naiveproxy/base/containers/span.h

322 lines
11 KiB
C
Raw Normal View History

2018-02-02 13:49:39 +03:00
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_SPAN_H_
#define BASE_CONTAINERS_SPAN_H_
#include <stddef.h>
#include <algorithm>
#include <array>
#include <iterator>
#include <type_traits>
#include <utility>
namespace base {
template <typename T>
class span;
namespace internal {
template <typename T>
struct IsSpanImpl : std::false_type {};
template <typename T>
struct IsSpanImpl<span<T>> : std::true_type {};
template <typename T>
using IsSpan = IsSpanImpl<std::decay_t<T>>;
template <typename T>
struct IsStdArrayImpl : std::false_type {};
template <typename T, size_t N>
struct IsStdArrayImpl<std::array<T, N>> : std::true_type {};
template <typename T>
using IsStdArray = IsStdArrayImpl<std::decay_t<T>>;
template <typename From, typename To>
using IsLegalSpanConversion = std::is_convertible<From*, To*>;
template <typename Container, typename T>
using ContainerHasConvertibleData = IsLegalSpanConversion<
std::remove_pointer_t<decltype(std::declval<Container>().data())>,
T>;
template <typename Container>
using ContainerHasIntegralSize =
std::is_integral<decltype(std::declval<Container>().size())>;
template <typename From, typename To>
using EnableIfLegalSpanConversion =
std::enable_if_t<IsLegalSpanConversion<From, To>::value>;
// SFINAE check if Container can be converted to a span<T>. Note that the
// implementation details of this check differ slightly from the requirements in
// the working group proposal: in particular, the proposal also requires that
// the container conversion constructor participate in overload resolution only
// if two additional conditions are true:
//
// 1. Container implements operator[].
// 2. Container::value_type matches remove_const_t<element_type>.
//
// The requirements are relaxed slightly here: in particular, not requiring (2)
// means that an immutable span can be easily constructed from a mutable
// container.
template <typename Container, typename T>
using EnableIfSpanCompatibleContainer =
std::enable_if_t<!internal::IsSpan<Container>::value &&
!internal::IsStdArray<Container>::value &&
ContainerHasConvertibleData<Container, T>::value &&
ContainerHasIntegralSize<Container>::value>;
template <typename Container, typename T>
using EnableIfConstSpanCompatibleContainer =
std::enable_if_t<std::is_const<T>::value &&
!internal::IsSpan<Container>::value &&
!internal::IsStdArray<Container>::value &&
ContainerHasConvertibleData<Container, T>::value &&
ContainerHasIntegralSize<Container>::value>;
} // namespace internal
// A span is a value type that represents an array of elements of type T. Since
// it only consists of a pointer to memory with an associated size, it is very
// light-weight. It is cheap to construct, copy, move and use spans, so that
// users are encouraged to use it as a pass-by-value parameter. A span does not
// own the underlying memory, so care must be taken to ensure that a span does
// not outlive the backing store.
//
// span is somewhat analogous to StringPiece, but with arbitrary element types,
// allowing mutation if T is non-const.
//
// span is implicitly convertible from C++ arrays, as well as most [1]
// container-like types that provide a data() and size() method (such as
// std::vector<T>). A mutable span<T> can also be implicitly converted to an
// immutable span<const T>.
//
// Consider using a span for functions that take a data pointer and size
// parameter: it allows the function to still act on an array-like type, while
// allowing the caller code to be a bit more concise.
//
// For read-only data access pass a span<const T>: the caller can supply either
// a span<const T> or a span<T>, while the callee will have a read-only view.
// For read-write access a mutable span<T> is required.
//
// Without span:
// Read-Only:
// // std::string HexEncode(const uint8_t* data, size_t size);
// std::vector<uint8_t> data_buffer = GenerateData();
// std::string r = HexEncode(data_buffer.data(), data_buffer.size());
//
// Mutable:
// // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);
// char str_buffer[100];
// SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
//
// With span:
// Read-Only:
// // std::string HexEncode(base::span<const uint8_t> data);
// std::vector<uint8_t> data_buffer = GenerateData();
// std::string r = HexEncode(data_buffer);
//
// Mutable:
// // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...);
// char str_buffer[100];
// SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
//
// Spans with "const" and pointers
// -------------------------------
//
// Const and pointers can get confusing. Here are vectors of pointers and their
// corresponding spans (you can always make the span "more const" too):
//
// const std::vector<int*> => base::span<int* const>
// std::vector<const int*> => base::span<const int*>
// const std::vector<const int*> => base::span<const int* const>
//
// Differences from the working group proposal
// -------------------------------------------
//
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0122r5.pdf is the
// latest working group proposal. The biggest difference is span does not
// support a static extent template parameter. Other differences are documented
// in subsections below.
//
// Differences from [views.constants]:
// - no dynamic_extent constant
//
// Differences in constants and types:
// - no element_type type alias
// - no index_type type alias
// - no different_type type alias
// - no extent constant
//
// Differences from [span.cons]:
// - no constructor from a pointer range
// - no constructor from std::array
// - no constructor from std::unique_ptr
// - no constructor from std::shared_ptr
// - no explicitly defaulted the copy/move constructor/assignment operators,
// since MSVC complains about constexpr functions that aren't marked const.
