr);
|
||||
}
|
||||
|
||||
// The default dispatch translation unit has to define also the following
|
||||
// symbols (unless they are ultimately routed to the system symbols):
|
||||
// void malloc_stats(void);
|
||||
// int mallopt(int, int);
|
||||
// struct mallinfo mallinfo(void);
|
||||
|
||||
} // extern "C"
|
@ -0,0 +1,147 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifdef BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_LINKER_WRAPPED_SYMBOLS_H_
|
||||
#error This header is meant to be included only once by allocator_shim.cc
|
||||
#endif
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_LINKER_WRAPPED_SYMBOLS_H_
|
||||
|
||||
// This header overrides the __wrap_X symbols when using the link-time
|
||||
// -Wl,-wrap,malloc shim-layer approach (see README.md).
|
||||
// All references to malloc, free, etc. within the linker unit that gets the
|
||||
// -wrap linker flags (e.g., libchrome.so) will be rewritten to the
|
||||
// linker as references to __wrap_malloc, __wrap_free, which are defined here.
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
|
||||
#include "base/allocator/allocator_shim_internals.h"
|
||||
|
||||
extern "C" {
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __wrap_calloc(size_t n, size_t size) {
|
||||
return ShimCalloc(n, size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void __wrap_free(void* ptr) {
|
||||
ShimFree(ptr, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __wrap_malloc(size_t size) {
|
||||
return ShimMalloc(size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __wrap_memalign(size_t align, size_t size) {
|
||||
return ShimMemalign(align, size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT int __wrap_posix_memalign(void** res,
|
||||
size_t align,
|
||||
size_t size) {
|
||||
return ShimPosixMemalign(res, align, size);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __wrap_pvalloc(size_t size) {
|
||||
return ShimPvalloc(size);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __wrap_realloc(void* address, size_t size) {
|
||||
return ShimRealloc(address, size, nullptr);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* __wrap_valloc(size_t size) {
|
||||
return ShimValloc(size, nullptr);
|
||||
}
|
||||
|
||||
const size_t kPathMaxSize = 8192;
|
||||
static_assert(kPathMaxSize >= PATH_MAX, "");
|
||||
|
||||
extern char* __wrap_strdup(const char* str);
|
||||
|
||||
// Override <stdlib.h>
|
||||
|
||||
extern char* __real_realpath(const char* path, char* resolved_path);
|
||||
|
||||
SHIM_ALWAYS_EXPORT char* __wrap_realpath(const char* path,
|
||||
char* resolved_path) {
|
||||
if (resolved_path)
|
||||
return __real_realpath(path, resolved_path);
|
||||
|
||||
char buffer[kPathMaxSize];
|
||||
if (!__real_realpath(path, buffer))
|
||||
return nullptr;
|
||||
return __wrap_strdup(buffer);
|
||||
}
|
||||
|
||||
// Override <string.h> functions
|
||||
|
||||
SHIM_ALWAYS_EXPORT char* __wrap_strdup(const char* str) {
|
||||
std::size_t length = std::strlen(str) + 1;
|
||||
void* buffer = ShimMalloc(length, nullptr);
|
||||
if (!buffer)
|
||||
return nullptr;
|
||||
return reinterpret_cast<char*>(std::memcpy(buffer, str, length));
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT char* __wrap_strndup(const char* str, size_t n) {
|
||||
std::size_t length = std::min(std::strlen(str), n);
|
||||
char* buffer = reinterpret_cast<char*>(ShimMalloc(length + 1, nullptr));
|
||||
if (!buffer)
|
||||
return nullptr;
|
||||
std::memcpy(buffer, str, length);
|
||||
buffer[length] = '\0';
|
||||
return buffer;
|
||||
}
|
||||
|
||||
// Override <unistd.h>
|
||||
|
||||
extern char* __real_getcwd(char* buffer, size_t size);
|
||||
|
||||
SHIM_ALWAYS_EXPORT char* __wrap_getcwd(char* buffer, size_t size) {
|
||||
if (buffer)
|
||||
return __real_getcwd(buffer, size);
|
||||
|
||||
if (!size)
|
||||
size = kPathMaxSize;
|
||||
char local_buffer[size];
|
||||
if (!__real_getcwd(local_buffer, size))
|
||||
return nullptr;
|
||||
return __wrap_strdup(local_buffer);
|
||||
}
|
||||
|
||||
// Override stdio.h
|
||||
|
||||
// This is non-standard (_GNU_SOURCE only), but implemented by Bionic on
|
||||
// Android, and used by libc++.
|
||||
SHIM_ALWAYS_EXPORT int __wrap_vasprintf(char** strp,
|
||||
const char* fmt,
|
||||
va_list va_args) {
|
||||
constexpr int kInitialSize = 128;
|
||||
*strp = static_cast<char*>(
|
||||
malloc(kInitialSize)); // Our malloc() doesn't return nullptr.
|
||||
|
||||
int actual_size = vsnprintf(*strp, kInitialSize, fmt, va_args);
|
||||
*strp = static_cast<char*>(realloc(*strp, actual_size + 1));
|
||||
|
||||
// Now we know the size. This is not very efficient, but we cannot really do
|
||||
// better without accessing internal libc functions, or reimplementing
|
||||
// *printf().
|
||||
//
|
||||
// This is very lightly used in Chromium in practice, see crbug.com/116558 for
|
||||
// details.
|
||||
if (actual_size >= kInitialSize)
|
||||
return vsnprintf(*strp, actual_size + 1, fmt, va_args);
|
||||
|
||||
return actual_size;
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT int __wrap_asprintf(char** strp, const char* fmt, ...) {
|
||||
va_list va_args;
|
||||
va_start(va_args, fmt);
|
||||
int retval = vasprintf(strp, fmt, va_args);
|
||||
va_end(va_args);
|
||||
return retval;
|
||||
}
|
||||
|
||||
} // extern "C"
|
376
src/base/allocator/allocator_shim_override_mac_default_zone.h
Normal file
376
src/base/allocator/allocator_shim_override_mac_default_zone.h
Normal file
@ -0,0 +1,376 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifdef BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_MAC_DEFAULT_ZONE_H_
|
||||
#error This header is meant to be included only once by allocator_shim.cc
|
||||
#endif
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_MAC_DEFAULT_ZONE_H_
|
||||
|
||||
#if !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
#error This header must be included iff PartitionAlloc-Everywhere is enabled.
|
||||
#endif
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include <tuple>
|
||||
|
||||
#include "base/allocator/early_zone_registration_mac.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/bits.h"
|
||||
#include "base/logging.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
// Defined in base/allocator/partition_allocator/partition_root.cc
|
||||
void PartitionAllocMallocHookOnBeforeForkInParent();
|
||||
void PartitionAllocMallocHookOnAfterForkInParent();
|
||||
void PartitionAllocMallocHookOnAfterForkInChild();
|
||||
|
||||
namespace allocator {
|
||||
|
||||
namespace {
|
||||
|
||||
// malloc_introspection_t's callback functions for our own zone
|
||||
|
||||
kern_return_t MallocIntrospectionEnumerator(task_t task,
|
||||
void*,
|
||||
unsigned type_mask,
|
||||
vm_address_t zone_address,
|
||||
memory_reader_t reader,
|
||||
vm_range_recorder_t recorder) {
|
||||
// Should enumerate all memory regions allocated by this allocator, but not
|
||||
// implemented just because of no use case for now.
|
||||
return KERN_FAILURE;
|
||||
}
|
||||
|
||||
size_t MallocIntrospectionGoodSize(malloc_zone_t* zone, size_t size) {
|
||||
return base::bits::AlignUp(size, base::kAlignment);
|
||||
}
|
||||
|
||||
boolean_t MallocIntrospectionCheck(malloc_zone_t* zone) {
|
||||
// Should check the consistency of the allocator implementing this malloc
|
||||
// zone, but not implemented just because of no use case for now.
|
||||
return true;
|
||||
}
|
||||
|
||||
void MallocIntrospectionPrint(malloc_zone_t* zone, boolean_t verbose) {
|
||||
// Should print the current states of the zone for debugging / investigation
|
||||
// purpose, but not implemented just because of no use case for now.
|
||||
}
|
||||
|
||||
void MallocIntrospectionLog(malloc_zone_t* zone, void* address) {
|
||||
// Should enable logging of the activities on the given `address`, but not
|
||||
// implemented just because of no use case for now.
|
||||
}
|
||||
|
||||
void MallocIntrospectionForceLock(malloc_zone_t* zone) {
|
||||
// Called before fork(2) to acquire the lock.
|
||||
PartitionAllocMallocHookOnBeforeForkInParent();
|
||||
}
|
||||
|
||||
void MallocIntrospectionForceUnlock(malloc_zone_t* zone) {
|
||||
// Called in the parent process after fork(2) to release the lock.
|
||||
PartitionAllocMallocHookOnAfterForkInParent();
|
||||
}
|
||||
|
||||
void MallocIntrospectionStatistics(malloc_zone_t* zone,
|
||||
malloc_statistics_t* stats) {
|
||||
// Should report the memory usage correctly, but not implemented just because
|
||||
// of no use case for now.
|
||||
stats->blocks_in_use = 0;
|
||||
stats->size_in_use = 0;
|
||||
stats->max_size_in_use = 0; // High water mark of touched memory
|
||||
stats->size_allocated = 0; // Reserved in memory
|
||||
}
|
||||
|
||||
boolean_t MallocIntrospectionZoneLocked(malloc_zone_t* zone) {
|
||||
// Should return true if the underlying PartitionRoot is locked, but not
|
||||
// implemented just because this function seems not used effectively.
|
||||
return false;
|
||||
}
|
||||
|
||||
boolean_t MallocIntrospectionEnableDischargeChecking(malloc_zone_t* zone) {
|
||||
// 'discharge' is not supported.
|
||||
return false;
|
||||
}
|
||||
|
||||
void MallocIntrospectionDisableDischargeChecking(malloc_zone_t* zone) {
|
||||
// 'discharge' is not supported.
|
||||
}
|
||||
|
||||
void MallocIntrospectionDischarge(malloc_zone_t* zone, void* memory) {
|
||||
// 'discharge' is not supported.
|
||||
}
|
||||
|
||||
void MallocIntrospectionEnumerateDischargedPointers(
|
||||
malloc_zone_t* zone,
|
||||
void (^report_discharged)(void* memory, void* info)) {
|
||||
// 'discharge' is not supported.
|
||||
}
|
||||
|
||||
void MallocIntrospectionReinitLock(malloc_zone_t* zone) {
|
||||
// Called in a child process after fork(2) to re-initialize the lock.
|
||||
PartitionAllocMallocHookOnAfterForkInChild();
|
||||
}
|
||||
|
||||
void MallocIntrospectionPrintTask(task_t task,
|
||||
unsigned level,
|
||||
vm_address_t zone_address,
|
||||
memory_reader_t reader,
|
||||
print_task_printer_t printer) {
|
||||
// Should print the current states of another process's zone for debugging /
|
||||
// investigation purpose, but not implemented just because of no use case
|
||||
// for now.
|
||||
}
|
||||
|
||||
void MallocIntrospectionTaskStatistics(task_t task,
|
||||
vm_address_t zone_address,
|
||||
memory_reader_t reader,
|
||||
malloc_statistics_t* stats) {
|
||||
// Should report the memory usage in another process's zone, but not
|
||||
// implemented just because of no use case for now.
|
||||
stats->blocks_in_use = 0;
|
||||
stats->size_in_use = 0;
|
||||
stats->max_size_in_use = 0; // High water mark of touched memory
|
||||
stats->size_allocated = 0; // Reserved in memory
|
||||
}
|
||||
|
||||
// malloc_zone_t's callback functions for our own zone
|
||||
|
||||
size_t MallocZoneSize(malloc_zone_t* zone, const void* ptr) {
|
||||
return ShimGetSizeEstimate(ptr, nullptr);
|
||||
}
|
||||
|
||||
void* MallocZoneMalloc(malloc_zone_t* zone, size_t size) {
|
||||
return ShimMalloc(size, nullptr);
|
||||
}
|
||||
|
||||
void* MallocZoneCalloc(malloc_zone_t* zone, size_t n, size_t size) {
|
||||
return ShimCalloc(n, size, nullptr);
|
||||
}
|
||||
|
||||
void* MallocZoneValloc(malloc_zone_t* zone, size_t size) {
|
||||
return ShimValloc(size, nullptr);
|
||||
}
|
||||
|
||||
void MallocZoneFree(malloc_zone_t* zone, void* ptr) {
|
||||
return ShimFree(ptr, nullptr);
|
||||
}
|
||||
|
||||
void* MallocZoneRealloc(malloc_zone_t* zone, void* ptr, size_t size) {
|
||||
return ShimRealloc(ptr, size, nullptr);
|
||||
}
|
||||
|
||||
void MallocZoneDestroy(malloc_zone_t* zone) {
|
||||
// No support to destroy the zone for now.
|
||||
}
|
||||
|
||||
void* MallocZoneMemalign(malloc_zone_t* zone, size_t alignment, size_t size) {
|
||||
return ShimMemalign(alignment, size, nullptr);
|
||||
}
|
||||
|
||||
void MallocZoneFreeDefiniteSize(malloc_zone_t* zone, void* ptr, size_t size) {
|
||||
return ShimFreeDefiniteSize(ptr, size, nullptr);
|
||||
}
|
||||
|
||||
unsigned MallocZoneBatchMalloc(malloc_zone_t* zone,
|
||||
size_t size,
|
||||
void** results,
|
||||
unsigned num_requested) {
|
||||
return ShimBatchMalloc(size, results, num_requested, nullptr);
|
||||
}
|
||||
|
||||
void MallocZoneBatchFree(malloc_zone_t* zone,
|
||||
void** to_be_freed,
|
||||
unsigned num) {
|
||||
return ShimBatchFree(to_be_freed, num, nullptr);
|
||||
}
|
||||
|
||||
malloc_introspection_t g_mac_malloc_introspection{};
|
||||
malloc_zone_t g_mac_malloc_zone{};
|
||||
|
||||
malloc_zone_t* GetDefaultMallocZone() {
|
||||
// malloc_default_zone() does not return... the default zone, but the initial
|
||||
// one. The default one is the first element of the default zone array.
|
||||
unsigned int zone_count = 0;
|
||||
vm_address_t* zones = nullptr;
|
||||
kern_return_t result =
|
||||
malloc_get_all_zones(mach_task_self(), nullptr, &zones, &zone_count);
|
||||
MACH_CHECK(result == KERN_SUCCESS, result) << "malloc_get_all_zones";
|
||||
return reinterpret_cast<malloc_zone_t*>(zones[0]);
|
||||
}
|
||||
|
||||
bool IsAlreadyRegistered() {
|
||||
// HACK: This should really only be called once, but it is not.
|
||||
//
|
||||
// This function is a static constructor of its binary. If it is included in a
|
||||
// dynamic library, then the same process may end up executing this code
|
||||
// multiple times, once per library. As a consequence, each new library will
|
||||
// add its own allocator as the default zone. Aside from splitting the heap
|
||||
// further, the main issue arises if/when the last library to be loaded
|
||||
// (dlopen()-ed) gets dlclose()-ed.
|
||||
//
|
||||
// See crbug.com/1271139 for details.
|
||||
//
|
||||
// In this case, subsequent free() will be routed by libmalloc to the deleted
|
||||
// zone (since its code has been unloaded from memory), and crash inside
|
||||
// libsystem's free(). This in practice happens as soon as dlclose() is
|
||||
// called, inside the dynamic linker (dyld).
|
||||
//
|
||||
// Since we are talking about different library, and issues inside the dynamic
|
||||
// linker, we cannot use a global static variable (which would be
|
||||
// per-library), or anything from pthread.
|
||||
//
|
||||
// The solution used here is to check whether the current default zone is
|
||||
// already ours, in which case we are not the first dynamic library here, and
|
||||
// should do nothing. This is racy, and hacky.
|
||||
vm_address_t* zones = nullptr;
|
||||
unsigned int zone_count = 0;
|
||||
// *Not* using malloc_default_zone(), as it seems to be hardcoded to return
|
||||
// something else than the default zone. See the difference between
|
||||
// malloc_default_zone() and inline_malloc_default_zone() in Apple's malloc.c
|
||||
// (in libmalloc).
|
||||
kern_return_t result =
|
||||
malloc_get_all_zones(mach_task_self(), nullptr, &zones, &zone_count);
|
||||
MACH_CHECK(result == KERN_SUCCESS, result) << "malloc_get_all_zones";
|
||||
// Checking all the zones, in case someone registered their own zone on top of
|
||||
// our own.
|
||||
for (unsigned int i = 0; i < zone_count; i++) {
|
||||
malloc_zone_t* zone = reinterpret_cast<malloc_zone_t*>(zones[i]);
|
||||
|
||||
// strcmp() and not a pointer comparison, as the zone was registered from
|
||||
// another library, the pointers don't match.
|
||||
if (zone->zone_name &&
|
||||
(strcmp(zone->zone_name, partition_alloc::kPartitionAllocZoneName) ==
|
||||
0)) {
|
||||
// This zone is provided by PartitionAlloc, so this function has been
|
||||
// called from another library (or the main executable), nothing to do.
|
||||
//
|
||||
// This should be a crash, ideally, but callers do it, so only warn, for
|
||||
// now.
|
||||
RAW_LOG(ERROR,
|
||||
"Trying to load the allocator multiple times. This is *not* "
|
||||
"supported.");
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void InitializeZone() {
|
||||
g_mac_malloc_introspection.enumerator = MallocIntrospectionEnumerator;
|
||||
g_mac_malloc_introspection.good_size = MallocIntrospectionGoodSize;
|
||||
g_mac_malloc_introspection.check = MallocIntrospectionCheck;
|
||||
g_mac_malloc_introspection.print = MallocIntrospectionPrint;
|
||||
g_mac_malloc_introspection.log = MallocIntrospectionLog;
|
||||
g_mac_malloc_introspection.force_lock = MallocIntrospectionForceLock;
|
||||
g_mac_malloc_introspection.force_unlock = MallocIntrospectionForceUnlock;
|
||||
g_mac_malloc_introspection.statistics = MallocIntrospectionStatistics;
|
||||
g_mac_malloc_introspection.zone_locked = MallocIntrospectionZoneLocked;
|
||||
g_mac_malloc_introspection.enable_discharge_checking =
|
||||
MallocIntrospectionEnableDischargeChecking;
|
||||
g_mac_malloc_introspection.disable_discharge_checking =
|
||||
MallocIntrospectionDisableDischargeChecking;
|
||||
g_mac_malloc_introspection.discharge = MallocIntrospectionDischarge;
|
||||
g_mac_malloc_introspection.enumerate_discharged_pointers =
|
||||
MallocIntrospectionEnumerateDischargedPointers;
|
||||
g_mac_malloc_introspection.reinit_lock = MallocIntrospectionReinitLock;
|
||||
g_mac_malloc_introspection.print_task = MallocIntrospectionPrintTask;
|
||||
g_mac_malloc_introspection.task_statistics =
|
||||
MallocIntrospectionTaskStatistics;
|
||||
// `version` member indicates which APIs are supported in this zone.
|
||||
// version >= 5: memalign is supported
|
||||
// version >= 6: free_definite_size is supported
|
||||
// version >= 7: introspect's discharge family is supported
|
||||
// version >= 8: pressure_relief is supported
|
||||
// version >= 9: introspect.reinit_lock is supported
|
||||
// version >= 10: claimed_address is supported
|
||||
// version >= 11: introspect.print_task is supported
|
||||
// version >= 12: introspect.task_statistics is supported
|
||||
g_mac_malloc_zone.version = partition_alloc::kZoneVersion;
|
||||
g_mac_malloc_zone.zone_name = partition_alloc::kPartitionAllocZoneName;
|
||||
g_mac_malloc_zone.introspect = &g_mac_malloc_introspection;
|
||||
g_mac_malloc_zone.size = MallocZoneSize;
|
||||
g_mac_malloc_zone.malloc = MallocZoneMalloc;
|
||||
g_mac_malloc_zone.calloc = MallocZoneCalloc;
|
||||
g_mac_malloc_zone.valloc = MallocZoneValloc;
|
||||
g_mac_malloc_zone.free = MallocZoneFree;
|
||||
g_mac_malloc_zone.realloc = MallocZoneRealloc;
|
||||
g_mac_malloc_zone.destroy = MallocZoneDestroy;
|
||||
g_mac_malloc_zone.batch_malloc = MallocZoneBatchMalloc;
|
||||
g_mac_malloc_zone.batch_free = MallocZoneBatchFree;
|
||||
g_mac_malloc_zone.memalign = MallocZoneMemalign;
|
||||
g_mac_malloc_zone.free_definite_size = MallocZoneFreeDefiniteSize;
|
||||
g_mac_malloc_zone.pressure_relief = nullptr;
|
||||
g_mac_malloc_zone.claimed_address = nullptr;
|
||||
}
|
||||
|
||||
// Replaces the default malloc zone with our own malloc zone backed by
|
||||
// PartitionAlloc. Since we'd like to make as much code as possible to use our
|
||||
// own memory allocator (and reduce bugs caused by mixed use of the system
|
||||
// allocator and our own allocator), run the following function
|
||||
// `InitializeDefaultAllocatorPartitionRoot` with the highest priority.
|
||||
//
|
||||
// Note that, despite of the highest priority of the initialization order,
|
||||
// [NSThread init] runs before InitializeDefaultMallocZoneWithPartitionAlloc
|
||||
// unfortunately and allocates memory with the system allocator. Plus, the
|
||||
// allocated memory will be deallocated with the default zone's `free` at that
|
||||
// moment without using a zone dispatcher. Hence, our own `free` function
|
||||
// receives an address allocated by the system allocator.
|
||||
__attribute__((constructor(0))) void
|
||||
InitializeDefaultMallocZoneWithPartitionAlloc() {
|
||||
if (IsAlreadyRegistered())
|
||||
return;
|
||||
|
||||
// Instantiate the existing regular and purgeable zones in order to make the
|
||||
// existing purgeable zone use the existing regular zone since PartitionAlloc
|
||||
// doesn't support a purgeable zone.
|
||||
std::ignore = malloc_default_zone();
|
||||
std::ignore = malloc_default_purgeable_zone();
|
||||
|
||||
// Initialize the default allocator's PartitionRoot with the existing zone.
|
||||
InitializeDefaultAllocatorPartitionRoot();
|
||||
|
||||
// Create our own malloc zone.
|
||||
InitializeZone();
|
||||
|
||||
malloc_zone_t* system_default_zone = GetDefaultMallocZone();
|
||||
if (strcmp(system_default_zone->zone_name,
|
||||
partition_alloc::kDelegatingZoneName) == 0) {
|
||||
// The first zone is our zone, we can unregister it, replacing it with the
|
||||
// new one. This relies on a precise zone setup, done in
|
||||
// |EarlyMallocZoneRegistration()|.
|
||||
malloc_zone_register(&g_mac_malloc_zone);
|
||||
malloc_zone_unregister(system_default_zone);
|
||||
return;
|
||||
}
|
||||
|
||||
// Not in the path where the zone was registered early. This is either racy,
|
||||
// or fine if the current process is not hosting multiple threads.
|
||||
//
|
||||
// This path is fine for e.g. most unit tests.
|
||||
//
|
||||
// Make our own zone the default zone.
|
||||
//
|
||||
// Put our own zone at the last position, so that it promotes to the default
|
||||
// zone. The implementation logic of malloc_zone_unregister is:
|
||||
// zone_table.swap(unregistered_zone, last_zone);
|
||||
// zone_table.shrink_size_by_1();
|
||||
malloc_zone_register(&g_mac_malloc_zone);
|
||||
malloc_zone_unregister(system_default_zone);
|
||||
// Between malloc_zone_unregister(system_default_zone) (above) and
|
||||
// malloc_zone_register(system_default_zone) (below), i.e. while absence of
|
||||
// system_default_zone, it's possible that another thread calls free(ptr) and
|
||||
// "no zone found" error is hit, crashing the process.
|
||||
malloc_zone_register(system_default_zone);
|
||||
|
||||
// Confirm that our own zone is now the default zone.
|
||||
CHECK_EQ(GetDefaultMallocZone(), &g_mac_malloc_zone);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
60
src/base/allocator/allocator_shim_override_mac_symbols.h
Normal file
60
src/base/allocator/allocator_shim_override_mac_symbols.h
Normal file
@ -0,0 +1,60 @@
|
||||
// Copyright 2017 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifdef BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_MAC_SYMBOLS_H_
|
||||
#error This header is meant to be included only once by allocator_shim.cc
|
||||
#endif
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_MAC_SYMBOLS_H_
|
||||
|
||||
#include "base/allocator/malloc_zone_functions_mac.h"
|
||||
#include "third_party/apple_apsl/malloc.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
MallocZoneFunctions MallocZoneFunctionsToReplaceDefault() {
|
||||
MallocZoneFunctions new_functions;
|
||||
memset(&new_functions, 0, sizeof(MallocZoneFunctions));
|
||||
new_functions.size = [](malloc_zone_t* zone, const void* ptr) -> size_t {
|
||||
return ShimGetSizeEstimate(ptr, zone);
|
||||
};
|
||||
new_functions.malloc = [](malloc_zone_t* zone, size_t size) -> void* {
|
||||
return ShimMalloc(size, zone);
|
||||
};
|
||||
new_functions.calloc = [](malloc_zone_t* zone, size_t n,
|
||||
size_t size) -> void* {
|
||||
return ShimCalloc(n, size, zone);
|
||||
};
|
||||
new_functions.valloc = [](malloc_zone_t* zone, size_t size) -> void* {
|
||||
return ShimValloc(size, zone);
|
||||
};
|
||||
new_functions.free = [](malloc_zone_t* zone, void* ptr) {
|
||||
ShimFree(ptr, zone);
|
||||
};
|
||||
new_functions.realloc = [](malloc_zone_t* zone, void* ptr,
|
||||
size_t size) -> void* {
|
||||
return ShimRealloc(ptr, size, zone);
|
||||
};
|
||||
new_functions.batch_malloc = [](struct _malloc_zone_t* zone, size_t size,
|
||||
void** results,
|
||||
unsigned num_requested) -> unsigned {
|
||||
return ShimBatchMalloc(size, results, num_requested, zone);
|
||||
};
|
||||
new_functions.batch_free = [](struct _malloc_zone_t* zone, void** to_be_freed,
|
||||
unsigned num_to_be_freed) -> void {
|
||||
ShimBatchFree(to_be_freed, num_to_be_freed, zone);
|
||||
};
|
||||
new_functions.memalign = [](malloc_zone_t* zone, size_t alignment,
|
||||
size_t size) -> void* {
|
||||
return ShimMemalign(alignment, size, zone);
|
||||
};
|
||||
new_functions.free_definite_size = [](malloc_zone_t* zone, void* ptr,
|
||||
size_t size) {
|
||||
ShimFreeDefiniteSize(ptr, size, zone);
|
||||
};
|
||||
return new_functions;
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
178
src/base/allocator/allocator_shim_override_ucrt_symbols_win.h
Normal file
178
src/base/allocator/allocator_shim_override_ucrt_symbols_win.h
Normal file
@ -0,0 +1,178 @@
|
||||
// Copyright 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
// This header defines symbols to override the same functions in the Visual C++
|
||||
// CRT implementation.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_UCRT_SYMBOLS_WIN_H_
|
||||
#define BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_UCRT_SYMBOLS_WIN_H_
|
||||
|
||||
#include <malloc.h>
|
||||
|
||||
#include <windows.h>
|
||||
|
||||
#include "base/allocator/allocator_shim_internals.h"
|
||||
|
||||
// Even though most C++ allocation operators can be left alone since the
|
||||
// interception works at a lower level, these ones should be
|
||||
// overridden. Otherwise they redirect to malloc(), which is configured to crash
|
||||
// with an OOM in failure cases, such as allocation requests that are too large.
|
||||
SHIM_ALWAYS_EXPORT void* operator new(size_t size,
|
||||
const std::nothrow_t&) noexcept {
|
||||
return ShimCppNewNoThrow(size);
|
||||
}
|
||||
|
||||
SHIM_ALWAYS_EXPORT void* operator new[](size_t size,
|
||||
const std::nothrow_t&) noexcept {
|
||||
return ShimCppNewNoThrow(size);
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
|
||||
void* (*malloc_unchecked)(size_t) = &base::allocator::UncheckedAlloc;
|
||||
|
||||
namespace {
|
||||
|
||||
int win_new_mode = 0;
|
||||
|
||||
} // namespace
|
||||
|
||||
// This function behaves similarly to MSVC's _set_new_mode.
|
||||
// If flag is 0 (default), calls to malloc will behave normally.
|
||||
// If flag is 1, calls to malloc will behave like calls to new,
|
||||
// and the std_new_handler will be invoked on failure.
|
||||
// Returns the previous mode.
|
||||
//
|
||||
// Replaces _set_new_mode in ucrt\heap\new_mode.cpp
|
||||
int _set_new_mode(int flag) {
|
||||
// The MS CRT calls this function early on in startup, so this serves as a low
|
||||
// overhead proof that the allocator shim is in place for this process.
|
||||
base::allocator::g_is_win_shim_layer_initialized = true;
|
||||
int old_mode = win_new_mode;
|
||||
win_new_mode = flag;
|
||||
|
||||
base::allocator::SetCallNewHandlerOnMallocFailure(win_new_mode != 0);
|
||||
|
||||
return old_mode;
|
||||
}
|
||||
|
||||
// Replaces _query_new_mode in ucrt\heap\new_mode.cpp
|
||||
int _query_new_mode() {
|
||||
return win_new_mode;
|
||||
}
|
||||
|
||||
// These symbols override the CRT's implementation of the same functions.
|
||||
__declspec(restrict) void* malloc(size_t size) {
|
||||
return ShimMalloc(size, nullptr);
|
||||
}
|
||||
|
||||
void free(void* ptr) {
|
||||
ShimFree(ptr, nullptr);
|
||||
}
|
||||
|
||||
__declspec(restrict) void* realloc(void* ptr, size_t size) {
|
||||
return ShimRealloc(ptr, size, nullptr);
|
||||
}
|
||||
|
||||
__declspec(restrict) void* calloc(size_t n, size_t size) {
|
||||
return ShimCalloc(n, size, nullptr);
|
||||
}
|
||||
|
||||
// _msize() is the Windows equivalent of malloc_size().
|
||||
size_t _msize(void* memblock) {
|
||||
return ShimGetSizeEstimate(memblock, nullptr);
|
||||
}
|
||||
|
||||
__declspec(restrict) void* _aligned_malloc(size_t size, size_t alignment) {
|
||||
return ShimAlignedMalloc(size, alignment, nullptr);
|
||||
}
|
||||
|
||||
__declspec(restrict) void* _aligned_realloc(void* address,
|
||||
size_t size,
|
||||
size_t alignment) {
|
||||
return ShimAlignedRealloc(address, size, alignment, nullptr);
|
||||
}
|
||||
|
||||
void _aligned_free(void* address) {
|
||||
ShimAlignedFree(address, nullptr);
|
||||
}
|
||||
|
||||
// _recalloc_base is called by CRT internally.
|
||||
__declspec(restrict) void* _recalloc_base(void* block,
|
||||
size_t count,
|
||||
size_t size) {
|
||||
const size_t old_block_size = (block != nullptr) ? _msize(block) : 0;
|
||||
base::CheckedNumeric<size_t> new_block_size_checked = count;
|
||||
new_block_size_checked *= size;
|
||||
const size_t new_block_size = new_block_size_checked.ValueOrDie();
|
||||
|
||||
void* const new_block = realloc(block, new_block_size);
|
||||
|
||||
if (new_block != nullptr && old_block_size < new_block_size) {
|
||||
memset(static_cast<char*>(new_block) + old_block_size, 0,
|
||||
new_block_size - old_block_size);
|
||||
}
|
||||
|
||||
return new_block;
|
||||
}
|
||||
|
||||
__declspec(restrict) void* _malloc_base(size_t size) {
|
||||
return malloc(size);
|
||||
}
|
||||
|
||||
__declspec(restrict) void* _calloc_base(size_t n, size_t size) {
|
||||
return calloc(n, size);
|
||||
}
|
||||
|
||||
void _free_base(void* block) {
|
||||
free(block);
|
||||
}
|
||||
|
||||
__declspec(restrict) void* _recalloc(void* block, size_t count, size_t size) {
|
||||
return _recalloc_base(block, count, size);
|
||||
}
|
||||
|
||||
// The following uncommon _aligned_* routines are not used in Chromium and have
|
||||
// been shimmed to immediately crash to ensure that implementations are added if
|
||||
// uses are introduced.
|
||||
__declspec(restrict) void* _aligned_recalloc(void* address,
|
||||
size_t num,
|
||||
size_t size,
|
||||
size_t alignment) {
|
||||
CHECK(false) << "This routine has not been implemented";
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
size_t _aligned_msize(void* address, size_t alignment, size_t offset) {
|
||||
CHECK(false) << "This routine has not been implemented";
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
__declspec(restrict) void* _aligned_offset_malloc(size_t size,
|
||||
size_t alignment,
|
||||
size_t offset) {
|
||||
CHECK(false) << "This routine has not been implemented";
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
__declspec(restrict) void* _aligned_offset_realloc(void* address,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
size_t offset) {
|
||||
CHECK(false) << "This routine has not been implemented";
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
__declspec(restrict) void* _aligned_offset_recalloc(void* address,
|
||||
size_t num,
|
||||
size_t size,
|
||||
size_t alignment,
|
||||
size_t offset) {
|
||||
CHECK(false) << "This routine has not been implemented";
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
|
||||
#endif // BASE_ALLOCATOR_ALLOCATOR_SHIM_OVERRIDE_UCRT_SYMBOLS_WIN_H_
|
256
src/base/allocator/early_zone_registration_mac.cc
Normal file
256
src/base/allocator/early_zone_registration_mac.cc
Normal file
@ -0,0 +1,256 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/early_zone_registration_mac.h"
|
||||
|
||||
#include <mach/mach.h>
|
||||
#include <malloc/malloc.h>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
|
||||
// BASE_EXPORT tends to be defined as soon as anything from //base is included.
|
||||
#if defined(BASE_EXPORT)
|
||||
#error "This file cannot depend on //base"
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
#if !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
void EarlyMallocZoneRegistration() {}
|
||||
void AllowDoublePartitionAllocZoneRegistration() {}
|
||||
|
||||
#else
|
||||
|
||||
extern "C" {
|
||||
// abort_report_np() records the message in a special section that both the
|
||||
// system CrashReporter and Crashpad collect in crash reports. See also in
|
||||
// chrome_exe_main_mac.cc.
|
||||
void abort_report_np(const char* fmt, ...);
|
||||
}
|
||||
|
||||
namespace {
|
||||
malloc_zone_t* GetDefaultMallocZone() {
|
||||
// malloc_default_zone() does not return... the default zone, but the
|
||||
// initial one. The default one is the first element of the default zone
|
||||
// array.
|
||||
unsigned int zone_count = 0;
|
||||
vm_address_t* zones = nullptr;
|
||||
kern_return_t result =
|
||||
malloc_get_all_zones(mach_task_self(), nullptr, &zones, &zone_count);
|
||||
if (result != KERN_SUCCESS)
|
||||
abort_report_np("Cannot enumerate malloc() zones");
|
||||
return reinterpret_cast<malloc_zone_t*>(zones[0]);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void EarlyMallocZoneRegistration() {
|
||||
// Must have static storage duration, as raw pointers are passed to
|
||||
// libsystem_malloc.
|
||||
static malloc_zone_t g_delegating_zone;
|
||||
static malloc_introspection_t g_delegating_zone_introspect;
|
||||
static malloc_zone_t* g_default_zone;
|
||||
|
||||
// Make sure that the default zone is instantiated.
|
||||
malloc_zone_t* purgeable_zone = malloc_default_purgeable_zone();
|
||||
|
||||
g_default_zone = GetDefaultMallocZone();
|
||||
|
||||
// The delegating zone:
|
||||
// - Forwards all allocations to the existing default zone
|
||||
// - Does *not* claim to own any memory, meaning that it will always be
|
||||
// skipped in free() in libsystem_malloc.dylib.
|
||||
//
|
||||
// This is a temporary zone, until it gets replaced by PartitionAlloc, inside
|
||||
// the main library. Since the main library depends on many external
|
||||
// libraries, we cannot install PartitionAlloc as the default zone without
|
||||
// concurrency issues.
|
||||
//
|
||||
// Instead, what we do is here, while the process is single-threaded:
|
||||
// - Register the delegating zone as the default one.
|
||||
// - Set the original (libsystem_malloc's) one as the second zone
|
||||
//
|
||||
// Later, when PartitionAlloc initializes, we replace the default (delegating)
|
||||
// zone with ours. The end state is:
|
||||
// 1. PartitionAlloc zone
|
||||
// 2. libsystem_malloc zone
|
||||
|
||||
// Set up of the delegating zone. Note that it doesn't just forward calls to
|
||||
// the default zone. This is because the system zone's malloc_zone_t pointer
|
||||
// actually points to a larger struct, containing allocator metadata. So if we
|
||||
// pass as the first parameter the "simple" delegating zone pointer, then we
|
||||
// immediately crash inside the system zone functions. So we need to replace
|
||||
// the zone pointer as well.
|
||||
//
|
||||
// Calls fall into 4 categories:
|
||||
// - Allocation calls: forwarded to the real system zone
|
||||
// - "Is this pointer yours" calls: always answer no
|
||||
// - free(): Should never be called, but is in practice, see comments below.
|
||||
// - Diagnostics and debugging: these are typically called for every
|
||||
// zone. They are no-ops for us, as we don't want to double-count, or lock
|
||||
// the data structures of the real zone twice.
|
||||
|
||||
// Allocation: Forward to the real zone.
|
||||
g_delegating_zone.malloc = [](malloc_zone_t* zone, size_t size) {
|
||||
return g_default_zone->malloc(g_default_zone, size);
|
||||
};
|
||||
g_delegating_zone.calloc = [](malloc_zone_t* zone, size_t num_items,
|
||||
size_t size) {
|
||||
return g_default_zone->calloc(g_default_zone, num_items, size);
|
||||
};
|
||||
g_delegating_zone.valloc = [](malloc_zone_t* zone, size_t size) {
|
||||
return g_default_zone->valloc(g_default_zone, size);
|
||||
};
|
||||
g_delegating_zone.realloc = [](malloc_zone_t* zone, void* ptr, size_t size) {
|
||||
return g_default_zone->realloc(g_default_zone, ptr, size);
|
||||
};
|
||||
g_delegating_zone.batch_malloc = [](malloc_zone_t* zone, size_t size,
|
||||
void** results, unsigned num_requested) {
|
||||
return g_default_zone->batch_malloc(g_default_zone, size, results,
|
||||
num_requested);
|
||||
};
|
||||
g_delegating_zone.memalign = [](malloc_zone_t* zone, size_t alignment,
|
||||
size_t size) {
|
||||
return g_default_zone->memalign(g_default_zone, alignment, size);
|
||||
};
|
||||
|
||||
// Does ptr belong to this zone? Return value is != 0 if so.
|
||||
g_delegating_zone.size = [](malloc_zone_t* zone, const void* ptr) -> size_t {
|
||||
return 0;
|
||||
};
|
||||
|
||||
// Free functions.
|
||||
// The normal path for freeing memory is:
|
||||
// 1. Try all zones in order, call zone->size(ptr)
|
||||
// 2. If zone->size(ptr) != 0, call zone->free(ptr) (or free_definite_size)
|
||||
// 3. If no zone matches, crash.
|
||||
//
|
||||
// Since this zone always returns 0 in size() (see above), then zone->free()
|
||||
// should never be called. Unfortunately, this is not the case, as some places
|
||||
// in CoreFoundation call malloc_zone_free(zone, ptr) directly. So rather than
|
||||
// crashing, forward the call. It's the caller's responsibility to use the
|
||||
// same zone for free() as for the allocation (this is in the contract of
|
||||
// malloc_zone_free()).
|
||||
//
|
||||
// However, note that the sequence of calls size() -> free() is not possible
|
||||
// for this zone, as size() always returns 0.
|
||||
g_delegating_zone.free = [](malloc_zone_t* zone, void* ptr) {
|
||||
return g_default_zone->free(g_default_zone, ptr);
|
||||
};
|
||||
g_delegating_zone.free_definite_size = [](malloc_zone_t* zone, void* ptr,
|
||||
size_t size) {
|
||||
return g_default_zone->free_definite_size(g_default_zone, ptr, size);
|
||||
};
|
||||
g_delegating_zone.batch_free = [](malloc_zone_t* zone, void** to_be_freed,
|
||||
unsigned num_to_be_freed) {
|
||||
return g_default_zone->batch_free(g_default_zone, to_be_freed,
|
||||
num_to_be_freed);
|
||||
};
|
||||
|
||||
// Diagnostics and debugging.
|
||||
//
|
||||
// Do nothing to reduce memory footprint, the real
|
||||
// zone will do it.
|
||||
g_delegating_zone.pressure_relief = [](malloc_zone_t* zone,
|
||||
size_t goal) -> size_t { return 0; };
|
||||
|
||||
// Introspection calls are not all optional, for instance locking and
|
||||
// unlocking before/after fork() is not optional.
|
||||
//
|
||||
// Nothing to enumerate.
|
||||
g_delegating_zone_introspect.enumerator =
|
||||
[](task_t task, void*, unsigned type_mask, vm_address_t zone_address,
|
||||
memory_reader_t reader,
|
||||
vm_range_recorder_t recorder) -> kern_return_t {
|
||||
return KERN_SUCCESS;
|
||||
};
|
||||
// Need to provide a real implementation, it is used for e.g. array sizing.
|
||||
g_delegating_zone_introspect.good_size = [](malloc_zone_t* zone,
|
||||
size_t size) {
|
||||
return g_default_zone->introspect->good_size(g_default_zone, size);
|
||||
};
|
||||
// Nothing to do.
|
||||
g_delegating_zone_introspect.check = [](malloc_zone_t* zone) -> boolean_t {
|
||||
return true;
|
||||
};
|
||||
g_delegating_zone_introspect.print = [](malloc_zone_t* zone,
|
||||
boolean_t verbose) {};
|
||||
g_delegating_zone_introspect.log = [](malloc_zone_t*, void*) {};
|
||||
// Do not forward the lock / unlock calls. Since the default zone is still
|
||||
// there, we should not lock here, as it would lock the zone twice (all
|
||||
// zones are locked before fork().). Rather, do nothing, since this fake
|
||||
// zone does not need any locking.
|
||||
g_delegating_zone_introspect.force_lock = [](malloc_zone_t* zone) {};
|
||||
g_delegating_zone_introspect.force_unlock = [](malloc_zone_t* zone) {};
|
||||
g_delegating_zone_introspect.reinit_lock = [](malloc_zone_t* zone) {};
|
||||
// No stats.
|
||||
g_delegating_zone_introspect.statistics = [](malloc_zone_t* zone,
|
||||
malloc_statistics_t* stats) {};
|
||||
// We are not locked.
|
||||
g_delegating_zone_introspect.zone_locked =
|
||||
[](malloc_zone_t* zone) -> boolean_t { return false; };
|
||||
// Don't support discharge checking.
|
||||
g_delegating_zone_introspect.enable_discharge_checking =
|
||||
[](malloc_zone_t* zone) -> boolean_t { return false; };
|
||||
g_delegating_zone_introspect.disable_discharge_checking =
|
||||
[](malloc_zone_t* zone) {};
|
||||
g_delegating_zone_introspect.discharge = [](malloc_zone_t* zone,
|
||||
void* memory) {};
|
||||
|
||||
// Could use something lower to support fewer functions, but this is
|
||||
// consistent with the real zone installed by PartitionAlloc.
|
||||
g_delegating_zone.version = kZoneVersion;
|
||||
g_delegating_zone.introspect = &g_delegating_zone_introspect;
|
||||
// This name is used in PartitionAlloc's initialization to determine whether
|
||||
// it should replace the delegating zone.
|
||||
g_delegating_zone.zone_name = kDelegatingZoneName;
|
||||
|
||||
// Register puts the new zone at the end, unregister swaps the new zone with
|
||||
// the last one.
|
||||
// The zone array is, after these lines, in order:
|
||||
// 1. |g_default_zone|...|g_delegating_zone|
|
||||
// 2. |g_delegating_zone|...| (no more default)
|
||||
// 3. |g_delegating_zone|...|g_default_zone|
|
||||
malloc_zone_register(&g_delegating_zone);
|
||||
malloc_zone_unregister(g_default_zone);
|
||||
malloc_zone_register(g_default_zone);
|
||||
|
||||
// Make sure that the purgeable zone is after the default one.
|
||||
// Will make g_default_zone take the purgeable zone spot
|
||||
malloc_zone_unregister(purgeable_zone);
|
||||
// Add back the purgeable zone as the last one.
|
||||
malloc_zone_register(purgeable_zone);
|
||||
|
||||
// Final configuration:
|
||||
// |g_delegating_zone|...|g_default_zone|purgeable_zone|
|
||||
|
||||
// Sanity check.
|
||||
if (GetDefaultMallocZone() != &g_delegating_zone)
|
||||
abort_report_np("Failed to install the delegating zone as default.");
|
||||
}
|
||||
|
||||
void AllowDoublePartitionAllocZoneRegistration() {
|
||||
unsigned int zone_count = 0;
|
||||
vm_address_t* zones = nullptr;
|
||||
kern_return_t result =
|
||||
malloc_get_all_zones(mach_task_self(), nullptr, &zones, &zone_count);
|
||||
if (result != KERN_SUCCESS)
|
||||
abort_report_np("Cannot enumerate malloc() zones");
|
||||
|
||||
// If PartitionAlloc is one of the zones, *change* its name so that
|
||||
// registration can happen multiple times. This works because zone
|
||||
// registration only keeps a pointer to the struct, it does not copy the data.
|
||||
for (unsigned int i = 0; i < zone_count; i++) {
|
||||
malloc_zone_t* zone = reinterpret_cast<malloc_zone_t*>(zones[i]);
|
||||
if (zone->zone_name &&
|
||||
strcmp(zone->zone_name, kPartitionAllocZoneName) == 0) {
|
||||
zone->zone_name = "RenamedPartitionAlloc";
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
} // namespace partition_alloc
|
37
src/base/allocator/early_zone_registration_mac.h
Normal file
37
src/base/allocator/early_zone_registration_mac.h
Normal file
@ -0,0 +1,37 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_EARLY_ZONE_REGISTRATION_MAC_H_
|
||||
#define BASE_ALLOCATOR_EARLY_ZONE_REGISTRATION_MAC_H_
|
||||
|
||||
// This is an Apple-only file, used to register PartitionAlloc's zone *before*
|
||||
// the process becomes multi-threaded.
