naiveproxy/build/toolchain/nacl/BUILD.gn

271 lines
8.8 KiB
Plaintext
Raw Normal View History

2018-12-10 05:59:24 +03:00
# Copyright (c) 2014 The Native Client Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
import("//build/config/sysroot.gni")
import("//build/config/nacl/config.gni")
import("//build/toolchain/nacl_toolchain.gni")
# Add the toolchain revision as a preprocessor define so that sources are
# rebuilt when a toolchain is updated.
# Idea we could use the toolchain deps feature, but currently that feature is
# bugged and does not trigger a rebuild.
# https://code.google.com/p/chromium/issues/detail?id=431880
# Calls to get the toolchain revision are relatively slow, so do them all in a
# single batch to amortize python startup, etc.
revisions = exec_script("//native_client/build/get_toolchain_revision.py",
[
"nacl_x86_glibc",
"nacl_arm_glibc",
"pnacl_newlib",
],
"trim list lines")
nacl_x86_glibc_rev = revisions[0]
nacl_arm_glibc_rev = revisions[1]
pnacl_newlib_rev = revisions[2]
if (host_os == "win") {
toolsuffix = ".exe"
} else {
toolsuffix = ""
}
# The PNaCl toolchain tools are all wrapper scripts rather than binary
# executables. On POSIX systems, nobody cares what kind of executable
# file you are. But on Windows, scripts (.bat files) cannot be run
# directly and need the Windows shell (cmd.exe) specified explicily.
if (host_os == "win") {
# NOTE! The //build/toolchain/gcc_*_wrapper.py scripts recognize
# this exact prefix string, so they must be updated if this string
# is changed in any way.
scriptprefix = "cmd /c call "
scriptsuffix = ".bat"
} else {
scriptprefix = ""
scriptsuffix = ""
}
# When the compilers are run via goma or ccache rather than directly by
# GN/Ninja, the goma/ccache wrapper handles .bat files but gets confused
# by being given the scriptprefix.
if (host_os == "win" && !use_goma && cc_wrapper == "") {
compiler_scriptprefix = scriptprefix
} else {
compiler_scriptprefix = ""
}
template("pnacl_toolchain") {
assert(defined(invoker.executable_extension),
"Must define executable_extension")
nacl_toolchain(target_name) {
toolchain_package = "pnacl_newlib"
toolchain_revision = pnacl_newlib_rev
toolprefix =
rebase_path("${nacl_toolchain_dir}/${toolchain_package}/bin/pnacl-",
root_build_dir)
cc = compiler_scriptprefix + toolprefix + "clang" + scriptsuffix
cxx = compiler_scriptprefix + toolprefix + "clang++" + scriptsuffix
ar = toolprefix + "ar" + scriptsuffix
readelf = scriptprefix + toolprefix + "readelf" + scriptsuffix
nm = scriptprefix + toolprefix + "nm" + scriptsuffix
if (defined(invoker.strip)) {
strip = scriptprefix + toolprefix + invoker.strip + scriptsuffix
}
forward_variables_from(invoker,
[
"executable_extension",
"is_clang_analysis_supported",
])
# Note this is not the usual "ld = cxx" because "ld" uses are
# never run via goma, so this needs scriptprefix.
ld = scriptprefix + toolprefix + "clang++" + scriptsuffix
toolchain_args = {
is_clang = true
current_cpu = "pnacl"
use_lld = false
}
}
}
pnacl_toolchain("newlib_pnacl") {
executable_extension = ".pexe"