//
// Differences from [span.sub]:
// - no templated first()
// - no templated last()
// - no templated subspan()
//
// Differences from [span.obs]:
// - no length_bytes()
// - no size_bytes()
//
// Differences from [span.elem]:
// - no operator ()()
//
// Differences from [span.objectrep]:
// - no as_bytes()
// - no as_writeable_bytes()
template <typename T>
class span {
public:
using value_type = std::remove_cv_t<T>;
using pointer = T*;
using reference = T&;
using iterator = T*;
using const_iterator = const T*;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
// span constructors, copy, assignment, and destructor
constexpr span() noexcept : data_(nullptr), size_(0) {}
constexpr span(std::nullptr_t) noexcept : span() {}
constexpr span(T* data, size_t size) noexcept : data_(data), size_(size) {}
// TODO(dcheng): Implement construction from a |begin| and |end| pointer.
template <size_t N>
constexpr span(T (&array)[N]) noexcept : span(array, N) {}
// TODO(dcheng): Implement construction from std::array.
// Conversion from a container that provides |T* data()| and |integral_type
// size()|.
template <typename Container,
typename = internal::EnableIfSpanCompatibleContainer<Container, T>>
constexpr span(Container& container)
: span(container.data(), container.size()) {}
template <
typename Container,
typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>>
span(const Container& container) : span(container.data(), container.size()) {}
~span() noexcept = default;
// Conversions from spans of compatible types: this allows a span<T> to be
// seamlessly used as a span<const T>, but not the other way around.
template <typename U, typename = internal::EnableIfLegalSpanConversion<U, T>>
constexpr span(const span<U>& other) : span(other.data(), other.size()) {}
template <typename U, typename = internal::EnableIfLegalSpanConversion<U, T>>
constexpr span(span<U>&& other) : span(other.data(), other.size()) {}
// span subviews
// Note: ideally all of these would DCHECK, but it requires fairly horrible
// contortions.
constexpr span first(size_t count) const { return span(data_, count); }
constexpr span last(size_t count) const {
return span(data_ + (size_ - count), count);
}
constexpr span subspan(size_t pos, size_t count = -1) const {
return span(data_ + pos, std::min(size_ - pos, count));
}
// span observers
constexpr size_t length() const noexcept { return size_; }
constexpr size_t size() const noexcept { return size_; }
constexpr bool empty() const noexcept { return size_ == 0; }
// span element access
constexpr T& operator[](size_t index) const noexcept { return data_[index]; }
constexpr T* data() const noexcept { return data_; }
// span iterator support
iterator begin() const noexcept { return data_; }
iterator end() const noexcept { return data_ + size_; }
const_iterator cbegin() const noexcept { return begin(); }
const_iterator cend() const noexcept { return end(); }
reverse_iterator rbegin() const noexcept { return reverse_iterator(end()); }
reverse_iterator rend() const noexcept { return reverse_iterator(begin()); }
const_reverse_iterator crbegin() const noexcept {
return const_reverse_iterator(cend());
}
const_reverse_iterator crend() const noexcept {
return const_reverse_iterator(cbegin());
}
private:
T* data_;
size_t size_;
};
// Relational operators. Equality is a element-wise comparison.
template <typename T>
constexpr bool operator==(const span<T>& lhs, const span<T>& rhs) noexcept {
return std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend());
}
template <typename T>
constexpr bool operator!=(const span<T>& lhs, const span<T>& rhs) noexcept {
return !(lhs == rhs);
}
template <typename T>
constexpr bool operator<(const span<T>& lhs, const span<T>& rhs) noexcept {
return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(),
rhs.cend());
}
template <typename T>
constexpr bool operator<=(const span<T>& lhs, const span<T>& rhs) noexcept {
return !(rhs < lhs);
}
template <typename T>
constexpr bool operator>(const span<T>& lhs, const span<T>& rhs) noexcept {
return rhs < lhs;
}
template <typename T>
constexpr bool operator>=(const span<T>& lhs, const span<T>& rhs) noexcept {
return !(lhs < rhs);
}
// Type-deducing helpers for constructing a span.
template <typename T>
constexpr span<T> make_span(T* data, size_t size) noexcept {
return span<T>(data, size);
}
template <typename T, size_t N>
constexpr span<T> make_span(T (&array)[N]) noexcept {
return span<T>(array);
}
template <typename Container,
typename T = typename Container::value_type,
typename = internal::EnableIfSpanCompatibleContainer<Container, T>>
constexpr span<T> make_span(Container& container) {
return span<T>(container);
}
template <
typename Container,
typename T = std::add_const_t<typename Container::value_type>,
typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>>
constexpr span<T> make_span(const Container& container) {
return span<T>(container);
}
} // namespace base
#endif // BASE_CONTAINERS_SPAN_H_