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
static constexpr char kDelegatingZoneName[] =
|
||||
"DelegatingDefaultZoneForPartitionAlloc";
|
||||
static constexpr char kPartitionAllocZoneName[] = "PartitionAlloc";
|
||||
|
||||
// Zone version. Determines which callbacks are set in the various malloc_zone_t
|
||||
// structs.
|
||||
constexpr int kZoneVersion = 9;
|
||||
|
||||
// Must be called *once*, *before* the process becomes multi-threaded.
|
||||
void EarlyMallocZoneRegistration();
|
||||
|
||||
// Tricks the registration code to believe that PartitionAlloc was not already
|
||||
// registered. This allows a future library load to register PartitionAlloc's
|
||||
// zone as well, rather than bailing out.
|
||||
//
|
||||
// This is mutually exclusive with EarlyMallocZoneRegistation(), and should
|
||||
// ideally be removed. Indeed, by allowing two zones to be registered, we still
|
||||
// end up with a split heap, and more memory usage.
|
||||
//
|
||||
// This is a hack for crbug.com/1274236.
|
||||
void AllowDoublePartitionAllocZoneRegistration();
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_EARLY_ZONE_REGISTRATION_H_
|
119
src/base/allocator/malloc_zone_functions_mac.cc
Normal file
119
src/base/allocator/malloc_zone_functions_mac.cc
Normal file
@ -0,0 +1,119 @@
|
||||
// Copyright 2017 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/malloc_zone_functions_mac.h"
|
||||
|
||||
#include <atomic>
|
||||
|
||||
#include "base/synchronization/lock.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
MallocZoneFunctions g_malloc_zones[kMaxZoneCount];
|
||||
static_assert(std::is_pod<MallocZoneFunctions>::value,
|
||||
"MallocZoneFunctions must be POD");
|
||||
|
||||
void StoreZoneFunctions(const ChromeMallocZone* zone,
|
||||
MallocZoneFunctions* functions) {
|
||||
memset(functions, 0, sizeof(MallocZoneFunctions));
|
||||
functions->malloc = zone->malloc;
|
||||
functions->calloc = zone->calloc;
|
||||
functions->valloc = zone->valloc;
|
||||
functions->free = zone->free;
|
||||
functions->realloc = zone->realloc;
|
||||
functions->size = zone->size;
|
||||
CHECK(functions->malloc && functions->calloc && functions->valloc &&
|
||||
functions->free && functions->realloc && functions->size);
|
||||
|
||||
// These functions might be nullptr.
|
||||
functions->batch_malloc = zone->batch_malloc;
|
||||
functions->batch_free = zone->batch_free;
|
||||
|
||||
if (zone->version >= 5) {
|
||||
// Not all custom malloc zones have a memalign.
|
||||
functions->memalign = zone->memalign;
|
||||
}
|
||||
if (zone->version >= 6) {
|
||||
// This may be nullptr.
|
||||
functions->free_definite_size = zone->free_definite_size;
|
||||
}
|
||||
|
||||
// Note that zone version 8 introduced a pressure relief callback, and version
|
||||
// 10 introduced a claimed address callback, but neither are allocation or
|
||||
// deallocation callbacks and so aren't important to intercept.
|
||||
|
||||
functions->context = zone;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
// All modifications to g_malloc_zones are gated behind this lock.
|
||||
// Dispatch to a malloc zone does not need to acquire this lock.
|
||||
base::Lock& GetLock() {
|
||||
static base::Lock* g_lock = new base::Lock;
|
||||
return *g_lock;
|
||||
}
|
||||
|
||||
void EnsureMallocZonesInitializedLocked() {
|
||||
GetLock().AssertAcquired();
|
||||
}
|
||||
|
||||
int g_zone_count = 0;
|
||||
|
||||
bool IsMallocZoneAlreadyStoredLocked(ChromeMallocZone* zone) {
|
||||
EnsureMallocZonesInitializedLocked();
|
||||
GetLock().AssertAcquired();
|
||||
for (int i = 0; i < g_zone_count; ++i) {
|
||||
if (g_malloc_zones[i].context == reinterpret_cast<void*>(zone))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
bool StoreMallocZone(ChromeMallocZone* zone) {
|
||||
base::AutoLock l(GetLock());
|
||||
EnsureMallocZonesInitializedLocked();
|
||||
if (IsMallocZoneAlreadyStoredLocked(zone))
|
||||
return false;
|
||||
|
||||
if (g_zone_count == kMaxZoneCount)
|
||||
return false;
|
||||
|
||||
StoreZoneFunctions(zone, &g_malloc_zones[g_zone_count]);
|
||||
++g_zone_count;
|
||||
|
||||
// No other thread can possibly see these stores at this point. The code that
|
||||
// reads these values is triggered after this function returns. so we want to
|
||||
// guarantee that they are committed at this stage"
|
||||
std::atomic_thread_fence(std::memory_order_seq_cst);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool IsMallocZoneAlreadyStored(ChromeMallocZone* zone) {
|
||||
base::AutoLock l(GetLock());
|
||||
return IsMallocZoneAlreadyStoredLocked(zone);
|
||||
}
|
||||
|
||||
bool DoesMallocZoneNeedReplacing(ChromeMallocZone* zone,
|
||||
const MallocZoneFunctions* functions) {
|
||||
return IsMallocZoneAlreadyStored(zone) && zone->malloc != functions->malloc;
|
||||
}
|
||||
|
||||
int GetMallocZoneCountForTesting() {
|
||||
base::AutoLock l(GetLock());
|
||||
return g_zone_count;
|
||||
}
|
||||
|
||||
void ClearAllMallocZonesForTesting() {
|
||||
base::AutoLock l(GetLock());
|
||||
EnsureMallocZonesInitializedLocked();
|
||||
memset(g_malloc_zones, 0, kMaxZoneCount * sizeof(MallocZoneFunctions));
|
||||
g_zone_count = 0;
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
103
src/base/allocator/malloc_zone_functions_mac.h
Normal file
103
src/base/allocator/malloc_zone_functions_mac.h
Normal file
@ -0,0 +1,103 @@
|
||||
// Copyright 2017 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_MALLOC_ZONE_FUNCTIONS_MAC_H_
|
||||
#define BASE_ALLOCATOR_MALLOC_ZONE_FUNCTIONS_MAC_H_
|
||||
|
||||
#include <malloc/malloc.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#include "base/base_export.h"
|
||||
#include "base/immediate_crash.h"
|
||||
#include "third_party/apple_apsl/malloc.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
typedef void* (*malloc_type)(struct _malloc_zone_t* zone, size_t size);
|
||||
typedef void* (*calloc_type)(struct _malloc_zone_t* zone,
|
||||
size_t num_items,
|
||||
size_t size);
|
||||
typedef void* (*valloc_type)(struct _malloc_zone_t* zone, size_t size);
|
||||
typedef void (*free_type)(struct _malloc_zone_t* zone, void* ptr);
|
||||
typedef void* (*realloc_type)(struct _malloc_zone_t* zone,
|
||||
void* ptr,
|
||||
size_t size);
|
||||
typedef void* (*memalign_type)(struct _malloc_zone_t* zone,
|
||||
size_t alignment,
|
||||
size_t size);
|
||||
typedef unsigned (*batch_malloc_type)(struct _malloc_zone_t* zone,
|
||||
size_t size,
|
||||
void** results,
|
||||
unsigned num_requested);
|
||||
typedef void (*batch_free_type)(struct _malloc_zone_t* zone,
|
||||
void** to_be_freed,
|
||||
unsigned num_to_be_freed);
|
||||
typedef void (*free_definite_size_type)(struct _malloc_zone_t* zone,
|
||||
void* ptr,
|
||||
size_t size);
|
||||
typedef size_t (*size_fn_type)(struct _malloc_zone_t* zone, const void* ptr);
|
||||
|
||||
struct MallocZoneFunctions {
|
||||
malloc_type malloc;
|
||||
calloc_type calloc;
|
||||
valloc_type valloc;
|
||||
free_type free;
|
||||
realloc_type realloc;
|
||||
memalign_type memalign;
|
||||
batch_malloc_type batch_malloc;
|
||||
batch_free_type batch_free;
|
||||
free_definite_size_type free_definite_size;
|
||||
size_fn_type size;
|
||||
const ChromeMallocZone* context;
|
||||
};
|
||||
|
||||
BASE_EXPORT void StoreZoneFunctions(const ChromeMallocZone* zone,
|
||||
MallocZoneFunctions* functions);
|
||||
static constexpr int kMaxZoneCount = 30;
|
||||
BASE_EXPORT extern MallocZoneFunctions g_malloc_zones[kMaxZoneCount];
|
||||
|
||||
// The array g_malloc_zones stores all information about malloc zones before
|
||||
// they are shimmed. This information needs to be accessed during dispatch back
|
||||
// into the zone, and additional zones may be added later in the execution fo
|
||||
// the program, so the array needs to be both thread-safe and high-performance.
|
||||
//
|
||||
// We begin by creating an array of MallocZoneFunctions of fixed size. We will
|
||||
// never modify the container, which provides thread-safety to iterators. When
|
||||
// we want to add a MallocZoneFunctions to the container, we:
|
||||
// 1. Fill in all the fields.
|
||||
// 2. Update the total zone count.
|
||||
// 3. Insert a memory barrier.
|
||||
// 4. Insert our shim.
|
||||
//
|
||||
// Each MallocZoneFunctions is uniquely identified by |context|, which is a
|
||||
// pointer to the original malloc zone. When we wish to dispatch back to the
|
||||
// original malloc zones, we iterate through the array, looking for a matching
|
||||
// |context|.
|
||||
//
|
||||
// Most allocations go through the default allocator. We will ensure that the
|
||||
// default allocator is stored as the first MallocZoneFunctions.
|
||||
//
|
||||
// Returns whether the zone was successfully stored.
|
||||
BASE_EXPORT bool StoreMallocZone(ChromeMallocZone* zone);
|
||||
BASE_EXPORT bool IsMallocZoneAlreadyStored(ChromeMallocZone* zone);
|
||||
BASE_EXPORT bool DoesMallocZoneNeedReplacing(
|
||||
ChromeMallocZone* zone,
|
||||
const MallocZoneFunctions* functions);
|
||||
|
||||
BASE_EXPORT int GetMallocZoneCountForTesting();
|
||||
BASE_EXPORT void ClearAllMallocZonesForTesting();
|
||||
|
||||
inline MallocZoneFunctions& GetFunctionsForZone(void* zone) {
|
||||
for (unsigned int i = 0; i < kMaxZoneCount; ++i) {
|
||||
if (g_malloc_zones[i].context == zone)
|
||||
return g_malloc_zones[i];
|
||||
}
|
||||
IMMEDIATE_CRASH();
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_MALLOC_ZONE_FUNCTIONS_MAC_H_
|
115
src/base/allocator/partition_alloc_features.cc
Normal file
115
src/base/allocator/partition_alloc_features.cc
Normal file
@ -0,0 +1,115 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_alloc_features.h"
|
||||
|
||||
#include "base/feature_list.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace base {
|
||||
namespace features {
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
// If enabled, PCScan is turned on by default for all partitions that don't
|
||||
// disable it explicitly.
|
||||
const Feature kPartitionAllocPCScan{"PartitionAllocPCScan",
|
||||
FEATURE_DISABLED_BY_DEFAULT};
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// If enabled, PCScan is turned on only for the browser's malloc partition.
|
||||
const Feature kPartitionAllocPCScanBrowserOnly{
|
||||
"PartitionAllocPCScanBrowserOnly", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// If enabled, PCScan is turned on only for the renderer's malloc partition.
|
||||
const Feature kPartitionAllocPCScanRendererOnly{
|
||||
"PartitionAllocPCScanRendererOnly", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// If enabled, this instance belongs to the Control group of the BackupRefPtr
|
||||
// binary experiment.
|
||||
const Feature kPartitionAllocBackupRefPtrControl{
|
||||
"PartitionAllocBackupRefPtrControl", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// Use a larger maximum thread cache cacheable bucket size.
|
||||
const Feature kPartitionAllocLargeThreadCacheSize{
|
||||
"PartitionAllocLargeThreadCacheSize",
|
||||
#if BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_32_BITS)
|
||||
// Not unconditionally enabled on 32 bit Android, since it is a more
|
||||
// memory-constrained platform.
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#endif
|
||||
};
|
||||
|
||||
const BASE_EXPORT Feature kPartitionAllocLargeEmptySlotSpanRing{
|
||||
"PartitionAllocLargeEmptySlotSpanRing", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
const Feature kPartitionAllocBackupRefPtr{"PartitionAllocBackupRefPtr",
|
||||
FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
constexpr FeatureParam<BackupRefPtrEnabledProcesses>::Option
|
||||
kBackupRefPtrEnabledProcessesOptions[] = {
|
||||
{BackupRefPtrEnabledProcesses::kBrowserOnly, "browser-only"},
|
||||
{BackupRefPtrEnabledProcesses::kBrowserAndRenderer,
|
||||
"browser-and-renderer"},
|
||||
{BackupRefPtrEnabledProcesses::kNonRenderer, "non-renderer"},
|
||||
{BackupRefPtrEnabledProcesses::kAllProcesses, "all-processes"}};
|
||||
|
||||
const base::FeatureParam<BackupRefPtrEnabledProcesses>
|
||||
kBackupRefPtrEnabledProcessesParam{
|
||||
&kPartitionAllocBackupRefPtr, "enabled-processes",
|
||||
BackupRefPtrEnabledProcesses::kBrowserOnly,
|
||||
&kBackupRefPtrEnabledProcessesOptions};
|
||||
|
||||
constexpr FeatureParam<BackupRefPtrMode>::Option kBackupRefPtrModeOptions[] = {
|
||||
{BackupRefPtrMode::kDisabled, "disabled"},
|
||||
{BackupRefPtrMode::kEnabled, "enabled"},
|
||||
{BackupRefPtrMode::kDisabledButSplitPartitions2Way,
|
||||
"disabled-but-2-way-split"},
|
||||
{BackupRefPtrMode::kDisabledButSplitPartitions3Way,
|
||||
"disabled-but-3-way-split"},
|
||||
};
|
||||
|
||||
const base::FeatureParam<BackupRefPtrMode> kBackupRefPtrModeParam{
|
||||
&kPartitionAllocBackupRefPtr, "brp-mode", BackupRefPtrMode::kEnabled,
|
||||
&kBackupRefPtrModeOptions};
|
||||
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
// If enabled, switches the bucket distribution to an alternate one. The
|
||||
// alternate distribution must have buckets that are a subset of the default
|
||||
// one.
|
||||
const Feature kPartitionAllocUseAlternateDistribution{
|
||||
"PartitionAllocUseAlternateDistribution", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// If enabled, switches PCScan scheduling to a mutator-aware scheduler. Does not
|
||||
// affect whether PCScan is enabled itself.
|
||||
const Feature kPartitionAllocPCScanMUAwareScheduler{
|
||||
"PartitionAllocPCScanMUAwareScheduler", FEATURE_ENABLED_BY_DEFAULT};
|
||||
|
||||
// If enabled, PCScan frees unconditionally all quarantined objects.
|
||||
// This is a performance testing feature.
|
||||
const Feature kPartitionAllocPCScanImmediateFreeing{
|
||||
"PartitionAllocPCScanImmediateFreeing", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// If enabled, PCScan clears eagerly (synchronously) on free().
|
||||
const Feature kPartitionAllocPCScanEagerClearing{
|
||||
"PartitionAllocPCScanEagerClearing", FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
// In addition to heap, scan also the stack of the current mutator.
|
||||
const Feature kPartitionAllocPCScanStackScanning {
|
||||
"PartitionAllocPCScanStackScanning",
|
||||
#if defined(PA_PCSCAN_STACK_SUPPORTED)
|
||||
FEATURE_ENABLED_BY_DEFAULT
|
||||
#else
|
||||
FEATURE_DISABLED_BY_DEFAULT
|
||||
#endif // defined(PA_PCSCAN_STACK_SUPPORTED)
|
||||
};
|
||||
|
||||
const Feature kPartitionAllocDCScan{"PartitionAllocDCScan",
|
||||
FEATURE_DISABLED_BY_DEFAULT};
|
||||
|
||||
} // namespace features
|
||||
} // namespace base
|
77
src/base/allocator/partition_alloc_features.h
Normal file
77
src/base/allocator/partition_alloc_features.h
Normal file
@ -0,0 +1,77 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/metrics/field_trial_params.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
struct Feature;
|
||||
|
||||
namespace features {
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScan;
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanBrowserOnly;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanRendererOnly;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocBackupRefPtrControl;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocLargeThreadCacheSize;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocLargeEmptySlotSpanRing;
|
||||
|
||||
enum class BackupRefPtrEnabledProcesses {
|
||||
// BRP enabled only in the browser process.
|
||||
kBrowserOnly,
|
||||
// BRP enabled only in the browser and renderer processes.
|
||||
kBrowserAndRenderer,
|
||||
// BRP enabled in all processes, except renderer.
|
||||
kNonRenderer,
|
||||
// BRP enabled in all processes.
|
||||
kAllProcesses,
|
||||
};
|
||||
|
||||
enum class BackupRefPtrMode {
|
||||
// BRP is disabled across all partitions. Equivalent to the Finch flag being
|
||||
// disabled.
|
||||
kDisabled,
|
||||
|
||||
// BRP is enabled in the main partition, as well as certain Renderer-only
|
||||
// partitions (if enabled in Renderer at all).
|
||||
// This entails splitting the main partition.
|
||||
kEnabled,
|
||||
|
||||
// BRP is disabled, but the main partition is split out, as if BRP was enabled
|
||||
// in the "previous slot" mode.
|
||||
kDisabledButSplitPartitions2Way,
|
||||
|
||||
// BRP is disabled, but the main partition *and* aligned partition are split
|
||||
// out, as if BRP was enabled in the "before allocation" mode.
|
||||
kDisabledButSplitPartitions3Way,
|
||||
};
|
||||
|
||||
extern const BASE_EXPORT Feature kPartitionAllocBackupRefPtr;
|
||||
extern const BASE_EXPORT base::FeatureParam<BackupRefPtrEnabledProcesses>
|
||||
kBackupRefPtrEnabledProcessesParam;
|
||||
extern const BASE_EXPORT base::FeatureParam<BackupRefPtrMode>
|
||||
kBackupRefPtrModeParam;
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanMUAwareScheduler;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanStackScanning;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocDCScan;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanImmediateFreeing;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocPCScanEagerClearing;
|
||||
extern const BASE_EXPORT Feature kPartitionAllocUseAlternateDistribution;
|
||||
|
||||
} // namespace features
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_
|
438
src/base/allocator/partition_alloc_support.cc
Normal file
438
src/base/allocator/partition_alloc_support.cc
Normal file
@ -0,0 +1,438 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_alloc_support.h"
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_alloc_features.h"
|
||||
#include "base/allocator/partition_allocator/allocation_guard.h"
|
||||
#include "base/allocator/partition_allocator/dangling_raw_ptr_checks.h"
|
||||
#include "base/allocator/partition_allocator/memory_reclaimer.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "base/allocator/partition_allocator/starscan/pcscan.h"
|
||||
#include "base/allocator/partition_allocator/starscan/stats_collector.h"
|
||||
#include "base/allocator/partition_allocator/starscan/stats_reporter.h"
|
||||
#include "base/allocator/partition_allocator/thread_cache.h"
|
||||
#include "base/bind.h"
|
||||
#include "base/callback.h"
|
||||
#include "base/check.h"
|
||||
#include "base/debug/stack_trace.h"
|
||||
#include "base/feature_list.h"
|
||||
#include "base/immediate_crash.h"
|
||||
#include "base/metrics/histogram_functions.h"
|
||||
#include "base/metrics/histogram_macros.h"
|
||||
#include "base/no_destructor.h"
|
||||
#include "base/strings/stringprintf.h"
|
||||
#include "base/thread_annotations.h"
|
||||
#include "base/threading/platform_thread.h"
|
||||
#include "base/threading/thread_task_runner_handle.h"
|
||||
#include "base/time/time.h"
|
||||
#include "base/timer/timer.h"
|
||||
#include "base/trace_event/base_tracing.h"
|
||||
#include "third_party/abseil-cpp/absl/types/optional.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
namespace {
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
|
||||
constexpr const char* ScannerIdToTracingString(
|
||||
internal::StatsCollector::ScannerId id) {
|
||||
switch (id) {
|
||||
case internal::StatsCollector::ScannerId::kClear:
|
||||
return "PCScan.Scanner.Clear";
|
||||
case internal::StatsCollector::ScannerId::kScan:
|
||||
return "PCScan.Scanner.Scan";
|
||||
case internal::StatsCollector::ScannerId::kSweep:
|
||||
return "PCScan.Scanner.Sweep";
|
||||
case internal::StatsCollector::ScannerId::kOverall:
|
||||
return "PCScan.Scanner";
|
||||
case internal::StatsCollector::ScannerId::kNumIds:
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
constexpr const char* MutatorIdToTracingString(
|
||||
internal::StatsCollector::MutatorId id) {
|
||||
switch (id) {
|
||||
case internal::StatsCollector::MutatorId::kClear:
|
||||
return "PCScan.Mutator.Clear";
|
||||
case internal::StatsCollector::MutatorId::kScanStack:
|
||||
return "PCScan.Mutator.ScanStack";
|
||||
case internal::StatsCollector::MutatorId::kScan:
|
||||
return "PCScan.Mutator.Scan";
|
||||
case internal::StatsCollector::MutatorId::kOverall:
|
||||
return "PCScan.Mutator";
|
||||
case internal::StatsCollector::MutatorId::kNumIds:
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
// Inject TRACE_EVENT_BEGIN/END, TRACE_COUNTER1, and UmaHistogramTimes.
|
||||
class StatsReporterImpl final : public StatsReporter {
|
||||
public:
|
||||
void ReportTraceEvent(internal::StatsCollector::ScannerId id,
|
||||
[[maybe_unused]] const PlatformThreadId tid,
|
||||
TimeTicks start_time,
|
||||
TimeTicks end_time) override {
|
||||
// TRACE_EVENT_* macros below drop most parameters when tracing is
|
||||
// disabled at compile time.
|
||||
const char* tracing_id = ScannerIdToTracingString(id);
|
||||
TRACE_EVENT_BEGIN(kTraceCategory, perfetto::StaticString(tracing_id),
|
||||
perfetto::ThreadTrack::ForThread(tid), start_time);
|
||||
TRACE_EVENT_END(kTraceCategory, perfetto::ThreadTrack::ForThread(tid),
|
||||
end_time);
|
||||
}
|
||||
|
||||
void ReportTraceEvent(internal::StatsCollector::MutatorId id,
|
||||
[[maybe_unused]] const PlatformThreadId tid,
|
||||
TimeTicks start_time,
|
||||
TimeTicks end_time) override {
|
||||
// TRACE_EVENT_* macros below drop most parameters when tracing is
|
||||
// disabled at compile time.
|
||||
const char* tracing_id = MutatorIdToTracingString(id);
|
||||
TRACE_EVENT_BEGIN(kTraceCategory, perfetto::StaticString(tracing_id),
|
||||
perfetto::ThreadTrack::ForThread(tid), start_time);
|
||||
TRACE_EVENT_END(kTraceCategory, perfetto::ThreadTrack::ForThread(tid),
|
||||
end_time);
|
||||
}
|
||||
|
||||
void ReportSurvivedQuarantineSize(size_t survived_size) override {
|
||||
TRACE_COUNTER1(kTraceCategory, "PCScan.SurvivedQuarantineSize",
|
||||
survived_size);
|
||||
}
|
||||
|
||||
void ReportSurvivedQuarantinePercent(double survived_rate) override {
|
||||
// Multiply by 1000 since TRACE_COUNTER1 expects integer. In catapult,
|
||||
// divide back.
|
||||
// TODO(bikineev): Remove after switching to perfetto.
|
||||
TRACE_COUNTER1(kTraceCategory, "PCScan.SurvivedQuarantinePercent",
|
||||
1000 * survived_rate);
|
||||
}
|
||||
|
||||
void ReportStats(const char* stats_name, TimeDelta sample) override {
|
||||
UmaHistogramTimes(stats_name, sample);
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr char kTraceCategory[] = "partition_alloc";
|
||||
};
|
||||
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
|
||||
} // namespace
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
void RegisterPCScanStatsReporter() {
|
||||
static StatsReporterImpl s_reporter;
|
||||
static bool registered = false;
|
||||
|
||||
DCHECK(!registered);
|
||||
|
||||
internal::PCScan::RegisterStatsReporter(&s_reporter);
|
||||
registered = true;
|
||||
}
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
|
||||
namespace {
|
||||
|
||||
void RunThreadCachePeriodicPurge() {
|
||||
TRACE_EVENT0("memory", "PeriodicPurge");
|
||||
auto& instance = internal::ThreadCacheRegistry::Instance();
|
||||
instance.RunPeriodicPurge();
|
||||
TimeDelta delay =
|
||||
Microseconds(instance.GetPeriodicPurgeNextIntervalInMicroseconds());
|
||||
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
|
||||
FROM_HERE, BindOnce(RunThreadCachePeriodicPurge), delay);
|
||||
}
|
||||
|
||||
void RunMemoryReclaimer(scoped_refptr<SequencedTaskRunner> task_runner) {
|
||||
TRACE_EVENT0("base", "partition_alloc::MemoryReclaimer::Reclaim()");
|
||||
auto* instance = ::partition_alloc::MemoryReclaimer::Instance();
|
||||
|
||||
{
|
||||
// Micros, since memory reclaiming should typically take at most a few ms.
|
||||
SCOPED_UMA_HISTOGRAM_TIMER_MICROS("Memory.PartitionAlloc.MemoryReclaim");
|
||||
instance->ReclaimNormal();
|
||||
}
|
||||
|
||||
TimeDelta delay =
|
||||
Microseconds(instance->GetRecommendedReclaimIntervalInMicroseconds());
|
||||
task_runner->PostDelayedTask(
|
||||
FROM_HERE, BindOnce(RunMemoryReclaimer, task_runner), delay);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void StartThreadCachePeriodicPurge() {
|
||||
auto& instance = internal::ThreadCacheRegistry::Instance();
|
||||
TimeDelta delay =
|
||||
Microseconds(instance.GetPeriodicPurgeNextIntervalInMicroseconds());
|
||||
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
|
||||
FROM_HERE, BindOnce(RunThreadCachePeriodicPurge), delay);
|
||||
}
|
||||
|
||||
void StartMemoryReclaimer(scoped_refptr<SequencedTaskRunner> task_runner) {
|
||||
// Can be called several times.
|
||||
static bool is_memory_reclaimer_running = false;
|
||||
if (is_memory_reclaimer_running)
|
||||
return;
|
||||
is_memory_reclaimer_running = true;
|
||||
|
||||
// The caller of the API fully controls where running the reclaim.
|
||||
// However there are a few reasons to recommend that the caller runs
|
||||
// it on the main thread:
|
||||
// - Most of PartitionAlloc's usage is on the main thread, hence PA's metadata
|
||||
// is more likely in cache when executing on the main thread.
|
||||
// - Memory reclaim takes the partition lock for each partition. As a
|
||||
// consequence, while reclaim is running, the main thread is unlikely to be
|
||||
// able to make progress, as it would be waiting on the lock.
|
||||
// - Finally, this runs in idle time only, so there should be no visible
|
||||
// impact.
|
||||
//
|
||||
// From local testing, time to reclaim is 100us-1ms, and reclaiming every few
|
||||
// seconds is useful. Since this is meant to run during idle time only, it is
|
||||
// a reasonable starting point balancing effectivenes vs cost. See
|
||||
// crbug.com/942512 for details and experimental results.
|
||||
auto* instance = ::partition_alloc::MemoryReclaimer::Instance();
|
||||
TimeDelta delay =
|
||||
Microseconds(instance->GetRecommendedReclaimIntervalInMicroseconds());
|
||||
task_runner->PostDelayedTask(
|
||||
FROM_HERE, BindOnce(RunMemoryReclaimer, task_runner), delay);
|
||||
}
|
||||
|
||||
std::map<std::string, std::string> ProposeSyntheticFinchTrials() {
|
||||
std::map<std::string, std::string> trials;
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// BackupRefPtr_Effective and PCScan_Effective record whether or not
|
||||
// BackupRefPtr and/or PCScan are enabled. The experiments aren't independent,
|
||||
// so having a synthetic Finch will help look only at cases where one isn't
|
||||
// affected by the other.
|
||||
|
||||
// Whether PartitionAllocBackupRefPtr is enabled (as determined by
|
||||
// FeatureList::IsEnabled).
|
||||
[[maybe_unused]] bool brp_finch_enabled = false;
|
||||
// Whether PartitionAllocBackupRefPtr is set up for the default behavior. The
|
||||
// default behavior is when either the Finch flag is disabled, or is enabled
|
||||
// in brp-mode=disabled (these two options are equivalent).
|
||||
[[maybe_unused]] bool brp_nondefault_behavior = false;
|
||||
// Whether PartitionAllocBackupRefPtr is set up to enable BRP protection. It
|
||||
// requires the Finch flag to be enabled and brp-mode!=disabled*. Some modes,
|
||||
// e.g. disabled-but-3-way-split, do something (hence can't be considered the
|
||||
// default behavior), but don't enable BRP protection.
|
||||
[[maybe_unused]] bool brp_truly_enabled = false;
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
if (FeatureList::IsEnabled(features::kPartitionAllocBackupRefPtr))
|
||||
brp_finch_enabled = true;
|
||||
if (brp_finch_enabled && features::kBackupRefPtrModeParam.Get() !=
|
||||
features::BackupRefPtrMode::kDisabled)
|
||||
brp_nondefault_behavior = true;
|
||||
if (brp_finch_enabled && features::kBackupRefPtrModeParam.Get() ==
|
||||
features::BackupRefPtrMode::kEnabled)
|
||||
brp_truly_enabled = true;
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
[[maybe_unused]] bool pcscan_enabled =
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
FeatureList::IsEnabled(features::kPartitionAllocPCScanBrowserOnly);
|
||||
#else
|
||||
false;
|
||||
#endif
|
||||
|
||||
std::string brp_group_name = "Unavailable";
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
if (pcscan_enabled) {
|
||||
// If PCScan is enabled, just ignore the population.
|
||||
brp_group_name = "Ignore_PCScanIsOn";
|
||||
} else if (!brp_finch_enabled) {
|
||||
// The control group is actually disguised as "enabled", but in fact it's
|
||||
// disabled using a param. This is to differentiate the population that
|
||||
// participates in the control group, from the population that isn't in any
|
||||
// group.
|
||||
brp_group_name = "Ignore_NoGroup";
|
||||
} else {
|
||||
switch (features::kBackupRefPtrModeParam.Get()) {
|
||||
case features::BackupRefPtrMode::kDisabled:
|
||||
brp_group_name = "Disabled";
|
||||
break;
|
||||
case features::BackupRefPtrMode::kEnabled:
|
||||
#if BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)
|
||||
brp_group_name = "EnabledPrevSlot";
|
||||
#else
|
||||
brp_group_name = "EnabledBeforeAlloc";
|
||||
#endif
|
||||
break;
|
||||
case features::BackupRefPtrMode::kDisabledButSplitPartitions2Way:
|
||||
brp_group_name = "DisabledBut2WaySplit";
|
||||
break;
|
||||
case features::BackupRefPtrMode::kDisabledButSplitPartitions3Way:
|
||||
brp_group_name = "DisabledBut3WaySplit";
|
||||
break;
|
||||
}
|
||||
|
||||
if (features::kBackupRefPtrModeParam.Get() !=
|
||||
features::BackupRefPtrMode::kDisabled) {
|
||||
std::string process_selector;
|
||||
switch (features::kBackupRefPtrEnabledProcessesParam.Get()) {
|
||||
case features::BackupRefPtrEnabledProcesses::kBrowserOnly:
|
||||
process_selector = "BrowserOnly";
|
||||
break;
|
||||
case features::BackupRefPtrEnabledProcesses::kBrowserAndRenderer:
|
||||
process_selector = "BrowserAndRenderer";
|
||||
break;
|
||||
case features::BackupRefPtrEnabledProcesses::kNonRenderer:
|
||||
process_selector = "NonRenderer";
|
||||
break;
|
||||
case features::BackupRefPtrEnabledProcesses::kAllProcesses:
|
||||
process_selector = "AllProcesses";
|
||||
break;
|
||||
}
|
||||
|
||||
brp_group_name += ("_" + process_selector);
|
||||
}
|
||||
}
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
trials.emplace("BackupRefPtr_Effective", brp_group_name);
|
||||
|
||||
// On 32-bit architectures, PCScan is not supported and permanently disabled.
|
||||
// Don't lump it into "Disabled", so that belonging to "Enabled"/"Disabled" is
|
||||
// fully controlled by Finch and thus have identical population sizes.
|
||||
std::string pcscan_group_name = "Unavailable";
|
||||
std::string pcscan_group_name_fallback = "Unavailable";
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
if (brp_truly_enabled) {
|
||||
// If BRP protection is enabled, just ignore the population. Check
|
||||
// brp_truly_enabled, not brp_finch_enabled, because there are certain modes
|
||||
// where BRP protection is actually disabled.
|
||||
pcscan_group_name = "Ignore_BRPIsOn";
|
||||
} else {
|
||||
pcscan_group_name = (pcscan_enabled ? "Enabled" : "Disabled");
|
||||
}
|
||||
// In case we are incorrect that PCScan is independent of partition-split
|
||||
// modes, create a fallback trial that only takes into account the BRP Finch
|
||||
// settings that preserve the default behavior.
|
||||
if (brp_nondefault_behavior) {
|
||||
pcscan_group_name_fallback = "Ignore_BRPIsOn";
|
||||
} else {
|
||||
pcscan_group_name_fallback = (pcscan_enabled ? "Enabled" : "Disabled");
|
||||
}
|
||||
#endif // defined(PA_ALLOW_PCSCAN)
|
||||
trials.emplace("PCScan_Effective", pcscan_group_name);
|
||||
trials.emplace("PCScan_Effective_Fallback", pcscan_group_name_fallback);
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
trials.emplace("FakeBinaryExperiment",
|
||||
#if BUILDFLAG(USE_FAKE_BINARY_EXPERIMENT)
|
||||
"Enabled"
|
||||
#else
|
||||
"Disabled"
|
||||
#endif
|
||||
);
|
||||
|
||||
return trials;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
|
||||
|
||||
namespace {
|
||||
|
||||
internal::PartitionLock g_stack_trace_buffer_lock;
|
||||
|
||||
struct StackTraceWithID {
|
||||
debug::StackTrace stack_trace;
|
||||
uintptr_t id = 0;
|
||||
};
|
||||
using DanglingRawPtrBuffer = std::array<absl::optional<StackTraceWithID>, 32>;
|
||||
DanglingRawPtrBuffer g_stack_trace_buffer GUARDED_BY(g_stack_trace_buffer_lock);
|
||||
|
||||
void DanglingRawPtrDetected(uintptr_t id) {
|
||||
// This is called from inside the allocator. No allocation is allowed.
|
||||
internal::PartitionAutoLock guard(g_stack_trace_buffer_lock);
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
for (absl::optional<StackTraceWithID>& entry : g_stack_trace_buffer)
|
||||
PA_DCHECK(!entry || entry->id != id);
|
||||
#endif // DCHECK_IS_ON()
|
||||
|
||||
for (absl::optional<StackTraceWithID>& entry : g_stack_trace_buffer) {
|
||||
if (!entry) {
|
||||
entry = {debug::StackTrace(), id};
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// The StackTrace hasn't been recorded, because the buffer isn't large
|
||||
// enough.
|
||||
}
|
||||
|
||||
void DanglingRawPtrReleased(uintptr_t id) {
|
||||
// This is called from raw_ptr<>'s release operation. Making allocations is
|
||||
// allowed. In particular, symbolizing and printing the StackTraces may
|
||||
// allocate memory.
|
||||
|
||||
internal::PartitionAutoLock guard(g_stack_trace_buffer_lock);
|
||||
|
||||
absl::optional<std::string> stack_trace_free;
|
||||
std::string stack_trace_release = base::debug::StackTrace().ToString();
|
||||
for (absl::optional<StackTraceWithID>& entry : g_stack_trace_buffer) {
|
||||
if (entry && entry->id == id) {
|
||||
stack_trace_free = entry->stack_trace.ToString();
|
||||
entry = absl::nullopt;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (stack_trace_free) {
|
||||
LOG(ERROR) << base::StringPrintf(
|
||||
"Detected dangling raw_ptr with id=0x%016" PRIxPTR
|
||||
":\n\n"
|
||||
"The memory was freed at:\n%s\n"
|
||||
"The dangling raw_ptr was released at:\n%s",
|
||||
id, stack_trace_free->c_str(), stack_trace_release.c_str());
|
||||
} else {
|
||||
LOG(ERROR) << base::StringPrintf(
|
||||
"Detected dangling raw_ptr with id=0x%016" PRIxPTR
|
||||
":\n\n"
|
||||
"It was not recorded where the memory was freed.\n\n"
|
||||
"The dangling raw_ptr was released at:\n%s",
|
||||
id, stack_trace_release.c_str());
|
||||
}
|
||||
IMMEDIATE_CRASH();
|
||||
}
|
||||
|
||||
void ClearDanglingRawPtrBuffer() {
|
||||
internal::PartitionAutoLock guard(g_stack_trace_buffer_lock);
|
||||
g_stack_trace_buffer = DanglingRawPtrBuffer();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void InstallDanglingRawPtrChecks() {
|
||||
// Clearing storage is useful for running multiple unit tests without
|
||||
// restarting the test executable.
|
||||
ClearDanglingRawPtrBuffer();
|
||||
|
||||
partition_alloc::SetDanglingRawPtrDetectedFn(DanglingRawPtrDetected);
|
||||
partition_alloc::SetDanglingRawPtrReleasedFn(DanglingRawPtrReleased);
|
||||
}
|
||||
|
||||
// TODO(arthursonzogni): There might exist long lived dangling raw_ptr. If there
|
||||
// is a dangling pointer, we should crash at some point. Consider providing an
|
||||
// API to periodically check the buffer.
|
||||
|
||||
#else // BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
|
||||
void InstallDanglingRawPtrChecks() {}
|
||||
#endif // BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
42
src/base/allocator/partition_alloc_support.h
Normal file
42
src/base/allocator/partition_alloc_support.h
Normal file
@ -0,0 +1,42 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOC_SUPPORT_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOC_SUPPORT_H_
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/memory/scoped_refptr.h"
|
||||
#include "base/task/sequenced_task_runner.h"
|
||||
|
||||
namespace base {
|
||||
namespace allocator {
|
||||
|
||||
#if defined(PA_ALLOW_PCSCAN)
|
||||
BASE_EXPORT void RegisterPCScanStatsReporter();
|
||||
#endif
|
||||
|
||||
// Starts a periodic timer on the current thread to purge all thread caches.
|
||||
BASE_EXPORT void StartThreadCachePeriodicPurge();
|
||||
|
||||
BASE_EXPORT void StartMemoryReclaimer(
|
||||
scoped_refptr<SequencedTaskRunner> task_runner);
|
||||
|
||||
BASE_EXPORT std::map<std::string, std::string> ProposeSyntheticFinchTrials();
|
||||
|
||||
// Install handlers for when dangling raw_ptr(s) have been detected. This prints
|
||||
// two StackTraces. One where the memory is freed, one where the last dangling
|
||||
// raw_ptr stopped referencing it.
|
||||
//
|
||||
// This is currently effective, only when compiled with
|
||||
// `enable_dangling_raw_ptr_checks` build flag.
|
||||
BASE_EXPORT void InstallDanglingRawPtrChecks();
|
||||
|
||||
} // namespace allocator
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOC_SUPPORT_H_
|
57
src/base/allocator/partition_allocator/DEPS
Normal file
57
src/base/allocator/partition_allocator/DEPS
Normal file
@ -0,0 +1,57 @@
|
||||
# It's planned that PartitionAlloc will be a stand-alone third party library
|
||||
# and dependencies need to be strictly controlled and minimized.
|
||||
|
||||
noparent = True
|
||||
|
||||
include_rules = [
|
||||
"+base/allocator/allocator_shim_default_dispatch_to_partition_alloc.h",
|
||||
"+base/allocator/buildflags.h",
|
||||
"+base/base_export.h",
|
||||
"+base/bind.h",
|
||||
"+base/bits.h",
|
||||
"+base/callback.h",
|
||||
"+base/check.h",
|
||||
"+base/check_op.h",
|
||||
"+base/compiler_specific.h",
|
||||
"+base/cpu.h",
|
||||
"+base/cxx17_backports.h",
|
||||
"+base/dcheck_is_on.h",
|
||||
"+base/debug/alias.h",
|
||||
"+base/debug/proc_maps_linux.h",
|
||||
"+base/files/file_path.h",
|
||||
"+base/fuchsia/fuchsia_logging.h",
|
||||
"+base/gtest_prod_util.h",
|
||||
"+base/immediate_crash.h",
|
||||
"+base/lazy_instance.h",
|
||||
"+base/location.h",
|
||||
"+base/logging.h",
|
||||
"+base/logging_buildflags.h",
|
||||
"+base/mac/foundation_util.h",
|
||||
"+base/mac/mac_util.h",
|
||||
"+base/mac/scoped_cftyperef.h",
|
||||
"+base/memory/ref_counted.h",
|
||||
"+base/memory/scoped_refptr.h",
|
||||
"+base/native_library.h",
|
||||
"+base/no_destructor.h",
|
||||
"+base/posix/eintr_wrapper.h",
|
||||
"+base/process/memory.h",
|
||||
"+base/rand_util.h",
|
||||
"+base/strings/stringprintf.h",
|
||||
"+base/sys_byteorder.h",
|
||||
"+base/system/sys_info.h",
|
||||
"+base/test/bind.h",
|
||||
"+base/test/gtest_util.h",
|
||||
"+base/thread_annotations.h",
|
||||
"+base/threading/platform_thread.h",
|
||||
"+base/time/time.h",
|
||||
"+base/time/time_override.h",
|
||||
"+base/timer/lap_timer.h",
|
||||
"+base/trace_event/base_tracing.h",
|
||||
"+base/win/windows_types.h",
|
||||
"+base/win/windows_version.h",
|
||||
"+build/build_config.h",
|
||||
"+build/buildflag.h",
|
||||
"+build/chromecast_buildflags.h",
|
||||
"+testing/gtest/include/gtest/gtest.h",
|
||||
"+testing/perf/perf_result_reporter.h",
|
||||
]
|
6
src/base/allocator/partition_allocator/DIR_METADATA
Normal file
6
src/base/allocator/partition_allocator/DIR_METADATA
Normal file
@ -0,0 +1,6 @@
|
||||
monorail {
|
||||
component: "Blink>MemoryAllocator>Partition"
|
||||
}
|
||||
|
||||
# Also security-dev@chromium.org
|
||||
team_email: "platform-architecture-dev@chromium.org"
|
3
src/base/allocator/partition_allocator/OWNERS
Normal file
3
src/base/allocator/partition_allocator/OWNERS
Normal file
@ -0,0 +1,3 @@
|
||||
bartekn@chromium.org
|
||||
haraken@chromium.org
|
||||
lizeb@chromium.org
|
269
src/base/allocator/partition_allocator/PartitionAlloc.md
Normal file
269
src/base/allocator/partition_allocator/PartitionAlloc.md
Normal file
@ -0,0 +1,269 @@
|
||||
# PartitionAlloc Design
|
||||
|
||||
This document describes PartitionAlloc at a high level, with some architectural
|
||||
details. For implementation details, see the comments in
|
||||
`partition_alloc_constants.h`.
|
||||
|
||||
## Overview
|
||||
|
||||
PartitionAlloc is a memory allocator optimized for space efficiency,
|
||||
allocation latency, and security.
|
||||
|
||||
### Core terms
|
||||
|
||||
A *partition* is a heap that is separated and protected from any other
|
||||
partitions, as well as from non-PartitionAlloc memory. The most typical use of
|
||||
partitions is to isolate certain object types. However, one can also isolate
|
||||
objects of certain sizes, or objects of a certain lifetime (as the caller
|
||||
prefers). Callers can create as many partitions as they need. The direct
|
||||
memory cost of partitions is minimal, but the implicit cost resulting from
|
||||
fragmentation is not to be underestimated.
|
||||
|
||||
Each partition holds multiple buckets. A *bucket* is a collection of regions in
|
||||
a partition that contains similar-sized objects, e.g. one bucket holds sizes
|
||||
(224, 256], another (256, 320], and so on. Bucket sizes are
|
||||
geometrically-spaced, and go all the way up to `kMaxBucketed`, which is a tad
|
||||
under 1MiB (so called *normal buckets*). There are tens of buckets, 4 between
|
||||
each power of two (except for lower sizes where buckets that aren't a multiple
|
||||
of `base::kAlignment` simply don't exist).
|
||||
|
||||
Larger allocations (>`kMaxBucketed`) are realized by direct memory mapping
|
||||
(*direct map*).
|
||||
|
||||
### Performance
|
||||
|
||||
PartitionAlloc is designed to be extremely fast in its fast paths. The fast
|
||||
paths of allocation and deallocation require very few (reasonably predictable)
|
||||
branches. The number of operations in the fast paths is minimal, leading to the
|
||||
possibility of inlining.