# The pnacl-finalize tool turns a .pexe.debug file into a .pexe file.
# It's very similar in purpose to the traditional "strip" utility: it
# turns what comes out of the linker into what you actually want to
# distribute and run. PNaCl doesn't have a "strip"-like utility that
# you ever actually want to use other than pnacl-finalize, so just
# make pnacl-finalize the strip tool rather than adding an additional
# step like "postlink" to run pnacl-finalize.
strip = "finalize"
}
pnacl_toolchain("newlib_pnacl_nonsfi") {
executable_extension = ""
strip = "strip"
if (use_clang_static_analyzer) {
is_clang_analysis_supported = false
}
}
template("nacl_glibc_toolchain") {
toolchain_cpu = target_name
assert(defined(invoker.toolchain_tuple), "Must define toolchain_tuple")
assert(defined(invoker.toolchain_package), "Must define toolchain_package")
assert(defined(invoker.toolchain_revision), "Must define toolchain_revision")
forward_variables_from(invoker,
[
"toolchain_package",
"toolchain_revision",
])
toolprefix = rebase_path("${nacl_toolchain_dir}/${toolchain_package}/bin/" +
invoker.toolchain_tuple + "-",
root_build_dir)
nacl_toolchain("glibc_" + toolchain_cpu) {
cc = toolprefix + "gcc" + toolsuffix
cxx = toolprefix + "g++" + toolsuffix
ar = toolprefix + "ar" + toolsuffix
ld = cxx
readelf = toolprefix + "readelf" + toolsuffix
nm = toolprefix + "nm" + toolsuffix
strip = toolprefix + "strip" + toolsuffix
toolchain_args = {
current_cpu = toolchain_cpu
is_clang = false
is_nacl_glibc = true
use_lld = false
}
}
}
nacl_glibc_toolchain("x86") {
toolchain_package = "nacl_x86_glibc"
toolchain_revision = nacl_x86_glibc_rev
# Rely on the :compiler_cpu_abi config adding the -m32 flag here rather
# than using the i686-nacl binary directly. This is a because i686-nacl-gcc
# is a shell script wrapper around x86_64-nacl-gcc and goma has trouble with
# compiler executables that are shell scripts (so the i686 'compiler' is not
# currently in goma).
toolchain_tuple = "x86_64-nacl"
}
nacl_glibc_toolchain("x64") {
toolchain_package = "nacl_x86_glibc"
toolchain_revision = nacl_x86_glibc_rev
toolchain_tuple = "x86_64-nacl"
}
nacl_glibc_toolchain("arm") {
toolchain_package = "nacl_arm_glibc"
toolchain_revision = nacl_arm_glibc_rev
toolchain_tuple = "arm-nacl"
}
template("nacl_clang_toolchain") {
toolchain_cpu = target_name
assert(defined(invoker.toolchain_tuple), "Must define toolchain_tuple")
toolchain_package = "pnacl_newlib"
toolchain_revision = pnacl_newlib_rev
toolprefix = rebase_path("${nacl_toolchain_dir}/${toolchain_package}/bin/" +
invoker.toolchain_tuple + "-",
root_build_dir)
nacl_toolchain("clang_newlib_" + toolchain_cpu) {
cc = toolprefix + "clang" + toolsuffix
cxx = toolprefix + "clang++" + toolsuffix
ar = toolprefix + "ar" + toolsuffix
ld = cxx
readelf = toolprefix + "readelf" + toolsuffix
nm = toolprefix + "nm" + toolsuffix
strip = toolprefix + "strip" + toolsuffix
toolchain_args = {
current_cpu = toolchain_cpu
is_clang = true
use_lld = false
}
}
}
template("nacl_irt_toolchain") {
toolchain_cpu = target_name
assert(defined(invoker.toolchain_tuple), "Must define toolchain_tuple")
toolchain_package = "pnacl_newlib"
toolchain_revision = pnacl_newlib_rev
toolprefix = rebase_path("${nacl_toolchain_dir}/${toolchain_package}/bin/" +
invoker.toolchain_tuple + "-",
root_build_dir)
link_irt = rebase_path("//native_client/build/link_irt.py", root_build_dir)
tls_edit_label =
"//native_client/src/tools/tls_edit:tls_edit($host_toolchain)"
host_toolchain_out_dir =
rebase_path(get_label_info(tls_edit_label, "root_out_dir"),
root_build_dir)
tls_edit = "${host_toolchain_out_dir}/tls_edit"
nacl_toolchain("irt_" + toolchain_cpu) {
cc = toolprefix + "clang" + toolsuffix
cxx = toolprefix + "clang++" + toolsuffix
ar = toolprefix + "ar" + toolsuffix
readelf = toolprefix + "readelf" + toolsuffix
nm = toolprefix + "nm" + toolsuffix
strip = toolprefix + "strip" + toolsuffix
# Some IRT implementations (notably, Chromium's) contain C++ code,
# so we need to link w/ the C++ linker.
ld = "${python_path} ${link_irt} --tls-edit=${tls_edit} --link-cmd=${cxx} --readelf-cmd=${readelf}"
toolchain_args = {
current_cpu = toolchain_cpu
is_clang = true
use_lld = false
}
# TODO(ncbray): depend on link script
deps = [
tls_edit_label,
]
}
}
template("nacl_clang_toolchains") {
assert(defined(invoker.toolchain_tuple), "Must define toolchain_tuple")
nacl_clang_toolchain(target_name) {
toolchain_tuple = invoker.toolchain_tuple
}
nacl_irt_toolchain(target_name) {
toolchain_tuple = invoker.toolchain_tuple
}
}
nacl_clang_toolchains("x86") {
# Rely on :compiler_cpu_abi adding -m32. See nacl_x86_glibc above.
toolchain_tuple = "x86_64-nacl"
}
nacl_clang_toolchains("x64") {
toolchain_tuple = "x86_64-nacl"
}
nacl_clang_toolchains("arm") {
toolchain_tuple = "arm-nacl"
}
nacl_clang_toolchains("mipsel") {
toolchain_tuple = "mipsel-nacl"
}