|
||||
|
||||
However, even the fast path isn't the fastest, because it requires taking
|
||||
a per-partition lock. Although we optimized the lock, there was still room for
|
||||
improvement. Therefore we introduced the *thread cache*, which holds a small
|
||||
amount of not-too-large memory chunks, ready to be allocated. Because these
|
||||
chunks are stored per-thread, they can be allocated without a lock, only
|
||||
requiring a faster thread-local storage (TLS) lookup, improving cache locality
|
||||
in the process.
|
||||
The thread cache has been tailored to satisfy a vast majority of requests by
|
||||
allocating from and releasing memory to the main allocator in batches,
|
||||
amortizing lock acquisition and further improving locality while not trapping
|
||||
excess memory.
|
||||
|
||||
### Security
|
||||
|
||||
Security is one of the important goals of PartitionAlloc.
|
||||
|
||||
PartitionAlloc guarantees that different partitions exist in different regions
|
||||
of the process's address space. When the caller has freed all objects contained
|
||||
in a page in a partition, PartitionAlloc returns the physical memory to the
|
||||
operating system, but continues to reserve the region of address space.
|
||||
PartitionAlloc will only reuse an address space region for the same partition.
|
||||
|
||||
Similarly, one page can contain only objects from the same bucket.
|
||||
When freed, PartitionAlloc returns the physical memory, but continues to reserve
|
||||
the region for this very bucket.
|
||||
|
||||
The above techniques help avoid type confusion attacks. Note, however, these
|
||||
apply only to normal buckets and not to direct map, as it'd waste too much
|
||||
address space.
|
||||
|
||||
PartitionAlloc also guarantees that:
|
||||
|
||||
* Linear overflows/underflows cannot corrupt into, out of, or between
|
||||
partitions. There are guard pages at the beginning and the end of each memory
|
||||
region owned by a partition.
|
||||
|
||||
* Linear overflows/underflows cannot corrupt the allocation metadata.
|
||||
PartitionAlloc records metadata in a dedicated, out-of-line region (not
|
||||
adjacent to objects), surrounded by guard pages. (Freelist pointers are an
|
||||
exception.)
|
||||
|
||||
* Partial pointer overwrite of freelist pointer should fault.
|
||||
|
||||
* Direct map allocations have guard pages at the beginning and the end.
|
||||
|
||||
### Alignment
|
||||
|
||||
PartitionAlloc guarantees that returned pointers are aligned on
|
||||
`base::kAlignment` boundary (typically 16B on 64-bit systems, and 8B on 32-bit).
|
||||
|
||||
PartitionAlloc also supports higher levels of alignment, that can be requested
|
||||
via `PartitionAlloc::AlignedAllocWithFlags()` or platform-specific APIs (such as
|
||||
`posix_memalign()`). The requested
|
||||
alignment has to be a power of two. PartitionAlloc reserves the right to round
|
||||
up the requested size to the nearest power of two, greater than or equal to the
|
||||
requested alignment. This may be wasteful, but allows taking advantage of
|
||||
natural PartitionAlloc alignment guarantees. Allocations with an alignment
|
||||
requirement greater than `base::kAlignment` are expected to be very rare.
|
||||
|
||||
## PartitionAlloc-Everywhere
|
||||
|
||||
Originally, PartitionAlloc was used only in Blink (Chromium’s rendering engine).
|
||||
It was invoked explicitly, by calling PartitionAlloc APIs directly.
|
||||
|
||||
PartitionAlloc-Everywhere is the name of the project that brought PartitionAlloc
|
||||
to the entire-ish codebase (exclusions apply). This was done by intercepting
|
||||
`malloc()`, `free()`, `realloc()`, aforementioned `posix_memalign()`, etc. and
|
||||
routing them into PartitionAlloc. The shim located in
|
||||
`base/allocator/allocator_shim_default_dispatch_to_partition_alloc.h` is
|
||||
responsible for intercepting. For more details, see
|
||||
[base/allocator/README.md](../../../base/allocator/README.md).
|
||||
|
||||
A special, catch-it-all *Malloc* partition has been created for the intercepted
|
||||
`malloc()` et al. This is to isolate from already existing Blink partitions.
|
||||
The only exception from that is Blink's *FastMalloc* partition, which was also
|
||||
catch-it-all in nature, so it's perfectly fine to merge these together, to
|
||||
minimize fragmentation.
|
||||
|
||||
PartitionAlloc-Everywhere was launched in M89 for Windows 64-bit and Android.
|
||||
Windows 32-bit and Linux followed it shortly after, in M90.
|
||||
|
||||
## Architecture
|
||||
|
||||
### Many Different Flavors of Pages
|
||||
|
||||
In PartitionAlloc, by *system page* we mean a memory page as defined by CPU/OS
|
||||
(often referred to as "virtual page" out there). It is most commonly 4KiB in
|
||||
size, but depending on CPU it can be larger (PartitionAlloc supports up to
|
||||
64KiB).
|
||||
|
||||
The reason why we use the term "system page" is to disambiguate from
|
||||
*partition page*, which is the most common granularity used by PartitionAlloc.
|
||||
Each partition page consists of exactly 4 system pages.
|
||||
|
||||
A *super page* is a 2MiB region, aligned on a 2MiB boundary.
|
||||
Don't confuse it with CPU/OS terms like "large page" or "huge page", which are
|
||||
also commonly 2MiB in size. These have to be fully committed/uncommitted in
|
||||
memory, whereas super pages can be partially committed, with system page
|
||||
granularity.
|
||||
|
||||
### Slots and Spans
|
||||
|
||||
A *slot* is an indivisible allocation unit. Slot sizes are tied to buckets.
|
||||
For example each allocation that falls into the bucket (240; 256] would
|
||||
be satisfied with a slot of size 256. This applies only to normal buckets, not
|
||||
to direct map.
|
||||
|
||||
A *slot span* is just a grouping of slots of the same size next to each other
|
||||
in memory. Slot span size is a multiple of a partition page.
|
||||
|
||||
A bucket is a collection of slot spans containing slots of the same size,
|
||||
organized as linked-lists.
|
||||
|
||||
Allocations up to 4 partition pages are referred to as *small buckets*.
|
||||
In these cases, slot spans are always between 1 and 4 partition pages in size.
|
||||
The size is chosen based on the slot size, such that the rounding waste is
|
||||
minimized. For example, if the slot size was 96B and slot span was 1 partition
|
||||
page of 16KiB, 64B would be wasted at the end, but nothing is wasted if 3
|
||||
partition pages totalling 48KiB are used. Furthermore, PartitionAlloc may avoid
|
||||
waste by lowering the number of committed system pages compared to the number of
|
||||
reserved pages. For example, for the slot size of 80B we'd use a slot span of 4
|
||||
partition pages of 16KiB, i.e. 16 system pages of 4KiB, but commit only up to
|
||||
15, thus resulting in perfect packing.
|
||||
|
||||
Allocations above 4 partition pages (but ≤`kMaxBucketed`) are referred to as
|
||||
*single slot spans*. That's because each slot span is guaranteed to hold exactly
|
||||
one slot. Fun fact: there are sizes ≤4 partition pages that result in a slot
|
||||
span having exactly 1 slot, but nonetheless they're still classified as small
|
||||
buckets. The reason is that single slot spans are often handled by a different
|
||||
code path, and that distinction is made purely based on slot size, for
|
||||
simplicity and efficiency.
|
||||
|
||||
### Layout in Memory
|
||||
|
||||
PartitionAlloc handles normal buckets by reserving (not committing) 2MiB super
|
||||
pages. Each super page is split into partition pages.
|
||||
The first and the last partition page are permanently inaccessible and serve
|
||||
as guard pages, with the exception of one system page in the middle of the first
|
||||
partition page that holds metadata (32B struct per partition page).
|
||||
|
||||
![anatomy of a super page](./dot/super-page.png)
|
||||
|
||||
* The slot span numbers provide a visual hint of their size (in partition
|
||||
pages).
|
||||
* Colors provide a visual hint of the bucket to which the slot span belongs.
|
||||
* Although only five colors are shown, in reality, a super page holds
|
||||
tens of slot spans, some of which belong to the same bucket.
|
||||
* The system page that holds metadata tracks each partition page with one 32B
|
||||
[`PartitionPage` struct][PartitionPage], which is either
|
||||
* a [`SlotSpanMetadata`][SlotSpanMetadata] ("v"s in the diagram) or
|
||||
* a [`SubsequentPageMetadata`][SubsequentPageMetadata] ("+"s in the
|
||||
diagram).
|
||||
* Gray fill denotes guard pages (one partition page each at the head and tail
|
||||
of each super page).
|
||||
|
||||
As allocation requests arrive, there is eventually a need to allocate a new slot
|
||||
span.
|
||||
Address space for such a slot span is carved out from the last super page. If
|
||||
not enough space, a new super page is allocated. Due to varying sizes of slot
|
||||
span, this may lead to leaving space unused (we never go back to fill previous
|
||||
super pages), which is fine because this memory is merely reserved, which is far
|
||||
less precious than committed memory. Note also that address space reserved for a
|
||||
slot span is never released, even if the slot span isn't used for a long time.
|
||||
|
||||
All slots in a newly allocated slot span are *free*, i.e. available for
|
||||
allocation.
|
||||
|
||||
### Freelist Pointers
|
||||
|
||||
All free slots within a slot span are chained into a singly-linked free-list,
|
||||
by writing the *next* pointer at the beginning of each slot, and the head of the
|
||||
list is written in the metadata struct.
|
||||
|
||||
However, writing a pointer in each free slot of a newly allocated span would
|
||||
require committing and faulting in physical pages upfront, which would be
|
||||
unacceptable. Therefore, PartitionAlloc has a concept of *provisioning slots*.
|
||||
Only provisioned slots are chained into the freelist.
|
||||
Once provisioned slots in a span are depleted, then another page worth of slots
|
||||
is provisioned (note, a slot that crosses a page boundary only gets
|
||||
provisioned with slots of the next page). See
|
||||
`PartitionBucket::ProvisionMoreSlotsAndAllocOne()` for more details.
|
||||
|
||||
Freelist pointers are stored at the beginning of each free slot. As such, they
|
||||
are the only metadata that is inline, i.e. stored among the
|
||||
objects. This makes them prone to overruns. On little-endian systems, the
|
||||
pointers are encoded by reversing byte order, so that partial overruns will very
|
||||
likely result in destroying the pointer, as opposed to forming a valid pointer
|
||||
to a nearby location.
|
||||
|
||||
Furthermore, a shadow of a freelist pointer is stored next to it, encoded in a
|
||||
different manner. This helps PartitionAlloc detect corruptions.
|
||||
|
||||
### Slot Span States
|
||||
|
||||
A slot span can be in any of 4 states:
|
||||
* *Full*. A full span has no free slots.
|
||||
* *Empty*. An empty span has no allocated slots, only free slots.
|
||||
* *Active*. An active span is anything in between the above two.
|
||||
* *Decommitted*. A decommitted span is a special case of an empty span, where
|
||||
all pages are decommitted from memory.
|
||||
|
||||
PartitionAlloc prioritizes getting an available slot from an active span, over
|
||||
an empty one, in hope that the latter can be soon transitioned into a
|
||||
decommitted state, thus releasing memory. There is no mechanism, however, to
|
||||
prioritize selection of a slot span based on the number of already allocated
|
||||
slots.
|
||||
|
||||
An empty span becomes decommitted either when there are too many empty spans
|
||||
(FIFO), or when `PartitionRoot::PurgeMemory()` gets invoked periodically (or in
|
||||
low memory pressure conditions). An allocation can be satisfied from
|
||||
a decommitted span if there are no active or empty spans available. The slot
|
||||
provisioning mechanism kicks back in, committing the pages gradually as needed,
|
||||
and the span becomes active. (There is currently no other way
|
||||
to unprovision slots than decommitting the entire span).
|
||||
|
||||
As mentioned above, a bucket is a collection of slot spans containing slots of
|
||||
the same size. In fact, each bucket has 3 linked-lists, chaining active, empty
|
||||
and decommitted spans (see `PartitionBucket::*_slot_spans_head`).
|
||||
There is no need for a full span list. The lists are updated lazily. An empty,
|
||||
decommitted or full span may stay on the active list for some time, until
|
||||
`PartitionBucket::SetNewActiveSlotSpan()` encounters it.
|
||||
A decommitted span may stay on the empty list for some time,
|
||||
until `PartitionBucket<thread_safe>::SlowPathAlloc()` encounters it. However,
|
||||
the inaccuracy can't happen in the other direction, i.e. an active span can only
|
||||
be on the active list, and an empty span can only be on the active or empty
|
||||
list.
|
||||
|
||||
[PartitionPage]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_page.h;l=314;drc=e5b03e85ea180d1d1ab0dec471c7fd5d1706a9e4
|
||||
[SlotSpanMetadata]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_page.h;l=120;drc=e5b03e85ea180d1d1ab0dec471c7fd5d1706a9e4
|
||||
[SubsequentPageMetadata]: https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/partition_page.h;l=295;drc=e5b03e85ea180d1d1ab0dec471c7fd5d1706a9e4
|
552
src/base/allocator/partition_allocator/address_pool_manager.cc
Normal file
552
src/base/allocator/partition_allocator/address_pool_manager.cc
Normal file
@ -0,0 +1,552 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/address_space_stats.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
#include "base/allocator/partition_allocator/reservation_offset_table.h"
|
||||
#include "base/lazy_instance.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
base::LazyInstance<AddressPoolManager>::Leaky g_address_pool_manager =
|
||||
LAZY_INSTANCE_INITIALIZER;
|
||||
|
||||
} // namespace
|
||||
|
||||
// static
|
||||
AddressPoolManager* AddressPoolManager::GetInstance() {
|
||||
return g_address_pool_manager.Pointer();
|
||||
}
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace {
|
||||
|
||||
// This will crash if the range cannot be decommitted.
|
||||
void DecommitPages(uintptr_t address, size_t size) {
|
||||
// Callers rely on the pages being zero-initialized when recommitting them.
|
||||
// |DecommitSystemPages| doesn't guarantee this on all operating systems, in
|
||||
// particular on macOS, but |DecommitAndZeroSystemPages| does.
|
||||
DecommitAndZeroSystemPages(address, size);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
pool_handle AddressPoolManager::Add(uintptr_t ptr, size_t length) {
|
||||
PA_DCHECK(!(ptr & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!((ptr + length) & kSuperPageOffsetMask));
|
||||
|
||||
for (pool_handle i = 0; i < std::size(pools_); ++i) {
|
||||
if (!pools_[i].IsInitialized()) {
|
||||
pools_[i].Initialize(ptr, length);
|
||||
return i + 1;
|
||||
}
|
||||
}
|
||||
PA_NOTREACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void AddressPoolManager::GetPoolUsedSuperPages(
|
||||
pool_handle handle,
|
||||
std::bitset<kMaxSuperPagesInPool>& used) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!pool)
|
||||
return;
|
||||
|
||||
pool->GetUsedSuperPages(used);
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::GetPoolBaseAddress(pool_handle handle) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!pool)
|
||||
return 0;
|
||||
|
||||
return pool->GetBaseAddress();
|
||||
}
|
||||
|
||||
void AddressPoolManager::ResetForTesting() {
|
||||
for (pool_handle i = 0; i < std::size(pools_); ++i)
|
||||
pools_[i].Reset();
|
||||
}
|
||||
|
||||
void AddressPoolManager::Remove(pool_handle handle) {
|
||||
Pool* pool = GetPool(handle);
|
||||
PA_DCHECK(pool->IsInitialized());
|
||||
pool->Reset();
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Reserve(pool_handle handle,
|
||||
uintptr_t requested_address,
|
||||
size_t length) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!requested_address)
|
||||
return pool->FindChunk(length);
|
||||
const bool is_available = pool->TryReserveChunk(requested_address, length);
|
||||
if (is_available)
|
||||
return requested_address;
|
||||
return pool->FindChunk(length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::UnreserveAndDecommit(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
PA_DCHECK(0 < handle && handle <= kNumPools);
|
||||
Pool* pool = GetPool(handle);
|
||||
PA_DCHECK(pool->IsInitialized());
|
||||
DecommitPages(address, length);
|
||||
pool->FreeChunk(address, length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::Initialize(uintptr_t ptr, size_t length) {
|
||||
PA_CHECK(ptr != 0);
|
||||
PA_CHECK(!(ptr & kSuperPageOffsetMask));
|
||||
PA_CHECK(!(length & kSuperPageOffsetMask));
|
||||
address_begin_ = ptr;
|
||||
#if DCHECK_IS_ON()
|
||||
address_end_ = ptr + length;
|
||||
PA_DCHECK(address_begin_ < address_end_);
|
||||
#endif
|
||||
|
||||
total_bits_ = length / kSuperPageSize;
|
||||
PA_CHECK(total_bits_ <= kMaxSuperPagesInPool);
|
||||
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
alloc_bitset_.reset();
|
||||
bit_hint_ = 0;
|
||||
}
|
||||
|
||||
bool AddressPoolManager::Pool::IsInitialized() {
|
||||
return address_begin_ != 0;
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::Reset() {
|
||||
address_begin_ = 0;
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::GetUsedSuperPages(
|
||||
std::bitset<kMaxSuperPagesInPool>& used) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
|
||||
PA_DCHECK(IsInitialized());
|
||||
used = alloc_bitset_;
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Pool::GetBaseAddress() {
|
||||
PA_DCHECK(IsInitialized());
|
||||
return address_begin_;
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Pool::FindChunk(size_t requested_size) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
|
||||
PA_DCHECK(!(requested_size & kSuperPageOffsetMask));
|
||||
const size_t need_bits = requested_size >> kSuperPageShift;
|
||||
|
||||
// Use first-fit policy to find an available chunk from free chunks. Start
|
||||
// from |bit_hint_|, because we know there are no free chunks before.
|
||||
size_t beg_bit = bit_hint_;
|
||||
size_t curr_bit = bit_hint_;
|
||||
while (true) {
|
||||
// |end_bit| points 1 past the last bit that needs to be 0. If it goes past
|
||||
// |total_bits_|, return |nullptr| to signal no free chunk was found.
|
||||
size_t end_bit = beg_bit + need_bits;
|
||||
if (end_bit > total_bits_)
|
||||
return 0;
|
||||
|
||||
bool found = true;
|
||||
for (; curr_bit < end_bit; ++curr_bit) {
|
||||
if (alloc_bitset_.test(curr_bit)) {
|
||||
// The bit was set, so this chunk isn't entirely free. Set |found=false|
|
||||
// to ensure the outer loop continues. However, continue the inner loop
|
||||
// to set |beg_bit| just past the last set bit in the investigated
|
||||
// chunk. |curr_bit| is advanced all the way to |end_bit| to prevent the
|
||||
// next outer loop pass from checking the same bits.
|
||||
beg_bit = curr_bit + 1;
|
||||
found = false;
|
||||
if (bit_hint_ == curr_bit)
|
||||
++bit_hint_;
|
||||
}
|
||||
}
|
||||
|
||||
// An entire [beg_bit;end_bit) region of 0s was found. Fill them with 1s (to
|
||||
// mark as allocated) and return the allocated address.
|
||||
if (found) {
|
||||
for (size_t i = beg_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(!alloc_bitset_.test(i));
|
||||
alloc_bitset_.set(i);
|
||||
}
|
||||
if (bit_hint_ == beg_bit) {
|
||||
bit_hint_ = end_bit;
|
||||
}
|
||||
uintptr_t address = address_begin_ + beg_bit * kSuperPageSize;
|
||||
#if DCHECK_IS_ON()
|
||||
PA_DCHECK(address + requested_size <= address_end_);
|
||||
#endif
|
||||
return address;
|
||||
}
|
||||
}
|
||||
|
||||
PA_NOTREACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool AddressPoolManager::Pool::TryReserveChunk(uintptr_t address,
|
||||
size_t requested_size) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
PA_DCHECK(!(address & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!(requested_size & kSuperPageOffsetMask));
|
||||
const size_t begin_bit = (address - address_begin_) / kSuperPageSize;
|
||||
const size_t need_bits = requested_size / kSuperPageSize;
|
||||
const size_t end_bit = begin_bit + need_bits;
|
||||
// Check that requested address is not too high.
|
||||
if (end_bit > total_bits_)
|
||||
return false;
|
||||
// Check if any bit of the requested region is set already.
|
||||
for (size_t i = begin_bit; i < end_bit; ++i) {
|
||||
if (alloc_bitset_.test(i))
|
||||
return false;
|
||||
}
|
||||
// Otherwise, set the bits.
|
||||
for (size_t i = begin_bit; i < end_bit; ++i) {
|
||||
alloc_bitset_.set(i);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::FreeChunk(uintptr_t address, size_t free_size) {
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
|
||||
PA_DCHECK(!(address & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!(free_size & kSuperPageOffsetMask));
|
||||
|
||||
PA_DCHECK(address_begin_ <= address);
|
||||
#if DCHECK_IS_ON()
|
||||
PA_DCHECK(address + free_size <= address_end_);
|
||||
#endif
|
||||
|
||||
const size_t beg_bit = (address - address_begin_) / kSuperPageSize;
|
||||
const size_t end_bit = beg_bit + free_size / kSuperPageSize;
|
||||
for (size_t i = beg_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(alloc_bitset_.test(i));
|
||||
alloc_bitset_.reset(i);
|
||||
}
|
||||
bit_hint_ = std::min(bit_hint_, beg_bit);
|
||||
}
|
||||
|
||||
void AddressPoolManager::Pool::GetStats(PoolStats* stats) {
|
||||
std::bitset<kMaxSuperPagesInPool> pages;
|
||||
size_t i;
|
||||
{
|
||||
ScopedGuard scoped_lock(lock_);
|
||||
pages = alloc_bitset_;
|
||||
i = bit_hint_;
|
||||
}
|
||||
|
||||
stats->usage = pages.count();
|
||||
|
||||
size_t largest_run = 0;
|
||||
size_t current_run = 0;
|
||||
for (; i < total_bits_; ++i) {
|
||||
if (!pages[i]) {
|
||||
current_run += 1;
|
||||
continue;
|
||||
} else if (current_run > largest_run) {
|
||||
largest_run = current_run;
|
||||
}
|
||||
current_run = 0;
|
||||
}
|
||||
|
||||
// Fell out of the loop with last bit being zero. Check once more.
|
||||
if (current_run > largest_run) {
|
||||
largest_run = current_run;
|
||||
}
|
||||
stats->largest_available_reservation = largest_run;
|
||||
}
|
||||
|
||||
AddressPoolManager::Pool::Pool() = default;
|
||||
AddressPoolManager::Pool::~Pool() = default;
|
||||
|
||||
void AddressPoolManager::GetPoolStats(const pool_handle handle,
|
||||
PoolStats* stats) {
|
||||
Pool* pool = GetPool(handle);
|
||||
if (!pool->IsInitialized()) {
|
||||
return;
|
||||
}
|
||||
pool->GetStats(stats);
|
||||
}
|
||||
|
||||
bool AddressPoolManager::GetStats(AddressSpaceStats* stats) {
|
||||
// Get 64-bit pool stats.
|
||||
GetPoolStats(GetRegularPool(), &stats->regular_pool_stats);
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
GetPoolStats(GetBRPPool(), &stats->brp_pool_stats);
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
if (IsConfigurablePoolAvailable()) {
|
||||
GetPoolStats(GetConfigurablePool(), &stats->configurable_pool_stats);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#else // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
static_assert(
|
||||
kSuperPageSize % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap ==
|
||||
0,
|
||||
"kSuperPageSize must be a multiple of kBytesPer1BitOfBRPPoolBitmap.");
|
||||
static_assert(
|
||||
kSuperPageSize / AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap > 0,
|
||||
"kSuperPageSize must be larger than kBytesPer1BitOfBRPPoolBitmap.");
|
||||
static_assert(AddressPoolManagerBitmap::kGuardBitsOfBRPPoolBitmap >=
|
||||
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap,
|
||||
"kGuardBitsOfBRPPoolBitmap must be larger than or equal to "
|
||||
"kGuardOffsetOfBRPPoolBitmap.");
|
||||
|
||||
template <size_t bitsize>
|
||||
void SetBitmap(std::bitset<bitsize>& bitmap,
|
||||
size_t start_bit,
|
||||
size_t bit_length) {
|
||||
const size_t end_bit = start_bit + bit_length;
|
||||
PA_DCHECK(start_bit <= bitsize);
|
||||
PA_DCHECK(end_bit <= bitsize);
|
||||
|
||||
for (size_t i = start_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(!bitmap.test(i));
|
||||
bitmap.set(i);
|
||||
}
|
||||
}
|
||||
|
||||
template <size_t bitsize>
|
||||
void ResetBitmap(std::bitset<bitsize>& bitmap,
|
||||
size_t start_bit,
|
||||
size_t bit_length) {
|
||||
const size_t end_bit = start_bit + bit_length;
|
||||
PA_DCHECK(start_bit <= bitsize);
|
||||
PA_DCHECK(end_bit <= bitsize);
|
||||
|
||||
for (size_t i = start_bit; i < end_bit; ++i) {
|
||||
PA_DCHECK(bitmap.test(i));
|
||||
bitmap.reset(i);
|
||||
}
|
||||
}
|
||||
|
||||
uintptr_t AddressPoolManager::Reserve(pool_handle handle,
|
||||
uintptr_t requested_address,
|
||||
size_t length) {
|
||||
PA_DCHECK(!(length & DirectMapAllocationGranularityOffsetMask()));
|
||||
uintptr_t address = AllocPages(requested_address, length, kSuperPageSize,
|
||||
PageAccessibilityConfiguration::kInaccessible,
|
||||
PageTag::kPartitionAlloc);
|
||||
return address;
|
||||
}
|
||||
|
||||
void AddressPoolManager::UnreserveAndDecommit(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
PA_DCHECK(!(address & kSuperPageOffsetMask));
|
||||
PA_DCHECK(!(length & DirectMapAllocationGranularityOffsetMask()));
|
||||
FreePages(address, length);
|
||||
}
|
||||
|
||||
void AddressPoolManager::MarkUsed(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
ScopedGuard scoped_lock(AddressPoolManagerBitmap::GetLock());
|
||||
// When USE_BACKUP_REF_PTR is off, BRP pool isn't used.
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
if (handle == kBRPPoolHandle) {
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap) == 0);
|
||||
|
||||
// Make IsManagedByBRPPoolPool() return false when an address inside the
|
||||
// first or the last PartitionPageSize()-bytes block is given:
|
||||
//
|
||||
// ------+---+---------------+---+----
|
||||
// memory ..... | B | managed by PA | B | ...
|
||||
// regions ------+---+---------------+---+----
|
||||
//
|
||||
// B: PartitionPageSize()-bytes block. This is used internally by the
|
||||
// allocator and is not available for callers.
|
||||
//
|
||||
// This is required to avoid crash caused by the following code:
|
||||
// {
|
||||
// // Assume this allocation happens outside of PartitionAlloc.
|
||||
// raw_ptr<T> ptr = new T[20];
|
||||
// for (size_t i = 0; i < 20; i ++) { ptr++; }
|
||||
// // |ptr| may point to an address inside 'B'.
|
||||
// }
|
||||
//
|
||||
// Suppose that |ptr| points to an address inside B after the loop. If
|
||||
// IsManagedByBRPPoolPool(ptr) were to return true, ~raw_ptr<T>() would
|
||||
// crash, since the memory is not allocated by PartitionAlloc.
|
||||
SetBitmap(AddressPoolManagerBitmap::brp_pool_bits_,
|
||||
(address >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) +
|
||||
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap,
|
||||
(length >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) -
|
||||
AddressPoolManagerBitmap::kGuardBitsOfBRPPoolBitmap);
|
||||
} else
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
{
|
||||
PA_DCHECK(handle == kRegularPoolHandle);
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap) ==
|
||||
0);
|
||||
SetBitmap(AddressPoolManagerBitmap::regular_pool_bits_,
|
||||
address >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap,
|
||||
length >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap);
|
||||
}
|
||||
}
|
||||
|
||||
void AddressPoolManager::MarkUnused(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length) {
|
||||
// Address regions allocated for normal buckets are never released, so this
|
||||
// function can only be called for direct map. However, do not DCHECK on
|
||||
// IsManagedByDirectMap(address), because many tests test this function using
|
||||
// small allocations.
|
||||
|
||||
ScopedGuard scoped_lock(AddressPoolManagerBitmap::GetLock());
|
||||
// When USE_BACKUP_REF_PTR is off, BRP pool isn't used.
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
if (handle == kBRPPoolHandle) {
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap) == 0);
|
||||
|
||||
// Make IsManagedByBRPPoolPool() return false when an address inside the
|
||||
// first or the last PartitionPageSize()-bytes block is given.
|
||||
// (See MarkUsed comment)
|
||||
ResetBitmap(
|
||||
AddressPoolManagerBitmap::brp_pool_bits_,
|
||||
(address >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) +
|
||||
AddressPoolManagerBitmap::kGuardOffsetOfBRPPoolBitmap,
|
||||
(length >> AddressPoolManagerBitmap::kBitShiftOfBRPPoolBitmap) -
|
||||
AddressPoolManagerBitmap::kGuardBitsOfBRPPoolBitmap);
|
||||
} else
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
{
|
||||
PA_DCHECK(handle == kRegularPoolHandle);
|
||||
PA_DCHECK(
|
||||
(length % AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap) ==
|
||||
0);
|
||||
ResetBitmap(
|
||||
AddressPoolManagerBitmap::regular_pool_bits_,
|
||||
address >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap,
|
||||
length >> AddressPoolManagerBitmap::kBitShiftOfRegularPoolBitmap);
|
||||
}
|
||||
}
|
||||
|
||||
void AddressPoolManager::ResetForTesting() {
|
||||
ScopedGuard guard(AddressPoolManagerBitmap::GetLock());
|
||||
AddressPoolManagerBitmap::regular_pool_bits_.reset();
|
||||
AddressPoolManagerBitmap::brp_pool_bits_.reset();
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
// Counts super pages in use represented by `bitmap`.
|
||||
template <size_t bitsize>
|
||||
size_t CountUsedSuperPages(const std::bitset<bitsize>& bitmap,
|
||||
const size_t bits_per_super_page) {
|
||||
size_t count = 0;
|
||||
size_t bit_index = 0;
|
||||
|
||||
// Stride over super pages.
|
||||
for (size_t super_page_index = 0; bit_index < bitsize; ++super_page_index) {
|
||||
// Stride over the bits comprising the super page.
|
||||
for (bit_index = super_page_index * bits_per_super_page;
|
||||
bit_index < (super_page_index + 1) * bits_per_super_page &&
|
||||
bit_index < bitsize;
|
||||
++bit_index) {
|
||||
if (bitmap[bit_index]) {
|
||||
count += 1;
|
||||
// Move on to the next super page.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
bool AddressPoolManager::GetStats(AddressSpaceStats* stats) {
|
||||
std::bitset<AddressPoolManagerBitmap::kRegularPoolBits> regular_pool_bits;
|
||||
std::bitset<AddressPoolManagerBitmap::kBRPPoolBits> brp_pool_bits;
|
||||
{
|
||||
ScopedGuard scoped_lock(AddressPoolManagerBitmap::GetLock());
|
||||
regular_pool_bits = AddressPoolManagerBitmap::regular_pool_bits_;
|
||||
brp_pool_bits = AddressPoolManagerBitmap::brp_pool_bits_;
|
||||
} // scoped_lock
|
||||
|
||||
// Pool usage is read out from the address pool bitmaps.
|
||||
// The output stats are sized in super pages, so we interpret
|
||||
// the bitmaps into super page usage.
|
||||
static_assert(
|
||||
kSuperPageSize %
|
||||
AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap ==
|
||||
0,
|
||||
"information loss when calculating metrics");
|
||||
constexpr size_t kRegularPoolBitsPerSuperPage =
|
||||
kSuperPageSize /
|
||||
AddressPoolManagerBitmap::kBytesPer1BitOfRegularPoolBitmap;
|
||||
|
||||
// Get 32-bit pool usage.
|
||||
stats->regular_pool_stats.usage =
|
||||
CountUsedSuperPages(regular_pool_bits, kRegularPoolBitsPerSuperPage);
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
static_assert(
|
||||
kSuperPageSize % AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap ==
|
||||
0,
|
||||
"information loss when calculating metrics");
|
||||
constexpr size_t kBRPPoolBitsPerSuperPage =
|
||||
kSuperPageSize / AddressPoolManagerBitmap::kBytesPer1BitOfBRPPoolBitmap;
|
||||
stats->brp_pool_stats.usage =
|
||||
CountUsedSuperPages(brp_pool_bits, kBRPPoolBitsPerSuperPage);
|
||||
|
||||
// Get blocklist size.
|
||||
for (const auto& blocked :
|
||||
AddressPoolManagerBitmap::brp_forbidden_super_page_map_) {
|
||||
if (blocked.load(std::memory_order_relaxed))
|
||||
stats->blocklist_size += 1;
|
||||
}
|
||||
|
||||
// Count failures in finding non-blocklisted addresses.
|
||||
stats->blocklist_hit_count =
|
||||
AddressPoolManagerBitmap::blocklist_hit_count_.load(
|
||||
std::memory_order_relaxed);
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
void AddressPoolManager::DumpStats(AddressSpaceStatsDumper* dumper) {
|
||||
AddressSpaceStats stats{};
|
||||
if (GetStats(&stats)) {
|
||||
dumper->DumpStats(&stats);
|
||||
}
|
||||
}
|
||||
|
||||
AddressPoolManager::AddressPoolManager() = default;
|
||||
AddressPoolManager::~AddressPoolManager() = default;
|
||||
|
||||
} // namespace partition_alloc::internal
|
189
src/base/allocator/partition_allocator/address_pool_manager.h
Normal file
189
src/base/allocator/partition_allocator/address_pool_manager.h
Normal file
@ -0,0 +1,189 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_H_
|
||||
|
||||
#include <bitset>
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager_bitmap.h"
|
||||
#include "base/allocator/partition_allocator/address_pool_manager_types.h"
|
||||
#include "base/allocator/partition_allocator/partition_address_space.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "base/thread_annotations.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
template <typename Type>
|
||||
struct LazyInstanceTraitsBase;
|
||||
|
||||
} // namespace base
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
class AddressSpaceStatsDumper;
|
||||
struct AddressSpaceStats;
|
||||
struct PoolStats;
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// (64bit version)
|
||||
// AddressPoolManager takes a reserved virtual address space and manages address
|
||||
// space allocation.
|
||||
//
|
||||
// AddressPoolManager (currently) supports up to 3 pools. Each pool manages a
|
||||
// contiguous reserved address space. Alloc() takes a pool_handle and returns
|
||||
// address regions from the specified pool. Free() also takes a pool_handle and
|
||||
// returns the address region back to the manager.
|
||||
//
|
||||
// (32bit version)
|
||||
// AddressPoolManager wraps AllocPages and FreePages and remembers allocated
|
||||
// address regions using bitmaps. IsManagedByPartitionAllocBRPPool and
|
||||
// IsManagedByPartitionAllocRegularPool use the bitmaps to judge whether a given
|
||||
// address is in a pool that supports BackupRefPtr or in a pool that doesn't.
|
||||
// All PartitionAlloc allocations must be in either of the pools.
|
||||
class BASE_EXPORT AddressPoolManager {
|
||||
public:
|
||||
static AddressPoolManager* GetInstance();
|
||||
|
||||
AddressPoolManager(const AddressPoolManager&) = delete;
|
||||
AddressPoolManager& operator=(const AddressPoolManager&) = delete;
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
pool_handle Add(uintptr_t address, size_t length);
|
||||
void Remove(pool_handle handle);
|
||||
|
||||
// Populate a |used| bitset of superpages currently in use.
|
||||
void GetPoolUsedSuperPages(pool_handle handle,
|
||||
std::bitset<kMaxSuperPagesInPool>& used);
|
||||
|
||||
// Return the base address of a pool.
|
||||
uintptr_t GetPoolBaseAddress(pool_handle handle);
|
||||
#endif
|
||||
|
||||
// Reserves address space from GigaCage.
|
||||
uintptr_t Reserve(pool_handle handle,
|
||||
uintptr_t requested_address,
|
||||
size_t length);
|
||||
|
||||
// Frees address space back to GigaCage and decommits underlying system pages.
|
||||
void UnreserveAndDecommit(pool_handle handle,
|
||||
uintptr_t address,
|
||||
size_t length);
|
||||
void ResetForTesting();
|
||||
|
||||
#if !defined(PA_HAS_64_BITS_POINTERS)
|
||||
void MarkUsed(pool_handle handle, uintptr_t address, size_t size);
|
||||
void MarkUnused(pool_handle handle, uintptr_t address, size_t size);
|
||||
|
||||
static bool IsManagedByRegularPool(uintptr_t address) {
|
||||
return AddressPoolManagerBitmap::IsManagedByRegularPool(address);
|
||||
}
|
||||
|
||||
static bool IsManagedByBRPPool(uintptr_t address) {
|
||||
return AddressPoolManagerBitmap::IsManagedByBRPPool(address);
|
||||
}
|
||||
#endif // !defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
void DumpStats(AddressSpaceStatsDumper* dumper);
|
||||
|
||||
private:
|
||||
friend class AddressPoolManagerForTesting;
|
||||
|
||||
AddressPoolManager();
|
||||
~AddressPoolManager();
|
||||
|
||||
// Populates `stats` if applicable.
|
||||
// Returns whether `stats` was populated. (They might not be, e.g.
|
||||
// if PartitionAlloc is wholly unused in this process.)
|
||||
bool GetStats(AddressSpaceStats* stats);
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
class Pool {
|
||||
public:
|
||||
Pool();
|
||||
~Pool();
|
||||
|
||||
void Initialize(uintptr_t ptr, size_t length);
|
||||
bool IsInitialized();
|
||||
void Reset();
|
||||
|
||||
uintptr_t FindChunk(size_t size);
|
||||
void FreeChunk(uintptr_t address, size_t size);
|
||||
|
||||
bool TryReserveChunk(uintptr_t address, size_t size);
|
||||
|
||||
void GetUsedSuperPages(std::bitset<kMaxSuperPagesInPool>& used);
|
||||
uintptr_t GetBaseAddress();
|
||||
|
||||
void GetStats(PoolStats* stats);
|
||||
|
||||
private:
|
||||
Lock lock_;
|
||||
|
||||
// The bitset stores the allocation state of the address pool. 1 bit per
|
||||
// super-page: 1 = allocated, 0 = free.
|
||||
std::bitset<kMaxSuperPagesInPool> alloc_bitset_ GUARDED_BY(lock_);
|
||||
|
||||
// An index of a bit in the bitset before which we know for sure there all
|
||||
// 1s. This is a best-effort hint in the sense that there still may be lots
|
||||
// of 1s after this index, but at least we know there is no point in
|
||||
// starting the search before it.
|
||||
size_t bit_hint_ GUARDED_BY(lock_);
|
||||
|
||||
size_t total_bits_ = 0;
|
||||
uintptr_t address_begin_ = 0;
|
||||
#if DCHECK_IS_ON()
|
||||
uintptr_t address_end_ = 0;
|
||||
#endif
|
||||
};
|
||||
|
||||
ALWAYS_INLINE Pool* GetPool(pool_handle handle) {
|
||||
PA_DCHECK(0 < handle && handle <= kNumPools);
|
||||
return &pools_[handle - 1];
|
||||
}
|
||||
|
||||
// Gets the stats for the pool identified by `handle`, if
|
||||
// initialized.
|
||||
void GetPoolStats(pool_handle handle, PoolStats* stats);
|
||||
|
||||
Pool pools_[kNumPools];
|
||||
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
friend struct base::LazyInstanceTraitsBase<AddressPoolManager>;
|
||||
};
|
||||
|
||||
ALWAYS_INLINE pool_handle GetRegularPool() {
|
||||
return kRegularPoolHandle;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE pool_handle GetBRPPool() {
|
||||
return kBRPPoolHandle;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE pool_handle GetConfigurablePool() {
|
||||
PA_DCHECK(IsConfigurablePoolAvailable());
|
||||
return kConfigurablePoolHandle;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
namespace base::internal {
|
||||
|
||||
using ::partition_alloc::internal::AddressPoolManager;
|
||||
using ::partition_alloc::internal::GetBRPPool;
|
||||
using ::partition_alloc::internal::GetConfigurablePool;
|
||||
using ::partition_alloc::internal::GetRegularPool;
|
||||
|
||||
} // namespace base::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_H_
|
@ -0,0 +1,37 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager_bitmap.h"
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
|
||||
#if !defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
Lock g_lock;
|
||||
|
||||
} // namespace
|
||||
|
||||
Lock& AddressPoolManagerBitmap::GetLock() {
|
||||
return g_lock;
|
||||
}
|
||||
|
||||
std::bitset<AddressPoolManagerBitmap::kRegularPoolBits>
|
||||
AddressPoolManagerBitmap::regular_pool_bits_; // GUARDED_BY(GetLock())
|
||||
std::bitset<AddressPoolManagerBitmap::kBRPPoolBits>
|
||||
AddressPoolManagerBitmap::brp_pool_bits_; // GUARDED_BY(GetLock())
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
std::array<std::atomic_bool,
|
||||
AddressPoolManagerBitmap::kAddressSpaceSize / kSuperPageSize>
|
||||
AddressPoolManagerBitmap::brp_forbidden_super_page_map_;
|
||||
std::atomic_size_t AddressPoolManagerBitmap::blocklist_hit_count_;
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // !defined(PA_HAS_64_BITS_POINTERS)
|
@ -0,0 +1,205 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_BITMAP_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_BITMAP_H_
|
||||
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <bitset>
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if !defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// AddressPoolManagerBitmap is a set of bitmaps that track whether a given
|
||||
// address is in a pool that supports BackupRefPtr, or in a pool that doesn't
|
||||
// support it. All PartitionAlloc allocations must be in either of the pools.
|
||||
//
|
||||
// This code is specific to 32-bit systems.
|
||||
class BASE_EXPORT AddressPoolManagerBitmap {
|
||||
public:
|
||||
static constexpr uint64_t kGiB = 1024 * 1024 * 1024ull;
|
||||
static constexpr uint64_t kAddressSpaceSize = 4ull * kGiB;
|
||||
|
||||
// For BRP pool, we use partition page granularity to eliminate the guard
|
||||
// pages from the bitmap at the ends:
|
||||
// - Eliminating the guard page at the beginning is needed so that pointers
|
||||
// to the end of an allocation that immediately precede a super page in BRP
|
||||
// pool don't accidentally fall into that pool.
|
||||
// - Eliminating the guard page at the end is to ensure that the last page
|
||||
// of the address space isn't in the BRP pool. This allows using sentinels
|
||||
// like reinterpret_cast<void*>(-1) without a risk of triggering BRP logic
|
||||
// on an invalid address. (Note, 64-bit systems don't have this problem as
|
||||
// the upper half of the address space always belongs to the OS.)
|
||||
//
|
||||
// Note, direct map allocations also belong to this pool. The same logic as
|
||||
// above applies. It is important to note, however, that the granularity used
|
||||
// here has to be a minimum of partition page size and direct map allocation
|
||||
// granularity. Since DirectMapAllocationGranularity() is no smaller than
|
||||
// PageAllocationGranularity(), we don't need to decrease the bitmap
|
||||
// granularity any further.
|
||||
static constexpr size_t kBitShiftOfBRPPoolBitmap = PartitionPageShift();
|
||||
static constexpr size_t kBytesPer1BitOfBRPPoolBitmap = PartitionPageSize();
|
||||
static_assert(kBytesPer1BitOfBRPPoolBitmap == 1 << kBitShiftOfBRPPoolBitmap,
|
||||
"");
|
||||
static constexpr size_t kGuardOffsetOfBRPPoolBitmap = 1;
|
||||
static constexpr size_t kGuardBitsOfBRPPoolBitmap = 2;
|
||||
static constexpr size_t kBRPPoolBits =
|
||||
kAddressSpaceSize / kBytesPer1BitOfBRPPoolBitmap;
|
||||
|
||||
// Regular pool may include both normal bucket and direct map allocations, so
|
||||
// the bitmap granularity has to be at least as small as
|
||||
// DirectMapAllocationGranularity(). No need to eliminate guard pages at the
|
||||
// ends, as this is a BackupRefPtr-specific concern, hence no need to lower
|
||||
// the granularity to partition page size.
|
||||
static constexpr size_t kBitShiftOfRegularPoolBitmap =
|
||||
DirectMapAllocationGranularityShift();
|
||||
static constexpr size_t kBytesPer1BitOfRegularPoolBitmap =
|
||||
DirectMapAllocationGranularity();
|
||||
static_assert(kBytesPer1BitOfRegularPoolBitmap ==
|
||||
1 << kBitShiftOfRegularPoolBitmap,
|
||||
"");
|
||||
static constexpr size_t kRegularPoolBits =
|
||||
kAddressSpaceSize / kBytesPer1BitOfRegularPoolBitmap;
|
||||
|
||||
// Returns false for nullptr.
|
||||
static bool IsManagedByRegularPool(uintptr_t address) {
|
||||
static_assert(
|
||||
std::numeric_limits<uintptr_t>::max() >> kBitShiftOfRegularPoolBitmap <
|
||||
regular_pool_bits_.size(),
|
||||
"The bitmap is too small, will result in unchecked out of bounds "
|
||||
"accesses.");
|
||||
// It is safe to read |regular_pool_bits_| without a lock since the caller
|
||||
// is responsible for guaranteeing that the address is inside a valid
|
||||
// allocation and the deallocation call won't race with this call.
|
||||
return TS_UNCHECKED_READ(
|
||||
regular_pool_bits_)[address >> kBitShiftOfRegularPoolBitmap];
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
static bool IsManagedByBRPPool(uintptr_t address) {
|
||||
static_assert(std::numeric_limits<uintptr_t>::max() >>
|
||||
kBitShiftOfBRPPoolBitmap < brp_pool_bits_.size(),
|
||||
"The bitmap is too small, will result in unchecked out of "
|
||||
"bounds accesses.");
|
||||
// It is safe to read |brp_pool_bits_| without a lock since the caller
|
||||
// is responsible for guaranteeing that the address is inside a valid
|
||||
// allocation and the deallocation call won't race with this call.
|
||||
return TS_UNCHECKED_READ(
|
||||
brp_pool_bits_)[address >> kBitShiftOfBRPPoolBitmap];
|
||||
}
|
||||
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
static void BanSuperPageFromBRPPool(uintptr_t address) {
|
||||
brp_forbidden_super_page_map_[address >> kSuperPageShift].store(
|
||||
true, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
static bool IsAllowedSuperPageForBRPPool(uintptr_t address) {
|
||||
// The only potentially dangerous scenario, in which this check is used, is
|
||||
// when the assignment of the first raw_ptr<T> object for a non-GigaCage
|
||||
// address is racing with the allocation of a new GigCage super-page at the
|
||||
// same address. We assume that if raw_ptr<T> is being initialized with a
|
||||
// raw pointer, the associated allocation is "alive"; otherwise, the issue
|
||||
// should be fixed by rewriting the raw pointer variable as raw_ptr<T>.
|
||||
// In the worst case, when such a fix is impossible, we should just undo the
|
||||
// raw pointer -> raw_ptr<T> rewrite of the problematic field. If the
|
||||
// above assumption holds, the existing allocation will prevent us from
|
||||
// reserving the super-page region and, thus, having the race condition.
|
||||
// Since we rely on that external synchronization, the relaxed memory
|
||||
// ordering should be sufficient.
|
||||
return !brp_forbidden_super_page_map_[address >> kSuperPageShift].load(
|
||||
std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
static void IncrementBlocklistHitCount() { ++blocklist_hit_count_; }
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
|
||||
private:
|
||||
friend class AddressPoolManager;
|
||||
|
||||
static Lock& GetLock();
|
||||
|
||||
static std::bitset<kRegularPoolBits> regular_pool_bits_ GUARDED_BY(GetLock());
|
||||
static std::bitset<kBRPPoolBits> brp_pool_bits_ GUARDED_BY(GetLock());
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
static std::array<std::atomic_bool, kAddressSpaceSize / kSuperPageSize>
|
||||
brp_forbidden_super_page_map_;
|
||||
static std::atomic_size_t blocklist_hit_count_;
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Returns false for nullptr.
|
||||
ALWAYS_INLINE bool IsManagedByPartitionAlloc(uintptr_t address) {
|
||||
// When USE_BACKUP_REF_PTR is off, BRP pool isn't used.
|
||||
// No need to add IsManagedByConfigurablePool, because Configurable Pool
|
||||
// doesn't exist on 32-bit.
|
||||
#if !BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
PA_DCHECK(!internal::AddressPoolManagerBitmap::IsManagedByBRPPool(address));
|
||||
#endif
|
||||
return internal::AddressPoolManagerBitmap::IsManagedByRegularPool(address)
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
|| internal::AddressPoolManagerBitmap::IsManagedByBRPPool(address)
|
||||
#endif
|
||||
;
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
ALWAYS_INLINE bool IsManagedByPartitionAllocRegularPool(uintptr_t address) {
|
||||
return internal::AddressPoolManagerBitmap::IsManagedByRegularPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
ALWAYS_INLINE bool IsManagedByPartitionAllocBRPPool(uintptr_t address) {
|
||||
return internal::AddressPoolManagerBitmap::IsManagedByBRPPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
ALWAYS_INLINE bool IsManagedByPartitionAllocConfigurablePool(
|
||||
uintptr_t address) {
|
||||
// The Configurable Pool is only available on 64-bit builds.
|
||||
return false;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE bool IsConfigurablePoolAvailable() {
|
||||
// The Configurable Pool is only available on 64-bit builds.
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::IsConfigurablePoolAvailable;
|
||||
using ::partition_alloc::IsManagedByPartitionAlloc;
|
||||
using ::partition_alloc::IsManagedByPartitionAllocBRPPool;
|
||||
using ::partition_alloc::IsManagedByPartitionAllocConfigurablePool;
|
||||
using ::partition_alloc::IsManagedByPartitionAllocRegularPool;
|
||||
|
||||
namespace internal {
|
||||
|
||||
using ::partition_alloc::internal::AddressPoolManagerBitmap;
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // !defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_BITMAP_H_
|
@ -0,0 +1,22 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_TYPES_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_TYPES_H_
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
using pool_handle = unsigned;
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
namespace base::internal {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::internal::pool_handle;
|
||||
|
||||
} // namespace base::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_POOL_MANAGER_TYPES_H_
|
@ -0,0 +1,66 @@
|
||||
// Copyright 2014 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/address_space_randomization.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/random.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include <windows.h> // Must be in front of other Windows header files.
|
||||
|
||||
#include <versionhelpers.h>
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
uintptr_t GetRandomPageBase() {
|
||||
uintptr_t random = static_cast<uintptr_t>(internal::RandomValue());
|
||||
|
||||
#if defined(ARCH_CPU_64_BITS)
|
||||
random <<= 32ULL;
|
||||
random |= static_cast<uintptr_t>(internal::RandomValue());
|
||||
|
||||
// The ASLRMask() and ASLROffset() constants will be suitable for the
|
||||
// OS and build configuration.
|
||||
#if BUILDFLAG(IS_WIN) && !defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
||||
// Windows >= 8.1 has the full 47 bits. Use them where available.
|
||||
static bool windows_81 = false;
|
||||
static bool windows_81_initialized = false;
|
||||
if (!windows_81_initialized) {
|
||||
windows_81 = IsWindows8Point1OrGreater();
|
||||
windows_81_initialized = true;
|
||||
}
|
||||
if (!windows_81) {
|
||||
random &= internal::ASLRMaskBefore8_10();
|
||||
} else {
|
||||
random &= internal::ASLRMask();
|
||||
}
|
||||
random += internal::ASLROffset();
|
||||
#else
|
||||
random &= internal::ASLRMask();
|
||||
random += internal::ASLROffset();
|
||||
#endif // BUILDFLAG(IS_WIN) && !defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
||||
#else // defined(ARCH_CPU_32_BITS)
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
// On win32 host systems the randomization plus huge alignment causes
|
||||
// excessive fragmentation. Plus most of these systems lack ASLR, so the
|
||||
// randomization isn't buying anything. In that case we just skip it.
|
||||
// TODO(palmer): Just dump the randomization when HE-ASLR is present.
|
||||
static BOOL is_wow64 = -1;
|
||||
if (is_wow64 == -1 && !IsWow64Process(GetCurrentProcess(), &is_wow64))
|
||||
is_wow64 = FALSE;
|
||||
if (!is_wow64)
|
||||
return 0;
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
random &= internal::ASLRMask();
|
||||
random += internal::ASLROffset();
|
||||
#endif // defined(ARCH_CPU_32_BITS)
|
||||
|
||||
PA_DCHECK(!(random & internal::PageAllocationGranularityOffsetMask()));
|
||||
return random;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
@ -0,0 +1,268 @@
|
||||
// Copyright 2014 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_RANDOMIZATION_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_RANDOMIZATION_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// Calculates a random preferred mapping address. In calculating an address, we
|
||||
// balance good ASLR against not fragmenting the address space too badly.
|
||||
BASE_EXPORT uintptr_t GetRandomPageBase();
|
||||
|
||||
namespace internal {
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
AslrAddress(uintptr_t mask) {
|
||||
return mask & PageAllocationGranularityBaseMask();
|
||||
}
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
AslrMask(uintptr_t bits) {
|
||||
return AslrAddress((1ULL << bits) - 1ULL);
|
||||
}
|
||||
|
||||
// Turn off formatting, because the thicket of nested ifdefs below is
|
||||
// incomprehensible without indentation. It is also incomprehensible with
|
||||
// indentation, but the only other option is a combinatorial explosion of
|
||||
// *_{win,linux,mac,foo}_{32,64}.h files.
|
||||
//
|
||||
// clang-format off
|
||||
|
||||
#if defined(ARCH_CPU_64_BITS)
|
||||
|
||||
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
|
||||
|
||||
// We shouldn't allocate system pages at all for sanitizer builds. However,
|
||||
// we do, and if random hint addresses interfere with address ranges
|
||||
// hard-coded in those tools, bad things happen. This address range is
|
||||
// copied from TSAN source but works with all tools. See
|
||||
// https://crbug.com/539863.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrAddress(0x007fffffffffULL);
|
||||
}
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
ASLROffset() {
|
||||
return AslrAddress(0x7e8000000000ULL);
|
||||
}
|
||||
|
||||
#elif BUILDFLAG(IS_WIN)
|
||||
|
||||
// Windows 8.10 and newer support the full 48 bit address range. Older
|
||||
// versions of Windows only support 44 bits. Since ASLROffset() is non-zero
|
||||
// and may cause a carry, use 47 and 43 bit masks. See
|
||||
// http://www.alex-ionescu.com/?p=246
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(47);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMaskBefore8_10() {
|
||||
return AslrMask(43);
|
||||
}
|
||||
// Try not to map pages into the range where Windows loads DLLs by default.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return 0x80000000ULL;
|
||||
}
|
||||
|
||||
#elif BUILDFLAG(IS_APPLE)
|
||||
|
||||
// macOS as of 10.12.5 does not clean up entries in page map levels 3/4
|
||||
// [PDP/PML4] created from mmap or mach_vm_allocate, even after the region
|
||||
// is destroyed. Using a virtual address space that is too large causes a
|
||||
// leak of about 1 wired [can never be paged out] page per call to mmap. The
|
||||
// page is only reclaimed when the process is killed. Confine the hint to a
|
||||
// 39-bit section of the virtual address space.
|
||||
//
|
||||
// This implementation adapted from
|
||||
// https://chromium-review.googlesource.com/c/v8/v8/+/557958. The difference
|
||||
// is that here we clamp to 39 bits, not 32.
|
||||
//
|
||||
// TODO(crbug.com/738925): Remove this limitation if/when the macOS behavior
|
||||
// changes.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
ASLRMask() {
|
||||
return AslrMask(38);
|
||||
}
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
ASLROffset() {
|
||||
return AslrAddress(0x1000000000ULL);
|
||||
}
|
||||
|
||||
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
||||
|
||||
#if defined(ARCH_CPU_X86_64)
|
||||
|
||||
// Linux (and macOS) support the full 47-bit user space of x64 processors.
|
||||
// Use only 46 to allow the kernel a chance to fulfill the request.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(46);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#elif defined(ARCH_CPU_ARM64)
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID)
|
||||
|
||||
// Restrict the address range on Android to avoid a large performance
|
||||
// regression in single-process WebViews. See https://crbug.com/837640.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x20000000ULL);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// ARM64 on Linux has 39-bit user space. Use 38 bits since ASLROffset()
|
||||
// could cause a carry.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(38);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x1000000000ULL);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#elif defined(ARCH_CPU_PPC64)
|
||||
|
||||
#if BUILDFLAG(IS_AIX)
|
||||
|
||||
// AIX has 64 bits of virtual addressing, but we limit the address range
|
||||
// to (a) minimize segment lookaside buffer (SLB) misses; and (b) use
|
||||
// extra address space to isolate the mmap regions.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x400000000000ULL);
|
||||
}
|
||||
|
||||
#elif defined(ARCH_CPU_BIG_ENDIAN)
|
||||
|
||||
// Big-endian Linux PPC has 44 bits of virtual addressing. Use 42.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(42);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#else // !BUILDFLAG(IS_AIX) && !defined(ARCH_CPU_BIG_ENDIAN)
|
||||
|
||||
// Little-endian Linux PPC has 48 bits of virtual addressing. Use 46.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(46);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#endif // !BUILDFLAG(IS_AIX) && !defined(ARCH_CPU_BIG_ENDIAN)
|
||||
|
||||
#elif defined(ARCH_CPU_S390X)
|
||||
|
||||
// Linux on Z uses bits 22 - 32 for Region Indexing, which translates to
|
||||
// 42 bits of virtual addressing. Truncate to 40 bits to allow kernel a
|
||||
// chance to fulfill the request.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(40);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#elif defined(ARCH_CPU_S390)
|
||||
|
||||
// 31 bits of virtual addressing. Truncate to 29 bits to allow the kernel
|
||||
// a chance to fulfill the request.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(29);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0);
|
||||
}
|
||||
|
||||
#else // !defined(ARCH_CPU_X86_64) && !defined(ARCH_CPU_PPC64) &&
|
||||
// !defined(ARCH_CPU_S390X) && !defined(ARCH_CPU_S390)
|
||||
|
||||
// For all other POSIX variants, use 30 bits.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_SOLARIS)
|
||||
|
||||
// For our Solaris/illumos mmap hint, we pick a random address in the
|
||||
// bottom half of the top half of the address space (that is, the third
|
||||
// quarter). Because we do not MAP_FIXED, this will be treated only as a
|
||||
// hint -- the system will not fail to mmap because something else
|
||||
// happens to already be mapped at our random address. We deliberately
|
||||
// set the hint high enough to get well above the system's break (that
|
||||
// is, the heap); Solaris and illumos will try the hint and if that
|
||||
// fails allocate as if there were no hint at all. The high hint
|
||||
// prevents the break from getting hemmed in at low values, ceding half
|
||||
// of the address space to the system heap.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x80000000ULL);
|
||||
}
|
||||
|
||||
#elif BUILDFLAG(IS_AIX)
|
||||
|
||||
// The range 0x30000000 - 0xD0000000 is available on AIX; choose the
|
||||
// upper range.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x90000000ULL);
|
||||
}
|
||||
|
||||
#else // !BUILDFLAG(IS_SOLARIS) && !BUILDFLAG(IS_AIX)
|
||||
|
||||
// The range 0x20000000 - 0x60000000 is relatively unpopulated across a
|
||||
// variety of ASLR modes (PAE kernel, NX compat mode, etc) and on macOS
|
||||
// 10.6 and 10.7.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x20000000ULL);
|
||||
}
|
||||
|
||||
#endif // !BUILDFLAG(IS_SOLARIS) && !BUILDFLAG(IS_AIX)
|
||||
|
||||
#endif // !defined(ARCH_CPU_X86_64) && !defined(ARCH_CPU_PPC64) &&
|
||||
// !defined(ARCH_CPU_S390X) && !defined(ARCH_CPU_S390)
|
||||
|
||||
#endif // BUILDFLAG(IS_POSIX)
|
||||
|
||||
#elif defined(ARCH_CPU_32_BITS)
|
||||
|
||||
// This is a good range on 32-bit Windows and Android (the only platforms on
|
||||
// which we support 32-bitness). Allocates in the 0.5 - 1.5 GiB region. There
|
||||
// is no issue with carries here.
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLRMask() {
|
||||
return AslrMask(30);
|
||||
}
|
||||
constexpr ALWAYS_INLINE uintptr_t ASLROffset() {
|
||||
return AslrAddress(0x20000000ULL);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#error Please tell us about your exotic hardware! Sounds interesting.
|
||||
|
||||
#endif // defined(ARCH_CPU_32_BITS)
|
||||
|
||||
// clang-format on
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_RANDOMIZATION_H_
|
52
src/base/allocator/partition_allocator/address_space_stats.h
Normal file
52
src/base/allocator/partition_allocator/address_space_stats.h
Normal file
@ -0,0 +1,52 @@
|
||||
// Copyright 2022 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_STATS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_STATS_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/base_export.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// All members are measured in super pages.
|
||||
struct PoolStats {
|
||||
size_t usage = 0;
|
||||
|
||||
// On 32-bit, GigaCage is mainly a logical entity, intermingled with
|
||||
// allocations not managed by PartitionAlloc. The "largest available
|
||||
// reservation" is not possible to measure in that case.
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
size_t largest_available_reservation = 0;
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
};
|
||||
|
||||
struct AddressSpaceStats {
|
||||
PoolStats regular_pool_stats;
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
PoolStats brp_pool_stats;
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
PoolStats configurable_pool_stats;
|
||||
#else
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
size_t blocklist_size; // measured in super pages
|
||||
size_t blocklist_hit_count;
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
};
|
||||
|
||||
// Interface passed to `AddressPoolManager::DumpStats()` to mediate
|
||||
// for `AddressSpaceDumpProvider`.
|
||||
class BASE_EXPORT AddressSpaceStatsDumper {
|
||||
public:
|
||||
virtual void DumpStats(const AddressSpaceStats* address_space_stats) = 0;
|
||||
};
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ADDRESS_SPACE_STATS_H_
|
41
src/base/allocator/partition_allocator/allocation_guard.cc
Normal file
41
src/base/allocator/partition_allocator/allocation_guard.cc
Normal file
@ -0,0 +1,41 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/allocation_guard.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/immediate_crash.h"
|
||||
|
||||
#if defined(PA_HAS_ALLOCATION_GUARD)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
thread_local bool g_disallow_allocations;
|
||||
} // namespace
|
||||
|
||||
ScopedDisallowAllocations::ScopedDisallowAllocations() {
|
||||
if (g_disallow_allocations)
|
||||
IMMEDIATE_CRASH();
|
||||
|
||||
g_disallow_allocations = true;
|
||||
}
|
||||
|
||||
ScopedDisallowAllocations::~ScopedDisallowAllocations() {
|
||||
g_disallow_allocations = false;
|
||||
}
|
||||
|
||||
ScopedAllowAllocations::ScopedAllowAllocations() {
|
||||
// Save the previous value, as ScopedAllowAllocations is used in all
|
||||
// partitions, not just the malloc() ones(s).
|
||||
saved_value_ = g_disallow_allocations;
|
||||
g_disallow_allocations = false;
|
||||
}
|
||||
|
||||
ScopedAllowAllocations::~ScopedAllowAllocations() {
|
||||
g_disallow_allocations = saved_value_;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // defined(PA_HAS_ALLOCATION_GUARD)
|
48
src/base/allocator/partition_allocator/allocation_guard.h
Normal file
48
src/base/allocator/partition_allocator/allocation_guard.h
Normal file
@ -0,0 +1,48 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ALLOCATION_GUARD_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ALLOCATION_GUARD_H_
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
#if defined(PA_HAS_ALLOCATION_GUARD)
|
||||
|
||||
// Disallow allocations in the scope. Does not nest.
|
||||
class ScopedDisallowAllocations {
|
||||
public:
|
||||
ScopedDisallowAllocations();
|
||||
~ScopedDisallowAllocations();
|
||||
};
|
||||
|
||||
// Disallow allocations in the scope. Does not nest.
|
||||
class ScopedAllowAllocations {
|
||||
public:
|
||||
ScopedAllowAllocations();
|
||||
~ScopedAllowAllocations();
|
||||
|
||||
private:
|
||||
bool saved_value_;
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
struct [[maybe_unused]] ScopedDisallowAllocations{};
|
||||
struct [[maybe_unused]] ScopedAllowAllocations{};
|
||||
|
||||
#endif // defined(PA_HAS_ALLOCATION_GUARD)
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base::internal {
|
||||
|
||||
using ::partition_alloc::ScopedAllowAllocations;
|
||||
using ::partition_alloc::ScopedDisallowAllocations;
|
||||
|
||||
} // namespace base::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ALLOCATION_GUARD_H_
|
@ -0,0 +1,50 @@
|
||||
# Copyright (c) 2021 The Chromium Authors. All rights reserved.
|
||||
# Use of this source code is governed by a BSD-style license that can be
|
||||
# found in the LICENSE file.
|
||||
|
||||
# This file contains a test function for checking Arm's branch target
|
||||
# identification (BTI) feature, which helps mitigate jump-oriented
|
||||
# programming. To get it working, BTI instructions must be executed
|
||||
# on a compatible core, and the executable pages must be mapped with
|
||||
# PROT_BTI. To validate that pages mapped with PROT_BTI are working
|
||||
# correctly:
|
||||
# 1) Allocate a read-write page.
|
||||
# 2) Copy between the start and end symbols into that page.
|
||||
# 3) Set the page to read-execute with PROT_BTI.
|
||||
# 4) Call the first offset of the page, verify the result.
|
||||
# 5) Call the second offset of the page (skipping the landing pad).
|
||||
# Verify that it crashes as expected.
|
||||
# This test works irrespective of whether BTI is enabled for C/C++
|
||||
# objects via -mbranch-protection=standard.
|
||||
|
||||
.text
|
||||
.global arm_bti_test_function
|
||||
.global arm_bti_test_function_invalid_offset
|
||||
.global arm_bti_test_function_end
|
||||
arm_bti_test_function:
|
||||
# Mark the start of this function as a valid call target.
|
||||
bti jc
|
||||
add x0, x0, #1
|
||||
arm_bti_test_function_invalid_offset:
|
||||
# This label simulates calling an incomplete function.
|
||||
# Jumping here should crash systems which support BTI.
|
||||
add x0, x0, #2
|
||||
ret
|
||||
arm_bti_test_function_end:
|
||||
nop
|
||||
|
||||
// For details see section "6.2 Program Property" in
|
||||
// "ELF for the Arm 64-bit Architecture (AArch64)"
|
||||
// https://github.com/ARM-software/abi-aa/blob/main/aaelf64/aaelf64.rst#62program-property
|
||||
.pushsection .note.gnu.property, "a";
|
||||
.balign 8;
|
||||
.long 4;
|
||||
.long 0x10;
|
||||
.long 0x5;
|
||||
.asciz "GNU";
|
||||
.long 0xc0000000; /* GNU_PROPERTY_AARCH64_FEATURE_1_AND */
|
||||
.long 4;
|
||||
.long 1; /* GNU_PROPERTY_AARCH64_BTI */;
|
||||
.long 0;
|
||||
.popsection
|
||||
|
@ -0,0 +1,31 @@
|
||||
// Copyright (c) 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_ARM_BTI_TEST_FUNCTIONS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_ARM_BTI_TEST_FUNCTIONS_H_
|
||||
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if defined(ARCH_CPU_ARM64)
|
||||
extern "C" {
|
||||
/**
|
||||
* A valid BTI function. Jumping to this funtion should not cause any problem in
|
||||
* a BTI enabled environment.
|
||||
**/
|
||||
int64_t arm_bti_test_function(int64_t);
|
||||
|
||||
/**
|
||||
* A function without proper BTI landing pad. Jumping here should crash the
|
||||
* program on systems which support BTI.
|
||||
**/
|
||||
int64_t arm_bti_test_function_invalid_offset(int64_t);
|
||||
|
||||
/**
|
||||
* A simple function which immediately returns to sender.
|
||||
**/
|
||||
void arm_bti_test_function_end(void);
|
||||
}
|
||||
#endif // defined(ARCH_CPU_ARM64)
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_ARM_BTI_TEST_FUNCTIONS_H_
|
@ -0,0 +1,47 @@
|
||||
// Copyright 2022 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/dangling_raw_ptr_checks.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/base_export.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
DanglingRawPtrDetectedFn* g_dangling_raw_ptr_detected_fn = [](uintptr_t) {};
|
||||
DanglingRawPtrReleasedFn* g_dangling_raw_ptr_released_fn = [](uintptr_t) {};
|
||||
} // namespace
|
||||
|
||||
DanglingRawPtrDetectedFn* GetDanglingRawPtrDetectedFn() {
|
||||
PA_DCHECK(g_dangling_raw_ptr_detected_fn);
|
||||
return g_dangling_raw_ptr_detected_fn;
|
||||
}
|
||||
|
||||
DanglingRawPtrDetectedFn* GetDanglingRawPtrReleasedFn() {
|
||||
PA_DCHECK(g_dangling_raw_ptr_released_fn);
|
||||
return g_dangling_raw_ptr_released_fn;
|
||||
}
|
||||
|
||||
void SetDanglingRawPtrDetectedFn(DanglingRawPtrDetectedFn fn) {
|
||||
PA_DCHECK(fn);
|
||||
g_dangling_raw_ptr_detected_fn = fn;
|
||||
}
|
||||
|
||||
void SetDanglingRawPtrReleasedFn(DanglingRawPtrReleasedFn fn) {
|
||||
PA_DCHECK(fn);
|
||||
g_dangling_raw_ptr_released_fn = fn;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
BASE_EXPORT void DanglingRawPtrDetected(uintptr_t id) {
|
||||
g_dangling_raw_ptr_detected_fn(id);
|
||||
}
|
||||
BASE_EXPORT void DanglingRawPtrReleased(uintptr_t id) {
|
||||
g_dangling_raw_ptr_released_fn(id);
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
} // namespace partition_alloc
|
@ -0,0 +1,52 @@
|
||||
// Copyright 2022 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_DANGLING_RAW_PTR_CHECKS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_DANGLING_RAW_PTR_CHECKS_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/base_export.h"
|
||||
|
||||
// When compiled with build flags `enable_dangling_raw_ptr_checks`, dangling
|
||||
// raw_ptr are reported. Its behavior can be configured here.
|
||||
//
|
||||
// Purpose of this level of indirection:
|
||||
// - Ease testing.
|
||||
// - Keep partition_alloc/ independent from base/. In most cases, when a
|
||||
// dangling raw_ptr is detected/released, this involves recording a
|
||||
// base::debug::StackTrace, which isn't desirable inside partition_alloc/.
|
||||
// - Be able (potentially) to turn this feature on/off at runtime based on
|
||||
// dependant's flags.
|
||||
namespace partition_alloc {
|
||||
|
||||
// DanglingRawPtrDetected is called when there exists a `raw_ptr` referencing a
|
||||
// memory region and the allocator is asked to release it.
|
||||
//
|
||||
// It won't be called again with the same `id`, up until (potentially) a call to
|
||||
// DanglingRawPtrReleased(`id`) is made.
|
||||
//
|
||||
// This function is called from within the allocator, and is not allowed to
|
||||
// allocate memory.
|
||||
using DanglingRawPtrDetectedFn = void(uintptr_t /*id*/);
|
||||
BASE_EXPORT DanglingRawPtrDetectedFn* GetDanglingRawPtrDetectedFn();
|
||||
BASE_EXPORT void SetDanglingRawPtrDetectedFn(DanglingRawPtrDetectedFn);
|
||||
|
||||
// DanglingRawPtrReleased: Called after DanglingRawPtrDetected(id), once the
|
||||
// last dangling raw_ptr stops referencing the memory region.
|
||||
//
|
||||
// This function is allowed to allocate memory.
|
||||
using DanglingRawPtrReleasedFn = void(uintptr_t /*id*/);
|
||||
BASE_EXPORT DanglingRawPtrReleasedFn* GetDanglingRawPtrReleasedFn();
|
||||
BASE_EXPORT void SetDanglingRawPtrReleasedFn(DanglingRawPtrReleasedFn);
|
||||
|
||||
namespace internal {
|
||||
|
||||
BASE_EXPORT void DanglingRawPtrDetected(uintptr_t id);
|
||||
BASE_EXPORT void DanglingRawPtrReleased(uintptr_t id);
|
||||
|
||||
} // namespace internal
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_DANGLING_RAW_PTR_CHECKS_H_
|
91
src/base/allocator/partition_allocator/dot/super-page.dot
Normal file
91
src/base/allocator/partition_allocator/dot/super-page.dot
Normal file
@ -0,0 +1,91 @@
|
||||
digraph G {
|
||||
graph[bgcolor=transparent]
|
||||
node[shape=plaintext]
|
||||
edge[style=dashed]
|
||||
|
||||
invisible_a[label=<
|
||||
<TABLE BORDER="0" CELLBORDER="0" CELLSPACING="0">
|
||||
<TR>
|
||||
<TD PORT="red" WIDTH="100"></TD>
|
||||
<TD PORT="green" WIDTH="20"></TD>
|
||||
<TD PORT="blue" WIDTH="40"></TD>
|
||||
<TD PORT="gold" WIDTH="300"></TD>
|
||||
<TD PORT="pink" WIDTH="60"></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
superpage[xlabel="Super Page",label=<
|
||||
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0" WIDTH="10">
|
||||
<TR>
|
||||
<!-- Head Partition Page -->
|
||||
<TD BGCOLOR="darkgrey" HEIGHT="52"></TD>
|
||||
<TD PORT="metadata"></TD>
|
||||
<TD BGCOLOR="darkgrey" WIDTH="18"></TD>
|
||||
<!-- Several Slot Spans -->
|
||||
<TD PORT="red" BGCOLOR="crimson" WIDTH="119">3</TD>
|
||||
<TD PORT="green" BGCOLOR="palegreen" WIDTH="39">1</TD>
|
||||
<TD PORT="blue" BGCOLOR="cornflowerblue" WIDTH="79">2</TD>
|
||||
<TD PORT="gold" BGCOLOR="gold" WIDTH="239">6</TD>
|
||||
<TD PORT="red2" BGCOLOR="crimson" WIDTH="119">3</TD>
|
||||
<TD PORT="pink" BGCOLOR="deeppink" WIDTH="39">1</TD>
|
||||
<TD WIDTH="79">...</TD>
|
||||
<!-- Tail Partition Page -->
|
||||
<TD BGCOLOR="darkgrey" WIDTH="39"></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
invisible_b[label=<
|
||||
<TABLE BORDER="0" CELLBORDER="0" CELLSPACING="0">
|
||||
<TR>
|
||||
<TD PORT="green" WIDTH="30"></TD>
|
||||
<TD PORT="blue" WIDTH="60"></TD>
|
||||
<TD PORT="gold" WIDTH="180"></TD>
|
||||
<TD PORT="red" WIDTH="90"></TD>
|
||||
<TD PORT="pink" WIDTH="90"></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
metadata_page[xlabel="Metadata",label=<
|
||||
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0">
|
||||
<TR>
|
||||
<!-- Guard Page Metadata -->
|
||||
<TD BGCOLOR="darkgrey"> </TD>
|
||||
<!-- Red Slot Span Metadata -->
|
||||
<TD BGCOLOR="crimson">v</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<!-- Green Slot Span Metadata -->
|
||||
<TD BGCOLOR="palegreen">v</TD>
|
||||
<!-- Blue Slot Span Metadata -->
|
||||
<TD BGCOLOR="cornflowerblue">v</TD>
|
||||
<TD BGCOLOR="cornflowerblue">+</TD>
|
||||
<!-- Gold Slot Span Metadata -->
|
||||
<TD BGCOLOR="gold">v</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<TD BGCOLOR="gold">+</TD>
|
||||
<!-- Red Slot Span Metadata -->
|
||||
<TD BGCOLOR="crimson">v</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<TD BGCOLOR="crimson">+</TD>
|
||||
<!-- Pink Slot Span Metadata -->
|
||||
<TD BGCOLOR="deeppink">v</TD>
|
||||
<!-- etc. -->
|
||||
<TD WIDTH="64">...</TD>
|
||||
<!-- Guard Page Metadata -->
|
||||
<TD BGCOLOR="darkgrey"> </TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
>]
|
||||
|
||||
invisible_a:red->superpage:red->superpage:red2[color=crimson]
|
||||
superpage:red2->invisible_b:red[color=crimson]
|
||||
invisible_a:green->superpage:green->invisible_b:green[color=palegreen]
|
||||
invisible_a:blue->superpage:blue->invisible_b:blue[color=cornflowerblue]
|
||||
invisible_a:gold->superpage:gold->invisible_b:gold[color=gold]
|
||||
invisible_a:pink->superpage:pink->invisible_b:pink[color=deeppink]
|
||||
|
||||
superpage:metadata->metadata_page[style="",arrowhead=odot]
|
||||
}
|
BIN
src/base/allocator/partition_allocator/dot/super-page.png
Normal file
BIN
src/base/allocator/partition_allocator/dot/super-page.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
86
src/base/allocator/partition_allocator/extended_api.cc
Normal file
86
src/base/allocator/partition_allocator/extended_api.cc
Normal file
@ -0,0 +1,86 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/extended_api.h"
|
||||
|
||||
#include "base/allocator/allocator_shim_default_dispatch_to_partition_alloc.h"
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/thread_cache.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
#if defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
|
||||
namespace {
|
||||
|
||||
void DisableThreadCacheForRootIfEnabled(ThreadSafePartitionRoot* root) {
|
||||
// Some platforms don't have a thread cache, or it could already have been
|
||||
// disabled.
|
||||
if (!root || !root->with_thread_cache)
|
||||
return;
|
||||
|
||||
internal::ThreadCacheRegistry::Instance().PurgeAll();
|
||||
root->with_thread_cache = false;
|
||||
// Doesn't destroy the thread cache object(s). For background threads, they
|
||||
// will be collected (and free cached memory) at thread destruction
|
||||
// time. For the main thread, we leak it.
|
||||
}
|
||||
|
||||
void EnablePartitionAllocThreadCacheForRootIfDisabled(
|
||||
ThreadSafePartitionRoot* root) {
|
||||
if (!root)
|
||||
return;
|
||||
root->with_thread_cache = true;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
void DisablePartitionAllocThreadCacheForProcess() {
|
||||
auto* regular_allocator = internal::PartitionAllocMalloc::Allocator();
|
||||
auto* aligned_allocator = internal::PartitionAllocMalloc::AlignedAllocator();
|
||||
DisableThreadCacheForRootIfEnabled(regular_allocator);
|
||||
if (aligned_allocator != regular_allocator)
|
||||
DisableThreadCacheForRootIfEnabled(aligned_allocator);
|
||||
DisableThreadCacheForRootIfEnabled(
|
||||
internal::PartitionAllocMalloc::OriginalAllocator());
|
||||
}
|
||||
#endif // defined(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
|
||||
void SwapOutProcessThreadCacheForTesting(ThreadSafePartitionRoot* root) {
|
||||
#if defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
DisablePartitionAllocThreadCacheForProcess();
|
||||
#else
|
||||
PA_CHECK(!internal::ThreadCache::IsValid(internal::ThreadCache::Get()));
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
internal::ThreadCache::SwapForTesting(root);
|
||||
EnablePartitionAllocThreadCacheForRootIfDisabled(root);
|
||||
|
||||
#endif // defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
}
|
||||
|
||||
void SwapInProcessThreadCacheForTesting(ThreadSafePartitionRoot* root) {
|
||||
#if defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
|
||||
// First, disable the test thread cache we have.
|
||||
DisableThreadCacheForRootIfEnabled(root);
|
||||
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
auto* regular_allocator = internal::PartitionAllocMalloc::Allocator();
|
||||
EnablePartitionAllocThreadCacheForRootIfDisabled(regular_allocator);
|
||||
|
||||
internal::ThreadCache::SwapForTesting(regular_allocator);
|
||||
#else
|
||||
internal::ThreadCache::SwapForTesting(nullptr);
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
#endif // defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
}
|
||||
|
||||
} // namespace base
|
27
src/base/allocator/partition_allocator/extended_api.h
Normal file
27
src/base/allocator/partition_allocator/extended_api.h
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_EXTENDED_API_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_EXTENDED_API_H_
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_root.h"
|
||||
#include "base/allocator/partition_allocator/thread_cache.h"
|
||||
#include "base/base_export.h"
|
||||
|
||||
namespace base {
|
||||
// These two functions are unsafe to run if there are multiple threads running
|
||||
// in the process.
|
||||
//
|
||||
// Disables the thread cache for the entire process, and replaces it with a
|
||||
// thread cache for |root|.
|
||||
BASE_EXPORT void SwapOutProcessThreadCacheForTesting(
|
||||
ThreadSafePartitionRoot* root);
|
||||
// Disables the current thread cache, and replaces it with the default for the
|
||||
// process.
|
||||
BASE_EXPORT void SwapInProcessThreadCacheForTesting(
|
||||
ThreadSafePartitionRoot* root);
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_EXTENDED_API_H_
|
96
src/base/allocator/partition_allocator/memory_reclaimer.cc
Normal file
96
src/base/allocator/partition_allocator/memory_reclaimer.cc
Normal file
@ -0,0 +1,96 @@
|
||||
// Copyright 2019 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/memory_reclaimer.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/starscan/pcscan.h"
|
||||
#include "base/no_destructor.h"
|
||||
|
||||
// TODO(bikineev): Temporarily disable *Scan in MemoryReclaimer as it seems to
|
||||
// cause significant jank.
|
||||
#define PA_STARSCAN_ENABLE_STARSCAN_ON_RECLAIM 0
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// static
|
||||
MemoryReclaimer* MemoryReclaimer::Instance() {
|
||||
static base::NoDestructor<MemoryReclaimer> instance;
|
||||
return instance.get();
|
||||
}
|
||||
|
||||
void MemoryReclaimer::RegisterPartition(PartitionRoot<>* partition) {
|
||||
internal::ScopedGuard lock(lock_);
|
||||
PA_DCHECK(partition);
|
||||
auto it_and_whether_inserted = partitions_.insert(partition);
|
||||
PA_DCHECK(it_and_whether_inserted.second);
|
||||
}
|
||||
|
||||
void MemoryReclaimer::UnregisterPartition(
|
||||
PartitionRoot<internal::ThreadSafe>* partition) {
|
||||
internal::ScopedGuard lock(lock_);
|
||||
PA_DCHECK(partition);
|
||||
size_t erased_count = partitions_.erase(partition);
|
||||
PA_DCHECK(erased_count == 1u);
|
||||
}
|
||||
|
||||
MemoryReclaimer::MemoryReclaimer() = default;
|
||||
MemoryReclaimer::~MemoryReclaimer() = default;
|
||||
|
||||
void MemoryReclaimer::ReclaimAll() {
|
||||
constexpr int kFlags = PurgeFlags::kDecommitEmptySlotSpans |
|
||||
PurgeFlags::kDiscardUnusedSystemPages |
|
||||
PurgeFlags::kAggressiveReclaim;
|
||||
Reclaim(kFlags);
|
||||
}
|
||||
|
||||
void MemoryReclaimer::ReclaimNormal() {
|
||||
constexpr int kFlags = PurgeFlags::kDecommitEmptySlotSpans |
|
||||
PurgeFlags::kDiscardUnusedSystemPages;
|
||||
Reclaim(kFlags);
|
||||
}
|
||||
|
||||
void MemoryReclaimer::Reclaim(int flags) {
|
||||
internal::ScopedGuard lock(
|
||||
lock_); // Has to protect from concurrent (Un)Register calls.
|
||||
|
||||
// PCScan quarantines freed slots. Trigger the scan first to let it call
|
||||
// FreeNoHooksImmediate on slots that pass the quarantine.
|
||||
//
|
||||
// In turn, FreeNoHooksImmediate may add slots to thread cache. Purge it next
|
||||
// so that the slots are actually freed. (This is done synchronously only for
|
||||
// the current thread.)
|
||||
//
|
||||
// Lastly decommit empty slot spans and lastly try to discard unused pages at
|
||||
// the end of the remaining active slots.
|
||||
#if PA_STARSCAN_ENABLE_STARSCAN_ON_RECLAIM
|
||||
{
|
||||
using PCScan = internal::PCScan;
|
||||
const auto invocation_mode = flags & PurgeFlags::kAggressiveReclaim
|
||||
? PCScan::InvocationMode::kForcedBlocking
|
||||
: PCScan::InvocationMode::kBlocking;
|
||||
PCScan::PerformScanIfNeeded(invocation_mode);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(PA_THREAD_CACHE_SUPPORTED)
|
||||
// Don't completely empty the thread cache outside of low memory situations,
|
||||
// as there is periodic purge which makes sure that it doesn't take too much
|
||||
// space.
|
||||
if (flags & PurgeFlags::kAggressiveReclaim)
|
||||
base::internal::ThreadCacheRegistry::Instance().PurgeAll();
|
||||
#endif
|
||||
|
||||
for (auto* partition : partitions_)
|
||||
partition->PurgeMemory(flags);
|
||||
}
|
||||
|
||||
void MemoryReclaimer::ResetForTesting() {
|
||||
internal::ScopedGuard lock(lock_);
|
||||
partitions_.clear();
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
81
src/base/allocator/partition_allocator/memory_reclaimer.h
Normal file
81
src/base/allocator/partition_allocator/memory_reclaimer.h
Normal file
@ -0,0 +1,81 @@
|
||||
// Copyright 2019 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_MEMORY_RECLAIMER_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_MEMORY_RECLAIMER_H_
|
||||
|
||||
#include <memory>
|
||||
#include <set>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "base/no_destructor.h"
|
||||
#include "base/thread_annotations.h"
|
||||
#include "base/time/time.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// Posts and handles memory reclaim tasks for PartitionAlloc.
|
||||
//
|
||||
// Thread safety: |RegisterPartition()| and |UnregisterPartition()| can be
|
||||
// called from any thread, concurrently with reclaim. Reclaim itself runs in the
|
||||
// context of the provided |SequencedTaskRunner|, meaning that the caller must
|
||||
// take care of this runner being compatible with the various partitions.
|
||||
//
|
||||
// Singleton as this runs as long as the process is alive, and
|
||||
// having multiple instances would be wasteful.
|
||||
class BASE_EXPORT MemoryReclaimer {
|
||||
public:
|
||||
static MemoryReclaimer* Instance();
|
||||
|
||||
MemoryReclaimer(const MemoryReclaimer&) = delete;
|
||||
MemoryReclaimer& operator=(const MemoryReclaimer&) = delete;
|
||||
|
||||
// Internal. Do not use.
|
||||
// Registers a partition to be tracked by the reclaimer.
|
||||
void RegisterPartition(PartitionRoot<>* partition);
|
||||
// Internal. Do not use.
|
||||
// Unregisters a partition to be tracked by the reclaimer.
|
||||
void UnregisterPartition(PartitionRoot<>* partition);
|
||||
|
||||
// Triggers an explicit reclaim now to reclaim as much free memory as
|
||||
// possible. The API callers need to invoke this method periodically
|
||||
// if they want to use memory reclaimer.
|
||||
// See also GetRecommendedReclaimIntervalInMicroseconds()'s comment.
|
||||
void ReclaimNormal();
|
||||
|
||||
// Returns a recommended interval to invoke ReclaimNormal.
|
||||
int64_t GetRecommendedReclaimIntervalInMicroseconds() {
|
||||
return base::Seconds(4).InMicroseconds();
|
||||
}
|
||||
|
||||
// Triggers an explicit reclaim now reclaiming all free memory
|
||||
void ReclaimAll();
|
||||
|
||||
private:
|
||||
MemoryReclaimer();
|
||||
~MemoryReclaimer();
|
||||
// |flags| is an OR of base::PartitionPurgeFlags
|
||||
void Reclaim(int flags);
|
||||
void ReclaimAndReschedule();
|
||||
void ResetForTesting();
|
||||
|
||||
internal::Lock lock_;
|
||||
std::set<PartitionRoot<>*> partitions_ GUARDED_BY(lock_);
|
||||
|
||||
friend class base::NoDestructor<MemoryReclaimer>;
|
||||
friend class MemoryReclaimerTest;
|
||||
};
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::MemoryReclaimer;
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_MEMORY_RECLAIMER_H_
|
23
src/base/allocator/partition_allocator/oom.cc
Normal file
23
src/base/allocator/partition_allocator/oom.cc
Normal file
@ -0,0 +1,23 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/oom.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/oom_callback.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/immediate_crash.h"
|
||||
#include "base/process/memory.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// The crash is generated in a NOINLINE function so that we can classify the
|
||||
// crash as an OOM solely by analyzing the stack trace. It is tagged as
|
||||
// NOT_TAIL_CALLED to ensure that its parent function stays on the stack.
|
||||
[[noreturn]] NOINLINE void NOT_TAIL_CALLED OnNoMemory(size_t size) {
|
||||
RunPartitionAllocOomCallback();
|
||||
base::TerminateBecauseOutOfMemory(size);
|
||||
IMMEDIATE_CRASH();
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
34
src/base/allocator/partition_allocator/oom.h
Normal file
34
src/base/allocator/partition_allocator/oom.h
Normal file
@ -0,0 +1,34 @@
|
||||
// Copyright (c) 2016 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_H_
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
#include "base/allocator/partition_allocator/allocation_guard.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/compiler_specific.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// The crash is generated in a NOINLINE function so that we can classify the
|
||||
// crash as an OOM solely by analyzing the stack trace. It is tagged as
|
||||
// NOT_TAIL_CALLED to ensure that its parent function stays on the stack.
|
||||
[[noreturn]] BASE_EXPORT void NOT_TAIL_CALLED OnNoMemory(size_t size);
|
||||
|
||||
// OOM_CRASH(size) - Specialization of IMMEDIATE_CRASH which will raise a custom
|
||||
// exception on Windows to signal this is OOM and not a normal assert.
|
||||
// OOM_CRASH(size) is called by users of PageAllocator (including
|
||||
// PartitionAlloc) to signify an allocation failure from the platform.
|
||||
#define OOM_CRASH(size) \
|
||||
do { \
|
||||
/* Raising an exception might allocate, allow that. */ \
|
||||
::partition_alloc::ScopedAllowAllocations guard{}; \
|
||||
::partition_alloc::internal::OnNoMemory(size); \
|
||||
} while (0)
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_H_
|
27
src/base/allocator/partition_allocator/oom_callback.cc
Normal file
27
src/base/allocator/partition_allocator/oom_callback.cc
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright (c) 2018 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/oom_callback.h"
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
PartitionAllocOomCallback g_oom_callback;
|
||||
} // namespace
|
||||
|
||||
void SetPartitionAllocOomCallback(PartitionAllocOomCallback callback) {
|
||||
PA_DCHECK(!g_oom_callback);
|
||||
g_oom_callback = callback;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
void RunPartitionAllocOomCallback() {
|
||||
if (g_oom_callback)
|
||||
g_oom_callback();
|
||||
}
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
26
src/base/allocator/partition_allocator/oom_callback.h
Normal file
26
src/base/allocator/partition_allocator/oom_callback.h
Normal file
@ -0,0 +1,26 @@
|
||||
// Copyright (c) 2018 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_CALLBACK_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_CALLBACK_H_
|
||||
|
||||
#include "base/base_export.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
using PartitionAllocOomCallback = void (*)();
|
||||
|
||||
// Registers a callback to be invoked during an OOM_CRASH(). OOM_CRASH is
|
||||
// invoked by users of PageAllocator (including PartitionAlloc) to signify an
|
||||
// allocation failure from the platform.
|
||||
BASE_EXPORT void SetPartitionAllocOomCallback(
|
||||
PartitionAllocOomCallback callback);
|
||||
|
||||
namespace internal {
|
||||
BASE_EXPORT void RunPartitionAllocOomCallback();
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_OOM_CALLBACK_H_
|
381
src/base/allocator/partition_allocator/page_allocator.cc
Normal file
381
src/base/allocator/partition_allocator/page_allocator.cc
Normal file
@ -0,0 +1,381 @@
|
||||
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_space_randomization.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_internal.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
#include "base/bits.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include "base/allocator/partition_allocator/page_allocator_internals_win.h"
|
||||
#elif BUILDFLAG(IS_POSIX)
|
||||
#include "base/allocator/partition_allocator/page_allocator_internals_posix.h"
|
||||
#elif BUILDFLAG(IS_FUCHSIA)
|
||||
#include "base/allocator/partition_allocator/page_allocator_internals_fuchsia.h"
|
||||
#else
|
||||
#error Platform not supported.
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
|
||||
internal::Lock g_reserve_lock;
|
||||
|
||||
// We may reserve/release address space on different threads.
|
||||
internal::Lock& GetReserveLock() {
|
||||
return g_reserve_lock;
|
||||
}
|
||||
|
||||
std::atomic<size_t> g_total_mapped_address_space;
|
||||
|
||||
// We only support a single block of reserved address space.
|
||||
uintptr_t s_reservation_address GUARDED_BY(GetReserveLock()) = 0;
|
||||
size_t s_reservation_size GUARDED_BY(GetReserveLock()) = 0;
|
||||
|
||||
uintptr_t AllocPagesIncludingReserved(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
uintptr_t ret =
|
||||
internal::SystemAllocPages(address, length, accessibility, page_tag);
|
||||
if (!ret) {
|
||||
const bool cant_alloc_length = internal::kHintIsAdvisory || !address;
|
||||
if (cant_alloc_length) {
|
||||
// The system cannot allocate |length| bytes. Release any reserved address
|
||||
// space and try once more.
|
||||
ReleaseReservation();
|
||||
ret =
|
||||
internal::SystemAllocPages(address, length, accessibility, page_tag);
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Trims memory at |base_address| to given |trim_length| and |alignment|.
|
||||
//
|
||||
// On failure, on Windows, this function returns 0 and frees memory at
|
||||
// |base_address|.
|
||||
uintptr_t TrimMapping(uintptr_t base_address,
|
||||
size_t base_length,
|
||||
size_t trim_length,
|
||||
uintptr_t alignment,
|
||||
uintptr_t alignment_offset,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
PA_DCHECK(base_length >= trim_length);
|
||||
PA_DCHECK(base::bits::IsPowerOfTwo(alignment));
|
||||
PA_DCHECK(alignment_offset < alignment);
|
||||
uintptr_t new_base =
|
||||
NextAlignedWithOffset(base_address, alignment, alignment_offset);
|
||||
PA_DCHECK(new_base >= base_address);
|
||||
size_t pre_slack = new_base - base_address;
|
||||
size_t post_slack = base_length - pre_slack - trim_length;
|
||||
PA_DCHECK(base_length == trim_length || pre_slack || post_slack);
|
||||
PA_DCHECK(pre_slack < base_length);
|
||||
PA_DCHECK(post_slack < base_length);
|
||||
return internal::TrimMappingInternal(base_address, base_length, trim_length,
|
||||
accessibility, pre_slack, post_slack);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// Align |address| up to the closest, non-smaller address, that gives
|
||||
// |requested_offset| remainder modulo |alignment|.
|
||||
//
|
||||
// Examples for alignment=1024 and requested_offset=64:
|
||||
// 64 -> 64
|
||||
// 65 -> 1088
|
||||
// 1024 -> 1088
|
||||
// 1088 -> 1088
|
||||
// 1089 -> 2112
|
||||
// 2048 -> 2112
|
||||
uintptr_t NextAlignedWithOffset(uintptr_t address,
|
||||
uintptr_t alignment,
|
||||
uintptr_t requested_offset) {
|
||||
PA_DCHECK(base::bits::IsPowerOfTwo(alignment));
|
||||
PA_DCHECK(requested_offset < alignment);
|
||||
|
||||
uintptr_t actual_offset = address & (alignment - 1);
|
||||
uintptr_t new_address;
|
||||
if (actual_offset <= requested_offset)
|
||||
new_address = address + requested_offset - actual_offset;
|
||||
else
|
||||
new_address = address + alignment + requested_offset - actual_offset;
|
||||
PA_DCHECK(new_address >= address);
|
||||
PA_DCHECK(new_address - address < alignment);
|
||||
PA_DCHECK(new_address % alignment == requested_offset);
|
||||
|
||||
return new_address;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
uintptr_t SystemAllocPages(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
PA_DCHECK(!(length & internal::PageAllocationGranularityOffsetMask()));
|
||||
PA_DCHECK(!(hint & internal::PageAllocationGranularityOffsetMask()));
|
||||
uintptr_t ret =
|
||||
internal::SystemAllocPagesInternal(hint, length, accessibility, page_tag);
|
||||
if (ret)
|
||||
g_total_mapped_address_space.fetch_add(length, std::memory_order_relaxed);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
uintptr_t AllocPages(size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
return AllocPagesWithAlignOffset(0, length, align, 0, accessibility,
|
||||
page_tag);
|
||||
}
|
||||
uintptr_t AllocPages(uintptr_t address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
return AllocPagesWithAlignOffset(address, length, align, 0, accessibility,
|
||||
page_tag);
|
||||
}
|
||||
void* AllocPages(void* address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
return reinterpret_cast<void*>(
|
||||
AllocPages(reinterpret_cast<uintptr_t>(address), length, align,
|
||||
accessibility, page_tag));
|
||||
}
|
||||
|
||||
uintptr_t AllocPagesWithAlignOffset(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
size_t align_offset,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
PA_DCHECK(length >= internal::PageAllocationGranularity());
|
||||
PA_DCHECK(!(length & internal::PageAllocationGranularityOffsetMask()));
|
||||
PA_DCHECK(align >= internal::PageAllocationGranularity());
|
||||
// Alignment must be power of 2 for masking math to work.
|
||||
PA_DCHECK(base::bits::IsPowerOfTwo(align));
|
||||
PA_DCHECK(align_offset < align);
|
||||
PA_DCHECK(!(align_offset & internal::PageAllocationGranularityOffsetMask()));
|
||||
PA_DCHECK(!(address & internal::PageAllocationGranularityOffsetMask()));
|
||||
uintptr_t align_offset_mask = align - 1;
|
||||
uintptr_t align_base_mask = ~align_offset_mask;
|
||||
PA_DCHECK(!address || (address & align_offset_mask) == align_offset);
|
||||
|
||||
// If the client passed null as the address, choose a good one.
|
||||
if (!address) {
|
||||
address = (GetRandomPageBase() & align_base_mask) + align_offset;
|
||||
}
|
||||
|
||||
// First try to force an exact-size, aligned allocation from our random base.
|
||||
#if defined(ARCH_CPU_32_BITS)
|
||||
// On 32 bit systems, first try one random aligned address, and then try an
|
||||
// aligned address derived from the value of |ret|.
|
||||
constexpr int kExactSizeTries = 2;
|
||||
#else
|
||||
// On 64 bit systems, try 3 random aligned addresses.
|
||||
constexpr int kExactSizeTries = 3;
|
||||
#endif
|
||||
|
||||
for (int i = 0; i < kExactSizeTries; ++i) {
|
||||
uintptr_t ret =
|
||||
AllocPagesIncludingReserved(address, length, accessibility, page_tag);
|
||||
if (ret) {
|
||||
// If the alignment is to our liking, we're done.
|
||||
if ((ret & align_offset_mask) == align_offset)
|
||||
return ret;
|
||||
// Free the memory and try again.
|
||||
FreePages(ret, length);
|
||||
} else {
|
||||
// |ret| is null; if this try was unhinted, we're OOM.
|
||||
if (internal::kHintIsAdvisory || !address)
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if defined(ARCH_CPU_32_BITS)
|
||||
// For small address spaces, try the first aligned address >= |ret|. Note
|
||||
// |ret| may be null, in which case |address| becomes null. If
|
||||
// |align_offset| is non-zero, this calculation may get us not the first,
|
||||
// but the next matching address.
|
||||
address = ((ret + align_offset_mask) & align_base_mask) + align_offset;
|
||||
#else // defined(ARCH_CPU_64_BITS)
|
||||
// Keep trying random addresses on systems that have a large address space.
|
||||
address = NextAlignedWithOffset(GetRandomPageBase(), align, align_offset);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Make a larger allocation so we can force alignment.
|
||||
size_t try_length = length + (align - internal::PageAllocationGranularity());
|
||||
PA_CHECK(try_length >= length);
|
||||
uintptr_t ret;
|
||||
|
||||
do {
|
||||
// Continue randomizing only on POSIX.
|
||||
address = internal::kHintIsAdvisory ? GetRandomPageBase() : 0;
|
||||
ret = AllocPagesIncludingReserved(address, try_length, accessibility,
|
||||
page_tag);
|
||||
// The retries are for Windows, where a race can steal our mapping on
|
||||
// resize.
|
||||
} while (ret && (ret = TrimMapping(ret, try_length, length, align,
|
||||
align_offset, accessibility)) == 0);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void FreePages(uintptr_t address, size_t length) {
|
||||
PA_DCHECK(!(address & internal::PageAllocationGranularityOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::PageAllocationGranularityOffsetMask()));
|
||||
internal::FreePagesInternal(address, length);
|
||||
PA_DCHECK(g_total_mapped_address_space.load(std::memory_order_relaxed) > 0);
|
||||
g_total_mapped_address_space.fetch_sub(length, std::memory_order_relaxed);
|
||||
}
|
||||
void FreePages(void* address, size_t length) {
|
||||
FreePages(reinterpret_cast<uintptr_t>(address), length);
|
||||
}
|
||||
|
||||
bool TrySetSystemPagesAccess(uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
return internal::TrySetSystemPagesAccessInternal(address, length,
|
||||
accessibility);
|
||||
}
|
||||
bool TrySetSystemPagesAccess(void* address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
return TrySetSystemPagesAccess(reinterpret_cast<uintptr_t>(address), length,
|
||||
accessibility);
|
||||
}
|
||||
|
||||
void SetSystemPagesAccess(uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
internal::SetSystemPagesAccessInternal(address, length, accessibility);
|
||||
}
|
||||
|
||||
void DecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
PA_DCHECK(!(address & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
internal::DecommitSystemPagesInternal(address, length,
|
||||
accessibility_disposition);
|
||||
}
|
||||
void DecommitSystemPages(
|
||||
void* address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
DecommitSystemPages(reinterpret_cast<uintptr_t>(address), length,
|
||||
accessibility_disposition);
|
||||
}
|
||||
|
||||
void DecommitAndZeroSystemPages(uintptr_t address, size_t length) {
|
||||
PA_DCHECK(!(address & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
internal::DecommitAndZeroSystemPagesInternal(address, length);
|
||||
}
|
||||
void DecommitAndZeroSystemPages(void* address, size_t length) {
|
||||
DecommitAndZeroSystemPages(reinterpret_cast<uintptr_t>(address), length);
|
||||
}
|
||||
|
||||
void RecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
PA_DCHECK(!(address & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(accessibility != PageAccessibilityConfiguration::kInaccessible);
|
||||
internal::RecommitSystemPagesInternal(address, length, accessibility,
|
||||
accessibility_disposition);
|
||||
}
|
||||
|
||||
bool TryRecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// Duplicated because we want errors to be reported at a lower level in the
|
||||
// crashing case.
|
||||
PA_DCHECK(!(address & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
PA_DCHECK(accessibility != PageAccessibilityConfiguration::kInaccessible);
|
||||
return internal::TryRecommitSystemPagesInternal(
|
||||
address, length, accessibility, accessibility_disposition);
|
||||
}
|
||||
|
||||
void DiscardSystemPages(uintptr_t address, size_t length) {
|
||||
PA_DCHECK(!(length & internal::SystemPageOffsetMask()));
|
||||
internal::DiscardSystemPagesInternal(address, length);
|
||||
}
|
||||
void DiscardSystemPages(void* address, size_t length) {
|
||||
DiscardSystemPages(reinterpret_cast<uintptr_t>(address), length);
|
||||
}
|
||||
|
||||
bool ReserveAddressSpace(size_t size) {
|
||||
// To avoid deadlock, call only SystemAllocPages.
|
||||
internal::ScopedGuard guard(GetReserveLock());
|
||||
if (!s_reservation_address) {
|
||||
uintptr_t mem = internal::SystemAllocPages(
|
||||
0, size, PageAccessibilityConfiguration::kInaccessible,
|
||||
PageTag::kChromium);
|
||||
if (mem) {
|
||||
// We guarantee this alignment when reserving address space.
|
||||
PA_DCHECK(!(mem & internal::PageAllocationGranularityOffsetMask()));
|
||||
s_reservation_address = mem;
|
||||
s_reservation_size = size;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ReleaseReservation() {
|
||||
// To avoid deadlock, call only FreePages.
|
||||
internal::ScopedGuard guard(GetReserveLock());
|
||||
if (!s_reservation_address)
|
||||
return false;
|
||||
|
||||
FreePages(s_reservation_address, s_reservation_size);
|
||||
s_reservation_address = 0;
|
||||
s_reservation_size = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool HasReservationForTesting() {
|
||||
internal::ScopedGuard guard(GetReserveLock());
|
||||
return s_reservation_address;
|
||||
}
|
||||
|
||||
uint32_t GetAllocPageErrorCode() {
|
||||
return internal::s_allocPageErrorCode;
|
||||
}
|
||||
|
||||
size_t GetTotalMappedSize() {
|
||||
return g_total_mapped_address_space;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
348
src/base/allocator/partition_allocator/page_allocator.h
Normal file
348
src/base/allocator/partition_allocator/page_allocator.h
Normal file
@ -0,0 +1,348 @@
|
||||
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
enum class PageAccessibilityConfiguration {
|
||||
kInaccessible,
|
||||
kRead,
|
||||
kReadWrite,
|
||||
// This flag is mapped to kReadWrite on systems that
|
||||
// don't support MTE.
|
||||
kReadWriteTagged,
|
||||
// This flag is mapped to kReadExecute on systems
|
||||
// that don't support Arm's BTI.
|
||||
kReadExecuteProtected,
|
||||
kReadExecute,
|
||||
// This flag is deprecated and will go away soon.
|
||||
// TODO(bbudge) Remove this as soon as V8 doesn't need RWX pages.
|
||||
kReadWriteExecute,
|
||||
};
|
||||
|
||||
// Use for De/RecommitSystemPages API.
|
||||
enum class PageAccessibilityDisposition {
|
||||
// Enforces permission update (Decommit will set to
|
||||
// PageAccessibilityConfiguration::kInaccessible;
|
||||
// Recommit will set to whatever was requested, other than
|
||||
// PageAccessibilityConfiguration::kInaccessible).
|
||||
kRequireUpdate,
|
||||
// Will not update permissions, if the platform supports that (POSIX & Fuchsia
|
||||
// only).
|
||||
kAllowKeepForPerf,
|
||||
};
|
||||
|
||||
// macOS supports tagged memory regions, to help in debugging. On Android,
|
||||
// these tags are used to name anonymous mappings.
|
||||
enum class PageTag {
|
||||
kFirst = 240, // Minimum tag value.
|
||||
kBlinkGC = 252, // Blink GC pages.
|
||||
kPartitionAlloc = 253, // PartitionAlloc, no matter the partition.
|
||||
kChromium = 254, // Chromium page.
|
||||
kV8 = 255, // V8 heap pages.
|
||||
kLast = kV8 // Maximum tag value.
|
||||
};
|
||||
|
||||
BASE_EXPORT uintptr_t NextAlignedWithOffset(uintptr_t ptr,
|
||||
uintptr_t alignment,
|
||||
uintptr_t requested_offset);
|
||||
|
||||
// Allocates one or more pages.
|
||||
//
|
||||
// The requested |address| is just a hint; the actual address returned may
|
||||
// differ. The returned address will be aligned to |align_offset| modulo |align|
|
||||
// bytes.
|
||||
//
|
||||
// |length|, |align| and |align_offset| are in bytes, and must be a multiple of
|
||||
// |PageAllocationGranularity()|. |length| and |align| must be non-zero.
|
||||
// |align_offset| must be less than |align|. |align| must be a power of two.
|
||||
//
|
||||
// If |address| is 0/nullptr, then a suitable and randomized address will be
|
||||
// chosen automatically.
|
||||
//
|
||||
// |accessibility| controls the permission of the allocated pages.
|
||||
// PageAccessibilityConfiguration::kInaccessible means uncommitted.
|
||||
//
|
||||
// |page_tag| is used on some platforms to identify the source of the
|
||||
// allocation. Use PageTag::kChromium as a catch-all category.
|
||||
//
|
||||
// This call will return 0/nullptr if the allocation cannot be satisfied.
|
||||
BASE_EXPORT uintptr_t AllocPages(size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag);
|
||||
BASE_EXPORT uintptr_t AllocPages(uintptr_t address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag);
|
||||
BASE_EXPORT void* AllocPages(void* address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag);
|
||||
BASE_EXPORT uintptr_t
|
||||
AllocPagesWithAlignOffset(uintptr_t address,
|
||||
size_t length,
|
||||
size_t align,
|
||||
size_t align_offset,
|
||||
PageAccessibilityConfiguration page_accessibility,
|
||||
PageTag page_tag);
|
||||
|
||||
// Frees one or more pages starting at |address| and continuing for |length|
|
||||
// bytes.
|
||||
//
|
||||
// |address| and |length| must match a previous call to |AllocPages|. Therefore,
|
||||
// |address| must be aligned to |PageAllocationGranularity()| bytes, and
|
||||
// |length| must be a multiple of |PageAllocationGranularity()|.
|
||||
BASE_EXPORT void FreePages(uintptr_t address, size_t length);
|
||||
BASE_EXPORT void FreePages(void* address, size_t length);
|
||||
|
||||
// Marks one or more system pages, starting at |address| with the given
|
||||
// |page_accessibility|. |length| must be a multiple of |SystemPageSize()|
|
||||
// bytes.
|
||||
//
|
||||
// Returns true if the permission change succeeded. In most cases you must
|
||||
// |CHECK| the result.
|
||||
[[nodiscard]] BASE_EXPORT bool TrySetSystemPagesAccess(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility);
|
||||
[[nodiscard]] BASE_EXPORT bool TrySetSystemPagesAccess(
|
||||
void* address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility);
|
||||
|
||||
// Marks one or more system pages, starting at |address| with the given
|
||||
// |page_accessibility|. |length| must be a multiple of |SystemPageSize()|
|
||||
// bytes.
|
||||
//
|
||||
// Performs a CHECK that the operation succeeds.
|
||||
BASE_EXPORT void SetSystemPagesAccess(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility);
|
||||
BASE_EXPORT void SetSystemPagesAccess(
|
||||
void* address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility);
|
||||
|
||||
// Decommits one or more system pages starting at |address| and continuing for
|
||||
// |length| bytes. |address| and |length| must be aligned to a system page
|
||||
// boundary.
|
||||
//
|
||||
// This API will crash if the operation cannot be performed!
|
||||
//
|
||||
// If disposition is PageAccessibilityDisposition::kRequireUpdate (recommended),
|
||||
// the decommitted pages will be made inaccessible before the call returns.
|
||||
// While it is always a programming error to access decommitted pages without
|
||||
// first recommitting them, callers may use
|
||||
// PageAccessibilityDisposition::kAllowKeepForPerf to allow the implementation
|
||||
// to skip changing permissions (use with care), for performance reasons (see
|
||||
// crrev.com/c/2567282 and crrev.com/c/2563038 for perf regressions encountered
|
||||
// in the past). Implementations may choose to always modify permissions, hence
|
||||
// accessing those pages may or may not trigger a fault.
|
||||
//
|
||||
// Decommitting means that physical resources (RAM or swap/pagefile) backing the
|
||||
// allocated virtual address range may be released back to the system, but the
|
||||
// address space is still allocated to the process (possibly using up page table
|
||||
// entries or other accounting resources). There is no guarantee that the pages
|
||||
// are zeroed, unless |DecommittedMemoryIsAlwaysZeroed()| is true.
|
||||
//
|
||||
// This operation may not be atomic on some platforms.
|
||||
//
|
||||
// Note: "Committed memory" is a Windows Memory Subsystem concept that ensures
|
||||
// processes will not fault when touching a committed memory region. There is
|
||||
// no analogue in the POSIX & Fuchsia memory API where virtual memory pages are
|
||||
// best-effort allocated resources on the first touch. If
|
||||
// PageAccessibilityDisposition::kRequireUpdate disposition is used, this API
|
||||
// behaves in a platform-agnostic way by simulating the Windows "decommit" state
|
||||
// by both discarding the region (allowing the OS to avoid swap operations)
|
||||
// *and* changing the page protections so accesses fault.
|
||||
BASE_EXPORT void DecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition);
|
||||
BASE_EXPORT void DecommitSystemPages(
|
||||
void* address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition);
|
||||
|
||||
// Decommits one or more system pages starting at |address| and continuing for
|
||||
// |length| bytes. |address| and |length| must be aligned to a system page
|
||||
// boundary.
|
||||
//
|
||||
// In contrast to |DecommitSystemPages|, this API guarantees that the pages are
|
||||
// zeroed and will always mark the region as inaccessible (the equivalent of
|
||||
// setting them to PageAccessibilityConfiguration::kInaccessible).
|
||||
//
|
||||
// This API will crash if the operation cannot be performed.
|
||||
BASE_EXPORT void DecommitAndZeroSystemPages(uintptr_t address, size_t length);
|
||||
BASE_EXPORT void DecommitAndZeroSystemPages(void* address, size_t length);
|
||||
|
||||
// Whether decommitted memory is guaranteed to be zeroed when it is
|
||||
// recommitted. Do not assume that this will not change over time.
|
||||
constexpr BASE_EXPORT bool DecommittedMemoryIsAlwaysZeroed() {
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
return false;
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
// (Re)Commits one or more system pages, starting at |address| and continuing
|
||||
// for |length| bytes with the given |page_accessibility| (must not be
|
||||
// PageAccessibilityConfiguration::kInaccessible). |address| and |length|
|
||||
// must be aligned to a system page boundary.
|
||||
//
|
||||
// This API will crash if the operation cannot be performed!
|
||||
//
|
||||
// If disposition is PageAccessibilityConfiguration::kRequireUpdate, the calls
|
||||
// updates the pages to |page_accessibility|. This can be used regardless of
|
||||
// what disposition was used to decommit the pages.
|
||||
// PageAccessibilityConfiguration::kAllowKeepForPerf allows the implementation
|
||||
// to leave the page permissions, if that improves performance. This option can
|
||||
// only be used if the pages were previously accessible and decommitted with
|
||||
// that same option.
|
||||
//
|
||||
// The memory will be zeroed when it is committed for the first time. However,
|
||||
// there is no such guarantee when memory is recommitted, unless
|
||||
// |DecommittedMemoryIsAlwaysZeroed()| is true.
|
||||
//
|
||||
// This operation may not be atomic on some platforms.
|
||||
BASE_EXPORT void RecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition);
|
||||
|
||||
// Like RecommitSystemPages(), but returns false instead of crashing.
|
||||
[[nodiscard]] BASE_EXPORT bool TryRecommitSystemPages(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration page_accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition);
|
||||
|
||||
// Discard one or more system pages starting at |address| and continuing for
|
||||
// |length| bytes. |length| must be a multiple of |SystemPageSize()|.
|
||||
//
|
||||
// Discarding is a hint to the system that the page is no longer required. The
|
||||
// hint may:
|
||||
// - Do nothing.
|
||||
// - Discard the page immediately, freeing up physical pages.
|
||||
// - Discard the page at some time in the future in response to memory
|
||||
// pressure.
|
||||
//
|
||||
// Only committed pages should be discarded. Discarding a page does not decommit
|
||||
// it, and it is valid to discard an already-discarded page. A read or write to
|
||||
// a discarded page will not fault.
|
||||
//
|
||||
// Reading from a discarded page may return the original page content, or a page
|
||||
// full of zeroes.
|
||||
//
|
||||
// Writing to a discarded page is the only guaranteed way to tell the system
|
||||
// that the page is required again. Once written to, the content of the page is
|
||||
// guaranteed stable once more. After being written to, the page content may be
|
||||
// based on the original page content, or a page of zeroes.
|
||||
BASE_EXPORT void DiscardSystemPages(uintptr_t address, size_t length);
|
||||
BASE_EXPORT void DiscardSystemPages(void* address, size_t length);
|
||||
|
||||
// Rounds up |address| to the next multiple of |SystemPageSize()|. Returns
|
||||
// 0 for an |address| of 0.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
RoundUpToSystemPage(uintptr_t address) {
|
||||
return (address + internal::SystemPageOffsetMask()) &
|
||||
internal::SystemPageBaseMask();
|
||||
}
|
||||
|
||||
// Rounds down |address| to the previous multiple of |SystemPageSize()|. Returns
|
||||
// 0 for an |address| of 0.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
RoundDownToSystemPage(uintptr_t address) {
|
||||
return address & internal::SystemPageBaseMask();
|
||||
}
|
||||
|
||||
// Rounds up |address| to the next multiple of |PageAllocationGranularity()|.
|
||||
// Returns 0 for an |address| of 0.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
RoundUpToPageAllocationGranularity(uintptr_t address) {
|
||||
return (address + internal::PageAllocationGranularityOffsetMask()) &
|
||||
internal::PageAllocationGranularityBaseMask();
|
||||
}
|
||||
|
||||
// Rounds down |address| to the previous multiple of
|
||||
// |PageAllocationGranularity()|. Returns 0 for an |address| of 0.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE uintptr_t
|
||||
RoundDownToPageAllocationGranularity(uintptr_t address) {
|
||||
return address & internal::PageAllocationGranularityBaseMask();
|
||||
}
|
||||
|
||||
// Reserves (at least) |size| bytes of address space, aligned to
|
||||
// |PageAllocationGranularity()|. This can be called early on to make it more
|
||||
// likely that large allocations will succeed. Returns true if the reservation
|
||||
// succeeded, false if the reservation failed or a reservation was already made.
|
||||
BASE_EXPORT bool ReserveAddressSpace(size_t size);
|
||||
|
||||
// Releases any reserved address space. |AllocPages| calls this automatically on
|
||||
// an allocation failure. External allocators may also call this on failure.
|
||||
//
|
||||
// Returns true when an existing reservation was released.
|
||||
BASE_EXPORT bool ReleaseReservation();
|
||||
|
||||
// Returns true if there is currently an address space reservation.
|
||||
BASE_EXPORT bool HasReservationForTesting();
|
||||
|
||||
// Returns |errno| (POSIX) or the result of |GetLastError| (Windows) when |mmap|
|
||||
// (POSIX) or |VirtualAlloc| (Windows) fails.
|
||||
BASE_EXPORT uint32_t GetAllocPageErrorCode();
|
||||
|
||||
// Returns the total amount of mapped pages from all clients of
|
||||
// PageAllocator. These pages may or may not be committed. This is mostly useful
|
||||
// to assess address space pressure.
|
||||
BASE_EXPORT size_t GetTotalMappedSize();
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::AllocPages;
|
||||
using ::partition_alloc::AllocPagesWithAlignOffset;
|
||||
using ::partition_alloc::DecommitAndZeroSystemPages;
|
||||
using ::partition_alloc::DecommitSystemPages;
|
||||
using ::partition_alloc::DecommittedMemoryIsAlwaysZeroed;
|
||||
using ::partition_alloc::DiscardSystemPages;
|
||||
using ::partition_alloc::FreePages;
|
||||
using ::partition_alloc::GetAllocPageErrorCode;
|
||||
using ::partition_alloc::GetTotalMappedSize;
|
||||
using ::partition_alloc::HasReservationForTesting;
|
||||
using ::partition_alloc::NextAlignedWithOffset;
|
||||
using ::partition_alloc::PageAccessibilityConfiguration;
|
||||
using ::partition_alloc::PageAccessibilityDisposition;
|
||||
using ::partition_alloc::PageTag;
|
||||
using ::partition_alloc::RecommitSystemPages;
|
||||
using ::partition_alloc::ReleaseReservation;
|
||||
using ::partition_alloc::ReserveAddressSpace;
|
||||
using ::partition_alloc::RoundDownToPageAllocationGranularity;
|
||||
using ::partition_alloc::RoundDownToSystemPage;
|
||||
using ::partition_alloc::RoundUpToPageAllocationGranularity;
|
||||
using ::partition_alloc::RoundUpToSystemPage;
|
||||
using ::partition_alloc::SetSystemPagesAccess;
|
||||
using ::partition_alloc::TryRecommitSystemPages;
|
||||
using ::partition_alloc::TrySetSystemPagesAccess;
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_H_
|
@ -0,0 +1,134 @@
|
||||
// Copyright (c) 2018 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_CONSTANTS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_CONSTANTS_H_
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)
|
||||
|
||||
#include <mach/vm_page_size.h>
|
||||
|
||||
// Although page allocator constants are not constexpr, they are run-time
|
||||
// constant. Because the underlying variables they access, such as vm_page_size,
|
||||
// are not marked const, the compiler normally has no way to know that they
|
||||
// don’t change and must obtain their values whenever it can't prove that they
|
||||
// haven't been modified, even if they had already been obtained previously.
|
||||
// Attaching __attribute__((const)) to these declarations allows these redundant
|
||||
// accesses to be omitted under optimization such as common subexpression
|
||||
// elimination.
|
||||
#define PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR __attribute__((const))
|
||||
|
||||
#else
|
||||
|
||||
// When defined, page size constants are fixed at compile time. When not
|
||||
// defined, they may vary at run time.
|
||||
#define PAGE_ALLOCATOR_CONSTANTS_ARE_CONSTEXPR 1
|
||||
|
||||
// Use this macro to declare a function as constexpr or not based on whether
|
||||
// PAGE_ALLOCATOR_CONSTANTS_ARE_CONSTEXPR is defined.
|
||||
#define PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR constexpr
|
||||
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PageAllocationGranularityShift() {
|
||||
#if BUILDFLAG(IS_WIN) || defined(ARCH_CPU_PPC64)
|
||||
// Modern ppc64 systems support 4kB (shift = 12) and 64kB (shift = 16) page
|
||||
// sizes. Since 64kB is the de facto standard on the platform and binaries
|
||||
// compiled for 64kB are likely to work on 4kB systems, 64kB is a good choice
|
||||
// here.
|
||||
return 16; // 64kB
|
||||
#elif defined(_MIPS_ARCH_LOONGSON)
|
||||
return 14; // 16kB
|
||||
#elif BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)
|
||||
return vm_page_shift;
|
||||
#else
|
||||
return 12; // 4kB
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PageAllocationGranularity() {
|
||||
#if BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)
|
||||
// This is literally equivalent to |1 << PageAllocationGranularityShift()|
|
||||
// below, but was separated out for OS_APPLE to avoid << on a non-constexpr.
|
||||
return vm_page_size;
|
||||
#else
|
||||
return 1 << PageAllocationGranularityShift();
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PageAllocationGranularityOffsetMask() {
|
||||
return PageAllocationGranularity() - 1;
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PageAllocationGranularityBaseMask() {
|
||||
return ~PageAllocationGranularityOffsetMask();
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
SystemPageShift() {
|
||||
// On Windows allocation granularity is higher than the page size. This comes
|
||||
// into play when reserving address space range (allocation granularity),
|
||||
// compared to committing pages into memory (system page granularity).
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
return 12; // 4096=1<<12
|
||||
#else
|
||||
return PageAllocationGranularityShift();
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
SystemPageSize() {
|
||||
#if BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)
|
||||
// This is literally equivalent to |1 << SystemPageShift()| below, but was
|
||||
// separated out for 64-bit OS_APPLE to avoid << on a non-constexpr.
|
||||
return PageAllocationGranularity();
|
||||
#else
|
||||
return 1 << SystemPageShift();
|
||||
#endif
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
SystemPageOffsetMask() {
|
||||
return SystemPageSize() - 1;
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
SystemPageBaseMask() {
|
||||
return ~SystemPageOffsetMask();
|
||||
}
|
||||
|
||||
constexpr size_t kPageMetadataShift = 5; // 32 bytes per partition page.
|
||||
constexpr size_t kPageMetadataSize = 1 << kPageMetadataShift;
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
namespace base {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::internal::kPageMetadataShift;
|
||||
using ::partition_alloc::internal::kPageMetadataSize;
|
||||
using ::partition_alloc::internal::PageAllocationGranularity;
|
||||
using ::partition_alloc::internal::PageAllocationGranularityBaseMask;
|
||||
using ::partition_alloc::internal::PageAllocationGranularityOffsetMask;
|
||||
using ::partition_alloc::internal::PageAllocationGranularityShift;
|
||||
using ::partition_alloc::internal::SystemPageBaseMask;
|
||||
using ::partition_alloc::internal::SystemPageOffsetMask;
|
||||
using ::partition_alloc::internal::SystemPageShift;
|
||||
using ::partition_alloc::internal::SystemPageSize;
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_CONSTANTS_H_
|
@ -0,0 +1,22 @@
|
||||
// Copyright (c) 2018 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNAL_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNAL_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
uintptr_t SystemAllocPages(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag);
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNAL_H_
|
@ -0,0 +1,238 @@
|
||||
// Copyright 2019 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
//
|
||||
// This file implements memory allocation primitives for PageAllocator using
|
||||
// Fuchsia's VMOs (Virtual Memory Objects). VMO API is documented in
|
||||
// https://fuchsia.dev/fuchsia-src/zircon/objects/vm_object . A VMO is a kernel
|
||||
// object that corresponds to a set of memory pages. VMO pages may be mapped
|
||||
// to an address space. The code below creates VMOs for each memory allocations
|
||||
// and maps them to the default address space of the current process.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_FUCHSIA_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_FUCHSIA_H_
|
||||
|
||||
#include <lib/zx/vmar.h>
|
||||
#include <lib/zx/vmo.h>
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
#include "base/fuchsia/fuchsia_logging.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
// Returns VMO name for a PageTag.
|
||||
const char* PageTagToName(PageTag tag) {
|
||||
switch (tag) {
|
||||
case PageTag::kBlinkGC:
|
||||
return "cr_blink_gc";
|
||||
case PageTag::kPartitionAlloc:
|
||||
return "cr_partition_alloc";
|
||||
case PageTag::kChromium:
|
||||
return "cr_chromium";
|
||||
case PageTag::kV8:
|
||||
return "cr_v8";
|
||||
default:
|
||||
PA_DCHECK(false);
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
zx_vm_option_t PageAccessibilityToZxVmOptions(
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
switch (accessibility) {
|
||||
case PageAccessibilityConfiguration::kRead:
|
||||
return ZX_VM_PERM_READ;
|
||||
case PageAccessibilityConfiguration::kReadWrite:
|
||||
case PageAccessibilityConfiguration::kReadWriteTagged:
|
||||
return ZX_VM_PERM_READ | ZX_VM_PERM_WRITE;
|
||||
case PageAccessibilityConfiguration::kReadExecuteProtected:
|
||||
case PageAccessibilityConfiguration::kReadExecute:
|
||||
return ZX_VM_PERM_READ | ZX_VM_PERM_EXECUTE;
|
||||
case PageAccessibilityConfiguration::kReadWriteExecute:
|
||||
return ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_PERM_EXECUTE;
|
||||
default:
|
||||
PA_NOTREACHED();
|
||||
[[fallthrough]];
|
||||
case PageAccessibilityConfiguration::kInaccessible:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// zx_vmar_map() will fail if the VMO cannot be mapped at |vmar_offset|, i.e.
|
||||
// |hint| is not advisory.
|
||||
constexpr bool kHintIsAdvisory = false;
|
||||
|
||||
std::atomic<int32_t> s_allocPageErrorCode{0};
|
||||
|
||||
uintptr_t SystemAllocPagesInternal(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
zx::vmo vmo;
|
||||
zx_status_t status = zx::vmo::create(length, 0, &vmo);
|
||||
if (status != ZX_OK) {
|
||||
ZX_DLOG(INFO, status) << "zx_vmo_create";
|
||||
return 0;
|
||||
}
|
||||
|
||||
const char* vmo_name = PageTagToName(page_tag);
|
||||
status = vmo.set_property(ZX_PROP_NAME, vmo_name, strlen(vmo_name));
|
||||
|
||||
// VMO names are used only for debugging, so failure to set a name is not
|
||||
// fatal.
|
||||
ZX_DCHECK(status == ZX_OK, status);
|
||||
|
||||
if (page_tag == PageTag::kV8) {
|
||||
// V8 uses JIT. Call zx_vmo_replace_as_executable() to allow code execution
|
||||
// in the new VMO.
|
||||
status = vmo.replace_as_executable(zx::resource(), &vmo);
|
||||
if (status != ZX_OK) {
|
||||
ZX_DLOG(INFO, status) << "zx_vmo_replace_as_executable";
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
zx_vm_option_t options = PageAccessibilityToZxVmOptions(accessibility);
|
||||
|
||||
uint64_t vmar_offset = 0;
|
||||
if (hint) {
|
||||
vmar_offset = hint;
|
||||
options |= ZX_VM_SPECIFIC;
|
||||
}
|
||||
|
||||
uint64_t address;
|
||||
status =
|
||||
zx::vmar::root_self()->map(options, vmar_offset, vmo,
|
||||
/*vmo_offset=*/0, length, &address);
|
||||
if (status != ZX_OK) {
|
||||
// map() is expected to fail if |hint| is set to an already-in-use location.
|
||||
if (!hint) {
|
||||
ZX_DLOG(ERROR, status) << "zx_vmar_map";
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
uintptr_t TrimMappingInternal(uintptr_t base_address,
|
||||
size_t base_length,
|
||||
size_t trim_length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
size_t pre_slack,
|
||||
size_t post_slack) {
|
||||
PA_DCHECK(base_length == trim_length + pre_slack + post_slack);
|
||||
|
||||
// Unmap head if necessary.
|
||||
if (pre_slack) {
|
||||
zx_status_t status = zx::vmar::root_self()->unmap(base_address, pre_slack);
|
||||
ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
// Unmap tail if necessary.
|
||||
if (post_slack) {
|
||||
zx_status_t status = zx::vmar::root_self()->unmap(
|
||||
base_address + pre_slack + trim_length, post_slack);
|
||||
ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
return base_address + pre_slack;
|
||||
}
|
||||
|
||||
bool TrySetSystemPagesAccessInternal(
|
||||
uint64_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
zx_status_t status = zx::vmar::root_self()->protect(
|
||||
PageAccessibilityToZxVmOptions(accessibility), address, length);
|
||||
return status == ZX_OK;
|
||||
}
|
||||
|
||||
void SetSystemPagesAccessInternal(
|
||||
uint64_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
zx_status_t status = zx::vmar::root_self()->protect(
|
||||
PageAccessibilityToZxVmOptions(accessibility), address, length);
|
||||
ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
void FreePagesInternal(uint64_t address, size_t length) {
|
||||
zx_status_t status = zx::vmar::root_self()->unmap(address, length);
|
||||
ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
void DiscardSystemPagesInternal(uint64_t address, size_t length) {
|
||||
// TODO(https://crbug.com/1022062): Mark pages as discardable, rather than
|
||||
// forcibly de-committing them immediately, when Fuchsia supports it.
|
||||
zx_status_t status = zx::vmar::root_self()->op_range(
|
||||
ZX_VMO_OP_DECOMMIT, address, length, nullptr, 0);
|
||||
ZX_CHECK(status == ZX_OK, status);
|
||||
}
|
||||
|
||||
void DecommitSystemPagesInternal(
|
||||
uint64_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
SetSystemPagesAccess(address, length,
|
||||
PageAccessibilityConfiguration::kInaccessible);
|
||||
}
|
||||
|
||||
// TODO(https://crbug.com/1022062): Review whether this implementation is
|
||||
// still appropriate once DiscardSystemPagesInternal() migrates to a "lazy"
|
||||
// discardable API.
|
||||
DiscardSystemPagesInternal(address, length);
|
||||
}
|
||||
|
||||
void DecommitAndZeroSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
SetSystemPagesAccess(address, length,
|
||||
PageAccessibilityConfiguration::kInaccessible);
|
||||
|
||||
// TODO(https://crbug.com/1022062): this implementation will likely no longer
|
||||
// be appropriate once DiscardSystemPagesInternal() migrates to a "lazy"
|
||||
// discardable API.
|
||||
DiscardSystemPagesInternal(address, length);
|
||||
}
|
||||
|
||||
void RecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// On Fuchsia systems, the caller needs to simply read the memory to recommit
|
||||
// it. However, if decommit changed the permissions, recommit has to change
|
||||
// them back.
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
SetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
}
|
||||
|
||||
bool TryRecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// On Fuchsia systems, the caller needs to simply read the memory to recommit
|
||||
// it. However, if decommit changed the permissions, recommit has to change
|
||||
// them back.
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
return TrySetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_FUCHSIA_H_
|
@ -0,0 +1,46 @@
|
||||
// Copyright (c) 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
#include "base/cpu.h"
|
||||
|
||||
#include <sys/mman.h>
|
||||
|
||||
// PA_PROT_BTI requests a page that supports BTI landing pads.
|
||||
#define PA_PROT_BTI 0x10
|
||||
// PA_PROT_MTE requests a page that's suitable for memory tagging.
|
||||
#define PA_PROT_MTE 0x20
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
int GetAccessFlags(PageAccessibilityConfiguration accessibility) {
|
||||
switch (accessibility) {
|
||||
case PageAccessibilityConfiguration::kRead:
|
||||
return PROT_READ;
|
||||
case PageAccessibilityConfiguration::kReadWriteTagged:
|
||||
#if defined(ARCH_CPU_ARM64)
|
||||
return PROT_READ | PROT_WRITE |
|
||||
(base::CPU::GetInstanceNoAllocation().has_mte() ? PA_PROT_MTE : 0);
|
||||
#else
|
||||
[[fallthrough]];
|
||||
#endif
|
||||
case PageAccessibilityConfiguration::kReadWrite:
|
||||
return PROT_READ | PROT_WRITE;
|
||||
case PageAccessibilityConfiguration::kReadExecuteProtected:
|
||||
return PROT_READ | PROT_EXEC |
|
||||
(base::CPU::GetInstanceNoAllocation().has_bti() ? PA_PROT_BTI : 0);
|
||||
case PageAccessibilityConfiguration::kReadExecute:
|
||||
return PROT_READ | PROT_EXEC;
|
||||
case PageAccessibilityConfiguration::kReadWriteExecute:
|
||||
return PROT_READ | PROT_WRITE | PROT_EXEC;
|
||||
default:
|
||||
PA_NOTREACHED();
|
||||
[[fallthrough]];
|
||||
case PageAccessibilityConfiguration::kInaccessible:
|
||||
return PROT_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
@ -0,0 +1,375 @@
|
||||
// Copyright (c) 2018 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_POSIX_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_POSIX_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cerrno>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
|
||||
#include <sys/mman.h>
|
||||
|
||||
#include "base/allocator/partition_allocator/oom.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/dcheck_is_on.h"
|
||||
#include "base/posix/eintr_wrapper.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
#include "base/mac/foundation_util.h"
|
||||
#include "base/mac/mac_util.h"
|
||||
#include "base/mac/scoped_cftyperef.h"
|
||||
|
||||
#include <Availability.h>
|
||||
#include <Security/Security.h>
|
||||
#include <mach/mach.h>
|
||||
#endif
|
||||
#if BUILDFLAG(IS_ANDROID)
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
||||
#include <sys/resource.h>
|
||||
#endif
|
||||
|
||||
#ifndef MAP_ANONYMOUS
|
||||
#define MAP_ANONYMOUS MAP_ANON
|
||||
#endif
|
||||
|
||||
#if BUILDFLAG(IS_MAC)
|
||||
|
||||
// SecTaskGetCodeSignStatus is marked as unavailable on macOS, although it’s
|
||||
// available on iOS and other Apple operating systems. It is, in fact, present
|
||||
// on the system since macOS 10.12.
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wavailability"
|
||||
uint32_t SecTaskGetCodeSignStatus(SecTaskRef task)
|
||||
#if __MAC_OS_X_VERSION_MIN_REQUIRED < __MAC_10_12
|
||||
// When redeclaring something previously declared as unavailable, the
|
||||
// weak_import attribute won’t be applied unless manually set.
|
||||
__attribute__((weak_import))
|
||||
#endif // DT < 10.12
|
||||
API_AVAILABLE(macos(10.12));
|
||||
#pragma clang diagnostic pop
|
||||
|
||||
#endif // BUILDFLAG(IS_MAC)
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID)
|
||||
const char* PageTagToName(PageTag tag) {
|
||||
// Important: All the names should be string literals. As per prctl.h in
|
||||
// //third_party/android_ndk the kernel keeps a pointer to the name instead
|
||||
// of copying it.
|
||||
//
|
||||
// Having the name in .rodata ensures that the pointer remains valid as
|
||||
// long as the mapping is alive.
|
||||
switch (tag) {
|
||||
case PageTag::kBlinkGC:
|
||||
return "blink_gc";
|
||||
case PageTag::kPartitionAlloc:
|
||||
return "partition_alloc";
|
||||
case PageTag::kChromium:
|
||||
return "chromium";
|
||||
case PageTag::kV8:
|
||||
return "v8";
|
||||
default:
|
||||
PA_DCHECK(false);
|
||||
return "";
|
||||
}
|
||||
}
|
||||
#endif // BUILDFLAG(IS_ANDROID)
|
||||
|
||||
#if BUILDFLAG(IS_MAC)
|
||||
// Tests whether the version of macOS supports the MAP_JIT flag and if the
|
||||
// current process is signed with the hardened runtime and the allow-jit
|
||||
// entitlement, returning whether MAP_JIT should be used to allocate regions
|
||||
// that will contain JIT-compiled executable code.
|
||||
bool UseMapJit() {
|
||||
if (!base::mac::IsAtLeastOS10_14()) {
|
||||
// MAP_JIT existed before macOS 10.14, but had somewhat different semantics.
|
||||
// Only one MAP_JIT region was permitted per process, but calling code here
|
||||
// will very likely require more than one such region. Since MAP_JIT is not
|
||||
// strictly necessary to write code to a region and then execute it on these
|
||||
// older OSes, don’t use it at all.
|
||||
return false;
|
||||
}
|
||||
|
||||
// Until determining that the hardened runtime is enabled, early returns will
|
||||
// return true, so that MAP_JIT will be used. This is important on arm64,
|
||||
// which only allows pages to be simultaneously writable and executable when
|
||||
// in a region allocated with MAP_JIT, regardless of code signing options. On
|
||||
// arm64, an attempt to set a non-MAP_JIT page as simultaneously writable and
|
||||
// executable fails with EPERM. Although this is not enforced on x86_64,
|
||||
// MAP_JIT is harmless in that case.
|
||||
|
||||
base::ScopedCFTypeRef<SecTaskRef> task(
|
||||
SecTaskCreateFromSelf(kCFAllocatorDefault));
|
||||
if (!task) {
|
||||
return true;
|
||||
}
|
||||
|
||||
uint32_t flags = SecTaskGetCodeSignStatus(task);
|
||||
if (!(flags & kSecCodeSignatureRuntime)) {
|
||||
// The hardened runtime is not enabled. Note that kSecCodeSignatureRuntime
|
||||
// == CS_RUNTIME.
|
||||
return true;
|
||||
}
|
||||
|
||||
// The hardened runtime is enabled. From this point on, early returns must
|
||||
// return false, indicating that MAP_JIT is not to be used. It’s an error
|
||||
// (EINVAL) to use MAP_JIT with the hardened runtime unless the JIT
|
||||
// entitlement is specified.
|
||||
|
||||
base::ScopedCFTypeRef<CFTypeRef> jit_entitlement(
|
||||
SecTaskCopyValueForEntitlement(
|
||||
task.get(), CFSTR("com.apple.security.cs.allow-jit"), nullptr));
|
||||
if (!jit_entitlement)
|
||||
return false;
|
||||
|
||||
return base::mac::CFCast<CFBooleanRef>(jit_entitlement.get()) ==
|
||||
kCFBooleanTrue;
|
||||
}
|
||||
#endif // BUILDFLAG(IS_MAC)
|
||||
|
||||
} // namespace
|
||||
|
||||
// |mmap| uses a nearby address if the hint address is blocked.
|
||||
constexpr bool kHintIsAdvisory = true;
|
||||
std::atomic<int32_t> s_allocPageErrorCode{0};
|
||||
|
||||
int GetAccessFlags(PageAccessibilityConfiguration accessibility);
|
||||
|
||||
uintptr_t SystemAllocPagesInternal(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// Use a custom tag to make it easier to distinguish Partition Alloc regions
|
||||
// in vmmap(1). Tags between 240-255 are supported.
|
||||
PA_DCHECK(PageTag::kFirst <= page_tag);
|
||||
PA_DCHECK(PageTag::kLast >= page_tag);
|
||||
int fd = VM_MAKE_TAG(static_cast<int>(page_tag));
|
||||
#else
|
||||
int fd = -1;
|
||||
#endif
|
||||
|
||||
int access_flag = GetAccessFlags(accessibility);
|
||||
int map_flags = MAP_ANONYMOUS | MAP_PRIVATE;
|
||||
|
||||
#if BUILDFLAG(IS_MAC)
|
||||
// On macOS 10.14 and higher, executables that are code signed with the
|
||||
// "runtime" option cannot execute writable memory by default. They can opt
|
||||
// into this capability by specifying the "com.apple.security.cs.allow-jit"
|
||||
// code signing entitlement and allocating the region with the MAP_JIT flag.
|
||||
static const bool kUseMapJit = UseMapJit();
|
||||
if (page_tag == PageTag::kV8 && kUseMapJit) {
|
||||
map_flags |= MAP_JIT;
|
||||
}
|
||||
#endif
|
||||
|
||||
void* ret = mmap(reinterpret_cast<void*>(hint), length, access_flag,
|
||||
map_flags, fd, 0);
|
||||
if (ret == MAP_FAILED) {
|
||||
s_allocPageErrorCode = errno;
|
||||
ret = nullptr;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_ANDROID)
|
||||
// On Android, anonymous mappings can have a name attached to them. This is
|
||||
// useful for debugging, and double-checking memory attribution.
|
||||
if (ret) {
|
||||
// No error checking on purpose, testing only.
|
||||
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ret, length,
|
||||
PageTagToName(page_tag));
|
||||
}
|
||||
#endif
|
||||
|
||||
return reinterpret_cast<uintptr_t>(ret);
|
||||
}
|
||||
|
||||
bool TrySetSystemPagesAccessInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
return 0 == HANDLE_EINTR(mprotect(reinterpret_cast<void*>(address), length,
|
||||
GetAccessFlags(accessibility)));
|
||||
}
|
||||
|
||||
void SetSystemPagesAccessInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
int access_flags = GetAccessFlags(accessibility);
|
||||
const int ret = HANDLE_EINTR(
|
||||
mprotect(reinterpret_cast<void*>(address), length, access_flags));
|
||||
|
||||
// On Linux, man mprotect(2) states that ENOMEM is returned when (1) internal
|
||||
// kernel data structures cannot be allocated, (2) the address range is
|
||||
// invalid, or (3) this would split an existing mapping in a way that would
|
||||
// exceed the maximum number of allowed mappings.
|
||||
//
|
||||
// Neither are very likely, but we still get a lot of crashes here. This is
|
||||
// because setrlimit(RLIMIT_DATA)'s limit is checked and enforced here, if the
|
||||
// access flags match a "data" mapping, which in our case would be MAP_PRIVATE
|
||||
// | MAP_ANONYMOUS, and PROT_WRITE. see the call to may_expand_vm() in
|
||||
// mm/mprotect.c in the kernel for details.
|
||||
//
|
||||
// In this case, we are almost certainly bumping into the sandbox limit, mark
|
||||
// the crash as OOM. See SandboxLinux::LimitAddressSpace() for details.
|
||||
if (ret == -1 && errno == ENOMEM && (access_flags & PROT_WRITE))
|
||||
OOM_CRASH(length);
|
||||
|
||||
PA_PCHECK(0 == ret);
|
||||
}
|
||||
|
||||
void FreePagesInternal(uintptr_t address, size_t length) {
|
||||
PA_PCHECK(0 == munmap(reinterpret_cast<void*>(address), length));
|
||||
}
|
||||
|
||||
uintptr_t TrimMappingInternal(uintptr_t base_address,
|
||||
size_t base_length,
|
||||
size_t trim_length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
size_t pre_slack,
|
||||
size_t post_slack) {
|
||||
uintptr_t ret = base_address;
|
||||
// We can resize the allocation run. Release unneeded memory before and after
|
||||
// the aligned range.
|
||||
if (pre_slack) {
|
||||
FreePages(base_address, pre_slack);
|
||||
ret = base_address + pre_slack;
|
||||
}
|
||||
if (post_slack) {
|
||||
FreePages(ret + trim_length, post_slack);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void DecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// In POSIX, there is no decommit concept. Discarding is an effective way of
|
||||
// implementing the Windows semantics where the OS is allowed to not swap the
|
||||
// pages in the region.
|
||||
DiscardSystemPages(address, length);
|
||||
|
||||
bool change_permissions =
|
||||
accessibility_disposition == PageAccessibilityDisposition::kRequireUpdate;
|
||||
#if DCHECK_IS_ON()
|
||||
// This is not guaranteed, show that we're serious.
|
||||
//
|
||||
// More specifically, several callers have had issues with assuming that
|
||||
// memory is zeroed, this would hopefully make these bugs more visible. We
|
||||
// don't memset() everything, because ranges can be very large, and doing it
|
||||
// over the entire range could make Chrome unusable with DCHECK_IS_ON().
|
||||
//
|
||||
// Only do it when we are about to change the permissions, since we don't know
|
||||
// the previous permissions, and cannot restore them.
|
||||
if (!DecommittedMemoryIsAlwaysZeroed() && change_permissions) {
|
||||
// Memory may not be writable.
|
||||
size_t size = std::min(length, 2 * SystemPageSize());
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
PA_CHECK(mprotect(ptr, size, PROT_WRITE) == 0);
|
||||
memset(ptr, 0xcc, size);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Make pages inaccessible, unless the caller requested to keep permissions.
|
||||
//
|
||||
// Note, there is a small window between these calls when the pages can be
|
||||
// incorrectly touched and brought back to memory. Not ideal, but doing those
|
||||
// operations in the opposite order resulted in PMF regression on Mac (see
|
||||
// crbug.com/1153021).
|
||||
if (change_permissions) {
|
||||
SetSystemPagesAccess(address, length,
|
||||
PageAccessibilityConfiguration::kInaccessible);
|
||||
}
|
||||
}
|
||||
|
||||
void DecommitAndZeroSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html: "If
|
||||
// a MAP_FIXED request is successful, then any previous mappings [...] for
|
||||
// those whole pages containing any part of the address range [pa,pa+len)
|
||||
// shall be removed, as if by an appropriate call to munmap(), before the
|
||||
// new mapping is established." As a consequence, the memory will be
|
||||
// zero-initialized on next access.
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
void* ret = mmap(ptr, length, PROT_NONE,
|
||||
MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
|
||||
PA_CHECK(ptr == ret);
|
||||
}
|
||||
|
||||
void RecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// On POSIX systems, the caller needs to simply read the memory to recommit
|
||||
// it. However, if decommit changed the permissions, recommit has to change
|
||||
// them back.
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
SetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// On macOS, to update accounting, we need to make another syscall. For more
|
||||
// details, see https://crbug.com/823915.
|
||||
madvise(reinterpret_cast<void*>(address), length, MADV_FREE_REUSE);
|
||||
#endif
|
||||
}
|
||||
|
||||
bool TryRecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// On POSIX systems, the caller needs to simply read the memory to recommit
|
||||
// it. However, if decommit changed the permissions, recommit has to change
|
||||
// them back.
|
||||
if (accessibility_disposition ==
|
||||
PageAccessibilityDisposition::kRequireUpdate) {
|
||||
bool ok = TrySetSystemPagesAccess(address, length, accessibility);
|
||||
if (!ok)
|
||||
return false;
|
||||
}
|
||||
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
// On macOS, to update accounting, we need to make another syscall. For more
|
||||
// details, see https://crbug.com/823915.
|
||||
madvise(reinterpret_cast<void*>(address), length, MADV_FREE_REUSE);
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void DiscardSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
#if BUILDFLAG(IS_APPLE)
|
||||
int ret = madvise(ptr, length, MADV_FREE_REUSABLE);
|
||||
if (ret) {
|
||||
// MADV_FREE_REUSABLE sometimes fails, so fall back to MADV_DONTNEED.
|
||||
ret = madvise(ptr, length, MADV_DONTNEED);
|
||||
}
|
||||
PA_PCHECK(ret == 0);
|
||||
#else
|
||||
// We have experimented with other flags, but with suboptimal results.
|
||||
//
|
||||
// MADV_FREE (Linux): Makes our memory measurements less predictable;
|
||||
// performance benefits unclear.
|
||||
//
|
||||
// Therefore, we just do the simple thing: MADV_DONTNEED.
|
||||
PA_PCHECK(0 == madvise(ptr, length, MADV_DONTNEED));
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_POSIX_H_
|
@ -0,0 +1,199 @@
|
||||
// Copyright (c) 2018 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_WIN_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_WIN_H_
|
||||
|
||||
#include <versionhelpers.h>
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/oom.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_internal.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
namespace {
|
||||
|
||||
// On Windows, discarded pages are not returned to the system immediately and
|
||||
// not guaranteed to be zeroed when returned to the application.
|
||||
using DiscardVirtualMemoryFunction = DWORD(WINAPI*)(PVOID virtualAddress,
|
||||
SIZE_T size);
|
||||
DiscardVirtualMemoryFunction s_discard_virtual_memory =
|
||||
reinterpret_cast<DiscardVirtualMemoryFunction>(-1);
|
||||
|
||||
} // namespace
|
||||
|
||||
// |VirtualAlloc| will fail if allocation at the hint address is blocked.
|
||||
constexpr bool kHintIsAdvisory = false;
|
||||
std::atomic<int32_t> s_allocPageErrorCode{ERROR_SUCCESS};
|
||||
|
||||
int GetAccessFlags(PageAccessibilityConfiguration accessibility) {
|
||||
switch (accessibility) {
|
||||
case PageAccessibilityConfiguration::kRead:
|
||||
return PAGE_READONLY;
|
||||
case PageAccessibilityConfiguration::kReadWrite:
|
||||
case PageAccessibilityConfiguration::kReadWriteTagged:
|
||||
return PAGE_READWRITE;
|
||||
case PageAccessibilityConfiguration::kReadExecute:
|
||||
case PageAccessibilityConfiguration::kReadExecuteProtected:
|
||||
return PAGE_EXECUTE_READ;
|
||||
case PageAccessibilityConfiguration::kReadWriteExecute:
|
||||
return PAGE_EXECUTE_READWRITE;
|
||||
default:
|
||||
PA_NOTREACHED();
|
||||
[[fallthrough]];
|
||||
case PageAccessibilityConfiguration::kInaccessible:
|
||||
return PAGE_NOACCESS;
|
||||
}
|
||||
}
|
||||
|
||||
uintptr_t SystemAllocPagesInternal(uintptr_t hint,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageTag page_tag) {
|
||||
DWORD access_flag = GetAccessFlags(accessibility);
|
||||
const DWORD type_flags =
|
||||
(accessibility != PageAccessibilityConfiguration::kInaccessible)
|
||||
? (MEM_RESERVE | MEM_COMMIT)
|
||||
: MEM_RESERVE;
|
||||
void* ret = VirtualAlloc(reinterpret_cast<void*>(hint), length, type_flags,
|
||||
access_flag);
|
||||
if (ret == nullptr) {
|
||||
s_allocPageErrorCode = GetLastError();
|
||||
}
|
||||
return reinterpret_cast<uintptr_t>(ret);
|
||||
}
|
||||
|
||||
uintptr_t TrimMappingInternal(uintptr_t base_address,
|
||||
size_t base_length,
|
||||
size_t trim_length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
size_t pre_slack,
|
||||
size_t post_slack) {
|
||||
uintptr_t ret = base_address;
|
||||
if (pre_slack || post_slack) {
|
||||
// We cannot resize the allocation run. Free it and retry at the aligned
|
||||
// address within the freed range.
|
||||
ret = base_address + pre_slack;
|
||||
FreePages(base_address, base_length);
|
||||
ret = SystemAllocPages(ret, trim_length, accessibility, PageTag::kChromium);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool TrySetSystemPagesAccessInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
if (accessibility == PageAccessibilityConfiguration::kInaccessible)
|
||||
return VirtualFree(ptr, length, MEM_DECOMMIT) != 0;
|
||||
return nullptr !=
|
||||
VirtualAlloc(ptr, length, MEM_COMMIT, GetAccessFlags(accessibility));
|
||||
}
|
||||
|
||||
void SetSystemPagesAccessInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility) {
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
if (accessibility == PageAccessibilityConfiguration::kInaccessible) {
|
||||
if (!VirtualFree(ptr, length, MEM_DECOMMIT)) {
|
||||
// We check `GetLastError` for `ERROR_SUCCESS` here so that in a crash
|
||||
// report we get the error number.
|
||||
PA_CHECK(static_cast<uint32_t>(ERROR_SUCCESS) == GetLastError());
|
||||
}
|
||||
} else {
|
||||
if (!VirtualAlloc(ptr, length, MEM_COMMIT, GetAccessFlags(accessibility))) {
|
||||
int32_t error = GetLastError();
|
||||
if (error == ERROR_COMMITMENT_LIMIT)
|
||||
OOM_CRASH(length);
|
||||
// We check `GetLastError` for `ERROR_SUCCESS` here so that in a crash
|
||||
// report we get the error number.
|
||||
PA_CHECK(ERROR_SUCCESS == error);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FreePagesInternal(uintptr_t address, size_t length) {
|
||||
PA_CHECK(VirtualFree(reinterpret_cast<void*>(address), 0, MEM_RELEASE));
|
||||
}
|
||||
|
||||
void DecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// Ignore accessibility_disposition, because decommitting is equivalent to
|
||||
// making pages inaccessible.
|
||||
SetSystemPagesAccess(address, length,
|
||||
PageAccessibilityConfiguration::kInaccessible);
|
||||
}
|
||||
|
||||
void DecommitAndZeroSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
// https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualfree:
|
||||
// "If a page is decommitted but not released, its state changes to reserved.
|
||||
// Subsequently, you can call VirtualAlloc to commit it, or VirtualFree to
|
||||
// release it. Attempts to read from or write to a reserved page results in an
|
||||
// access violation exception."
|
||||
// https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
|
||||
// for MEM_COMMIT: "The function also guarantees that when the caller later
|
||||
// initially accesses the memory, the contents will be zero."
|
||||
PA_CHECK(VirtualFree(reinterpret_cast<void*>(address), length, MEM_DECOMMIT));
|
||||
}
|
||||
|
||||
void RecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// Ignore accessibility_disposition, because decommitting is equivalent to
|
||||
// making pages inaccessible.
|
||||
SetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
|
||||
bool TryRecommitSystemPagesInternal(
|
||||
uintptr_t address,
|
||||
size_t length,
|
||||
PageAccessibilityConfiguration accessibility,
|
||||
PageAccessibilityDisposition accessibility_disposition) {
|
||||
// Ignore accessibility_disposition, because decommitting is equivalent to
|
||||
// making pages inaccessible.
|
||||
return TrySetSystemPagesAccess(address, length, accessibility);
|
||||
}
|
||||
|
||||
void DiscardSystemPagesInternal(uintptr_t address, size_t length) {
|
||||
if (s_discard_virtual_memory ==
|
||||
reinterpret_cast<DiscardVirtualMemoryFunction>(-1)) {
|
||||
// DiscardVirtualMemory's minimum supported client is Windows 8.1 Update.
|
||||
// So skip GetProcAddress("DiscardVirtualMemory") if windows version is
|
||||
// smaller than Windows 8.1.
|
||||
if (IsWindows8Point1OrGreater()) {
|
||||
s_discard_virtual_memory =
|
||||
reinterpret_cast<DiscardVirtualMemoryFunction>(GetProcAddress(
|
||||
GetModuleHandle(L"Kernel32.dll"), "DiscardVirtualMemory"));
|
||||
} else {
|
||||
s_discard_virtual_memory = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void* ptr = reinterpret_cast<void*>(address);
|
||||
// Use DiscardVirtualMemory when available because it releases faster than
|
||||
// MEM_RESET.
|
||||
DWORD ret = 1;
|
||||
if (s_discard_virtual_memory) {
|
||||
ret = s_discard_virtual_memory(ptr, length);
|
||||
}
|
||||
// DiscardVirtualMemory is buggy in Win10 SP0, so fall back to MEM_RESET on
|
||||
// failure.
|
||||
if (ret) {
|
||||
PA_CHECK(VirtualAlloc(ptr, length, MEM_RESET, PAGE_READWRITE));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PAGE_ALLOCATOR_INTERNALS_WIN_H_
|
@ -0,0 +1,189 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_address_space.h"
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <ostream>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/tagging.h"
|
||||
#include "base/bits.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/debug/alias.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace {
|
||||
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
NOINLINE void HandleGigaCageAllocFailureOutOfVASpace() {
|
||||
NO_CODE_FOLDING();
|
||||
PA_CHECK(false);
|
||||
}
|
||||
|
||||
NOINLINE void HandleGigaCageAllocFailureOutOfCommitCharge() {
|
||||
NO_CODE_FOLDING();
|
||||
PA_CHECK(false);
|
||||
}
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
|
||||
NOINLINE void HandleGigaCageAllocFailure() {
|
||||
NO_CODE_FOLDING();
|
||||
uint32_t alloc_page_error_code = base::GetAllocPageErrorCode();
|
||||
PA_DEBUG_DATA_ON_STACK("error", static_cast<size_t>(alloc_page_error_code));
|
||||
// It's important to easily differentiate these two failures on Windows, so
|
||||
// crash with different stacks.
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
if (alloc_page_error_code == ERROR_NOT_ENOUGH_MEMORY) {
|
||||
// The error code says NOT_ENOUGH_MEMORY, but since we only do MEM_RESERVE,
|
||||
// it must be VA space exhaustion.
|
||||
HandleGigaCageAllocFailureOutOfVASpace();
|
||||
} else if (alloc_page_error_code == ERROR_COMMITMENT_LIMIT) {
|
||||
// On Windows <8.1, MEM_RESERVE increases commit charge to account for
|
||||
// not-yet-committed PTEs needed to cover that VA space, if it was to be
|
||||
// committed (see crbug.com/1101421#c16).
|
||||
HandleGigaCageAllocFailureOutOfCommitCharge();
|
||||
} else
|
||||
#endif // BUILDFLAG(IS_WIN)
|
||||
{
|
||||
PA_CHECK(false);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
alignas(kPartitionCachelineSize)
|
||||
PartitionAddressSpace::GigaCageSetup PartitionAddressSpace::setup_;
|
||||
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
ALWAYS_INLINE size_t PartitionAddressSpace::RegularPoolSize() {
|
||||
return kRegularPoolSize;
|
||||
}
|
||||
ALWAYS_INLINE size_t PartitionAddressSpace::BRPPoolSize() {
|
||||
return kBRPPoolSize;
|
||||
}
|
||||
#endif // defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
|
||||
void PartitionAddressSpace::Init() {
|
||||
if (IsInitialized())
|
||||
return;
|
||||
|
||||
setup_.regular_pool_base_address_ = AllocPages(
|
||||
RegularPoolSize(), RegularPoolSize(),
|
||||
PageAccessibilityConfiguration::kInaccessible, PageTag::kPartitionAlloc);
|
||||
if (!setup_.regular_pool_base_address_)
|
||||
HandleGigaCageAllocFailure();
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
setup_.regular_pool_base_mask_ = ~(RegularPoolSize() - 1) & kMemTagUnmask;
|
||||
#endif
|
||||
PA_DCHECK(!(setup_.regular_pool_base_address_ & (RegularPoolSize() - 1)));
|
||||
setup_.regular_pool_ = AddressPoolManager::GetInstance()->Add(
|
||||
setup_.regular_pool_base_address_, RegularPoolSize());
|
||||
PA_CHECK(setup_.regular_pool_ == kRegularPoolHandle);
|
||||
PA_DCHECK(!IsInRegularPool(setup_.regular_pool_base_address_ - 1));
|
||||
PA_DCHECK(IsInRegularPool(setup_.regular_pool_base_address_));
|
||||
PA_DCHECK(IsInRegularPool(setup_.regular_pool_base_address_ +
|
||||
RegularPoolSize() - 1));
|
||||
PA_DCHECK(
|
||||
!IsInRegularPool(setup_.regular_pool_base_address_ + RegularPoolSize()));
|
||||
|
||||
// Reserve an extra allocation granularity unit before the BRP pool, but keep
|
||||
// the pool aligned at BRPPoolSize(). A pointer immediately past an allocation
|
||||
// is a valid pointer, and having a "forbidden zone" before the BRP pool
|
||||
// prevents such a pointer from "sneaking into" the pool.
|
||||
const size_t kForbiddenZoneSize = PageAllocationGranularity();
|
||||
uintptr_t base_address = AllocPagesWithAlignOffset(
|
||||
0, BRPPoolSize() + kForbiddenZoneSize, BRPPoolSize(),
|
||||
BRPPoolSize() - kForbiddenZoneSize,
|
||||
PageAccessibilityConfiguration::kInaccessible, PageTag::kPartitionAlloc);
|
||||
if (!base_address)
|
||||
HandleGigaCageAllocFailure();
|
||||
setup_.brp_pool_base_address_ = base_address + kForbiddenZoneSize;
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
setup_.brp_pool_base_mask_ = ~(BRPPoolSize() - 1) & kMemTagUnmask;
|
||||
#endif
|
||||
PA_DCHECK(!(setup_.brp_pool_base_address_ & (BRPPoolSize() - 1)));
|
||||
setup_.brp_pool_ = AddressPoolManager::GetInstance()->Add(
|
||||
setup_.brp_pool_base_address_, BRPPoolSize());
|
||||
PA_CHECK(setup_.brp_pool_ == kBRPPoolHandle);
|
||||
PA_DCHECK(!IsInBRPPool(setup_.brp_pool_base_address_ - 1));
|
||||
PA_DCHECK(IsInBRPPool(setup_.brp_pool_base_address_));
|
||||
PA_DCHECK(IsInBRPPool(setup_.brp_pool_base_address_ + BRPPoolSize() - 1));
|
||||
PA_DCHECK(!IsInBRPPool(setup_.brp_pool_base_address_ + BRPPoolSize()));
|
||||
|
||||
#if PA_STARSCAN_USE_CARD_TABLE
|
||||
// Reserve memory for PCScan quarantine card table.
|
||||
uintptr_t requested_address = setup_.regular_pool_base_address_;
|
||||
uintptr_t actual_address = AddressPoolManager::GetInstance()->Reserve(
|
||||
setup_.regular_pool_, requested_address, kSuperPageSize);
|
||||
PA_CHECK(requested_address == actual_address)
|
||||
<< "QuarantineCardTable is required to be allocated at the beginning of "
|
||||
"the regular pool";
|
||||
#endif // PA_STARSCAN_USE_CARD_TABLE
|
||||
}
|
||||
|
||||
void PartitionAddressSpace::InitConfigurablePool(uintptr_t pool_base,
|
||||
size_t size) {
|
||||
// The ConfigurablePool must only be initialized once.
|
||||
PA_CHECK(!IsConfigurablePoolInitialized());
|
||||
|
||||
// The other Pools must be initialized first.
|
||||
Init();
|
||||
|
||||
PA_CHECK(pool_base);
|
||||
PA_CHECK(size <= kConfigurablePoolMaxSize);
|
||||
PA_CHECK(size >= kConfigurablePoolMinSize);
|
||||
PA_CHECK(base::bits::IsPowerOfTwo(size));
|
||||
PA_CHECK(pool_base % size == 0);
|
||||
|
||||
setup_.configurable_pool_base_address_ = pool_base;
|
||||
setup_.configurable_pool_base_mask_ = ~(size - 1);
|
||||
|
||||
setup_.configurable_pool_ = AddressPoolManager::GetInstance()->Add(
|
||||
setup_.configurable_pool_base_address_, size);
|
||||
PA_CHECK(setup_.configurable_pool_ == kConfigurablePoolHandle);
|
||||
}
|
||||
|
||||
void PartitionAddressSpace::UninitForTesting() {
|
||||
FreePages(setup_.regular_pool_base_address_, RegularPoolSize());
|
||||
// For BRP pool, the allocation region includes a "forbidden zone" before the
|
||||
// pool.
|
||||
const size_t kForbiddenZoneSize = PageAllocationGranularity();
|
||||
FreePages(setup_.brp_pool_base_address_ - kForbiddenZoneSize,
|
||||
BRPPoolSize() + kForbiddenZoneSize);
|
||||
// Do not free pages for the configurable pool, because its memory is owned
|
||||
// by someone else, but deinitialize it nonetheless.
|
||||
setup_.regular_pool_base_address_ = kUninitializedPoolBaseAddress;
|
||||
setup_.brp_pool_base_address_ = kUninitializedPoolBaseAddress;
|
||||
setup_.configurable_pool_base_address_ = kUninitializedPoolBaseAddress;
|
||||
setup_.configurable_pool_base_mask_ = 0;
|
||||
setup_.regular_pool_ = 0;
|
||||
setup_.brp_pool_ = 0;
|
||||
setup_.configurable_pool_ = 0;
|
||||
AddressPoolManager::GetInstance()->ResetForTesting();
|
||||
}
|
||||
|
||||
void PartitionAddressSpace::UninitConfigurablePoolForTesting() {
|
||||
AddressPoolManager::GetInstance()->Remove(setup_.configurable_pool_);
|
||||
setup_.configurable_pool_base_address_ = kUninitializedPoolBaseAddress;
|
||||
setup_.configurable_pool_base_mask_ = 0;
|
||||
setup_.configurable_pool_ = 0;
|
||||
}
|
||||
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
} // namespace partition_alloc::internal
|
360
src/base/allocator/partition_allocator/partition_address_space.h
Normal file
360
src/base/allocator/partition_allocator/partition_address_space.h
Normal file
@ -0,0 +1,360 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ADDRESS_SPACE_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ADDRESS_SPACE_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/address_pool_manager_types.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_notreached.h"
|
||||
#include "base/allocator/partition_allocator/tagging.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/bits.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "build/build_config.h"
|
||||
#include "build/buildflag.h"
|
||||
|
||||
// The feature is not applicable to 32-bit address space.
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Reserves address space for PartitionAllocator.
|
||||
class BASE_EXPORT PartitionAddressSpace {
|
||||
public:
|
||||
// BRP stands for BackupRefPtr. GigaCage is split into pools, one which
|
||||
// supports BackupRefPtr and one that doesn't.
|
||||
static ALWAYS_INLINE internal::pool_handle GetRegularPool() {
|
||||
return setup_.regular_pool_;
|
||||
}
|
||||
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
static ALWAYS_INLINE uintptr_t RegularPoolBaseMask() {
|
||||
return setup_.regular_pool_base_mask_;
|
||||
}
|
||||
#else
|
||||
static ALWAYS_INLINE constexpr uintptr_t RegularPoolBaseMask() {
|
||||
return kRegularPoolBaseMask;
|
||||
}
|
||||
#endif
|
||||
|
||||
static ALWAYS_INLINE internal::pool_handle GetBRPPool() {
|
||||
return setup_.brp_pool_;
|
||||
}
|
||||
|
||||
// The Configurable Pool can be created inside an existing mapping and so will
|
||||
// be located outside PartitionAlloc's GigaCage.
|
||||
static ALWAYS_INLINE internal::pool_handle GetConfigurablePool() {
|
||||
return setup_.configurable_pool_;
|
||||
}
|
||||
|
||||
static ALWAYS_INLINE std::pair<pool_handle, uintptr_t> GetPoolAndOffset(
|
||||
uintptr_t address) {
|
||||
address = ::partition_alloc::internal::UnmaskPtr(address);
|
||||
// When USE_BACKUP_REF_PTR is off, BRP pool isn't used.
|
||||
#if !BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
PA_DCHECK(!IsInBRPPool(address));
|
||||
#endif
|
||||
pool_handle pool = 0;
|
||||
uintptr_t base = 0;
|
||||
if (IsInRegularPool(address)) {
|
||||
pool = GetRegularPool();
|
||||
base = setup_.regular_pool_base_address_;
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
} else if (IsInBRPPool(address)) {
|
||||
pool = GetBRPPool();
|
||||
base = setup_.brp_pool_base_address_;
|
||||
#endif // BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
} else if (IsInConfigurablePool(address)) {
|
||||
pool = GetConfigurablePool();
|
||||
base = setup_.configurable_pool_base_address_;
|
||||
} else {
|
||||
PA_NOTREACHED();
|
||||
}
|
||||
return std::make_pair(pool, address - base);
|
||||
}
|
||||
static ALWAYS_INLINE constexpr size_t ConfigurablePoolMaxSize() {
|
||||
return kConfigurablePoolMaxSize;
|
||||
}
|
||||
static ALWAYS_INLINE constexpr size_t ConfigurablePoolMinSize() {
|
||||
return kConfigurablePoolMinSize;
|
||||
}
|
||||
|
||||
// Initialize the GigaCage and the Pools inside of it.
|
||||
// This function must only be called from the main thread.
|
||||
static void Init();
|
||||
// Initialize the ConfigurablePool at the given address |pool_base|. It must
|
||||
// be aligned to the size of the pool. The size must be a power of two and
|
||||
// must be within [ConfigurablePoolMinSize(), ConfigurablePoolMaxSize()]. This
|
||||
// function must only be called from the main thread.
|
||||
static void InitConfigurablePool(uintptr_t pool_base, size_t size);
|
||||
static void UninitForTesting();
|
||||
static void UninitConfigurablePoolForTesting();
|
||||
|
||||
static ALWAYS_INLINE bool IsInitialized() {
|
||||
// Either neither or both regular and BRP pool are initialized. The
|
||||
// configurable pool is initialized separately.
|
||||
if (setup_.regular_pool_) {
|
||||
PA_DCHECK(setup_.brp_pool_ != 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
PA_DCHECK(setup_.brp_pool_ == 0);
|
||||
return false;
|
||||
}
|
||||
|
||||
static ALWAYS_INLINE bool IsConfigurablePoolInitialized() {
|
||||
return setup_.configurable_pool_base_address_ !=
|
||||
kUninitializedPoolBaseAddress;
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
static ALWAYS_INLINE bool IsInRegularPool(uintptr_t address) {
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
const uintptr_t regular_pool_base_mask = setup_.regular_pool_base_mask_;
|
||||
#else
|
||||
constexpr uintptr_t regular_pool_base_mask = kRegularPoolBaseMask;
|
||||
#endif
|
||||
return (address & regular_pool_base_mask) ==
|
||||
setup_.regular_pool_base_address_;
|
||||
}
|
||||
|
||||
static ALWAYS_INLINE uintptr_t RegularPoolBase() {
|
||||
return setup_.regular_pool_base_address_;
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
static ALWAYS_INLINE bool IsInBRPPool(uintptr_t address) {
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
const uintptr_t brp_pool_base_mask = setup_.brp_pool_base_mask_;
|
||||
#else
|
||||
constexpr uintptr_t brp_pool_base_mask = kBRPPoolBaseMask;
|
||||
#endif
|
||||
return (address & brp_pool_base_mask) == setup_.brp_pool_base_address_;
|
||||
}
|
||||
// Returns false for nullptr.
|
||||
static ALWAYS_INLINE bool IsInConfigurablePool(uintptr_t address) {
|
||||
return (address & setup_.configurable_pool_base_mask_) ==
|
||||
setup_.configurable_pool_base_address_;
|
||||
}
|
||||
|
||||
static ALWAYS_INLINE uintptr_t ConfigurablePoolBase() {
|
||||
return setup_.configurable_pool_base_address_;
|
||||
}
|
||||
|
||||
static ALWAYS_INLINE uintptr_t OffsetInBRPPool(uintptr_t address) {
|
||||
PA_DCHECK(IsInBRPPool(address));
|
||||
return ::partition_alloc::internal::UnmaskPtr(address) -
|
||||
setup_.brp_pool_base_address_;
|
||||
}
|
||||
|
||||
// PartitionAddressSpace is static_only class.
|
||||
PartitionAddressSpace() = delete;
|
||||
PartitionAddressSpace(const PartitionAddressSpace&) = delete;
|
||||
void* operator new(size_t) = delete;
|
||||
void* operator new(size_t, void*) = delete;
|
||||
|
||||
private:
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
static ALWAYS_INLINE size_t RegularPoolSize();
|
||||
static ALWAYS_INLINE size_t BRPPoolSize();
|
||||
#else
|
||||
// The pool sizes should be as large as maximum whenever possible.
|
||||
constexpr static ALWAYS_INLINE size_t RegularPoolSize() {
|
||||
return kRegularPoolSize;
|
||||
}
|
||||
constexpr static ALWAYS_INLINE size_t BRPPoolSize() { return kBRPPoolSize; }
|
||||
#endif // defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
|
||||
// On 64-bit systems, GigaCage is split into disjoint pools. The BRP pool, is
|
||||
// where all allocations have a BRP ref-count, thus pointers pointing there
|
||||
// can use a BRP protection against UaF. Allocations in the other pools don't
|
||||
// have that.
|
||||
//
|
||||
// Pool sizes have to be the power of two. Each pool will be aligned at its
|
||||
// own size boundary.
|
||||
//
|
||||
// NOTE! The BRP pool must be preceded by a reserved region, where allocations
|
||||
// are forbidden. This is to prevent a pointer immediately past a non-GigaCage
|
||||
// allocation from falling into the BRP pool, thus triggering BRP mechanism
|
||||
// and likely crashing. This "forbidden zone" can be as small as 1B, but it's
|
||||
// simpler to just reserve an allocation granularity unit.
|
||||
//
|
||||
// The ConfigurablePool is an optional Pool that can be created inside an
|
||||
// existing mapping by the embedder, and so will be outside of the GigaCage.
|
||||
// This Pool can be used when certain PA allocations must be located inside a
|
||||
// given virtual address region. One use case for this Pool is V8's virtual
|
||||
// memory cage, which requires that ArrayBuffers be located inside of it.
|
||||
static constexpr size_t kRegularPoolSize = kPoolMaxSize;
|
||||
static constexpr size_t kBRPPoolSize = kPoolMaxSize;
|
||||
static_assert(base::bits::IsPowerOfTwo(kRegularPoolSize) &&
|
||||
base::bits::IsPowerOfTwo(kBRPPoolSize));
|
||||
#if BUILDFLAG(IS_IOS)
|
||||
// TODO(crbug.com/1250788): Remove the iOS special case.
|
||||
static constexpr size_t kConfigurablePoolMaxSize = kPoolMaxSize;
|
||||
static constexpr size_t kConfigurablePoolMinSize = kPoolMaxSize;
|
||||
#else
|
||||
static constexpr size_t kConfigurablePoolMaxSize = kPoolMaxSize;
|
||||
static constexpr size_t kConfigurablePoolMinSize = 1 * kGiB;
|
||||
#endif
|
||||
static_assert(kConfigurablePoolMinSize <= kConfigurablePoolMaxSize);
|
||||
static_assert(base::bits::IsPowerOfTwo(kConfigurablePoolMaxSize) &&
|
||||
base::bits::IsPowerOfTwo(kConfigurablePoolMinSize));
|
||||
|
||||
#if !defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
// Masks used to easy determine belonging to a pool.
|
||||
// On Arm, the top byte of each pointer is ignored (meaning there are
|
||||
// effectively 256 versions of each valid pointer). 4 bits are used to store
|
||||
// tags for Arm's Memory Tagging Extension (MTE). To ensure that tagged
|
||||
// pointers are recognized as being in the pool, mask off the top byte with
|
||||
// kMemTagUnmask.
|
||||
static constexpr uintptr_t kRegularPoolOffsetMask =
|
||||
static_cast<uintptr_t>(kRegularPoolSize) - 1;
|
||||
static constexpr uintptr_t kRegularPoolBaseMask =
|
||||
~kRegularPoolOffsetMask & kMemTagUnmask;
|
||||
static constexpr uintptr_t kBRPPoolOffsetMask =
|
||||
static_cast<uintptr_t>(kBRPPoolSize) - 1;
|
||||
static constexpr uintptr_t kBRPPoolBaseMask =
|
||||
~kBRPPoolOffsetMask & kMemTagUnmask;
|
||||
#endif // !defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
|
||||
// This must be set to such a value that IsIn*Pool() always returns false when
|
||||
// the pool isn't initialized.
|
||||
static constexpr uintptr_t kUninitializedPoolBaseAddress =
|
||||
static_cast<uintptr_t>(-1);
|
||||
|
||||
struct GigaCageSetup {
|
||||
// Before PartitionAddressSpace::Init(), no allocation are allocated from a
|
||||
// reserved address space. Therefore, set *_pool_base_address_ initially to
|
||||
// -1, so that PartitionAddressSpace::IsIn*Pool() always returns false.
|
||||
constexpr GigaCageSetup()
|
||||
: regular_pool_base_address_(kUninitializedPoolBaseAddress),
|
||||
brp_pool_base_address_(kUninitializedPoolBaseAddress),
|
||||
configurable_pool_base_address_(kUninitializedPoolBaseAddress),
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
regular_pool_base_mask_(0),
|
||||
brp_pool_base_mask_(0),
|
||||
#endif
|
||||
configurable_pool_base_mask_(0),
|
||||
regular_pool_(0),
|
||||
brp_pool_(0),
|
||||
configurable_pool_(0) {
|
||||
}
|
||||
|
||||
// Using a union to enforce padding.
|
||||
union {
|
||||
struct {
|
||||
uintptr_t regular_pool_base_address_;
|
||||
uintptr_t brp_pool_base_address_;
|
||||
uintptr_t configurable_pool_base_address_;
|
||||
#if defined(PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE)
|
||||
uintptr_t regular_pool_base_mask_;
|
||||
uintptr_t brp_pool_base_mask_;
|
||||
#endif
|
||||
uintptr_t configurable_pool_base_mask_;
|
||||
|
||||
pool_handle regular_pool_;
|
||||
pool_handle brp_pool_;
|
||||
pool_handle configurable_pool_;
|
||||
};
|
||||
|
||||
char one_cacheline_[kPartitionCachelineSize];
|
||||
};
|
||||
};
|
||||
static_assert(sizeof(GigaCageSetup) % kPartitionCachelineSize == 0,
|
||||
"GigaCageSetup has to fill a cacheline(s)");
|
||||
|
||||
// See the comment describing the address layout above.
|
||||
//
|
||||
// These are write-once fields, frequently accessed thereafter. Make sure they
|
||||
// don't share a cacheline with other, potentially writeable data, through
|
||||
// alignment and padding.
|
||||
alignas(kPartitionCachelineSize) static GigaCageSetup setup_;
|
||||
};
|
||||
|
||||
ALWAYS_INLINE std::pair<pool_handle, uintptr_t> GetPoolAndOffset(
|
||||
uintptr_t address) {
|
||||
return PartitionAddressSpace::GetPoolAndOffset(address);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE pool_handle GetPool(uintptr_t address) {
|
||||
return std::get<0>(GetPoolAndOffset(address));
|
||||
}
|
||||
|
||||
ALWAYS_INLINE uintptr_t OffsetInBRPPool(uintptr_t address) {
|
||||
return PartitionAddressSpace::OffsetInBRPPool(address);
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Returns false for nullptr.
|
||||
ALWAYS_INLINE bool IsManagedByPartitionAlloc(uintptr_t address) {
|
||||
// When USE_BACKUP_REF_PTR is off, BRP pool isn't used.
|
||||
#if !BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
PA_DCHECK(!internal::PartitionAddressSpace::IsInBRPPool(address));
|
||||
#endif
|
||||
return internal::PartitionAddressSpace::IsInRegularPool(address)
|
||||
#if BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
|| internal::PartitionAddressSpace::IsInBRPPool(address)
|
||||
#endif
|
||||
|| internal::PartitionAddressSpace::IsInConfigurablePool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
ALWAYS_INLINE bool IsManagedByPartitionAllocRegularPool(uintptr_t address) {
|
||||
return internal::PartitionAddressSpace::IsInRegularPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
ALWAYS_INLINE bool IsManagedByPartitionAllocBRPPool(uintptr_t address) {
|
||||
return internal::PartitionAddressSpace::IsInBRPPool(address);
|
||||
}
|
||||
|
||||
// Returns false for nullptr.
|
||||
ALWAYS_INLINE bool IsManagedByPartitionAllocConfigurablePool(
|
||||
uintptr_t address) {
|
||||
return internal::PartitionAddressSpace::IsInConfigurablePool(address);
|
||||
}
|
||||
|
||||
ALWAYS_INLINE bool IsConfigurablePoolAvailable() {
|
||||
return internal::PartitionAddressSpace::IsConfigurablePoolInitialized();
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::IsConfigurablePoolAvailable;
|
||||
using ::partition_alloc::IsManagedByPartitionAlloc;
|
||||
using ::partition_alloc::IsManagedByPartitionAllocBRPPool;
|
||||
using ::partition_alloc::IsManagedByPartitionAllocConfigurablePool;
|
||||
using ::partition_alloc::IsManagedByPartitionAllocRegularPool;
|
||||
|
||||
namespace internal {
|
||||
|
||||
using ::partition_alloc::internal::GetPool;
|
||||
using ::partition_alloc::internal::GetPoolAndOffset;
|
||||
using ::partition_alloc::internal::OffsetInBRPPool;
|
||||
using ::partition_alloc::internal::PartitionAddressSpace;
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ADDRESS_SPACE_H_
|
64
src/base/allocator/partition_allocator/partition_alloc-inl.h
Normal file
64
src/base/allocator/partition_allocator/partition_alloc-inl.h
Normal file
@ -0,0 +1,64 @@
|
||||
// Copyright (c) 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_INL_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_INL_H_
|
||||
|
||||
#include <cstring>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_ref_count.h"
|
||||
#include "base/allocator/partition_allocator/random.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
// Prefetch *x into memory.
|
||||
#if defined(__clang__) || defined(COMPILER_GCC)
|
||||
#define PA_PREFETCH(x) __builtin_prefetch(x)
|
||||
#else
|
||||
#define PA_PREFETCH(x)
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// This is a `memset` that resists being optimized away. Adapted from
|
||||
// boringssl/src/crypto/mem.c. (Copying and pasting is bad, but //base can't
|
||||
// depend on //third_party, and this is small enough.)
|
||||
ALWAYS_INLINE void SecureMemset(void* ptr, uint8_t value, size_t size) {
|
||||
memset(ptr, value, size);
|
||||
|
||||
// As best as we can tell, this is sufficient to break any optimisations that
|
||||
// might try to eliminate "superfluous" memsets. If there's an easy way to
|
||||
// detect memset_s, it would be better to use that.
|
||||
__asm__ __volatile__("" : : "r"(ptr) : "memory");
|
||||
}
|
||||
|
||||
// Returns true if we've hit the end of a random-length period. We don't want to
|
||||
// invoke `RandomValue` too often, because we call this function in a hot spot
|
||||
// (`Free`), and `RandomValue` incurs the cost of atomics.
|
||||
#if !DCHECK_IS_ON()
|
||||
ALWAYS_INLINE bool RandomPeriod() {
|
||||
static thread_local uint8_t counter = 0;
|
||||
if (UNLIKELY(counter == 0)) {
|
||||
// It's OK to truncate this value.
|
||||
counter = static_cast<uint8_t>(::partition_alloc::internal::RandomValue());
|
||||
}
|
||||
// If `counter` is 0, this will wrap. That is intentional and OK.
|
||||
counter--;
|
||||
return counter == 0;
|
||||
}
|
||||
#endif // !DCHECK_IS_ON()
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
namespace base::internal {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::internal::SecureMemset;
|
||||
#if !DCHECK_IS_ON()
|
||||
using ::partition_alloc::internal::RandomPeriod;
|
||||
#endif // !DCHECK_IS_ON()
|
||||
|
||||
} // namespace base::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_INL_H_
|
113
src/base/allocator/partition_allocator/partition_alloc.cc
Normal file
113
src/base/allocator/partition_allocator/partition_alloc.cc
Normal file
@ -0,0 +1,113 @@
|
||||
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/address_pool_manager.h"
|
||||
#include "base/allocator/partition_allocator/memory_reclaimer.h"
|
||||
#include "base/allocator/partition_allocator/partition_address_space.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_hooks.h"
|
||||
#include "base/allocator/partition_allocator/partition_direct_map_extent.h"
|
||||
#include "base/allocator/partition_allocator/partition_oom.h"
|
||||
#include "base/allocator/partition_allocator/partition_page.h"
|
||||
#include "base/allocator/partition_allocator/partition_root.h"
|
||||
#include "base/allocator/partition_allocator/partition_stats.h"
|
||||
#include "base/allocator/partition_allocator/starscan/pcscan.h"
|
||||
#include "base/dcheck_is_on.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
void PartitionAllocGlobalInit(OomFunction on_out_of_memory) {
|
||||
// This is from page_allocator_constants.h and doesn't really fit here, but
|
||||
// there isn't a centralized initialization function in page_allocator.cc, so
|
||||
// there's no good place in that file to do a STATIC_ASSERT_OR_PA_CHECK.
|
||||
STATIC_ASSERT_OR_PA_CHECK((SystemPageSize() & SystemPageOffsetMask()) == 0,
|
||||
"SystemPageSize() must be power of 2");
|
||||
|
||||
// Two partition pages are used as guard / metadata page so make sure the
|
||||
// super page size is bigger.
|
||||
STATIC_ASSERT_OR_PA_CHECK(PartitionPageSize() * 4 <= kSuperPageSize,
|
||||
"ok super page size");
|
||||
STATIC_ASSERT_OR_PA_CHECK((kSuperPageSize & SystemPageOffsetMask()) == 0,
|
||||
"ok super page multiple");
|
||||
// Four system pages gives us room to hack out a still-guard-paged piece
|
||||
// of metadata in the middle of a guard partition page.
|
||||
STATIC_ASSERT_OR_PA_CHECK(SystemPageSize() * 4 <= PartitionPageSize(),
|
||||
"ok partition page size");
|
||||
STATIC_ASSERT_OR_PA_CHECK((PartitionPageSize() & SystemPageOffsetMask()) == 0,
|
||||
"ok partition page multiple");
|
||||
static_assert(sizeof(internal::PartitionPage<internal::ThreadSafe>) <=
|
||||
kPageMetadataSize,
|
||||
"PartitionPage should not be too big");
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
kPageMetadataSize * NumPartitionPagesPerSuperPage() <= SystemPageSize(),
|
||||
"page metadata fits in hole");
|
||||
|
||||
// Limit to prevent callers accidentally overflowing an int size.
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
MaxDirectMapped() <= (1UL << 31) + DirectMapAllocationGranularity(),
|
||||
"maximum direct mapped allocation");
|
||||
|
||||
// Check that some of our zanier calculations worked out as expected.
|
||||
static_assert(kSmallestBucket == kAlignment, "generic smallest bucket");
|
||||
static_assert(kMaxBucketed == 917504, "generic max bucketed");
|
||||
STATIC_ASSERT_OR_PA_CHECK(
|
||||
MaxSystemPagesPerRegularSlotSpan() <= 16,
|
||||
"System pages per slot span must be no greater than 16.");
|
||||
|
||||
PA_DCHECK(on_out_of_memory);
|
||||
internal::g_oom_handling_function = on_out_of_memory;
|
||||
}
|
||||
|
||||
void PartitionAllocGlobalUninitForTesting() {
|
||||
internal::PCScan::UninitForTesting(); // IN-TEST
|
||||
#if !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
internal::PartitionAddressSpace::UninitForTesting();
|
||||
#else
|
||||
internal::AddressPoolManager::GetInstance()->ResetForTesting();
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
#endif // !BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
internal::g_oom_handling_function = nullptr;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <bool thread_safe>
|
||||
PartitionAllocator<thread_safe>::~PartitionAllocator() {
|
||||
MemoryReclaimer::Instance()->UnregisterPartition(&partition_root_);
|
||||
}
|
||||
|
||||
template <bool thread_safe>
|
||||
void PartitionAllocator<thread_safe>::init(PartitionOptions opts) {
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
PA_CHECK(opts.thread_cache == PartitionOptions::ThreadCache::kDisabled)
|
||||
<< "Cannot use a thread cache when PartitionAlloc is malloc().";
|
||||
#endif
|
||||
partition_root_.Init(opts);
|
||||
MemoryReclaimer::Instance()->RegisterPartition(&partition_root_);
|
||||
}
|
||||
|
||||
template PartitionAllocator<internal::ThreadSafe>::~PartitionAllocator();
|
||||
template void PartitionAllocator<internal::ThreadSafe>::init(PartitionOptions);
|
||||
|
||||
#if (DCHECK_IS_ON() || BUILDFLAG(ENABLE_BACKUP_REF_PTR_SLOW_CHECKS)) && \
|
||||
BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
void CheckThatSlotOffsetIsZero(uintptr_t address) {
|
||||
// Add kPartitionPastAllocationAdjustment, because
|
||||
// PartitionAllocGetSlotStartInBRPPool will subtract it.
|
||||
PA_CHECK(PartitionAllocGetSlotStartInBRPPool(
|
||||
address + kPartitionPastAllocationAdjustment) == address);
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace base
|
50
src/base/allocator/partition_allocator/partition_alloc.h
Normal file
50
src/base/allocator/partition_allocator/partition_alloc.h
Normal file
@ -0,0 +1,50 @@
|
||||
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_H_
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
|
||||
#include "base/allocator/partition_allocator/partition_oom.h"
|
||||
#include "base/allocator/partition_allocator/partition_root.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/compiler_specific.h"
|
||||
|
||||
namespace base {
|
||||
|
||||
BASE_EXPORT void PartitionAllocGlobalInit(OomFunction on_out_of_memory);
|
||||
BASE_EXPORT void PartitionAllocGlobalUninitForTesting();
|
||||
|
||||
namespace internal {
|
||||
template <bool thread_safe>
|
||||
struct BASE_EXPORT PartitionAllocator {
|
||||
PartitionAllocator() = default;
|
||||
~PartitionAllocator();
|
||||
|
||||
void init(PartitionOptions);
|
||||
|
||||
ALWAYS_INLINE PartitionRoot<thread_safe>* root() { return &partition_root_; }
|
||||
ALWAYS_INLINE const PartitionRoot<thread_safe>* root() const {
|
||||
return &partition_root_;
|
||||
}
|
||||
|
||||
private:
|
||||
PartitionRoot<thread_safe> partition_root_;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
using PartitionAllocator = internal::PartitionAllocator<internal::ThreadSafe>;
|
||||
|
||||
} // namespace base
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::base::PartitionAllocator;
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_H_
|
152
src/base/allocator/partition_allocator/partition_alloc_check.h
Normal file
152
src/base/allocator/partition_allocator/partition_alloc_check.h
Normal file
@ -0,0 +1,152 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_CHECK_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_CHECK_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/check.h"
|
||||
#include "base/debug/alias.h"
|
||||
#include "base/immediate_crash.h"
|
||||
|
||||
#define PA_STRINGIFY_IMPL(s) #s
|
||||
#define PA_STRINGIFY(s) PA_STRINGIFY_IMPL(s)
|
||||
|
||||
// When PartitionAlloc is used as the default allocator, we cannot use the
|
||||
// regular (D)CHECK() macros, as they allocate internally. When an assertion is
|
||||
// triggered, they format strings, leading to reentrancy in the code, which none
|
||||
// of PartitionAlloc is designed to support (and especially not for error
|
||||
// paths).
|
||||
//
|
||||
// As a consequence:
|
||||
// - When PartitionAlloc is not malloc(), use the regular macros
|
||||
// - Otherwise, crash immediately. This provides worse error messages though.
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
// For official build discard log strings to reduce binary bloat.
|
||||
#if defined(OFFICIAL_BUILD) && defined(NDEBUG)
|
||||
// See base/check.h for implementation details.
|
||||
#define PA_CHECK(condition) \
|
||||
UNLIKELY(!(condition)) ? IMMEDIATE_CRASH() : EAT_CHECK_STREAM_PARAMS()
|
||||
#else
|
||||
// PartitionAlloc uses async-signal-safe RawCheck() for error reporting.
|
||||
// Async-signal-safe functions are guaranteed to not allocate as otherwise they
|
||||
// could operate with inconsistent allocator state.
|
||||
#define PA_CHECK(condition) \
|
||||
UNLIKELY(!(condition)) \
|
||||
? logging::RawCheck( \
|
||||
__FILE__ "(" PA_STRINGIFY(__LINE__) ") Check failed: " #condition) \
|
||||
: EAT_CHECK_STREAM_PARAMS()
|
||||
#endif // defined(OFFICIAL_BUILD) && defined(NDEBUG)
|
||||
|
||||
#if DCHECK_IS_ON()
|
||||
#define PA_DCHECK(condition) PA_CHECK(condition)
|
||||
#else
|
||||
#define PA_DCHECK(condition) EAT_CHECK_STREAM_PARAMS(!(condition))
|
||||
#endif // DCHECK_IS_ON()
|
||||
|
||||
#define PA_PCHECK(condition) \
|
||||
if (!(condition)) { \
|
||||
int error = errno; \
|
||||
base::debug::Alias(&error); \
|
||||
IMMEDIATE_CRASH(); \
|
||||
}
|
||||
|
||||
#else
|
||||
#define PA_CHECK(condition) CHECK(condition)
|
||||
#define PA_DCHECK(condition) DCHECK(condition)
|
||||
#define PA_PCHECK(condition) PCHECK(condition)
|
||||
#endif // BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
|
||||
|
||||
// Expensive dchecks that run within *Scan. These checks are only enabled in
|
||||
// debug builds with dchecks enabled.
|
||||
#if !defined(NDEBUG)
|
||||
#define PA_SCAN_DCHECK_IS_ON() DCHECK_IS_ON()
|
||||
#else
|
||||
#define PA_SCAN_DCHECK_IS_ON() 0
|
||||
#endif
|
||||
|
||||
#if PA_SCAN_DCHECK_IS_ON()
|
||||
#define PA_SCAN_DCHECK(expr) PA_DCHECK(expr)
|
||||
#else
|
||||
#define PA_SCAN_DCHECK(expr) EAT_CHECK_STREAM_PARAMS(!(expr))
|
||||
#endif
|
||||
|
||||
#if defined(PAGE_ALLOCATOR_CONSTANTS_ARE_CONSTEXPR)
|
||||
|
||||
// Use this macro to assert on things that are conditionally constexpr as
|
||||
// determined by PAGE_ALLOCATOR_CONSTANTS_ARE_CONSTEXPR or
|
||||
// PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR. Where fixed at compile time, this
|
||||
// is a static_assert. Where determined at run time, this is a PA_CHECK.
|
||||
// Therefore, this macro must only be used where both a static_assert and a
|
||||
// PA_CHECK would be viable, that is, within a function, and ideally a function
|
||||
// that executes only once, early in the program, such as during initialization.
|
||||
#define STATIC_ASSERT_OR_PA_CHECK(condition, message) \
|
||||
static_assert(condition, message)
|
||||
|
||||
#else
|
||||
|
||||
#define STATIC_ASSERT_OR_PA_CHECK(condition, message) \
|
||||
do { \
|
||||
PA_CHECK(condition) << (message); \
|
||||
} while (false)
|
||||
|
||||
#endif
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// Used for PA_DEBUG_DATA_ON_STACK, below.
|
||||
struct alignas(16) DebugKv {
|
||||
// 16 bytes object aligned on 16 bytes, to make it easier to see in crash
|
||||
// reports.
|
||||
char k[8] = {}; // Not necessarily 0-terminated.
|
||||
uint64_t v = 0;
|
||||
|
||||
DebugKv(const char* key, size_t value) {
|
||||
// Fill with ' ', so that the stack dump is nicer to read. Not using
|
||||
// memset() on purpose, this header is included from *many* places.
|
||||
for (int index = 0; index < 8; index++) {
|
||||
k[index] = ' ';
|
||||
}
|
||||
|
||||
for (int index = 0; index < 8; index++) {
|
||||
k[index] = key[index];
|
||||
if (key[index] == '\0')
|
||||
break;
|
||||
}
|
||||
v = value;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
#define PA_CONCAT(x, y) x##y
|
||||
#define PA_CONCAT2(x, y) PA_CONCAT(x, y)
|
||||
#define PA_DEBUG_UNIQUE_NAME PA_CONCAT2(kv, __LINE__)
|
||||
|
||||
// Puts a key-value pair on the stack for debugging. `base::debug::Alias()`
|
||||
// makes sure a local variable is saved on the stack, but the variables can be
|
||||
// hard to find in crash reports, particularly if the frame pointer is not
|
||||
// present / invalid.
|
||||
//
|
||||
// This puts a key right before the value on the stack. The key has to be a C
|
||||
// string, which gets truncated if it's longer than 8 characters.
|
||||
// Example use:
|
||||
// PA_DEBUG_DATA_ON_STACK("size", 0x42)
|
||||
//
|
||||
// Sample output in lldb:
|
||||
// (lldb) x 0x00007fffffffd0d0 0x00007fffffffd0f0
|
||||
// 0x7fffffffd0d0: 73 69 7a 65 00 00 00 00 42 00 00 00 00 00 00 00
|
||||
// size............
|
||||
//
|
||||
// With gdb, one can use:
|
||||
// x/8g <STACK_POINTER>
|
||||
// to see the data. With lldb, "x <STACK_POINTER> <FRAME_POJNTER>" can be used.
|
||||
#define PA_DEBUG_DATA_ON_STACK(name, value) \
|
||||
::partition_alloc::internal::DebugKv PA_DEBUG_UNIQUE_NAME{name, value}; \
|
||||
::base::debug::Alias(&PA_DEBUG_UNIQUE_NAME);
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_CHECK_H_
|
219
src/base/allocator/partition_allocator/partition_alloc_config.h
Normal file
219
src/base/allocator/partition_allocator/partition_alloc_config.h
Normal file
@ -0,0 +1,219 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_CONFIG_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_CONFIG_H_
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/dcheck_is_on.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
// ARCH_CPU_64_BITS implies 64-bit instruction set, but not necessarily 64-bit
|
||||
// address space. The only known case where address space is 32-bit is NaCl, so
|
||||
// eliminate it explicitly. static_assert below ensures that others won't slip
|
||||
// through.
|
||||
#if defined(ARCH_CPU_64_BITS) && !BUILDFLAG(IS_NACL)
|
||||
#define PA_HAS_64_BITS_POINTERS
|
||||
static_assert(sizeof(void*) == 8, "");
|
||||
#else
|
||||
static_assert(sizeof(void*) != 8, "");
|
||||
#endif
|
||||
|
||||
// PCScan supports 64 bits only.
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
#define PA_ALLOW_PCSCAN
|
||||
#endif
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS) && \
|
||||
(defined(__ARM_NEON) || defined(__ARM_NEON__)) && defined(__ARM_FP)
|
||||
#define PA_STARSCAN_NEON_SUPPORTED
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
// Use dynamically sized GigaCage. This allows to query the size at run-time,
|
||||
// before initialization, instead of using a hardcoded constexpr.
|
||||
#define PA_USE_DYNAMICALLY_SIZED_GIGA_CAGE
|
||||
#endif
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS) && \
|
||||
(BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID))
|
||||
#include <linux/version.h>
|
||||
// TODO(bikineev): Enable for ChromeOS.
|
||||
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 8, 0)
|
||||
#define PA_STARSCAN_UFFD_WRITE_PROTECTOR_SUPPORTED
|
||||
#endif
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS) &&
|
||||
// (BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID))
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
// Use card table to avoid races for PCScan configuration without safepoints.
|
||||
// The card table provides the guaranteee that for a marked card the underling
|
||||
// super-page is fully initialized.
|
||||
#define PA_STARSCAN_USE_CARD_TABLE 1
|
||||
#else
|
||||
// The card table is permanently disabled for 32-bit.
|
||||
#define PA_STARSCAN_USE_CARD_TABLE 0
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
#if PA_STARSCAN_USE_CARD_TABLE && !defined(PA_ALLOW_PCSCAN)
|
||||
#error "Card table can only be used when *Scan is allowed"
|
||||
#endif
|
||||
|
||||
// Use batched freeing when sweeping pages. This builds up a freelist in the
|
||||
// scanner thread and appends to the slot-span's freelist only once.
|
||||
#define PA_STARSCAN_BATCHED_FREE 1
|
||||
|
||||
// POSIX is not only UNIX, e.g. macOS and other OSes. We do use Linux-specific
|
||||
// features such as futex(2).
|
||||
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
|
||||
#define PA_HAS_LINUX_KERNEL
|
||||
#endif
|
||||
|
||||
// On some platforms, we implement locking by spinning in userspace, then going
|
||||
// into the kernel only if there is contention. This requires platform support,
|
||||
// namely:
|
||||
// - On Linux, futex(2)
|
||||
// - On Windows, a fast userspace "try" operation which is available
|
||||
// with SRWLock
|
||||
// - Otherwise, a fast userspace pthread_mutex_trylock().
|
||||
//
|
||||
// On macOS, pthread_mutex_trylock() is fast by default starting with macOS
|
||||
// 10.14. Chromium targets an earlier version, so it cannot be known at
|
||||
// compile-time. So we use something different. On other POSIX systems, we
|
||||
// assume that pthread_mutex_trylock() is suitable.
|
||||
//
|
||||
// Otherwise, a userspace spinlock implementation is used.
|
||||
#if defined(PA_HAS_LINUX_KERNEL) || BUILDFLAG(IS_WIN) || \
|
||||
(BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_APPLE)) || BUILDFLAG(IS_FUCHSIA)
|
||||
#define PA_HAS_FAST_MUTEX
|
||||
#endif
|
||||
|
||||
// If set to 1, enables zeroing memory on Free() with roughly 1% probability.
|
||||
// This applies only to normal buckets, as direct-map allocations are always
|
||||
// decommitted.
|
||||
// TODO(bartekn): Re-enable once PartitionAlloc-Everywhere evaluation is done.
|
||||
#if 0
|
||||
#define PA_ZERO_RANDOMLY_ON_FREE
|
||||
#endif
|
||||
|
||||
// Need TLS support.
|
||||
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_WIN) || BUILDFLAG(IS_FUCHSIA)
|
||||
#define PA_THREAD_CACHE_SUPPORTED
|
||||
#endif
|
||||
|
||||
// Too expensive for official builds, as it adds cache misses to all
|
||||
// allocations. On the other hand, we want wide metrics coverage to get
|
||||
// realistic profiles.
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && !defined(OFFICIAL_BUILD)
|
||||
#define PA_THREAD_CACHE_ALLOC_STATS
|
||||
#endif
|
||||
|
||||
// Optional statistics collection. Lightweight, contrary to the ones above,
|
||||
// hence enabled by default.
|
||||
#define PA_THREAD_CACHE_ENABLE_STATISTICS
|
||||
|
||||
// Enable free list shadow entry to strengthen hardening as much as possible.
|
||||
// The shadow entry is an inversion (bitwise-NOT) of the encoded `next` pointer.
|
||||
//
|
||||
// Disabled when ref-count is placed in the previous slot, as it will overlap
|
||||
// with the shadow for the smallest slots.
|
||||
//
|
||||
// Disabled on Big Endian CPUs, because encoding is also a bitwise-NOT there,
|
||||
// making the shadow entry equal to the original, valid pointer to the next
|
||||
// slot. In case Use-after-Free happens, we'd rather not hand out a valid,
|
||||
// ready-to-use pointer.
|
||||
#if !BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT) && \
|
||||
defined(ARCH_CPU_LITTLE_ENDIAN)
|
||||
#define PA_HAS_FREELIST_SHADOW_ENTRY
|
||||
#endif
|
||||
|
||||
// Specifies whether allocation extras need to be added.
|
||||
#if DCHECK_IS_ON() || BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
#define PA_EXTRAS_REQUIRED
|
||||
#endif
|
||||
|
||||
// Count and total wall clock time spent in memory related system calls. This
|
||||
// doesn't cover all system calls, in particular the ones related to locking.
|
||||
//
|
||||
// Not enabled by default, as it has a runtime cost, and causes issues with some
|
||||
// builds (e.g. Windows).
|
||||
// However the total count is collected on all platforms.
|
||||
// #define PA_COUNT_SYSCALL_TIME
|
||||
|
||||
// On Windows, |thread_local| variables cannot be marked "dllexport", see
|
||||
// compiler error C2492 at
|
||||
// https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2492?view=msvc-160.
|
||||
// Don't use it there.
|
||||
//
|
||||
// On macOS and iOS:
|
||||
// - With PartitionAlloc-Everywhere, thread_local allocates, reentering the
|
||||
// allocator.
|
||||
// - Component builds triggered a clang bug: crbug.com/1243375
|
||||
//
|
||||
// Regardless, the "normal" TLS access is fast on x86_64 (see partition_tls.h),
|
||||
// so don't bother with thread_local anywhere.
|
||||
#if !(BUILDFLAG(IS_WIN) && defined(COMPONENT_BUILD)) && !BUILDFLAG(IS_APPLE)
|
||||
#define PA_THREAD_LOCAL_TLS
|
||||
#endif
|
||||
|
||||
// When PartitionAlloc is malloc(), detect malloc() becoming re-entrant by
|
||||
// calling malloc() again.
|
||||
//
|
||||
// Limitations:
|
||||
// - DCHECK_IS_ON() due to runtime cost
|
||||
// - thread_local TLS to simplify the implementation
|
||||
// - Not on Android due to bot failures
|
||||
#if DCHECK_IS_ON() && BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && \
|
||||
defined(PA_THREAD_LOCAL_TLS) && !BUILDFLAG(IS_ANDROID)
|
||||
#define PA_HAS_ALLOCATION_GUARD
|
||||
#endif
|
||||
|
||||
#if defined(ARCH_CPU_ARM64) && defined(__clang__) && \
|
||||
(BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID))
|
||||
static_assert(sizeof(void*) == 8);
|
||||
#define PA_HAS_MEMORY_TAGGING
|
||||
#endif
|
||||
|
||||
// Lazy commit should only be enabled on Windows, because commit charge is
|
||||
// only meaningful and limited on Windows. It affects performance on other
|
||||
// platforms and is simply not needed there due to OS supporting overcommit.
|
||||
#if BUILDFLAG(IS_WIN)
|
||||
constexpr bool kUseLazyCommit = true;
|
||||
#else
|
||||
constexpr bool kUseLazyCommit = false;
|
||||
#endif
|
||||
|
||||
// On these platforms, lock all the partitions before fork(), and unlock after.
|
||||
// This may be required on more platforms in the future.
|
||||
#if BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
||||
#define PA_HAS_ATFORK_HANDLER
|
||||
#endif
|
||||
|
||||
// PartitionAlloc uses PartitionRootEnumerator to acquire all
|
||||
// PartitionRoots at BeforeFork and to release at AfterFork.
|
||||
#if BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && defined(PA_HAS_ATFORK_HANDLER)
|
||||
#define PA_USE_PARTITION_ROOT_ENUMERATOR
|
||||
#endif
|
||||
|
||||
// Due to potential conflict with the free list pointer in the "previous slot"
|
||||
// mode in the smallest bucket, we can't check both the cookie and the dangling
|
||||
// raw_ptr at the same time.
|
||||
#if !(BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS) && \
|
||||
BUILDFLAG(PUT_REF_COUNT_IN_PREVIOUS_SLOT)) && \
|
||||
(DCHECK_IS_ON() || BUILDFLAG(ENABLE_BACKUP_REF_PTR_SLOW_CHECKS))
|
||||
#define PA_REF_COUNT_CHECK_COOKIE
|
||||
#endif
|
||||
|
||||
// Prefer smaller slot spans.
|
||||
//
|
||||
// Smaller slot spans may improve dirty memory fragmentation, but may also
|
||||
// increase address space usage.
|
||||
//
|
||||
// This is intended to roll out more broadly, but only enabled on Linux for now
|
||||
// to get performance bot and real-world data pre-A/B experiment.
|
||||
#if BUILDFLAG(IS_LINUX)
|
||||
#define PA_PREFER_SMALLER_SLOT_SPANS
|
||||
#endif // BUILDFLAG(IS_LINUX)
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_CONFIG_H_
|
@ -0,0 +1,483 @@
|
||||
// Copyright (c) 2018 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_CONSTANTS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_CONSTANTS_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cstddef>
|
||||
#include <limits>
|
||||
|
||||
#include "base/allocator/partition_allocator/address_pool_manager_types.h"
|
||||
#include "base/allocator/partition_allocator/page_allocator_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
|
||||
#include "base/allocator/partition_allocator/tagging.h"
|
||||
#include "build/build_config.h"
|
||||
|
||||
#if BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)
|
||||
#include <mach/vm_page_size.h>
|
||||
#endif
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// Bit flag constants used at `flag` argument of PartitionRoot::AllocWithFlags,
|
||||
// AlignedAllocWithFlags, etc.
|
||||
struct AllocFlags {
|
||||
// In order to support bit operations like `flag_a | flag_b`, the old-
|
||||
// fashioned enum (+ surrounding named struct) is used instead of enum class.
|
||||
enum : int {
|
||||
kReturnNull = 1 << 0,
|
||||
kZeroFill = 1 << 1,
|
||||
kNoHooks = 1 << 2, // Internal only.
|
||||
// If the allocation requires a "slow path" (such as allocating/committing a
|
||||
// new slot span), return nullptr instead. Note this makes all large
|
||||
// allocations return nullptr, such as direct-mapped ones, and even for
|
||||
// smaller ones, a nullptr value is common.
|
||||
kFastPathOrReturnNull = 1 << 3, // Internal only.
|
||||
|
||||
kLastFlag = kFastPathOrReturnNull
|
||||
};
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Size of a cache line. Not all CPUs in the world have a 64 bytes cache line
|
||||
// size, but as of 2021, most do. This is in particular the case for almost all
|
||||
// x86_64 and almost all ARM CPUs supported by Chromium. As this is used for
|
||||
// static alignment, we cannot query the CPU at runtime to determine the actual
|
||||
// alignment, so use 64 bytes everywhere. Since this is only used to avoid false
|
||||
// sharing, getting this wrong only results in lower performance, not incorrect
|
||||
// code.
|
||||
constexpr size_t kPartitionCachelineSize = 64;
|
||||
|
||||
// Underlying partition storage pages (`PartitionPage`s) are a power-of-2 size.
|
||||
// It is typical for a `PartitionPage` to be based on multiple system pages.
|
||||
// Most references to "page" refer to `PartitionPage`s.
|
||||
//
|
||||
// *Super pages* are the underlying system allocations we make. Super pages
|
||||
// contain multiple partition pages and include space for a small amount of
|
||||
// metadata per partition page.
|
||||
//
|
||||
// Inside super pages, we store *slot spans*. A slot span is a continguous range
|
||||
// of one or more `PartitionPage`s that stores allocations of the same size.
|
||||
// Slot span sizes are adjusted depending on the allocation size, to make sure
|
||||
// the packing does not lead to unused (wasted) space at the end of the last
|
||||
// system page of the span. For our current maximum slot span size of 64 KiB and
|
||||
// other constant values, we pack _all_ `PartitionRoot::Alloc` sizes perfectly
|
||||
// up against the end of a system page.
|
||||
|
||||
#if defined(_MIPS_ARCH_LOONGSON)
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PartitionPageShift() {
|
||||
return 16; // 64 KiB
|
||||
}
|
||||
#elif defined(ARCH_CPU_PPC64)
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PartitionPageShift() {
|
||||
return 18; // 256 KiB
|
||||
}
|
||||
#elif BUILDFLAG(IS_APPLE) && defined(ARCH_CPU_64_BITS)
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PartitionPageShift() {
|
||||
return vm_page_shift + 2;
|
||||
}
|
||||
#else
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PartitionPageShift() {
|
||||
return 14; // 16 KiB
|
||||
}
|
||||
#endif
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PartitionPageSize() {
|
||||
return 1 << PartitionPageShift();
|
||||
}
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PartitionPageOffsetMask() {
|
||||
return PartitionPageSize() - 1;
|
||||
}
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
PartitionPageBaseMask() {
|
||||
return ~PartitionPageOffsetMask();
|
||||
}
|
||||
|
||||
// Number of system pages per regular slot span. Above this limit, we call it
|
||||
// a single-slot span, as the span literally hosts only one slot, and has
|
||||
// somewhat different implementation. At run-time, single-slot spans can be
|
||||
// differentiated with a call to CanStoreRawSize().
|
||||
// TODO: Should this be 1 on platforms with page size larger than 4kB, e.g.
|
||||
// ARM macOS or defined(_MIPS_ARCH_LOONGSON)?
|
||||
constexpr size_t kMaxPartitionPagesPerRegularSlotSpan = 4;
|
||||
|
||||
// To avoid fragmentation via never-used freelist entries, we hand out partition
|
||||
// freelist sections gradually, in units of the dominant system page size. What
|
||||
// we're actually doing is avoiding filling the full `PartitionPage` (16 KiB)
|
||||
// with freelist pointers right away. Writing freelist pointers will fault and
|
||||
// dirty a private page, which is very wasteful if we never actually store
|
||||
// objects there.
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
NumSystemPagesPerPartitionPage() {
|
||||
return PartitionPageSize() >> SystemPageShift();
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
MaxSystemPagesPerRegularSlotSpan() {
|
||||
return NumSystemPagesPerPartitionPage() *
|
||||
kMaxPartitionPagesPerRegularSlotSpan;
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
MaxRegularSlotSpanSize() {
|
||||
return kMaxPartitionPagesPerRegularSlotSpan << PartitionPageShift();
|
||||
}
|
||||
|
||||
// We reserve virtual address space in 2 MiB chunks (aligned to 2 MiB as well).
|
||||
// These chunks are called *super pages*. We do this so that we can store
|
||||
// metadata in the first few pages of each 2 MiB-aligned section. This makes
|
||||
// freeing memory very fast. 2 MiB size & alignment were chosen, because this
|
||||
// virtual address block represents a full but single page table allocation on
|
||||
// ARM, ia32 and x64, which may be slightly more performance&memory efficient.
|
||||
// (Note, these super pages are backed by 4 KiB system pages and have nothing to
|
||||
// do with OS concept of "huge pages"/"large pages", even though the size
|
||||
// coincides.)
|
||||
//
|
||||
// The layout of the super page is as follows. The sizes below are the same for
|
||||
// 32- and 64-bit platforms.
|
||||
//
|
||||
// +-----------------------+
|
||||
// | Guard page (4 KiB) |
|
||||
// | Metadata page (4 KiB) |
|
||||
// | Guard pages (8 KiB) |
|
||||
// | *Scan State Bitmap |
|
||||
// | Slot span |
|
||||
// | Slot span |
|
||||
// | ... |
|
||||
// | Slot span |
|
||||
// | Guard pages (16 KiB) |
|
||||
// +-----------------------+
|
||||
//
|
||||
// State Bitmap is inserted for partitions that may have quarantine enabled.
|
||||
//
|
||||
// If refcount_at_end_allocation is enabled, RefcountBitmap(4KiB) is inserted
|
||||
// after the Metadata page for BackupRefPtr. The guard pages after the bitmap
|
||||
// will be 4KiB.
|
||||
//
|
||||
//...
|
||||
// | Metadata page (4 KiB) |
|
||||
// | RefcountBitmap (4 KiB)|
|
||||
// | Guard pages (4 KiB) |
|
||||
//...
|
||||
//
|
||||
// Each slot span is a contiguous range of one or more `PartitionPage`s. Note
|
||||
// that slot spans of different sizes may co-exist with one super page. Even
|
||||
// slot spans of the same size may support different slot sizes. However, all
|
||||
// slots within a span have to be of the same size.
|
||||
//
|
||||
// The metadata page has the following format. Note that the `PartitionPage`
|
||||
// that is not at the head of a slot span is "unused" (by most part, it only
|
||||
// stores the offset from the head page). In other words, the metadata for the
|
||||
// slot span is stored only in the first `PartitionPage` of the slot span.
|
||||
// Metadata accesses to other `PartitionPage`s are redirected to the first
|
||||
// `PartitionPage`.
|
||||
//
|
||||
// +---------------------------------------------+
|
||||
// | SuperPageExtentEntry (32 B) |
|
||||
// | PartitionPage of slot span 1 (32 B, used) |
|
||||
// | PartitionPage of slot span 1 (32 B, unused) |
|
||||
// | PartitionPage of slot span 1 (32 B, unused) |
|
||||
// | PartitionPage of slot span 2 (32 B, used) |
|
||||
// | PartitionPage of slot span 3 (32 B, used) |
|
||||
// | ... |
|
||||
// | PartitionPage of slot span N (32 B, used) |
|
||||
// | PartitionPage of slot span N (32 B, unused) |
|
||||
// | PartitionPage of slot span N (32 B, unused) |
|
||||
// +---------------------------------------------+
|
||||
//
|
||||
// A direct-mapped page has an identical layout at the beginning to fake it
|
||||
// looking like a super page:
|
||||
//
|
||||
// +---------------------------------+
|
||||
// | Guard page (4 KiB) |
|
||||
// | Metadata page (4 KiB) |
|
||||
// | Guard pages (8 KiB) |
|
||||
// | Direct mapped object |
|
||||
// | Guard page (4 KiB, 32-bit only) |
|
||||
// +---------------------------------+
|
||||
//
|
||||
// A direct-mapped page's metadata page has the following layout (on 64 bit
|
||||
// architectures. On 32 bit ones, the layout is identical, some sizes are
|
||||
// different due to smaller pointers.):
|
||||
//
|
||||
// +----------------------------------+
|
||||
// | SuperPageExtentEntry (32 B) |
|
||||
// | PartitionPage (32 B) |
|
||||
// | PartitionBucket (40 B) |
|
||||
// | PartitionDirectMapExtent (32 B) |
|
||||
// +----------------------------------+
|
||||
//
|
||||
// See |PartitionDirectMapMetadata| for details.
|
||||
|
||||
constexpr size_t kGiB = 1024 * 1024 * 1024ull;
|
||||
constexpr size_t kSuperPageShift = 21; // 2 MiB
|
||||
constexpr size_t kSuperPageSize = 1 << kSuperPageShift;
|
||||
constexpr size_t kSuperPageAlignment = kSuperPageSize;
|
||||
constexpr size_t kSuperPageOffsetMask = kSuperPageAlignment - 1;
|
||||
constexpr size_t kSuperPageBaseMask = ~kSuperPageOffsetMask & kMemTagUnmask;
|
||||
|
||||
// GigaCage is split into two pools, one which supports BackupRefPtr (BRP) and
|
||||
// one that doesn't.
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
// The Configurable Pool is only available in 64-bit mode
|
||||
constexpr size_t kNumPools = 3;
|
||||
// TODO(crbug.com/1250788): Remove the iOS special case, once larger address
|
||||
// space can be used there. This limitation isn't meant for releasing, but is ok
|
||||
// to keep for now only because nothing uses PartitionAlloc on iOS yet.
|
||||
#if BUILDFLAG(IS_IOS)
|
||||
constexpr size_t kPoolMaxSize = kGiB / 4;
|
||||
#elif BUILDFLAG(IS_MAC)
|
||||
// Special-case macOS. Contrary to other platforms, there is no sandbox limit
|
||||
// there, meaning that a single renderer could "happily" consume >8GiB. So the
|
||||
// 8GiB pool size is a regression. Make the limit higher on this platform only
|
||||
// to be consistent with previous behavior. See crbug.com/1232567 for details.
|
||||
constexpr size_t kPoolMaxSize = 16 * kGiB;
|
||||
#else
|
||||
constexpr size_t kPoolMaxSize = 8 * kGiB;
|
||||
#endif
|
||||
#else // defined(PA_HAS_64_BITS_POINTERS)
|
||||
constexpr size_t kNumPools = 2;
|
||||
constexpr size_t kPoolMaxSize = 4 * kGiB;
|
||||
#endif
|
||||
constexpr size_t kMaxSuperPagesInPool = kPoolMaxSize / kSuperPageSize;
|
||||
|
||||
static constexpr pool_handle kRegularPoolHandle = 1;
|
||||
static constexpr pool_handle kBRPPoolHandle = 2;
|
||||
static constexpr pool_handle kConfigurablePoolHandle = 3;
|
||||
|
||||
// Slots larger than this size will not receive MTE protection. Pages intended
|
||||
// for allocations larger than this constant should not be backed with PROT_MTE
|
||||
// (which saves shadow tag memory). We also save CPU cycles by skipping tagging
|
||||
// of large areas which are less likely to benefit from MTE protection.
|
||||
// TODO(Richard.Townsend@arm.com): adjust RecommitSystemPagesForData to skip
|
||||
// PROT_MTE.
|
||||
constexpr size_t kMaxMemoryTaggingSize = 1024;
|
||||
|
||||
#if defined(PA_HAS_MEMORY_TAGGING)
|
||||
// Returns whether the tag of |object| overflowed and the containing slot needs
|
||||
// to be moved to quarantine.
|
||||
ALWAYS_INLINE bool HasOverflowTag(void* object) {
|
||||
// The tag with which the slot is put to quarantine.
|
||||
constexpr uintptr_t kOverflowTag = 0x0f00000000000000uLL;
|
||||
static_assert((kOverflowTag & ~kMemTagUnmask) != 0,
|
||||
"Overflow tag must be in tag bits");
|
||||
return (reinterpret_cast<uintptr_t>(object) & ~kMemTagUnmask) == kOverflowTag;
|
||||
}
|
||||
#endif // defined(PA_HAS_MEMORY_TAGGING)
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
NumPartitionPagesPerSuperPage() {
|
||||
return kSuperPageSize >> PartitionPageShift();
|
||||
}
|
||||
|
||||
constexpr ALWAYS_INLINE size_t MaxSuperPagesInPool() {
|
||||
return kMaxSuperPagesInPool;
|
||||
}
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
// In 64-bit mode, the direct map allocation granularity is super page size,
|
||||
// because this is the reservation granularity of the GigaCage.
|
||||
constexpr ALWAYS_INLINE size_t DirectMapAllocationGranularity() {
|
||||
return kSuperPageSize;
|
||||
}
|
||||
|
||||
constexpr ALWAYS_INLINE size_t DirectMapAllocationGranularityShift() {
|
||||
return kSuperPageShift;
|
||||
}
|
||||
#else // defined(PA_HAS_64_BITS_POINTERS)
|
||||
// In 32-bit mode, address space is space is a scarce resource. Use the system
|
||||
// allocation granularity, which is the lowest possible address space allocation
|
||||
// unit. However, don't go below partition page size, so that GigaCage bitmaps
|
||||
// don't get too large. See kBytesPer1BitOfBRPPoolBitmap.
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
DirectMapAllocationGranularity() {
|
||||
return std::max(PageAllocationGranularity(), PartitionPageSize());
|
||||
}
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
DirectMapAllocationGranularityShift() {
|
||||
return std::max(PageAllocationGranularityShift(), PartitionPageShift());
|
||||
}
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
DirectMapAllocationGranularityOffsetMask() {
|
||||
return DirectMapAllocationGranularity() - 1;
|
||||
}
|
||||
|
||||
// The "order" of an allocation is closely related to the power-of-1 size of the
|
||||
// allocation. More precisely, the order is the bit index of the
|
||||
// most-significant-bit in the allocation size, where the bit numbers starts at
|
||||
// index 1 for the least-significant-bit.
|
||||
//
|
||||
// In terms of allocation sizes, order 0 covers 0, order 1 covers 1, order 2
|
||||
// covers 2->3, order 3 covers 4->7, order 4 covers 8->15.
|
||||
|
||||
// PartitionAlloc should return memory properly aligned for any type, to behave
|
||||
// properly as a generic allocator. This is not strictly required as long as
|
||||
// types are explicitly allocated with PartitionAlloc, but is to use it as a
|
||||
// malloc() implementation, and generally to match malloc()'s behavior.
|
||||
//
|
||||
// In practice, this means 8 bytes alignment on 32 bit architectures, and 16
|
||||
// bytes on 64 bit ones.
|
||||
//
|
||||
// Keep in sync with //tools/memory/partition_allocator/objects_per_size_py.
|
||||
constexpr size_t kMinBucketedOrder =
|
||||
kAlignment == 16 ? 5 : 4; // 2^(order - 1), that is 16 or 8.
|
||||
// The largest bucketed order is 1 << (20 - 1), storing [512 KiB, 1 MiB):
|
||||
constexpr size_t kMaxBucketedOrder = 20;
|
||||
constexpr size_t kNumBucketedOrders =
|
||||
(kMaxBucketedOrder - kMinBucketedOrder) + 1;
|
||||
// 4 buckets per order (for the higher orders).
|
||||
constexpr size_t kNumBucketsPerOrderBits = 2;
|
||||
constexpr size_t kNumBucketsPerOrder = 1 << kNumBucketsPerOrderBits;
|
||||
constexpr size_t kNumBuckets = kNumBucketedOrders * kNumBucketsPerOrder;
|
||||
constexpr size_t kSmallestBucket = 1 << (kMinBucketedOrder - 1);
|
||||
constexpr size_t kMaxBucketSpacing =
|
||||
1 << ((kMaxBucketedOrder - 1) - kNumBucketsPerOrderBits);
|
||||
constexpr size_t kMaxBucketed = (1 << (kMaxBucketedOrder - 1)) +
|
||||
((kNumBucketsPerOrder - 1) * kMaxBucketSpacing);
|
||||
// Limit when downsizing a direct mapping using `realloc`:
|
||||
constexpr size_t kMinDirectMappedDownsize = kMaxBucketed + 1;
|
||||
// Intentionally set to less than 2GiB to make sure that a 2GiB allocation
|
||||
// fails. This is a security choice in Chrome, to help making size_t vs int bugs
|
||||
// harder to exploit.
|
||||
//
|
||||
|
||||
PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR ALWAYS_INLINE size_t
|
||||
MaxDirectMapped() {
|
||||
// Subtract kSuperPageSize to accommodate for granularity inside
|
||||
// PartitionRoot::GetDirectMapReservationSize.
|
||||
return (1UL << 31) - kSuperPageSize;
|
||||
}
|
||||
|
||||
// Max alignment supported by AlignedAllocWithFlags().
|
||||
// kSuperPageSize alignment can't be easily supported, because each super page
|
||||
// starts with guard pages & metadata.
|
||||
constexpr size_t kMaxSupportedAlignment = kSuperPageSize / 2;
|
||||
|
||||
constexpr size_t kBitsPerSizeT = sizeof(void*) * CHAR_BIT;
|
||||
|
||||
// When a SlotSpan becomes empty, the allocator tries to avoid re-using it
|
||||
// immediately, to help with fragmentation. At this point, it becomes dirty
|
||||
// committed memory, which we want to minimize. This could be decommitted
|
||||
// immediately, but that would imply doing a lot of system calls. In particular,
|
||||
// for single-slot SlotSpans, a malloc() / free() loop would cause a *lot* of
|
||||
// system calls.
|
||||
//
|
||||
// As an intermediate step, empty SlotSpans are placed into a per-partition
|
||||
// global ring buffer, giving the newly-empty SlotSpan a chance to be re-used
|
||||
// before getting decommitted. A new entry (i.e. a newly empty SlotSpan) taking
|
||||
// the place used by a previous one will lead the previous SlotSpan to be
|
||||
// decommitted immediately, provided that it is still empty.
|
||||
//
|
||||
// Setting this value higher means giving more time for reuse to happen, at the
|
||||
// cost of possibly increasing peak committed memory usage (and increasing the
|
||||
// size of PartitionRoot a bit, since the ring buffer is there). Note that the
|
||||
// ring buffer doesn't necessarily contain an empty SlotSpan, as SlotSpans are
|
||||
// *not* removed from it when re-used. So the ring buffer really is a buffer of
|
||||
// *possibly* empty SlotSpans.
|
||||
//
|
||||
// In all cases, PartitionRoot::PurgeMemory() with the
|
||||
// PurgeFlags::kDecommitEmptySlotSpans flag will eagerly decommit all entries
|
||||
// in the ring buffer, so with periodic purge enabled, this typically happens
|
||||
// every few seconds.
|
||||
constexpr size_t kEmptyCacheIndexBits = 7;
|
||||
// kMaxFreeableSpans is the buffer size, but is never used as an index value,
|
||||
// hence <= is appropriate.
|
||||
constexpr size_t kMaxFreeableSpans = 1 << kEmptyCacheIndexBits;
|
||||
constexpr size_t kDefaultEmptySlotSpanRingSize = 16;
|
||||
|
||||
// If the total size in bytes of allocated but not committed pages exceeds this
|
||||
// value (probably it is a "out of virtual address space" crash), a special
|
||||
// crash stack trace is generated at
|
||||
// `PartitionOutOfMemoryWithLotsOfUncommitedPages`. This is to distinguish "out
|
||||
// of virtual address space" from "out of physical memory" in crash reports.
|
||||
constexpr size_t kReasonableSizeOfUnusedPages = 1024 * 1024 * 1024; // 1 GiB
|
||||
|
||||
// These byte values match tcmalloc.
|
||||
constexpr unsigned char kUninitializedByte = 0xAB;
|
||||
constexpr unsigned char kFreedByte = 0xCD;
|
||||
|
||||
constexpr unsigned char kQuarantinedByte = 0xEF;
|
||||
|
||||
// 1 is smaller than anything we can use, as it is not properly aligned. Not
|
||||
// using a large size, since PartitionBucket::slot_size is a uint32_t, and
|
||||
// static_cast<uint32_t>(-1) is too close to a "real" size.
|
||||
constexpr size_t kInvalidBucketSize = 1;
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::AllocFlags;
|
||||
using ::partition_alloc::internal::DirectMapAllocationGranularity;
|
||||
using ::partition_alloc::internal::DirectMapAllocationGranularityOffsetMask;
|
||||
using ::partition_alloc::internal::DirectMapAllocationGranularityShift;
|
||||
#if defined(PA_HAS_MEMORY_TAGGING)
|
||||
using ::partition_alloc::internal::HasOverflowTag;
|
||||
#endif // defined(PA_HAS_MEMORY_TAGGING)
|
||||
using ::partition_alloc::internal::kBitsPerSizeT;
|
||||
using ::partition_alloc::internal::kBRPPoolHandle;
|
||||
using ::partition_alloc::internal::kConfigurablePoolHandle;
|
||||
using ::partition_alloc::internal::kDefaultEmptySlotSpanRingSize;
|
||||
using ::partition_alloc::internal::kEmptyCacheIndexBits;
|
||||
using ::partition_alloc::internal::kFreedByte;
|
||||
using ::partition_alloc::internal::kGiB;
|
||||
using ::partition_alloc::internal::kInvalidBucketSize;
|
||||
using ::partition_alloc::internal::kMaxBucketed;
|
||||
using ::partition_alloc::internal::kMaxBucketedOrder;
|
||||
using ::partition_alloc::internal::kMaxBucketSpacing;
|
||||
using ::partition_alloc::internal::kMaxFreeableSpans;
|
||||
using ::partition_alloc::internal::kMaxMemoryTaggingSize;
|
||||
using ::partition_alloc::internal::kMaxPartitionPagesPerRegularSlotSpan;
|
||||
using ::partition_alloc::internal::kMaxSuperPagesInPool;
|
||||
using ::partition_alloc::internal::kMaxSupportedAlignment;
|
||||
using ::partition_alloc::internal::kMinBucketedOrder;
|
||||
using ::partition_alloc::internal::kMinDirectMappedDownsize;
|
||||
using ::partition_alloc::internal::kNumBucketedOrders;
|
||||
using ::partition_alloc::internal::kNumBuckets;
|
||||
using ::partition_alloc::internal::kNumBucketsPerOrder;
|
||||
using ::partition_alloc::internal::kNumBucketsPerOrderBits;
|
||||
using ::partition_alloc::internal::kNumPools;
|
||||
using ::partition_alloc::internal::kPartitionCachelineSize;
|
||||
using ::partition_alloc::internal::kPoolMaxSize;
|
||||
using ::partition_alloc::internal::kQuarantinedByte;
|
||||
using ::partition_alloc::internal::kReasonableSizeOfUnusedPages;
|
||||
using ::partition_alloc::internal::kRegularPoolHandle;
|
||||
using ::partition_alloc::internal::kSmallestBucket;
|
||||
using ::partition_alloc::internal::kSuperPageAlignment;
|
||||
using ::partition_alloc::internal::kSuperPageBaseMask;
|
||||
using ::partition_alloc::internal::kSuperPageOffsetMask;
|
||||
using ::partition_alloc::internal::kSuperPageShift;
|
||||
using ::partition_alloc::internal::kSuperPageSize;
|
||||
using ::partition_alloc::internal::kUninitializedByte;
|
||||
using ::partition_alloc::internal::MaxDirectMapped;
|
||||
using ::partition_alloc::internal::MaxRegularSlotSpanSize;
|
||||
using ::partition_alloc::internal::MaxSuperPagesInPool;
|
||||
using ::partition_alloc::internal::MaxSystemPagesPerRegularSlotSpan;
|
||||
using ::partition_alloc::internal::NumPartitionPagesPerSuperPage;
|
||||
using ::partition_alloc::internal::NumSystemPagesPerPartitionPage;
|
||||
using ::partition_alloc::internal::PartitionPageBaseMask;
|
||||
using ::partition_alloc::internal::PartitionPageOffsetMask;
|
||||
using ::partition_alloc::internal::PartitionPageShift;
|
||||
using ::partition_alloc::internal::PartitionPageSize;
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_CONSTANTS_H_
|
129
src/base/allocator/partition_allocator/partition_alloc_forward.h
Normal file
129
src/base/allocator/partition_allocator/partition_alloc_forward.h
Normal file
@ -0,0 +1,129 @@
|
||||
// Copyright 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_FORWARD_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_FORWARD_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
|
||||
#include "base/allocator/buildflags.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/dcheck_is_on.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Alignment has two constraints:
|
||||
// - Alignment requirement for scalar types: alignof(std::max_align_t)
|
||||
// - Alignment requirement for operator new().
|
||||
//
|
||||
// The two are separate on Windows 64 bits, where the first one is 8 bytes, and
|
||||
// the second one 16. We could technically return something different for
|
||||
// malloc() and operator new(), but this would complicate things, and most of
|
||||
// our allocations are presumably coming from operator new() anyway.
|
||||
//
|
||||
// __STDCPP_DEFAULT_NEW_ALIGNMENT__ is C++17. As such, it is not defined on all
|
||||
// platforms, as Chrome's requirement is C++14 as of 2020.
|
||||
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
|
||||
constexpr size_t kAlignment =
|
||||
std::max(alignof(max_align_t),
|
||||
static_cast<size_t>(__STDCPP_DEFAULT_NEW_ALIGNMENT__));
|
||||
#else
|
||||
constexpr size_t kAlignment = alignof(max_align_t);
|
||||
#endif
|
||||
static_assert(kAlignment <= 16,
|
||||
"PartitionAlloc doesn't support a fundamental alignment larger "
|
||||
"than 16 bytes.");
|
||||
|
||||
constexpr bool ThreadSafe = true;
|
||||
|
||||
template <bool thread_safe>
|
||||
struct SlotSpanMetadata;
|
||||
|
||||
} // namespace internal
|
||||
|
||||
class PartitionStatsDumper;
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::PartitionStatsDumper;
|
||||
using ::partition_alloc::internal::kAlignment;
|
||||
|
||||
namespace internal {
|
||||
|
||||
using ::partition_alloc::internal::SlotSpanMetadata;
|
||||
using ::partition_alloc::internal::ThreadSafe;
|
||||
|
||||
#if (DCHECK_IS_ON() || BUILDFLAG(ENABLE_BACKUP_REF_PTR_SLOW_CHECKS)) && \
|
||||
BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
BASE_EXPORT void CheckThatSlotOffsetIsZero(uintptr_t address);
|
||||
#endif
|
||||
|
||||
} // namespace internal
|
||||
|
||||
template <bool thread_safe = true>
|
||||
struct PartitionRoot;
|
||||
|
||||
using ThreadSafePartitionRoot = PartitionRoot<internal::ThreadSafe>;
|
||||
|
||||
} // namespace base
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::base::PartitionRoot;
|
||||
|
||||
namespace internal {
|
||||
|
||||
#if (DCHECK_IS_ON() || BUILDFLAG(ENABLE_BACKUP_REF_PTR_SLOW_CHECKS)) && \
|
||||
BUILDFLAG(USE_BACKUP_REF_PTR)
|
||||
using ::base::internal::CheckThatSlotOffsetIsZero;
|
||||
#endif
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
// From https://clang.llvm.org/docs/AttributeReference.html#malloc:
|
||||
//
|
||||
// The malloc attribute indicates that the function acts like a system memory
|
||||
// allocation function, returning a pointer to allocated storage disjoint from
|
||||
// the storage for any other object accessible to the caller.
|
||||
//
|
||||
// Note that it doesn't apply to realloc()-type functions, as they can return
|
||||
// the same pointer as the one passed as a parameter, as noted in e.g. stdlib.h
|
||||
// on Linux systems.
|
||||
#if defined(__has_attribute)
|
||||
|
||||
#if __has_attribute(malloc)
|
||||
#define PA_MALLOC_FN __attribute__((malloc))
|
||||
#endif
|
||||
|
||||
// Allows the compiler to assume that the return value is aligned on a
|
||||
// kAlignment boundary. This is useful for e.g. using aligned vector
|
||||
// instructions in the constructor for zeroing.
|
||||
#if __has_attribute(assume_aligned)
|
||||
#define PA_MALLOC_ALIGNED \
|
||||
__attribute__((assume_aligned(::partition_alloc::internal::kAlignment)))
|
||||
#endif
|
||||
|
||||
#endif // defined(__has_attribute)
|
||||
|
||||
#if !defined(PA_MALLOC_FN)
|
||||
#define PA_MALLOC_FN
|
||||
#endif
|
||||
|
||||
#if !defined(PA_MALLOC_ALIGNED)
|
||||
#define PA_MALLOC_ALIGNED
|
||||
#endif
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_FORWARD_H_
|
121
src/base/allocator/partition_allocator/partition_alloc_hooks.cc
Normal file
121
src/base/allocator/partition_allocator/partition_alloc_hooks.cc
Normal file
@ -0,0 +1,121 @@
|
||||
// Copyright (c) 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_hooks.h"
|
||||
|
||||
#include <ostream>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_lock.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
namespace {
|
||||
|
||||
internal::Lock g_hook_lock;
|
||||
|
||||
internal::Lock& GetHooksLock() {
|
||||
return g_hook_lock;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
std::atomic<bool> PartitionAllocHooks::hooks_enabled_(false);
|
||||
std::atomic<PartitionAllocHooks::AllocationObserverHook*>
|
||||
PartitionAllocHooks::allocation_observer_hook_(nullptr);
|
||||
std::atomic<PartitionAllocHooks::FreeObserverHook*>
|
||||
PartitionAllocHooks::free_observer_hook_(nullptr);
|
||||
std::atomic<PartitionAllocHooks::AllocationOverrideHook*>
|
||||
PartitionAllocHooks::allocation_override_hook_(nullptr);
|
||||
std::atomic<PartitionAllocHooks::FreeOverrideHook*>
|
||||
PartitionAllocHooks::free_override_hook_(nullptr);
|
||||
std::atomic<PartitionAllocHooks::ReallocOverrideHook*>
|
||||
PartitionAllocHooks::realloc_override_hook_(nullptr);
|
||||
|
||||
void PartitionAllocHooks::SetObserverHooks(AllocationObserverHook* alloc_hook,
|
||||
FreeObserverHook* free_hook) {
|
||||
internal::ScopedGuard guard(GetHooksLock());
|
||||
|
||||
// Chained hooks are not supported. Registering a non-null hook when a
|
||||
// non-null hook is already registered indicates somebody is trying to
|
||||
// overwrite a hook.
|
||||
PA_CHECK((!allocation_observer_hook_ && !free_observer_hook_) ||
|
||||
(!alloc_hook && !free_hook))
|
||||
<< "Overwriting already set observer hooks";
|
||||
allocation_observer_hook_ = alloc_hook;
|
||||
free_observer_hook_ = free_hook;
|
||||
|
||||
hooks_enabled_ = allocation_observer_hook_ || allocation_override_hook_;
|
||||
}
|
||||
|
||||
void PartitionAllocHooks::SetOverrideHooks(AllocationOverrideHook* alloc_hook,
|
||||
FreeOverrideHook* free_hook,
|
||||
ReallocOverrideHook realloc_hook) {
|
||||
internal::ScopedGuard guard(GetHooksLock());
|
||||
|
||||
PA_CHECK((!allocation_override_hook_ && !free_override_hook_ &&
|
||||
!realloc_override_hook_) ||
|
||||
(!alloc_hook && !free_hook && !realloc_hook))
|
||||
<< "Overwriting already set override hooks";
|
||||
allocation_override_hook_ = alloc_hook;
|
||||
free_override_hook_ = free_hook;
|
||||
realloc_override_hook_ = realloc_hook;
|
||||
|
||||
hooks_enabled_ = allocation_observer_hook_ || allocation_override_hook_;
|
||||
}
|
||||
|
||||
void PartitionAllocHooks::AllocationObserverHookIfEnabled(
|
||||
void* address,
|
||||
size_t size,
|
||||
const char* type_name) {
|
||||
if (auto* hook = allocation_observer_hook_.load(std::memory_order_relaxed))
|
||||
hook(address, size, type_name);
|
||||
}
|
||||
|
||||
bool PartitionAllocHooks::AllocationOverrideHookIfEnabled(
|
||||
void** out,
|
||||
int flags,
|
||||
size_t size,
|
||||
const char* type_name) {
|
||||
if (auto* hook = allocation_override_hook_.load(std::memory_order_relaxed))
|
||||
return hook(out, flags, size, type_name);
|
||||
return false;
|
||||
}
|
||||
|
||||
void PartitionAllocHooks::FreeObserverHookIfEnabled(void* address) {
|
||||
if (auto* hook = free_observer_hook_.load(std::memory_order_relaxed))
|
||||
hook(address);
|
||||
}
|
||||
|
||||
bool PartitionAllocHooks::FreeOverrideHookIfEnabled(void* address) {
|
||||
if (auto* hook = free_override_hook_.load(std::memory_order_relaxed))
|
||||
return hook(address);
|
||||
return false;
|
||||
}
|
||||
|
||||
void PartitionAllocHooks::ReallocObserverHookIfEnabled(void* old_address,
|
||||
void* new_address,
|
||||
size_t size,
|
||||
const char* type_name) {
|
||||
// Report a reallocation as a free followed by an allocation.
|
||||
AllocationObserverHook* allocation_hook =
|
||||
allocation_observer_hook_.load(std::memory_order_relaxed);
|
||||
FreeObserverHook* free_hook =
|
||||
free_observer_hook_.load(std::memory_order_relaxed);
|
||||
if (allocation_hook && free_hook) {
|
||||
free_hook(old_address);
|
||||
allocation_hook(new_address, size, type_name);
|
||||
}
|
||||
}
|
||||
|
||||
bool PartitionAllocHooks::ReallocOverrideHookIfEnabled(size_t* out,
|
||||
void* address) {
|
||||
if (ReallocOverrideHook* hook =
|
||||
realloc_override_hook_.load(std::memory_order_relaxed)) {
|
||||
return hook(out, address);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc
|
@ -0,0 +1,93 @@
|
||||
// Copyright (c) 2020 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_HOOKS_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_HOOKS_H_
|
||||
|
||||
#include <atomic>
|
||||
#include <cstddef>
|
||||
|
||||
#include "base/base_export.h"
|
||||
|
||||
namespace partition_alloc {
|
||||
|
||||
// PartitionAlloc supports setting hooks to observe allocations/frees as they
|
||||
// occur as well as 'override' hooks that allow overriding those operations.
|
||||
class BASE_EXPORT PartitionAllocHooks {
|
||||
public:
|
||||
// Log allocation and free events.
|
||||
typedef void AllocationObserverHook(void* address,
|
||||
size_t size,
|
||||
const char* type_name);
|
||||
typedef void FreeObserverHook(void* address);
|
||||
|
||||
// If it returns true, the allocation has been overridden with the pointer in
|
||||
// *out.
|
||||
typedef bool AllocationOverrideHook(void** out,
|
||||
int flags,
|
||||
size_t size,
|
||||
const char* type_name);
|
||||
// If it returns true, then the allocation was overridden and has been freed.
|
||||
typedef bool FreeOverrideHook(void* address);
|
||||
// If it returns true, the underlying allocation is overridden and *out holds
|
||||
// the size of the underlying allocation.
|
||||
typedef bool ReallocOverrideHook(size_t* out, void* address);
|
||||
|
||||
// To unhook, call Set*Hooks with nullptrs.
|
||||
static void SetObserverHooks(AllocationObserverHook* alloc_hook,
|
||||
FreeObserverHook* free_hook);
|
||||
static void SetOverrideHooks(AllocationOverrideHook* alloc_hook,
|
||||
FreeOverrideHook* free_hook,
|
||||
ReallocOverrideHook realloc_hook);
|
||||
|
||||
// Helper method to check whether hooks are enabled. This is an optimization
|
||||
// so that if a function needs to call observer and override hooks in two
|
||||
// different places this value can be cached and only loaded once.
|
||||
static bool AreHooksEnabled() {
|
||||
return hooks_enabled_.load(std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
static void AllocationObserverHookIfEnabled(void* address,
|
||||
size_t size,
|
||||
const char* type_name);
|
||||
static bool AllocationOverrideHookIfEnabled(void** out,
|
||||
int flags,
|
||||
size_t size,
|
||||
const char* type_name);
|
||||
|
||||
static void FreeObserverHookIfEnabled(void* address);
|
||||
static bool FreeOverrideHookIfEnabled(void* address);
|
||||
|
||||
static void ReallocObserverHookIfEnabled(void* old_address,
|
||||
void* new_address,
|
||||
size_t size,
|
||||
const char* type_name);
|
||||
static bool ReallocOverrideHookIfEnabled(size_t* out, void* address);
|
||||
|
||||
private:
|
||||
// Single bool that is used to indicate whether observer or allocation hooks
|
||||
// are set to reduce the numbers of loads required to check whether hooking is
|
||||
// enabled.
|
||||
static std::atomic<bool> hooks_enabled_;
|
||||
|
||||
// Lock used to synchronize Set*Hooks calls.
|
||||
static std::atomic<AllocationObserverHook*> allocation_observer_hook_;
|
||||
static std::atomic<FreeObserverHook*> free_observer_hook_;
|
||||
|
||||
static std::atomic<AllocationOverrideHook*> allocation_override_hook_;
|
||||
static std::atomic<FreeOverrideHook*> free_override_hook_;
|
||||
static std::atomic<ReallocOverrideHook*> realloc_override_hook_;
|
||||
};
|
||||
|
||||
} // namespace partition_alloc
|
||||
|
||||
namespace base {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::PartitionAllocHooks;
|
||||
|
||||
} // namespace base
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_HOOKS_H_
|
@ -0,0 +1,54 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_NOTREACHED_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_NOTREACHED_H_
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/check.h"
|
||||
#include "base/dcheck_is_on.h"
|
||||
#include "base/logging_buildflags.h"
|
||||
|
||||
// When PartitionAlloc is used as the default allocator, we cannot use the
|
||||
// regular (D)CHECK() macros, as they allocate internally. (c.f. //
|
||||
// base/allocator/partition_allocator/partition_alloc_check.h)
|
||||
// So PA_NOTREACHED() uses PA_DCHECK() instead of DCHECK().
|
||||
|
||||
#if BUILDFLAG(ENABLE_LOG_ERROR_NOT_REACHED)
|
||||
#define PA_NOTREACHED() \
|
||||
true ? logging::RawError(__FILE__ \
|
||||
"(" PA_STRINGIFY(__LINE__) ") NOTREACHED() hit.") \
|
||||
: EAT_CHECK_STREAM_PARAMS()
|
||||
|
||||
#elif BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && defined(OFFICIAL_BUILD) && \
|
||||
defined(NDEBUG) && DCHECK_IS_ON()
|
||||
|
||||
// PA_DCHECK(condition) is PA_CHECK(condition) if DCHECK_IS_ON().
|
||||
// When BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC), OFFICIAL_BUILD, NDEBUG are
|
||||
// defined, PA_CHECK(false) is IMMEDIATE_CRASH(). Since IMMEDIATE_CRASH()
|
||||
// hints __builtin_unreachable() to the compiler, the following code causes
|
||||
// compile failure:
|
||||
// switch(...) {
|
||||
// ...
|
||||
// case X:
|
||||
// PA_DCHECK(false);
|
||||
// [[fallthrough]]; // The compiler knows "not reached".
|
||||
// case Y:
|
||||
// ...
|
||||
// So define PA_NOTREACHED() by using async-signal-safe RawCheck().
|
||||
#define PA_NOTREACHED() \
|
||||
UNLIKELY(true) \
|
||||
? logging::RawCheck(__FILE__ \
|
||||
"(" PA_STRINGIFY(__LINE__) ") NOTREACHED() hit.") \
|
||||
: EAT_CHECK_STREAM_PARAMS()
|
||||
|
||||
#else
|
||||
|
||||
// PA_CHECK() uses RawCheck() for error reporting. So "PA_DCHECK(false);
|
||||
// [[fallthrough]];" doesn't cause compile failure.
|
||||
#define PA_NOTREACHED() PA_DCHECK(false)
|
||||
|
||||
#endif
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_ALLOC_NOTREACHED_H_
|
1224
src/base/allocator/partition_allocator/partition_bucket.cc
Normal file
1224
src/base/allocator/partition_allocator/partition_bucket.cc
Normal file
File diff suppressed because it is too large
Load Diff
202
src/base/allocator/partition_allocator/partition_bucket.h
Normal file
202
src/base/allocator/partition_allocator/partition_bucket.h
Normal file
@ -0,0 +1,202 @@
|
||||
// Copyright (c) 2018 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_BUCKET_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_BUCKET_H_
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_forward.h"
|
||||
#include "base/base_export.h"
|
||||
#include "base/compiler_specific.h"
|
||||
#include "base/thread_annotations.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
constexpr inline int kPartitionNumSystemPagesPerSlotSpanBits = 8;
|
||||
|
||||
// Visible for testing.
|
||||
BASE_EXPORT uint8_t
|
||||
ComputeSystemPagesPerSlotSpan(size_t slot_size, bool prefer_smaller_slot_spans);
|
||||
|
||||
template <bool thread_safe>
|
||||
struct PartitionBucket {
|
||||
// Accessed most in hot path => goes first. Only nullptr for invalid buckets,
|
||||
// may be pointing to the sentinel.
|
||||
SlotSpanMetadata<thread_safe>* active_slot_spans_head;
|
||||
|
||||
SlotSpanMetadata<thread_safe>* empty_slot_spans_head;
|
||||
SlotSpanMetadata<thread_safe>* decommitted_slot_spans_head;
|
||||
uint32_t slot_size;
|
||||
uint32_t num_system_pages_per_slot_span
|
||||
: kPartitionNumSystemPagesPerSlotSpanBits;
|
||||
uint32_t num_full_slot_spans : 24;
|
||||
|
||||
// `slot_size_reciprocal` is used to improve the performance of
|
||||
// `GetSlotOffset`. It is computed as `(1 / size) * (2 ** M)` where M is
|
||||
// chosen to provide the desired accuracy. As a result, we can replace a slow
|
||||
// integer division (or modulo) operation with a pair of multiplication and a
|
||||
// bit shift, i.e. `value / size` becomes `(value * size_reciprocal) >> M`.
|
||||
uint64_t slot_size_reciprocal;
|
||||
|
||||
// This is `M` from the formula above. For accurate results, both `value` and
|
||||
// `size`, which are bound by `kMaxBucketed` for our purposes, must be less
|
||||
// than `2 ** (M / 2)`. On the other hand, the result of the expression
|
||||
// `3 * M / 2` must be less than 64, otherwise integer overflow can occur.
|
||||
static constexpr uint64_t kReciprocalShift = 42;
|
||||
static constexpr uint64_t kReciprocalMask = (1ull << kReciprocalShift) - 1;
|
||||
static_assert(
|
||||
kMaxBucketed < (1 << (kReciprocalShift / 2)),
|
||||
"GetSlotOffset may produce an incorrect result when kMaxBucketed is too "
|
||||
"large.");
|
||||
|
||||
// Public API.
|
||||
void Init(uint32_t new_slot_size);
|
||||
|
||||
// Sets |is_already_zeroed| to true if the allocation was satisfied by
|
||||
// requesting (a) new page(s) from the operating system, or false otherwise.
|
||||
// This enables an optimization for when callers use
|
||||
// |AllocFlags::kZeroFill|: there is no need to call memset on fresh
|
||||
// pages; the OS has already zeroed them. (See
|
||||
// |PartitionRoot::AllocFromBucket|.)
|
||||
//
|
||||
// Note the matching Free() functions are in SlotSpanMetadata.
|
||||
BASE_EXPORT NOINLINE uintptr_t SlowPathAlloc(PartitionRoot<thread_safe>* root,
|
||||
int flags,
|
||||
size_t raw_size,
|
||||
size_t slot_span_alignment,
|
||||
bool* is_already_zeroed)
|
||||
EXCLUSIVE_LOCKS_REQUIRED(root->lock_);
|
||||
|
||||
ALWAYS_INLINE bool CanStoreRawSize() const {
|
||||
// For direct-map as well as single-slot slot spans (recognized by checking
|
||||
// against |MaxRegularSlotSpanSize()|), we have some spare metadata space in
|
||||
// subsequent PartitionPage to store the raw size. It isn't only metadata
|
||||
// space though, slot spans that have more than one slot can't have raw size
|
||||
// stored, because we wouldn't know which slot it applies to.
|
||||
if (LIKELY(slot_size <= MaxRegularSlotSpanSize()))
|
||||
return false;
|
||||
|
||||
PA_DCHECK((slot_size % SystemPageSize()) == 0);
|
||||
PA_DCHECK(is_direct_mapped() || get_slots_per_span() == 1);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Some buckets are pseudo-buckets, which are disabled because they would
|
||||
// otherwise not fulfill alignment constraints.
|
||||
ALWAYS_INLINE bool is_valid() const {
|
||||
return active_slot_spans_head != nullptr;
|
||||
}
|
||||
ALWAYS_INLINE bool is_direct_mapped() const {
|
||||
return !num_system_pages_per_slot_span;
|
||||
}
|
||||
ALWAYS_INLINE size_t get_bytes_per_span() const {
|
||||
// Cannot overflow, num_system_pages_per_slot_span is a bitfield, and 255
|
||||
// pages fit in a size_t.
|
||||
static_assert(kPartitionNumSystemPagesPerSlotSpanBits <= 8, "");
|
||||
return num_system_pages_per_slot_span << SystemPageShift();
|
||||
}
|
||||
ALWAYS_INLINE size_t get_slots_per_span() const {
|
||||
size_t ret = GetSlotNumber(get_bytes_per_span());
|
||||
PA_DCHECK(ret <= SlotSpanMetadata<thread_safe>::kMaxSlotsPerSlotSpan);
|
||||
return ret;
|
||||
}
|
||||
// Returns a natural number of partition pages (calculated by
|
||||
// ComputeSystemPagesPerSlotSpan()) to allocate from the current super page
|
||||
// when the bucket runs out of slots.
|
||||
ALWAYS_INLINE size_t get_pages_per_slot_span() const {
|
||||
// Rounds up to nearest multiple of NumSystemPagesPerPartitionPage().
|
||||
return (num_system_pages_per_slot_span +
|
||||
(NumSystemPagesPerPartitionPage() - 1)) /
|
||||
NumSystemPagesPerPartitionPage();
|
||||
}
|
||||
|
||||
// This helper function scans a bucket's active slot span list for a suitable
|
||||
// new active slot span. When it finds a suitable new active slot span (one
|
||||
// that has free slots and is not empty), it is set as the new active slot
|
||||
// span. If there is no suitable new active slot span, the current active slot
|
||||
// span is set to SlotSpanMetadata::get_sentinel_slot_span(). As potential
|
||||
// slot spans are scanned, they are tidied up according to their state. Empty
|
||||
// slot spans are swept on to the empty list, decommitted slot spans on to the
|
||||
// decommitted list and full slot spans are unlinked from any list.
|
||||
//
|
||||
// This is where the guts of the bucket maintenance is done!
|
||||
bool SetNewActiveSlotSpan();
|
||||
|
||||
// Walks the entire active slot span list, and perform regular maintenance,
|
||||
// where empty, decommitted and full slot spans are moved to their
|
||||
// steady-state place.
|
||||
BASE_EXPORT void MaintainActiveList();
|
||||
|
||||
// Returns a slot number starting from the beginning of the slot span.
|
||||
ALWAYS_INLINE size_t GetSlotNumber(size_t offset_in_slot_span) const {
|
||||
// See the static assertion for `kReciprocalShift` above.
|
||||
PA_DCHECK(offset_in_slot_span <= kMaxBucketed);
|
||||
PA_DCHECK(slot_size <= kMaxBucketed);
|
||||
|
||||
const size_t offset_in_slot =
|
||||
((offset_in_slot_span * slot_size_reciprocal) >> kReciprocalShift);
|
||||
PA_DCHECK(offset_in_slot_span / slot_size == offset_in_slot);
|
||||
|
||||
return offset_in_slot;
|
||||
}
|
||||
|
||||
// Sort the freelists of all slot spans.
|
||||
void SortSlotSpanFreelists();
|
||||
|
||||
private:
|
||||
// Allocates a new slot span with size |num_partition_pages| from the
|
||||
// current extent. Metadata within this slot span will be initialized.
|
||||
// Returns nullptr on error.
|
||||
ALWAYS_INLINE SlotSpanMetadata<thread_safe>* AllocNewSlotSpan(
|
||||
PartitionRoot<thread_safe>* root,
|
||||
int flags,
|
||||
size_t slot_span_alignment) EXCLUSIVE_LOCKS_REQUIRED(root->lock_);
|
||||
|
||||
// Allocates a new super page from the current extent, if possible. All
|
||||
// slot-spans will be in the decommitted state. Returns the address of the
|
||||
// super page's payload, or 0 on error.
|
||||
ALWAYS_INLINE uintptr_t AllocNewSuperPage(PartitionRoot<thread_safe>* root,
|
||||
int flags)
|
||||
EXCLUSIVE_LOCKS_REQUIRED(root->lock_);
|
||||
|
||||
// Each bucket allocates a slot span when it runs out of slots.
|
||||
// A slot span's size is equal to get_pages_per_slot_span() number of
|
||||
// partition pages. This function initializes all PartitionPage within the
|
||||
// span to point to the first PartitionPage which holds all the metadata
|
||||
// for the span (in PartitionPage::SlotSpanMetadata) and registers this bucket
|
||||
// as the owner of the span. It does NOT put the slots into the bucket's
|
||||
// freelist.
|
||||
ALWAYS_INLINE void InitializeSlotSpan(
|
||||
SlotSpanMetadata<thread_safe>* slot_span);
|
||||
|
||||
// Commit 1 or more pages in |slot_span|, enough to get the next slot, which
|
||||
// is returned by this function. If more slots fit into the committed pages,
|
||||
// they'll be added to the free list of the slot span (note that next pointers
|
||||
// are stored inside the slots).
|
||||
// The free list must be empty when calling this function.
|
||||
//
|
||||
// If |slot_span| was freshly allocated, it must have been passed through
|
||||
// InitializeSlotSpan() first.
|
||||
ALWAYS_INLINE uintptr_t
|
||||
ProvisionMoreSlotsAndAllocOne(PartitionRoot<thread_safe>* root,
|
||||
SlotSpanMetadata<thread_safe>* slot_span)
|
||||
EXCLUSIVE_LOCKS_REQUIRED(root->lock_);
|
||||
};
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
namespace base::internal {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::internal::PartitionBucket;
|
||||
|
||||
} // namespace base::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_BUCKET_H_
|
280
src/base/allocator/partition_allocator/partition_bucket_lookup.h
Normal file
280
src/base/allocator/partition_allocator/partition_bucket_lookup.h
Normal file
@ -0,0 +1,280 @@
|
||||
// Copyright 2021 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_BUCKET_LOOKUP_H_
|
||||
#define BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_BUCKET_LOOKUP_H_
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "base/allocator/partition_allocator/partition_alloc_check.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||||
#include "base/allocator/partition_allocator/partition_alloc_constants.h"
|
||||
#include "base/bits.h"
|
||||
#include "base/compiler_specific.h"
|
||||
|
||||
namespace partition_alloc::internal {
|
||||
|
||||
// Don't use an anonymous namespace for the constants because it can inhibit
|
||||
// collapsing them together, even when they are tagged as inline.
|
||||
|
||||
// Precalculate some shift and mask constants used in the hot path.
|
||||
// Example: malloc(41) == 101001 binary.
|
||||
// Order is 6 (1 << 6-1) == 32 is highest bit set.
|
||||
// order_index is the next three MSB == 010 == 2.
|
||||
// sub_order_index_mask is a mask for the remaining bits == 11 (masking to 01
|
||||
// for the sub_order_index).
|
||||
constexpr uint8_t OrderIndexShift(uint8_t order) {
|
||||
if (order < kNumBucketsPerOrderBits + 1)
|
||||
return 0;
|
||||
|
||||
return order - (kNumBucketsPerOrderBits + 1);
|
||||
}
|
||||
|
||||
constexpr size_t OrderSubIndexMask(uint8_t order) {
|
||||
if (order == kBitsPerSizeT)
|
||||
return static_cast<size_t>(-1) >> (kNumBucketsPerOrderBits + 1);
|
||||
|
||||
return ((static_cast<size_t>(1) << order) - 1) >>
|
||||
(kNumBucketsPerOrderBits + 1);
|
||||
}
|
||||
|
||||
#if defined(PA_HAS_64_BITS_POINTERS)
|
||||
#define PA_BITS_PER_SIZE_T 64
|
||||
static_assert(kBitsPerSizeT == 64, "");
|
||||
#else
|
||||
#define PA_BITS_PER_SIZE_T 32
|
||||
static_assert(kBitsPerSizeT == 32, "");
|
||||
#endif // defined(PA_HAS_64_BITS_POINTERS)
|
||||
|
||||
inline constexpr uint8_t kOrderIndexShift[PA_BITS_PER_SIZE_T + 1] = {
|
||||
OrderIndexShift(0), OrderIndexShift(1), OrderIndexShift(2),
|
||||
OrderIndexShift(3), OrderIndexShift(4), OrderIndexShift(5),
|
||||
OrderIndexShift(6), OrderIndexShift(7), OrderIndexShift(8),
|
||||
OrderIndexShift(9), OrderIndexShift(10), OrderIndexShift(11),
|
||||
OrderIndexShift(12), OrderIndexShift(13), OrderIndexShift(14),
|
||||
OrderIndexShift(15), OrderIndexShift(16), OrderIndexShift(17),
|
||||
OrderIndexShift(18), OrderIndexShift(19), OrderIndexShift(20),
|
||||
OrderIndexShift(21), OrderIndexShift(22), OrderIndexShift(23),
|
||||
OrderIndexShift(24), OrderIndexShift(25), OrderIndexShift(26),
|
||||
OrderIndexShift(27), OrderIndexShift(28), OrderIndexShift(29),
|
||||
OrderIndexShift(30), OrderIndexShift(31), OrderIndexShift(32),
|
||||
#if PA_BITS_PER_SIZE_T == 64
|
||||
OrderIndexShift(33), OrderIndexShift(34), OrderIndexShift(35),
|
||||
OrderIndexShift(36), OrderIndexShift(37), OrderIndexShift(38),
|
||||
OrderIndexShift(39), OrderIndexShift(40), OrderIndexShift(41),
|
||||
OrderIndexShift(42), OrderIndexShift(43), OrderIndexShift(44),
|
||||
OrderIndexShift(45), OrderIndexShift(46), OrderIndexShift(47),
|
||||
OrderIndexShift(48), OrderIndexShift(49), OrderIndexShift(50),
|
||||
OrderIndexShift(51), OrderIndexShift(52), OrderIndexShift(53),
|
||||
OrderIndexShift(54), OrderIndexShift(55), OrderIndexShift(56),
|
||||
OrderIndexShift(57), OrderIndexShift(58), OrderIndexShift(59),
|
||||
OrderIndexShift(60), OrderIndexShift(61), OrderIndexShift(62),
|
||||
OrderIndexShift(63), OrderIndexShift(64)
|
||||
#endif
|
||||
};
|
||||
|
||||
inline constexpr size_t kOrderSubIndexMask[PA_BITS_PER_SIZE_T + 1] = {
|
||||
OrderSubIndexMask(0), OrderSubIndexMask(1), OrderSubIndexMask(2),
|
||||
OrderSubIndexMask(3), OrderSubIndexMask(4), OrderSubIndexMask(5),
|
||||
OrderSubIndexMask(6), OrderSubIndexMask(7), OrderSubIndexMask(8),
|
||||
OrderSubIndexMask(9), OrderSubIndexMask(10), OrderSubIndexMask(11),
|
||||
OrderSubIndexMask(12), OrderSubIndexMask(13), OrderSubIndexMask(14),
|
||||
OrderSubIndexMask(15), OrderSubIndexMask(16), OrderSubIndexMask(17),
|
||||
OrderSubIndexMask(18), OrderSubIndexMask(19), OrderSubIndexMask(20),
|
||||
OrderSubIndexMask(21), OrderSubIndexMask(22), OrderSubIndexMask(23),
|
||||
OrderSubIndexMask(24), OrderSubIndexMask(25), OrderSubIndexMask(26),
|
||||
OrderSubIndexMask(27), OrderSubIndexMask(28), OrderSubIndexMask(29),
|
||||
OrderSubIndexMask(30), OrderSubIndexMask(31), OrderSubIndexMask(32),
|
||||
#if PA_BITS_PER_SIZE_T == 64
|
||||
OrderSubIndexMask(33), OrderSubIndexMask(34), OrderSubIndexMask(35),
|
||||
OrderSubIndexMask(36), OrderSubIndexMask(37), OrderSubIndexMask(38),
|
||||
OrderSubIndexMask(39), OrderSubIndexMask(40), OrderSubIndexMask(41),
|
||||
OrderSubIndexMask(42), OrderSubIndexMask(43), OrderSubIndexMask(44),
|
||||
OrderSubIndexMask(45), OrderSubIndexMask(46), OrderSubIndexMask(47),
|
||||
OrderSubIndexMask(48), OrderSubIndexMask(49), OrderSubIndexMask(50),
|
||||
OrderSubIndexMask(51), OrderSubIndexMask(52), OrderSubIndexMask(53),
|
||||
OrderSubIndexMask(54), OrderSubIndexMask(55), OrderSubIndexMask(56),
|
||||
OrderSubIndexMask(57), OrderSubIndexMask(58), OrderSubIndexMask(59),
|
||||
OrderSubIndexMask(60), OrderSubIndexMask(61), OrderSubIndexMask(62),
|
||||
OrderSubIndexMask(63), OrderSubIndexMask(64)
|
||||
#endif
|
||||
};
|
||||
|
||||
// The class used to generate the bucket lookup table at compile-time.
|
||||
class BucketIndexLookup final {
|
||||
public:
|
||||
ALWAYS_INLINE constexpr static size_t GetIndexForDenserBuckets(size_t size);
|
||||
ALWAYS_INLINE constexpr static size_t GetIndex(size_t size);
|
||||
|
||||
constexpr BucketIndexLookup() {
|
||||
constexpr uint16_t sentinel_bucket_index = kNumBuckets;
|
||||
|
||||
InitBucketSizes();
|
||||
|
||||
uint16_t* bucket_index_ptr = &bucket_index_lookup_[0];
|
||||
uint16_t bucket_index = 0;
|
||||
|
||||
// Very small allocations, smaller than the first bucketed order ->
|
||||
// everything goes to the first bucket.
|
||||
for (uint8_t order = 0; order < kMinBucketedOrder; ++order) {
|
||||
for (uint16_t j = 0; j < kNumBucketsPerOrder; ++j) {
|
||||
*bucket_index_ptr++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Normal buckets.
|
||||
for (uint8_t order = kMinBucketedOrder; order <= kMaxBucketedOrder;
|
||||
++order) {
|
||||
size_t size = static_cast<size_t>(1) << (order - 1);
|
||||
size_t current_increment = size >> kNumBucketsPerOrderBits;
|
||||
for (uint16_t j = 0; j < kNumBucketsPerOrder; ++j) {
|
||||
*bucket_index_ptr++ = bucket_index;
|
||||
|
||||
// For small sizes, buckets are close together (current_increment is
|
||||
// small). For instance, for:
|
||||
// - kAlignment == 16 (which is the case on most 64 bit systems)
|
||||
// - kNumBucketsPerOrder == 4
|
||||
//
|
||||
// The 3 next buckets after 16 are {20, 24, 28}. None of these are a
|
||||
// multiple of kAlignment, so they use the next bucket, that is 32 here.
|
||||
if (size % kAlignment != 0) {
|
||||
PA_DCHECK(bucket_sizes_[bucket_index] > size);
|
||||
// Do not increment bucket_index, since in the example above
|
||||
// current_size may be 20, and bucket_sizes_[bucket_index] == 32.
|
||||
} else {
|
||||
PA_DCHECK(bucket_sizes_[bucket_index] == size);
|
||||
bucket_index++;
|
||||
}
|
||||
|
||||
size += current_increment;
|
||||
}
|
||||
}
|
||||
|
||||
// Direct-mapped, and overflow.
|
||||
for (uint8_t order = kMaxBucketedOrder + 1; order <= kBitsPerSizeT;
|
||||
++order) {
|
||||
for (uint16_t j = 0; j < kNumBucketsPerOrder; ++j) {
|
||||
*bucket_index_ptr++ = sentinel_bucket_index;
|
||||
}
|
||||
}
|
||||
|
||||
// Smaller because some buckets are not valid due to alignment constraints.
|
||||
PA_DCHECK(bucket_index < kNumBuckets);
|
||||
PA_DCHECK(bucket_index_ptr == bucket_index_lookup_ + ((kBitsPerSizeT + 1) *
|
||||
kNumBucketsPerOrder));
|
||||
// And there's one last bucket lookup that will be hit for e.g. malloc(-1),
|
||||
// which tries to overflow to a non-existent order.
|
||||
*bucket_index_ptr = sentinel_bucket_index;
|
||||
}
|
||||
constexpr const size_t* bucket_sizes() const { return &bucket_sizes_[0]; }
|
||||
|
||||
private:
|
||||
constexpr void InitBucketSizes() {
|
||||
size_t current_size = kSmallestBucket;
|
||||
size_t current_increment = kSmallestBucket >> kNumBucketsPerOrderBits;
|
||||
size_t* bucket_size = &bucket_sizes_[0];
|
||||
for (size_t i = 0; i < kNumBucketedOrders; ++i) {
|
||||
for (size_t j = 0; j < kNumBucketsPerOrder; ++j) {
|
||||
// All bucket sizes have to be multiples of kAlignment, skip otherwise.
|
||||
if (current_size % kAlignment == 0) {
|
||||
*bucket_size = current_size;
|
||||
++bucket_size;
|
||||
}
|
||||
current_size += current_increment;
|
||||
}
|
||||
current_increment <<= 1;
|
||||
}
|
||||
|
||||
// The remaining buckets are invalid.
|
||||
while (bucket_size < bucket_sizes_ + kNumBuckets) {
|
||||
*(bucket_size++) = kInvalidBucketSize;
|
||||
}
|
||||
}
|
||||
|
||||
size_t bucket_sizes_[kNumBuckets]{};
|
||||
// The bucket lookup table lets us map a size_t to a bucket quickly.
|
||||
// The trailing +1 caters for the overflow case for very large allocation
|
||||
// sizes. It is one flat array instead of a 2D array because in the 2D
|
||||
// world, we'd need to index array[blah][max+1] which risks undefined
|
||||
// behavior.
|
||||
uint16_t
|
||||
bucket_index_lookup_[((kBitsPerSizeT + 1) * kNumBucketsPerOrder) + 1]{};
|
||||
};
|
||||
|
||||
ALWAYS_INLINE constexpr size_t RoundUpToPowerOfTwo(size_t size) {
|
||||
const size_t n = 1 << base::bits::Log2Ceiling(static_cast<uint32_t>(size));
|
||||
PA_DCHECK(size <= n);
|
||||
return n;
|
||||
}
|
||||
|
||||
ALWAYS_INLINE constexpr size_t RoundUpSize(size_t size) {
|
||||
const size_t next_power = RoundUpToPowerOfTwo(size);
|
||||
const size_t prev_power = next_power >> 1;
|
||||
PA_DCHECK(size <= next_power);
|
||||
PA_DCHECK(prev_power < size);
|
||||
if (size <= prev_power * 5 / 4) {
|
||||
return prev_power * 5 / 4;
|
||||
} else {
|
||||
return next_power;
|
||||
}
|
||||
}
|
||||
|
||||
// static
|
||||
ALWAYS_INLINE constexpr size_t BucketIndexLookup::GetIndex(size_t size) {
|
||||
// For any order 2^N, under the denser bucket distribution ("Distribution A"),
|
||||
// we have 4 evenly distributed buckets: 2^N, 1.25*2^N, 1.5*2^N, and 1.75*2^N.
|
||||
// These numbers represent the maximum size of an allocation that can go into
|
||||
// a given bucket.
|
||||
//
|
||||
// Under the less dense bucket distribution ("Distribution B"), we only have
|
||||
// 2 buckets for the same order 2^N: 2^N and 1.25*2^N.
|
||||
//
|
||||
// Everything that would be mapped to the last two buckets of an order under
|
||||
// Distribution A is instead mapped to the first bucket of the next order
|
||||
// under Distribution B. The following diagram shows roughly what this looks
|
||||
// like for the order starting from 2^10, as an example.
|
||||
//
|
||||
// A: ... | 2^10 | 1.25*2^10 | 1.5*2^10 | 1.75*2^10 | 2^11 | ...
|
||||
// B: ... | 2^10 | 1.25*2^10 | -------- | --------- | 2^11 | ...
|
||||
//
|
||||
// So, an allocation of size 1.4*2^10 would go into the 1.5*2^10 bucket under
|
||||
// Distribution A, but to the 2^11 bucket under Distribution B.
|
||||
if (1 << 8 < size && size < 1 << 19)
|
||||
return BucketIndexLookup::GetIndexForDenserBuckets(RoundUpSize(size));
|
||||
else
|
||||
return BucketIndexLookup::GetIndexForDenserBuckets(size);
|
||||
}
|
||||
|
||||
// static
|
||||
ALWAYS_INLINE constexpr size_t BucketIndexLookup::GetIndexForDenserBuckets(
|
||||
size_t size) {
|
||||
// This forces the bucket table to be constant-initialized and immediately
|
||||
// materialized in the binary.
|
||||
constexpr BucketIndexLookup lookup{};
|
||||
const uint8_t order =
|
||||
kBitsPerSizeT - base::bits::CountLeadingZeroBitsSizeT(size);
|
||||
// The order index is simply the next few bits after the most significant
|
||||
// bit.
|
||||
const size_t order_index =
|
||||
(size >> kOrderIndexShift[order]) & (kNumBucketsPerOrder - 1);
|
||||
// And if the remaining bits are non-zero we must bump the bucket up.
|
||||
const size_t sub_order_index = size & kOrderSubIndexMask[order];
|
||||
const uint16_t index =
|
||||
lookup.bucket_index_lookup_[(order << kNumBucketsPerOrderBits) +
|
||||
order_index + !!sub_order_index];
|
||||
PA_DCHECK(index <= kNumBuckets); // Last one is the sentinel bucket.
|
||||
return index;
|
||||
}
|
||||
|
||||
} // namespace partition_alloc::internal
|
||||
|
||||
namespace base::internal {
|
||||
|
||||
// TODO(https://crbug.com/1288247): Remove these 'using' declarations once
|
||||
// the migration to the new namespaces gets done.
|
||||
using ::partition_alloc::internal::BucketIndexLookup;
|
||||
|
||||
} // namespace base::internal
|
||||
|
||||
#endif // BASE_ALLOCATOR_PARTITION_ALLOCATOR_PARTITION_BUCKET_LOOKUP_H_
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user